/usr/lib/python2.7/dist-packages/sklearn/multioutput.py is in python-sklearn 0.19.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 | """
This module implements multioutput regression and classification.
The estimators provided in this module are meta-estimators: they require
a base estimator to be provided in their constructor. The meta-estimator
extends single output estimators to multioutput estimators.
"""
# Author: Tim Head <betatim@gmail.com>
# Author: Hugo Bowne-Anderson <hugobowne@gmail.com>
# Author: Chris Rivera <chris.richard.rivera@gmail.com>
# Author: Michael Williamson
# Author: James Ashton Nichols <james.ashton.nichols@gmail.com>
#
# License: BSD 3 clause
import numpy as np
import scipy.sparse as sp
from abc import ABCMeta, abstractmethod
from .base import BaseEstimator, clone, MetaEstimatorMixin
from .base import RegressorMixin, ClassifierMixin, is_classifier
from .model_selection import cross_val_predict
from .utils import check_array, check_X_y, check_random_state
from .utils.fixes import parallel_helper
from .utils.metaestimators import if_delegate_has_method
from .utils.validation import check_is_fitted, has_fit_parameter
from .utils.multiclass import check_classification_targets
from .externals.joblib import Parallel, delayed
from .externals import six
__all__ = ["MultiOutputRegressor", "MultiOutputClassifier", "ClassifierChain"]
def _fit_estimator(estimator, X, y, sample_weight=None):
estimator = clone(estimator)
if sample_weight is not None:
estimator.fit(X, y, sample_weight=sample_weight)
else:
estimator.fit(X, y)
return estimator
def _partial_fit_estimator(estimator, X, y, classes=None, sample_weight=None,
first_time=True):
if first_time:
estimator = clone(estimator)
if sample_weight is not None:
if classes is not None:
estimator.partial_fit(X, y, classes=classes,
sample_weight=sample_weight)
else:
estimator.partial_fit(X, y, sample_weight=sample_weight)
else:
if classes is not None:
estimator.partial_fit(X, y, classes=classes)
else:
estimator.partial_fit(X, y)
return estimator
class MultiOutputEstimator(six.with_metaclass(ABCMeta, BaseEstimator,
MetaEstimatorMixin)):
@abstractmethod
def __init__(self, estimator, n_jobs=1):
self.estimator = estimator
self.n_jobs = n_jobs
@if_delegate_has_method('estimator')
def partial_fit(self, X, y, classes=None, sample_weight=None):
"""Incrementally fit the model to data.
Fit a separate model for each output variable.
Parameters
----------
X : (sparse) array-like, shape (n_samples, n_features)
Data.
y : (sparse) array-like, shape (n_samples, n_outputs)
Multi-output targets.
classes : list of numpy arrays, shape (n_outputs)
Each array is unique classes for one output in str/int
Can be obtained by via
``[np.unique(y[:, i]) for i in range(y.shape[1])]``, where y is the
target matrix of the entire dataset.
This argument is required for the first call to partial_fit
and can be omitted in the subsequent calls.
Note that y doesn't need to contain all labels in `classes`.
sample_weight : array-like, shape = (n_samples) or None
Sample weights. If None, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
Returns
-------
self : object
Returns self.
"""
X, y = check_X_y(X, y,
multi_output=True,
accept_sparse=True)
if y.ndim == 1:
raise ValueError("y must have at least two dimensions for "
"multi-output regression but has only one.")
if (sample_weight is not None and
not has_fit_parameter(self.estimator, 'sample_weight')):
raise ValueError("Underlying estimator does not support"
" sample weights.")
first_time = not hasattr(self, 'estimators_')
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_partial_fit_estimator)(
self.estimators_[i] if not first_time else self.estimator,
X, y[:, i],
classes[i] if classes is not None else None,
sample_weight, first_time) for i in range(y.shape[1]))
return self
def fit(self, X, y, sample_weight=None):
""" Fit the model to data.
Fit a separate model for each output variable.
Parameters
----------
X : (sparse) array-like, shape (n_samples, n_features)
Data.
y : (sparse) array-like, shape (n_samples, n_outputs)
Multi-output targets. An indicator matrix turns on multilabel
estimation.
sample_weight : array-like, shape = (n_samples) or None
Sample weights. If None, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
Returns
-------
self : object
Returns self.
"""
if not hasattr(self.estimator, "fit"):
raise ValueError("The base estimator should implement a fit method")
X, y = check_X_y(X, y,
multi_output=True,
accept_sparse=True)
if is_classifier(self):
check_classification_targets(y)
if y.ndim == 1:
raise ValueError("y must have at least two dimensions for "
"multi-output regression but has only one.")
if (sample_weight is not None and
not has_fit_parameter(self.estimator, 'sample_weight')):
raise ValueError("Underlying estimator does not support"
" sample weights.")
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_fit_estimator)(
self.estimator, X, y[:, i], sample_weight)
for i in range(y.shape[1]))
return self
def predict(self, X):
"""Predict multi-output variable using a model
trained for each target variable.
Parameters
----------
X : (sparse) array-like, shape (n_samples, n_features)
Data.
Returns
-------
y : (sparse) array-like, shape (n_samples, n_outputs)
Multi-output targets predicted across multiple predictors.
Note: Separate models are generated for each predictor.
"""
check_is_fitted(self, 'estimators_')
if not hasattr(self.estimator, "predict"):
raise ValueError("The base estimator should implement a predict method")
X = check_array(X, accept_sparse=True)
y = Parallel(n_jobs=self.n_jobs)(
delayed(parallel_helper)(e, 'predict', X)
for e in self.estimators_)
return np.asarray(y).T
class MultiOutputRegressor(MultiOutputEstimator, RegressorMixin):
"""Multi target regression
This strategy consists of fitting one regressor per target. This is a
simple strategy for extending regressors that do not natively support
multi-target regression.
Parameters
----------
estimator : estimator object
An estimator object implementing `fit` and `predict`.
n_jobs : int, optional, default=1
The number of jobs to run in parallel for `fit`. If -1,
then the number of jobs is set to the number of cores.
When individual estimators are fast to train or predict
using `n_jobs>1` can result in slower performance due
to the overhead of spawning processes.
"""
def __init__(self, estimator, n_jobs=1):
super(MultiOutputRegressor, self).__init__(estimator, n_jobs)
@if_delegate_has_method('estimator')
def partial_fit(self, X, y, sample_weight=None):
"""Incrementally fit the model to data.
Fit a separate model for each output variable.
Parameters
----------
X : (sparse) array-like, shape (n_samples, n_features)
Data.
y : (sparse) array-like, shape (n_samples, n_outputs)
Multi-output targets.
sample_weight : array-like, shape = (n_samples) or None
Sample weights. If None, then samples are equally weighted.
Only supported if the underlying regressor supports sample
weights.
Returns
-------
self : object
Returns self.
"""
super(MultiOutputRegressor, self).partial_fit(
X, y, sample_weight=sample_weight)
def score(self, X, y, sample_weight=None):
"""Returns the coefficient of determination R^2 of the prediction.
The coefficient R^2 is defined as (1 - u/v), where u is the residual
sum of squares ((y_true - y_pred) ** 2).sum() and v is the regression
sum of squares ((y_true - y_true.mean()) ** 2).sum().
Best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features,
would get a R^2 score of 0.0.
Notes
-----
R^2 is calculated by weighting all the targets equally using
`multioutput='uniform_average'`.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Test samples.
y : array-like, shape (n_samples) or (n_samples, n_outputs)
True values for X.
sample_weight : array-like, shape [n_samples], optional
Sample weights.
Returns
-------
score : float
R^2 of self.predict(X) wrt. y.
"""
# XXX remove in 0.19 when r2_score default for multioutput changes
from .metrics import r2_score
return r2_score(y, self.predict(X), sample_weight=sample_weight,
multioutput='uniform_average')
class MultiOutputClassifier(MultiOutputEstimator, ClassifierMixin):
"""Multi target classification
This strategy consists of fitting one classifier per target. This is a
simple strategy for extending classifiers that do not natively support
multi-target classification
Parameters
----------
estimator : estimator object
An estimator object implementing `fit`, `score` and `predict_proba`.
n_jobs : int, optional, default=1
The number of jobs to use for the computation. If -1 all CPUs are used.
If 1 is given, no parallel computing code is used at all, which is
useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are
used. Thus for n_jobs = -2, all CPUs but one are used.
The number of jobs to use for the computation.
It does each target variable in y in parallel.
Attributes
----------
estimators_ : list of ``n_output`` estimators
Estimators used for predictions.
"""
def __init__(self, estimator, n_jobs=1):
super(MultiOutputClassifier, self).__init__(estimator, n_jobs)
def predict_proba(self, X):
"""Probability estimates.
Returns prediction probabilities for each class of each output.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Data
Returns
-------
p : array of shape = [n_samples, n_classes], or a list of n_outputs \
such arrays if n_outputs > 1.
The class probabilities of the input samples. The order of the
classes corresponds to that in the attribute `classes_`.
"""
check_is_fitted(self, 'estimators_')
if not hasattr(self.estimator, "predict_proba"):
raise ValueError("The base estimator should implement"
"predict_proba method")
results = [estimator.predict_proba(X) for estimator in
self.estimators_]
return results
def score(self, X, y):
""""Returns the mean accuracy on the given test data and labels.
Parameters
----------
X : array-like, shape [n_samples, n_features]
Test samples
y : array-like, shape [n_samples, n_outputs]
True values for X
Returns
-------
scores : float
accuracy_score of self.predict(X) versus y
"""
check_is_fitted(self, 'estimators_')
n_outputs_ = len(self.estimators_)
if y.ndim == 1:
raise ValueError("y must have at least two dimensions for "
"multi target classification but has only one")
if y.shape[1] != n_outputs_:
raise ValueError("The number of outputs of Y for fit {0} and"
" score {1} should be same".
format(n_outputs_, y.shape[1]))
y_pred = self.predict(X)
return np.mean(np.all(y == y_pred, axis=1))
class ClassifierChain(BaseEstimator, ClassifierMixin, MetaEstimatorMixin):
"""A multi-label model that arranges binary classifiers into a chain.
Each model makes a prediction in the order specified by the chain using
all of the available features provided to the model plus the predictions
of models that are earlier in the chain.
Parameters
----------
base_estimator : estimator
The base estimator from which the classifier chain is built.
order : array-like, shape=[n_outputs] or 'random', optional
By default the order will be determined by the order of columns in
the label matrix Y.::
order = [0, 1, 2, ..., Y.shape[1] - 1]
The order of the chain can be explicitly set by providing a list of
integers. For example, for a chain of length 5.::
order = [1, 3, 2, 4, 0]
means that the first model in the chain will make predictions for
column 1 in the Y matrix, the second model will make predictions
for column 3, etc.
If order is 'random' a random ordering will be used.
cv : int, cross-validation generator or an iterable, optional (
default=None)
Determines whether to use cross validated predictions or true
labels for the results of previous estimators in the chain.
If cv is None the true labels are used when fitting. Otherwise
possible inputs for cv are:
* integer, to specify the number of folds in a (Stratified)KFold,
* An object to be used as a cross-validation generator.
* An iterable yielding train, test splits.
random_state : int, RandomState instance or None, optional (default=None)
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
The random number generator is used to generate random chain orders.
Attributes
----------
classes_ : list
A list of arrays of length ``len(estimators_)`` containing the
class labels for each estimator in the chain.
estimators_ : list
A list of clones of base_estimator.
order_ : list
The order of labels in the classifier chain.
References
----------
Jesse Read, Bernhard Pfahringer, Geoff Holmes, Eibe Frank, "Classifier
Chains for Multi-label Classification", 2009.
"""
def __init__(self, base_estimator, order=None, cv=None, random_state=None):
self.base_estimator = base_estimator
self.order = order
self.cv = cv
self.random_state = random_state
def fit(self, X, Y):
"""Fit the model to data matrix X and targets Y.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
Y : array-like, shape (n_samples, n_classes)
The target values.
Returns
-------
self : object
Returns self.
"""
X, Y = check_X_y(X, Y, multi_output=True, accept_sparse=True)
random_state = check_random_state(self.random_state)
check_array(X, accept_sparse=True)
self.order_ = self.order
if self.order_ is None:
self.order_ = np.array(range(Y.shape[1]))
elif isinstance(self.order_, str):
if self.order_ == 'random':
self.order_ = random_state.permutation(Y.shape[1])
elif sorted(self.order_) != list(range(Y.shape[1])):
raise ValueError("invalid order")
self.estimators_ = [clone(self.base_estimator)
for _ in range(Y.shape[1])]
self.classes_ = []
if self.cv is None:
Y_pred_chain = Y[:, self.order_]
if sp.issparse(X):
X_aug = sp.hstack((X, Y_pred_chain), format='lil')
X_aug = X_aug.tocsr()
else:
X_aug = np.hstack((X, Y_pred_chain))
elif sp.issparse(X):
Y_pred_chain = sp.lil_matrix((X.shape[0], Y.shape[1]))
X_aug = sp.hstack((X, Y_pred_chain), format='lil')
else:
Y_pred_chain = np.zeros((X.shape[0], Y.shape[1]))
X_aug = np.hstack((X, Y_pred_chain))
del Y_pred_chain
for chain_idx, estimator in enumerate(self.estimators_):
y = Y[:, self.order_[chain_idx]]
estimator.fit(X_aug[:, :(X.shape[1] + chain_idx)], y)
if self.cv is not None and chain_idx < len(self.estimators_) - 1:
col_idx = X.shape[1] + chain_idx
cv_result = cross_val_predict(
self.base_estimator, X_aug[:, :col_idx],
y=y, cv=self.cv)
if sp.issparse(X_aug):
X_aug[:, col_idx] = np.expand_dims(cv_result, 1)
else:
X_aug[:, col_idx] = cv_result
self.classes_.append(estimator.classes_)
return self
def predict(self, X):
"""Predict on the data matrix X using the ClassifierChain model.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
The input data.
Returns
-------
Y_pred : array-like, shape (n_samples, n_classes)
The predicted values.
"""
X = check_array(X, accept_sparse=True)
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
for chain_idx, estimator in enumerate(self.estimators_):
previous_predictions = Y_pred_chain[:, :chain_idx]
if sp.issparse(X):
if chain_idx == 0:
X_aug = X
else:
X_aug = sp.hstack((X, previous_predictions))
else:
X_aug = np.hstack((X, previous_predictions))
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
inv_order = np.empty_like(self.order_)
inv_order[self.order_] = np.arange(len(self.order_))
Y_pred = Y_pred_chain[:, inv_order]
return Y_pred
@if_delegate_has_method('base_estimator')
def predict_proba(self, X):
"""Predict probability estimates.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Returns
-------
Y_prob : array-like, shape (n_samples, n_classes)
"""
X = check_array(X, accept_sparse=True)
Y_prob_chain = np.zeros((X.shape[0], len(self.estimators_)))
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
for chain_idx, estimator in enumerate(self.estimators_):
previous_predictions = Y_pred_chain[:, :chain_idx]
if sp.issparse(X):
X_aug = sp.hstack((X, previous_predictions))
else:
X_aug = np.hstack((X, previous_predictions))
Y_prob_chain[:, chain_idx] = estimator.predict_proba(X_aug)[:, 1]
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
inv_order = np.empty_like(self.order_)
inv_order[self.order_] = np.arange(len(self.order_))
Y_prob = Y_prob_chain[:, inv_order]
return Y_prob
@if_delegate_has_method('base_estimator')
def decision_function(self, X):
"""Evaluate the decision_function of the models in the chain.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Returns
-------
Y_decision : array-like, shape (n_samples, n_classes )
Returns the decision function of the sample for each model
in the chain.
"""
Y_decision_chain = np.zeros((X.shape[0], len(self.estimators_)))
Y_pred_chain = np.zeros((X.shape[0], len(self.estimators_)))
for chain_idx, estimator in enumerate(self.estimators_):
previous_predictions = Y_pred_chain[:, :chain_idx]
if sp.issparse(X):
X_aug = sp.hstack((X, previous_predictions))
else:
X_aug = np.hstack((X, previous_predictions))
Y_decision_chain[:, chain_idx] = estimator.decision_function(X_aug)
Y_pred_chain[:, chain_idx] = estimator.predict(X_aug)
inv_order = np.empty_like(self.order_)
inv_order[self.order_] = np.arange(len(self.order_))
Y_decision = Y_decision_chain[:, inv_order]
return Y_decision
|