This file is indexed.

/usr/lib/python2.7/dist-packages/pyNN/space.py is in python-pynn 0.7.4-1.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
# encoding: utf-8
"""
Tools for performing spatial/topographical calculations.

Classes:

  Space           - representation of a Cartesian space for use in calculating
                    distances

  Line            - represents a structure with neurons distributed evenly on a
                    straight line.
  Grid2D          - represents a structure with neurons distributed on a 2D grid.
  Grid3D          - represents a structure with neurons distributed on a 3D grid.
  RandomStructure - represents a structure with neurons distributed randomly
                    within a given volume.

  Cuboid          - representation of a cuboidal volume, for use with RandomStructure.
  Sphere          - representation of a spherical volume, for use with RandomStructure.

:copyright: Copyright 2006-2011 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.
"""

# There must be some Python package out there that provides most of this stuff.

import numpy
import math
from operator import and_
from pyNN.random import NumpyRNG
from pyNN import descriptions
import logging

logger = logging.getLogger("PyNN")

def distance(src, tgt, mask=None, scale_factor=1.0, offset=0.0,
             periodic_boundaries=None): # may need to add an offset parameter
    """
    Return the Euclidian distance between two cells.
    `mask` allows only certain dimensions to be considered, e.g.::
      * to ignore the z-dimension, use `mask=array([0,1])`
      * to ignore y, `mask=array([0,2])`
      * to just consider z-distance, `mask=array([2])`
    `scale_factor` allows for different units in the pre- and post- position
    (the post-synaptic position is multipied by this quantity).
    """
    d = src.position - scale_factor*(tgt.position + offset)

    if not periodic_boundaries == None:
        d = numpy.minimum(abs(d), periodic_boundaries-abs(d))
    if mask is not None:
        d = d[mask]
    return numpy.sqrt(numpy.dot(d, d))


class Space(object):
    """
    Class representing a space within distances can be calculated. The space
    is Cartesian, may be 1-, 2- or 3-dimensional, and may have periodic
    boundaries in any of the dimensions.
    """

    AXES = {'x' : [0],    'y': [1],    'z': [2],
            'xy': [0,1], 'yz': [1,2], 'xz': [0,2], 'xyz': range(3), None: range(3)}

    def __init__(self, axes=None, scale_factor=1.0, offset=0.0,
                 periodic_boundaries=None):
        """
        axes -- if not supplied, then the 3D distance is calculated. If supplied,
            axes should be a string containing the axes to be used, e.g. 'x', or
            'yz'. axes='xyz' is the same as axes=None.
        scale_factor -- it may be that the pre and post populations use
            different units for position, e.g. degrees and µm. In this case,
            `scale_factor` can be specified, which is applied to the positions
            in the post-synaptic population.
        offset -- if the origins of the coordinate systems of the pre- and post-
            synaptic populations are different, `offset` can be used to adjust
            for this difference. The offset is applied before any scaling.
        periodic_boundaries -- either `None`, or a tuple giving the boundaries
            for each dimension, e.g. `((x_min, x_max), None, (z_min, z_max))`.
        """
        self.periodic_boundaries = periodic_boundaries
        self.axes = numpy.array(Space.AXES[axes])
        self.scale_factor = scale_factor
        self.offset = offset

    def distances(self, A, B, expand=False):
        """
        Calculate the distance matrix between two sets of coordinates, given
        the topology of the current space.
        From http://projects.scipy.org/pipermail/numpy-discussion/2007-April/027203.html
        """
        if len(A.shape) == 1:
            A = A.reshape(3, 1)
        if len(B.shape) == 1:
            B = B.reshape(3, 1)
        B = self.scale_factor*(B + self.offset)
        d = numpy.zeros((len(self.axes), A.shape[1], B.shape[1]), dtype=A.dtype)
        for i,axis in enumerate(self.axes):
            diff2 = A[axis,:,None] - B[axis, :]
            if self.periodic_boundaries is not None:
                boundaries = self.periodic_boundaries[axis]
                if boundaries is not None:
                    range = boundaries[1]-boundaries[0]
                    ad2   = abs(diff2)
                    diff2 = numpy.minimum(ad2, range-ad2)
            diff2 **= 2
            d[i] = diff2
        if not expand:
            d = numpy.sum(d, 0)
        numpy.sqrt(d, d)
        return d

    def distance_generator(self, f, g):
        """
        Return a function that calculates the distance matrix as a function of
        indices i,j, given two functions f(i) and g(j) that return coordinates.
        """
        def distance_map(i, j):
            d = self.distances(f(i), g(j))
            if d.shape[0] == 1:
                d = d[0,:] # arguably this transformation should go in distances()
            elif d.shape[1] == 1:
                d = d[:,0]
            return d
        return distance_map


class BaseStructure(object):

    def __eq__(self, other):
        return reduce(and_, (getattr(self, attr) == getattr(other, attr)
                             for attr in self.parameter_names))

    def get_parameters(self):
        P = {}
        for name in self.parameter_names:
            P[name] = getattr(self, name)
        return P

    def describe(self, template='structure_default.txt', engine='default'):
        """
        Returns a human-readable description of the network structure.

        The output may be customized by specifying a different template
        togther with an associated template engine (see ``pyNN.descriptions``).

        If template is None, then a dictionary containing the template context
        will be returned.
        """
        context = {'name': self.__class__.__name__,
                   'parameters': self.get_parameters()}
        return descriptions.render(engine, template, context)


class Line(BaseStructure):
    """
    Represents a structure with neurons distributed evenly on a straight line.
    """
    parameter_names = ("dx", "x0", "y", "z")

    def __init__(self, dx=1.0, x0=0.0, y=0.0, z=0.0):
        self.dx = dx
        self.x0 = x0
        self.y = y
        self.z = z

    def generate_positions(self, n):
        x = self.dx*numpy.arange(n, dtype=float) + self.x0
        y = numpy.zeros(n) + self.y
        z = numpy.zeros(n) + self.z
        return numpy.array((x,y,z))


class Grid2D(BaseStructure):
    """
    Represents a structure with neurons distributed on a 2D grid.
    """
    parameter_names = ("aspect_ratio", "dx", "dy", "x0", "y0", "fill_order")

    def __init__(self, aspect_ratio=1.0, dx=1.0, dy=1.0, x0=0.0, y0=0.0, z=0, fill_order="sequential"):
        """
        aspect_ratio - ratio of the number of grid points per side (not the ratio
                       of the side lengths, unless dx == dy)
        """
        self.aspect_ratio = aspect_ratio
        assert fill_order in ('sequential', 'random')
        self.fill_order = fill_order
        self.dx = dx; self.dy = dy; self.x0 = x0; self.y0 = y0; self.z = z

    def calculate_size(self, n):
        nx = math.sqrt(n*self.aspect_ratio)
        if n%nx != 0:
            raise Exception("Invalid size")
        ny = n/nx
        return nx, ny

    def generate_positions(self, n):
        nx, ny = self.calculate_size(n)
        x,y,z = numpy.indices((nx,ny,1), dtype=float)
        x = self.x0 + self.dx*x.flatten()
        y = self.y0 + self.dy*y.flatten()
        z = self.z + z.flatten()
        positions = numpy.array((x,y,z)) # use column_stack, if we decide to switch from (3,n) to (n,3)
        if self.fill_order == 'sequential':
            return positions
        else: # random
            return numpy.random.permutation(positions.T).T


class Grid3D(BaseStructure):
    """
    Represents a structure with neurons distributed on a 3D grid.
    """
    parameter_names = ("aspect_ratios", "dx", "dy", "dz", "x0", "y0", "z0", "fill_order")

    def __init__(self, aspect_ratioXY=1.0, aspect_ratioXZ=1.0, dx=1.0, dy=1.0, dz=1.0, x0=0.0, y0=0.0, z0=0,
                 fill_order="sequential"):
        """
        If fill_order is 'sequential', the z-index will be filled first, then y then x, i.e.
        the first cell will be at (0,0,0) (given default values for the other arguments),
        the second at (0,0,1), etc.
        """
        self.aspect_ratios = (aspect_ratioXY, aspect_ratioXZ)
        assert fill_order in ('sequential', 'random')
        self.fill_order = fill_order
        self.dx = dx; self.dy = dy; self.dz = dz
        self.x0 = x0; self.y0 = y0; self.z0 = z0

    def calculate_size(self, n):
        a,b = self.aspect_ratios
        nx = int(round(math.pow(n*a*b, 1/3.0)))
        ny = int(round(nx/a))
        nz = int(round(nx/b))
        assert nx*ny*nz == n, str((nx, ny, nz, nx*ny*nz, n, a, b))
        return nx, ny, nz

    def generate_positions(self, n):
        nx, ny, nz = self.calculate_size(n)
        x,y,z = numpy.indices((nx,ny,nz), dtype=float)
        x = self.x0 + self.dx*x.flatten()
        y = self.y0 + self.dy*y.flatten()
        z = self.z0 + self.dz*z.flatten()
        if self.fill_order == 'sequential':
            return numpy.array((x,y,z))
        else:
            raise NotImplementedError


class Shape(object):
    pass

class Cuboid(Shape):
    """
    Represents a cuboidal volume within which neurons may be distributed.
    """

    def __init__(self, width, height, depth):
        """
        height: extent in y direction
        width: extent in x direction
        depth: extent in z direction
        """
        self.height = height
        self.width = width
        self.depth = depth

    def sample(self, n, rng):
        return 0.5*rng.uniform(-1, 1, size=(n,3)) * (self.width, self.height, self.depth)


class Sphere(Shape):
    """
    Represents a spherical volume within which neurons may be distributed.
    """

    def __init__(self, radius):
        Shape.__init__(self)
        self.radius = radius

    def sample(self, n, rng):
        # this implementation is wasteful, as it throws away a lot of numbers,
        # but simple. More efficient implementations welcome.
        positions = numpy.empty((n,3))
        i = 0
        while i < n:
            candidate = rng.uniform(-1, 1, size=(1,3))
            if (candidate**2).sum() < 1:
                positions[i] = candidate
                i += 1
        return self.radius*positions


class RandomStructure(BaseStructure):
    """
    Represents a structure with neurons distributed randomly within a given
    volume.
    """
    parameter_names = ('boundary', 'origin', 'rng')

    def __init__(self, boundary, origin=(0.0,0.0,0.0), rng=None):
        """
        `boundary` - a subclass of Shape
        `origin` - the coordinates (x,y,z) of the centre of the volume.
        """
        assert isinstance(boundary, Shape)
        assert len(origin) == 3
        self.boundary = boundary
        self.origin = origin
        self.rng = rng or NumpyRNG()

    def generate_positions(self, n):
        return (numpy.array(self.origin) + self.boundary.sample(n, self.rng)).T

# what about rotations?