This file is indexed.

/usr/lib/python2.7/dist-packages/sagenb/data/sage/js/canvas3d_lib.js is in python-sagenb 1.0.1+ds1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
/* This JavaScript library implements a software 3D renderer drawing to a
 * canvas context, which makes up the 'canvas3d' backend used in 3D plotting. */

canvas3d = (function() {
    var CANVAS_SIZE = 400;
    // The focal length is used to compute the projection transformation.
    var FOCAL_LENGTH = 300;
    // This scaling factor is applied to the figure before it is displayed.
    var FIGURE_SCALE = 90;
    // The figure will be translated by this amount on the Z axis.
    var FIGURE_ZOFFSET = -250;
    // This coefficient affects how rapidly the figure is scaled when the user
    // holds SHIFT and drags.
    var SCALING_SENSITIVITY = 0.04;

    ///////////////////////////////////////////////////////////////////////
    //
    // 3D Math and Utilities
    //
    ///////////////////////////////////////////////////////////////////////

    /* 4x4 matrices are stored in arrays of size 12 in row-major order, where
     * the last row is implied to be [0, 0, 0, 1]. This constitutes an affine
     * transformation matrix. */

    /* Three-dimensional vectors are stored as objects with three fields, one of
     * each 'x', 'y', and 'z'. There is no constructor function for these objects,
     * so the preferred way is using object literal notation ({ ... }). */


    // For constructing special transformation matrices:

    function make_identity_affine() {
        return [1, 0, 0, 0,
                0, 1, 0, 0,
                0, 0, 1, 0];
    }
    function make_translation_affine(x, y, z) {
        return [1, 0, 0, x,
                0, 1, 0, y,
                0, 0, 1, z];
    }
    function make_dilation_affine(a) {
        return [a, 0, 0, 0,
                0, a, 0, 0,
                0, 0, a, 0];
    }

    function mult_matrix(a, b) {
        /* Multiply two matrices and return the product. This computation is
         * unrolled, and includes the implied last rows. */

        return [
            (a[0] * b[0]) + (a[1] * b[4]) + (a[2] * b[8]),
            (a[0] * b[1]) + (a[1] * b[5]) + (a[2] * b[9]),
            (a[0] * b[2]) + (a[1] * b[6]) + (a[2] * b[10]),
            (a[0] * b[3]) + (a[1] * b[7]) + (a[2] * b[11]) + a[3],
            (a[4] * b[0]) + (a[5] * b[4]) + (a[6] * b[8]),
            (a[4] * b[1]) + (a[5] * b[5]) + (a[6] * b[9]),
            (a[4] * b[2]) + (a[5] * b[6]) + (a[6] * b[10]),
            (a[4] * b[3]) + (a[5] * b[7]) + (a[6] * b[11]) + a[7],
            (a[8] * b[0]) + (a[9] * b[4]) + (a[10] * b[8]),
            (a[8] * b[1]) + (a[9] * b[5]) + (a[10] * b[9]),
            (a[8] * b[2]) + (a[9] * b[6]) + (a[10] * b[10]),
            (a[8] * b[3]) + (a[9] * b[7]) + (a[10] * b[11]) + a[11]
        ];
    }

    // Vector operations:

    function transform_point(t, p) {
        /* Transform the point by the given transformation matrix. */

        return {
            x: p.x * t[0] + p.y * t[1] + p.z * t[2] + t[3],
            y: p.x * t[4] + p.y * t[5] + p.z * t[6] + t[7],
            z: p.x * t[8] + p.y * t[9] + p.z * t[10] + t[11]
        };
    }

    function vec3_dot(a, b) {
        /* Take the dot product of two three-dimensional vectors. */

        return a.x * b.x + a.y * b.y + a.z * b.z;
    }

    function vec3_norm(v) {
        /* Turn the vector into a unit vector by scaling every component. */

        var mag = Math.sqrt(v.x * v.x + v.y * v.y + v.z * v.z);
        v.x /= mag;
        v.y /= mag;
        v.z /= mag;
    }

    function project_point(p) {
        /* Project a 3D point onto a 2D image plane using the pinhole camera model
         * (http://en.wikipedia.org/wiki/Pinhole_camera_model). */

        var coeff = FOCAL_LENGTH / p.z;
        return { x: coeff * p.x, y: coeff * p.y };
    }

    ///////////////////////////////////////////////////////////////////////
    //
    // Trackball Rotation
    //
    ///////////////////////////////////////////////////////////////////////

    /* This trackball code is based off of the paper "Virtual Trackballs Revisited"
     * (http://image.diku.dk/research/trackballs/index.html) and the accompanying
     * code in the OpenTissue framework (http://www.opentissue.org/). */

    function Trackball(radius) {
        /* Construct a trackball with the given radius. */

        this.radius = radius;
        this.transform = make_identity_affine();
        // This is a unit vector corresponding to the position on the sphere
        // where the user started dragging (as initialized in begin_drag()).
        this.anchor_vec = null;
        // This unit vector corresponds to the position on the sphere where
        // the user's mouse cursor is currently located (as updated during drag()).
        this.cursor_vec = null;
    }

    Trackball.prototype.begin_drag = function(p) {
        /* Indicate that the user has started dragging. */
        
        this.project_onto_surface(p);
        vec3_norm(p);
        this.anchor_vec = this.cursor_vec = p;
    }

    Trackball.prototype.end_drag = function() {
        /* Indicate that the user has stopped dragging. This function returns
         * the overall transformation matrix for the completed drag. */

        var old_transform = this.transform;
        this.transform = make_identity_affine();
        return old_transform;
    }

    Trackball.prototype.drag = function(p) {
        /* Indicate that the user is dragging. This will update the transformation
         * matrix stored in Trackball.transform. Call this function repeatedly
         * in-between calls to begin_drag() and end_drag(). */

        this.project_onto_surface(p);
        vec3_norm(p);
        this.cursor_vec = p;
        this.compute_transform();
    }

    Trackball.prototype.compute_transform = function() {
        /* Recompute the transformation matrix for the trackball, based on the
         * anchor position and the current position. */

        // We calculate the rotation quaternion as the negative of the product
        // of Q_a and Q_c, where Q_a is the unit quaternion in the direction of
        // this.anchor_vec and Q_c is the unit quaternion in the direction of
        // this.current_vec.
        var quat_s = vec3_dot(this.anchor_vec, this.cursor_vec);
        var quat_x = -(this.anchor_vec.y * this.cursor_vec.z - this.anchor_vec.z * this.cursor_vec.y);
        var quat_y = -(this.anchor_vec.z * this.cursor_vec.x - this.anchor_vec.x * this.cursor_vec.z);
        var quat_z = -(this.anchor_vec.x * this.cursor_vec.y - this.anchor_vec.y * this.cursor_vec.x);

        // Convert the quaternion into a matrix.
        this.transform[0]  = 1 - 2 * ( (quat_y * quat_y) + (quat_z * quat_z));
        this.transform[5]  = 1 - 2 * ( (quat_x * quat_x) + (quat_z * quat_z));
        this.transform[10] = 1 - 2 * ( (quat_y * quat_y) + (quat_x * quat_x));
        this.transform[4]  =     2 * ( (quat_x * quat_y) + (quat_s * quat_z));
        this.transform[1]  =     2 * ( (quat_x * quat_y) - (quat_s * quat_z));
        this.transform[8]  =     2 * (-(quat_s * quat_y) + (quat_x * quat_z));
        this.transform[2]  =     2 * ( (quat_s * quat_y) + (quat_x * quat_z));
        this.transform[9]  =     2 * ( (quat_z * quat_y) + (quat_s * quat_x));
        this.transform[6]  =     2 * ( (quat_z * quat_y) - (quat_s * quat_x));
    }

    Trackball.prototype.project_onto_surface = function(p) {
        /* This function implements Bell's function (described in the paper) for
         * projecting a 2D point onto the trackball sphere. Note that this modifies
         * the provided 2D point by added a 'z' field for the third-dimensional
         * coordinate. */

        var radius_squared = this.radius * this.radius;
        var length_squared = p.x * p.x + p.y * p.y;
        if(length_squared <= radius_squared / 2)
            p.z = Math.sqrt(radius_squared - length_squared);
        else
            p.z = radius_squared / (2 * Math.sqrt(length_squared));
    }

    ///////////////////////////////////////////////////////////////////////
    //
    // Rendering and Notebook Integration
    //
    ///////////////////////////////////////////////////////////////////////
    
    var browser_opera = navigator.userAgent.indexOf('Opera') > -1;
    function viewport_offset_for_element(e) {
        /* Returns the X and Y coordinates of the element relative to the viewport. */

        // This code was adapted from Element.viewportOffset in the Prototype
        // JavaScript framework (http://www.prototypejs.org/).

        var value_top = 0, value_left = 0;
        var element = e;
        // Traverse up the element heirarchy, keeping track of each element's
        // relative offset, until we have an absolute offset for the original
        // element.
        do {
            value_top += element.offsetTop || 0;
            value_left += element.offsetLeft || 0;
            // Safari fix?
            if(element.offsetParent == document.body &&
               element.style.position == 'absolute') break;
        } while(element = element.offsetParent);
        // Now we must compute the scroll offset, and adjust our result accordingly.
        element = e;
        do {
            if(!browser_opera ||
               (element.tagName && (element.tagName.toUpperCase() == 'BODY'))) {

                value_top -= element.scrollTop || 0;
                value_left -= element.scrollLeft || 0;
            }
        } while(element = element.parentNode);
        return { x: value_left, y: value_top };
    }

    function setup(canvas) {
        /* Setup the provided canvas with event listeners and state (stored in
         * closures) to be an interactive 3D model viewer. */

        var dragging = false;
        var last_mouse_x = 0, last_mouse_y = 0, initialized = false;
        var camera_scale = 1;
        var camera_transform = make_identity_affine();
        var trackball = new Trackball(CANVAS_SIZE / 2);
        var pending_update = null; // A timeout ID which may correspond to some
                                   // callback to redraw the canvas.
        function adapt_mouse_pos_for_trackball(evt) {
            var canvas_pos = viewport_offset_for_element(canvas);
            return {
                x: evt.clientX - canvas_pos.x - CANVAS_SIZE / 2,
                y: evt.clientY - canvas_pos.y - CANVAS_SIZE / 2
            };
        }
        function update() {
            var t = make_identity_affine();
            t = mult_matrix(camera_transform, t);
            t = mult_matrix(trackball.transform, t);
            t = mult_matrix(make_dilation_affine(FIGURE_SCALE * camera_scale), t);
            t = mult_matrix(make_translation_affine(0, 0, -FIGURE_ZOFFSET), t);
            draw(canvas, t);
            pending_update = null;
        }
        function schedule_update() {
            if(pending_update != null)
                clearTimeout(pending_update);
            pending_update = setTimeout(update, 0);
        }

        canvas.addEventListener("mousedown", function(evt) {
            trackball.begin_drag(adapt_mouse_pos_for_trackball(evt));
            dragging = true;
        }, false);
        canvas.addEventListener("mouseup", function(evt) {
            camera_transform = mult_matrix(trackball.end_drag(), camera_transform);
            dragging = false;
        }, false);
        canvas.addEventListener("mousemove", function(evt) {
            if(initialized) {
                if(dragging) {
                    if(evt.shiftKey) {
                        camera_scale += SCALING_SENSITIVITY * (evt.clientY - last_mouse_y);
                        if(camera_scale < 0.2)
                            camera_scale = 0.2;
                    } else
                        trackball.drag(adapt_mouse_pos_for_trackball(evt));
                    schedule_update();
                }
            } else
                initialized = true;
            last_mouse_x = evt.clientX;
            last_mouse_y = evt.clientY;
        }, false);

        update();
    }

    function render_model(ctx, transform, model) {
        if("color" in model)
            ctx.strokeStyle = model.color;
        else
            ctx.strokeStyle = "black";

        for(var i = 0; i < model.faces.length; i++) {
            ctx.beginPath();
            var points = new Array(model.faces[i].length);
            var culled_points_count = 0;
            for(var j = 0; j < model.faces[i].length; j++) {
                var transformed_vertex =
                      transform_point(transform, model.vertices[model.faces[i][j]]);
                points[j] = project_point(transformed_vertex);
                if(points[j].x < CANVAS_SIZE / -2 || points[j].x > CANVAS_SIZE / 2 ||
                   points[j].y < CANVAS_SIZE / -2 || points[j].y > CANVAS_SIZE / 2 ||
                   transformed_vertex.z < 0) {

                    culled_points_count++;
                }
            }
            if(culled_points_count < model.faces[i].length) {
                for(var j = 0; j < model.faces[i].length; j++) {
                    if(j == 0)
                        ctx.moveTo(points[j].x, points[j].y);
                    else
                        ctx.lineTo(points[j].x, points[j].y);
                }
            }
            if("face_colors" in model)
                ctx.strokeStyle = model.face_colors[i]
            ctx.closePath();
            ctx.stroke();
        }
    }

    function draw(canvas, transform) {
        /* Redraw the specified canvas. Vertex and face data are stored as a
         * property of the canvas object. */

        var ctx = canvas.getContext('2d');
        ctx.save();
        ctx.clearRect(0, 0, CANVAS_SIZE, CANVAS_SIZE);
        ctx.translate(CANVAS_SIZE / 2, CANVAS_SIZE / 2);
        for(var i = 0; i < canvas.data.length; i++)
            render_model(ctx, transform, canvas.data[i]);
        ctx.restore();
    }

    var viewer_count = 0;
    function viewer(url) {
        var canvas_id = "canvas3d-viewer" + (viewer_count++);
        cell_writer.write(('<canvas style="border: 2px solid black" id="' + canvas_id +
                           '" width="' + CANVAS_SIZE + '" height="' + CANVAS_SIZE +'">') +
                          translations["Sorry, but you need a browser that supports the &lt;canvas&gt; tag."] +
                          '</canvas>');
        // Send an XHR to get the JSON model data stored at the URL
        var xhr = new XMLHttpRequest();
        xhr.onreadystatechange = function() {
            if(xhr.readyState == 4) {
                if(xhr.status == 200 && xhr.responseText != null) {
                    var canvas = document.getElementById(canvas_id);
                    canvas.data = eval('(' + xhr.responseText + ')');
                    setup(canvas);
                }
            }
        }
        xhr.open('GET', url, true);
        xhr.send(null);
    }

    return {
        viewer: viewer
    };
})();