/usr/lib/python2.7/dist-packages/impacket/crypto.py is in python-impacket 0.9.15-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 | # Copyright (c) 2003-2016 CORE Security Technologies
#
# This software is provided under under a slightly modified version
# of the Apache Software License. See the accompanying LICENSE file
# for more information.
#
# Author: Alberto Solino (beto@coresecurity.com)
#
# Description:
# RFC 4493 implementation (http://www.ietf.org/rfc/rfc4493.txt)
# RFC 4615 implementation (http://www.ietf.org/rfc/rfc4615.txt)
#
# NIST SP 800-108 Section 5.1, with PRF HMAC-SHA256 implementation
# (http://tools.ietf.org/html/draft-irtf-cfrg-kdf-uses-00#ref-SP800-108)
#
# [MS-LSAD] Section 5.1.2
# [MS-SAMR] Section 2.2.11.1.1
from impacket import LOG
try:
from Crypto.Cipher import DES, AES, ARC4
except Exception:
LOG.error("Warning: You don't have any crypto installed. You need PyCrypto")
LOG.error("See http://www.pycrypto.org/")
from struct import pack, unpack
from impacket.structure import Structure
import hmac, hashlib
def Generate_Subkey(K):
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# + Algorithm Generate_Subkey +
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# + +
# + Input : K (128-bit key) +
# + Output : K1 (128-bit first subkey) +
# + K2 (128-bit second subkey) +
# +-------------------------------------------------------------------+
# + +
# + Constants: const_Zero is 0x00000000000000000000000000000000 +
# + const_Rb is 0x00000000000000000000000000000087 +
# + Variables: L for output of AES-128 applied to 0^128 +
# + +
# + Step 1. L := AES-128(K, const_Zero); +
# + Step 2. if MSB(L) is equal to 0 +
# + then K1 := L << 1; +
# + else K1 := (L << 1) XOR const_Rb; +
# + Step 3. if MSB(K1) is equal to 0 +
# + then K2 := K1 << 1; +
# + else K2 := (K1 << 1) XOR const_Rb; +
# + Step 4. return K1, K2; +
# + +
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
AES_128 = AES.new(K)
L = AES_128.encrypt('\x00'*16)
LHigh = unpack('>Q',L[:8])[0]
LLow = unpack('>Q',L[8:])[0]
K1High = ((LHigh << 1) | ( LLow >> 63 )) & 0xFFFFFFFFFFFFFFFF
K1Low = (LLow << 1) & 0xFFFFFFFFFFFFFFFF
if (LHigh >> 63):
K1Low ^= 0x87
K2High = ((K1High << 1) | (K1Low >> 63)) & 0xFFFFFFFFFFFFFFFF
K2Low = ((K1Low << 1)) & 0xFFFFFFFFFFFFFFFF
if (K1High >> 63):
K2Low ^= 0x87
K1 = pack('>QQ', K1High, K1Low)
K2 = pack('>QQ', K2High, K2Low)
return K1, K2
def XOR_128(N1,N2):
J = ''
for i in range(len(N1)):
J = J + chr(ord(N1[i]) ^ ord(N2[i]))
return J
def PAD(N):
const_Bsize = 16
padLen = 16-len(N)
return N + '\x80' + '\x00'*(padLen-1)
def AES_CMAC(K, M, length):
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# + Algorithm AES-CMAC +
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# + +
# + Input : K ( 128-bit key ) +
# + : M ( message to be authenticated ) +
# + : len ( length of the message in octets ) +
# + Output : T ( message authentication code ) +
# + +
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# + Constants: const_Zero is 0x00000000000000000000000000000000 +
# + const_Bsize is 16 +
# + +
# + Variables: K1, K2 for 128-bit subkeys +
# + M_i is the i-th block (i=1..ceil(len/const_Bsize)) +
# + M_last is the last block xor-ed with K1 or K2 +
# + n for number of blocks to be processed +
# + r for number of octets of last block +
# + flag for denoting if last block is complete or not +
# + +
# + Step 1. (K1,K2) := Generate_Subkey(K); +
# + Step 2. n := ceil(len/const_Bsize); +
# + Step 3. if n = 0 +
# + then +
# + n := 1; +
# + flag := false; +
# + else +
# + if len mod const_Bsize is 0 +
# + then flag := true; +
# + else flag := false; +
# + +
# + Step 4. if flag is true +
# + then M_last := M_n XOR K1; +
# + else M_last := padding(M_n) XOR K2; +
# + Step 5. X := const_Zero; +
# + Step 6. for i := 1 to n-1 do +
# + begin +
# + Y := X XOR M_i; +
# + X := AES-128(K,Y); +
# + end +
# + Y := M_last XOR X; +
# + T := AES-128(K,Y); +
# + Step 7. return T; +
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
const_Bsize = 16
const_Zero = '\x00'*16
AES_128= AES.new(K)
M = M[:length]
K1, K2 = Generate_Subkey(K)
n = len(M)/const_Bsize
if n == 0:
n = 1
flag = False
else:
if (length % const_Bsize) == 0:
flag = True
else:
n += 1
flag = False
M_n = M[(n-1)*const_Bsize:]
if flag is True:
M_last = XOR_128(M_n,K1)
else:
M_last = XOR_128(PAD(M_n),K2)
X = const_Zero
for i in range(n-1):
M_i = M[(i)*const_Bsize:][:16]
Y = XOR_128(X, M_i)
X = AES_128.encrypt(Y)
Y = XOR_128(M_last, X)
T = AES_128.encrypt(Y)
return T
def AES_CMAC_PRF_128(VK, M, VKlen, Mlen):
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# + AES-CMAC-PRF-128 +
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
# + +
# + Input : VK (Variable-length key) +
# + : M (Message, i.e., the input data of the PRF) +
# + : VKlen (length of VK in octets) +
# + : len (length of M in octets) +
# + Output : PRV (128-bit Pseudo-Random Variable) +
# + +
# +-------------------------------------------------------------------+
# + Variable: K (128-bit key for AES-CMAC) +
# + +
# + Step 1. If VKlen is equal to 16 +
# + Step 1a. then +
# + K := VK; +
# + Step 1b. else +
# + K := AES-CMAC(0^128, VK, VKlen); +
# + Step 2. PRV := AES-CMAC(K, M, len); +
# + return PRV; +
# + +
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
if VKlen == 16:
K = VK
else:
K = AES_CMAC('\x00'*16, VK, VKlen)
PRV = AES_CMAC(K, M, Mlen)
return PRV
def KDF_CounterMode(KI, Label, Context, L):
# Implements NIST SP 800-108 Section 5.1, with PRF HMAC-SHA256
# http://tools.ietf.org/html/draft-irtf-cfrg-kdf-uses-00#ref-SP800-108
# Fixed values:
# 1. h - The length of the output of the PRF in bits, and
# 2. r - The length of the binary representation of the counter i.
# Input: KI, Label, Context, and L.
# Process:
# 1. n := [L/h]
# 2. If n > 2r-1, then indicate an error and stop.
# 3. result(0):= empty .
# 4. For i = 1 to n, do
# a. K(i) := PRF (KI, [i]2 || Label || 0x00 || Context || [L]2)
# b. result(i) := result(i-1) || K(i).
# 5. Return: KO := the leftmost L bits of result(n).
h = 256
r = 32
n = L / h
if n == 0:
n = 1
if n > (pow(2,r)-1):
raise "Error computing KDF_CounterMode"
result = ''
K = ''
for i in range(1,n+1):
input = pack('>L', i) + Label + '\x00' + Context + pack('>L',L)
K = hmac.new(KI, input, hashlib.sha256).digest()
result = result + K
return result[:(L/8)]
# [MS-LSAD] Section 5.1.2 / 5.1.3
class LSA_SECRET_XP(Structure):
structure = (
('Length','<L=0'),
('Version','<L=0'),
('_Secret','_-Secret', 'self["Length"]'),
('Secret', ':'),
)
def transformKey(InputKey):
# Section 5.1.3
OutputKey = []
OutputKey.append( chr(ord(InputKey[0]) >> 0x01) )
OutputKey.append( chr(((ord(InputKey[0])&0x01)<<6) | (ord(InputKey[1])>>2)) )
OutputKey.append( chr(((ord(InputKey[1])&0x03)<<5) | (ord(InputKey[2])>>3)) )
OutputKey.append( chr(((ord(InputKey[2])&0x07)<<4) | (ord(InputKey[3])>>4)) )
OutputKey.append( chr(((ord(InputKey[3])&0x0F)<<3) | (ord(InputKey[4])>>5)) )
OutputKey.append( chr(((ord(InputKey[4])&0x1F)<<2) | (ord(InputKey[5])>>6)) )
OutputKey.append( chr(((ord(InputKey[5])&0x3F)<<1) | (ord(InputKey[6])>>7)) )
OutputKey.append( chr(ord(InputKey[6]) & 0x7F) )
for i in range(8):
OutputKey[i] = chr((ord(OutputKey[i]) << 1) & 0xfe)
return "".join(OutputKey)
def decryptSecret(key, value):
# [MS-LSAD] Section 5.1.2
plainText = ''
key0 = key
for i in range(0, len(value), 8):
cipherText = value[:8]
tmpStrKey = key0[:7]
tmpKey = transformKey(tmpStrKey)
Crypt1 = DES.new(tmpKey, DES.MODE_ECB)
plainText += Crypt1.decrypt(cipherText)
cipherText = cipherText[8:]
key0 = key0[7:]
value = value[8:]
# AdvanceKey
if len(key0) < 7:
key0 = key[len(key0):]
secret = LSA_SECRET_XP(plainText)
return (secret['Secret'])
def encryptSecret(key, value):
# [MS-LSAD] Section 5.1.2
plainText = ''
cipherText = ''
key0 = key
value0 = pack('<LL', len(value), 1) + value
for i in range(0, len(value0), 8):
if len(value0) < 8:
value0 = value0 + '\x00'*(8-len(value0))
plainText = value0[:8]
tmpStrKey = key0[:7]
tmpKey = transformKey(tmpStrKey)
Crypt1 = DES.new(tmpKey, DES.MODE_ECB)
cipherText += Crypt1.encrypt(plainText)
plainText = plainText[8:]
key0 = key0[7:]
value0 = value0[8:]
# AdvanceKey
if len(key0) < 7:
key0 = key[len(key0):]
return cipherText
def SamDecryptNTLMHash(encryptedHash, key):
# [MS-SAMR] Section 2.2.11.1.1
Block1 = encryptedHash[:8]
Block2 = encryptedHash[8:]
Key1 = key[:7]
Key1 = transformKey(Key1)
Key2 = key[7:14]
Key2 = transformKey(Key2)
Crypt1 = DES.new(Key1, DES.MODE_ECB)
Crypt2 = DES.new(Key2, DES.MODE_ECB)
plain1 = Crypt1.decrypt(Block1)
plain2 = Crypt2.decrypt(Block2)
return plain1 + plain2
def SamEncryptNTLMHash(encryptedHash, key):
# [MS-SAMR] Section 2.2.11.1.1
Block1 = encryptedHash[:8]
Block2 = encryptedHash[8:]
Key1 = key[:7]
Key1 = transformKey(Key1)
Key2 = key[7:14]
Key2 = transformKey(Key2)
Crypt1 = DES.new(Key1, DES.MODE_ECB)
Crypt2 = DES.new(Key2, DES.MODE_ECB)
plain1 = Crypt1.encrypt(Block1)
plain2 = Crypt2.encrypt(Block2)
return plain1 + plain2
if __name__ == '__main__':
# Test Vectors
# --------------------------------------------------
# Subkey Generation
# K 2b7e1516 28aed2a6 abf71588 09cf4f3c
# AES-128(key,0) 7df76b0c 1ab899b3 3e42f047 b91b546f
# K1 fbeed618 35713366 7c85e08f 7236a8de
# K2 f7ddac30 6ae266cc f90bc11e e46d513b
# --------------------------------------------------
#
# --------------------------------------------------
# Example 1: len = 0
# M <empty string>
# AES-CMAC bb1d6929 e9593728 7fa37d12 9b756746
# --------------------------------------------------
#
# Example 2: len = 16
# M 6bc1bee2 2e409f96 e93d7e11 7393172a
# AES-CMAC 070a16b4 6b4d4144 f79bdd9d d04a287c
# --------------------------------------------------
#
# Example 3: len = 40
# M 6bc1bee2 2e409f96 e93d7e11 7393172a
# ae2d8a57 1e03ac9c 9eb76fac 45af8e51
# 30c81c46 a35ce411
# AES-CMAC dfa66747 de9ae630 30ca3261 1497c827
# --------------------------------------------------
#
# Example 4: len = 64
# M 6bc1bee2 2e409f96 e93d7e11 7393172a
# ae2d8a57 1e03ac9c 9eb76fac 45af8e51
# 30c81c46 a35ce411 e5fbc119 1a0a52ef
# f69f2445 df4f9b17 ad2b417b e66c3710
# AES-CMAC 51f0bebf 7e3b9d92 fc497417 79363cfe
# --------------------------------------------------
def pp(s):
for i in range((len(s)/8)):
print s[:8] ,
s = s[8:]
return ''
from binascii import hexlify, unhexlify
K = "2b7e151628aed2a6abf7158809cf4f3c"
M = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e5130c81c46a35ce411e5fbc1191a0a52eff69f2445df4f9b17ad2b417be66c3710"
K1, K2 = Generate_Subkey(unhexlify(K))
print "Subkey Generation"
print "K ", pp(K)
print "K1 ", pp(hexlify(K1))
print "K2 ", pp(hexlify(K2))
print
print "Example 1: len = 0"
print "M <empty string>"
print "AES-CMAC " , pp(hexlify(AES_CMAC(unhexlify(K),unhexlify(M),0)))
print
print "Example 2: len = 16"
print "M " , pp(M[:16*2])
print "AES-CMAC " , pp(hexlify(AES_CMAC(unhexlify(K),unhexlify(M),16)))
print
print "Example 3: len = 40"
print "M " , pp(M[:40*2])
print "AES-CMAC " , pp(hexlify(AES_CMAC(unhexlify(K),unhexlify(M),40)))
print
print "Example 3: len = 64"
print "M " , pp(M[:64*2])
print "AES-CMAC " , pp(hexlify(AES_CMAC(unhexlify(K),unhexlify(M),64)))
print
M = "eeab9ac8fb19cb012849536168b5d6c7a5e6c5b2fcdc32bc29b0e3654078a5129f6be2562046766f93eebf146b"
K = "6c3473624099e17ff3a39ff6bdf6cc38"
# Mac = dbf63fd93c4296609e2d66bf79251cb5
print "Example 4: len = 45"
print "M " , pp(M[:45*2])
print "AES-CMAC " , pp(hexlify(AES_CMAC(unhexlify(K),unhexlify(M),45)))
# ------------------------------------------------------------
#
# Test Case AES-CMAC-PRF-128 with 20-octet input
# Key : 00010203 04050607 08090a0b 0c0d0e0f edcb
# Key Length : 18
# Message : 00010203 04050607 08090a0b 0c0d0e0f 10111213
# PRF Output : 84a348a4 a45d235b abfffc0d 2b4da09a
#
# Test Case AES-CMAC-PRF-128 with 20-octet input
# Key : 00010203 04050607 08090a0b 0c0d0e0f
# Key Length : 16
# Message : 00010203 04050607 08090a0b 0c0d0e0f 10111213
# PRF Output : 980ae87b 5f4c9c52 14f5b6a8 455e4c2d
#
# Test Case AES-CMAC-PRF-128 with 20-octet input
# Key : 00010203 04050607 0809
# Key Length : 10
# Message : 00010203 04050607 08090a0b 0c0d0e0f 10111213
# PRF Output : 290d9e11 2edb09ee 141fcf64 c0b72f3d
#
# ------------------------------------------------------------
K = "000102030405060708090a0b0c0d0e0fedcb"
M = "000102030405060708090a0b0c0d0e0f10111213"
print "AES-CMAC-PRF-128 Test Vectors"
print
print "Example 1: len = 0"
print "M " , pp(K)
print "Key Length 18 "
print "AES-CMAC " , pp(hexlify(AES_CMAC_PRF_128(unhexlify(K),unhexlify(M),18,len(unhexlify(M)))))
print
print "Example 1: len = 0"
print "M " , pp(K)
print "Key Length 16 "
print "AES-CMAC " , pp(hexlify(AES_CMAC_PRF_128(unhexlify(K)[:16],unhexlify(M),16,len(unhexlify(M)))))
print
print "Example 1: len = 0"
print "M " , pp(K)
print "Key Length 10 "
print "AES-CMAC " , pp(hexlify(AES_CMAC_PRF_128(unhexlify(K)[:10],unhexlify(M),10,len(unhexlify(M)))))
print
|