This file is indexed.

/usr/lib/python2.7/dist-packages/humanfriendly/__init__.py is in python-humanfriendly 4.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
# Human friendly input/output in Python.
#
# Author: Peter Odding <peter@peterodding.com>
# Last Change: August 7, 2017
# URL: https://humanfriendly.readthedocs.io

"""The main module of the `humanfriendly` package."""

# Standard library modules.
import collections
import decimal
import multiprocessing
import numbers
import os
import os.path
import re
import sys
import time

# In humanfriendly 1.23 the format_table() function was added to render a table
# using characters like dashes and vertical bars to emulate borders. Since then
# support for other tables has been added and the name of format_table() has
# changed. The following import statement preserves backwards compatibility.
from humanfriendly.tables import format_pretty_table as format_table  # NOQA

# In humanfriendly 1.30 the following text manipulation functions were moved
# out into a separate module to enable their usage in other modules of the
# humanfriendly package (without causing circular imports).
from humanfriendly.text import (  # NOQA
    compact, concatenate, dedent, format, is_empty_line,
    pluralize, tokenize, trim_empty_lines,
)

# In humanfriendly 1.38 the prompt_for_choice() function was moved out into a
# separate module because several variants of interactive prompts were added.
from humanfriendly.prompts import prompt_for_choice  # NOQA

# Compatibility with Python 2 and 3.
from humanfriendly.compat import is_string, monotonic

# Semi-standard module versioning.
__version__ = '4.4.1'

# Spinners are redrawn at most this many seconds.
minimum_spinner_interval = 0.2

# The following ANSI escape sequence can be used to clear a line and move the
# cursor back to the start of the line.
erase_line_code = '\r\x1b[K'

# ANSI escape sequences to hide and show the text cursor.
hide_cursor_code = '\x1b[?25l'
show_cursor_code = '\x1b[?25h'

SizeUnit = collections.namedtuple('SizeUnit', 'divider, symbol, name')
CombinedUnit = collections.namedtuple('CombinedUnit', 'decimal, binary')

# Common disk size units in binary (base-2) and decimal (base-10) multiples.
disk_size_units = (
    CombinedUnit(SizeUnit(1000**1, 'KB', 'kilobyte'), SizeUnit(1024**1, 'KiB', 'kibibyte')),
    CombinedUnit(SizeUnit(1000**2, 'MB', 'megabyte'), SizeUnit(1024**2, 'MiB', 'mebibyte')),
    CombinedUnit(SizeUnit(1000**3, 'GB', 'gigabyte'), SizeUnit(1024**3, 'GiB', 'gibibyte')),
    CombinedUnit(SizeUnit(1000**4, 'TB', 'terabyte'), SizeUnit(1024**4, 'TiB', 'tebibyte')),
    CombinedUnit(SizeUnit(1000**5, 'PB', 'petabyte'), SizeUnit(1024**5, 'PiB', 'pebibyte')),
)

# Common length size units, used for formatting and parsing.
length_size_units = (dict(prefix='nm', divider=1e-09, singular='nm', plural='nm'),
                     dict(prefix='mm', divider=1e-03, singular='mm', plural='mm'),
                     dict(prefix='cm', divider=1e-02, singular='cm', plural='cm'),
                     dict(prefix='m', divider=1, singular='metre', plural='metres'),
                     dict(prefix='km', divider=1000, singular='km', plural='km'))

# Common time units, used for formatting of time spans.
time_units = (dict(divider=1e-3, singular='millisecond', plural='milliseconds', abbreviations=['ms']),
              dict(divider=1, singular='second', plural='seconds', abbreviations=['s', 'sec', 'secs']),
              dict(divider=60, singular='minute', plural='minutes', abbreviations=['m', 'min', 'mins']),
              dict(divider=60 * 60, singular='hour', plural='hours', abbreviations=['h']),
              dict(divider=60 * 60 * 24, singular='day', plural='days', abbreviations=['d']),
              dict(divider=60 * 60 * 24 * 7, singular='week', plural='weeks', abbreviations=['w']),
              dict(divider=60 * 60 * 24 * 7 * 52, singular='year', plural='years', abbreviations=['y']))


def coerce_boolean(value):
    """
    Coerce any value to a boolean.

    :param value: Any Python value. If the value is a string:

                  - The strings '1', 'yes', 'true' and 'on' are coerced to :data:`True`.
                  - The strings '0', 'no', 'false' and 'off' are coerced to :data:`False`.
                  - Other strings raise an exception.

                  Other Python values are coerced using :func:`bool()`.
    :returns: A proper boolean value.
    :raises: :exc:`exceptions.ValueError` when the value is a string but
             cannot be coerced with certainty.
    """
    if is_string(value):
        normalized = value.strip().lower()
        if normalized in ('1', 'yes', 'true', 'on'):
            return True
        elif normalized in ('0', 'no', 'false', 'off', ''):
            return False
        else:
            msg = "Failed to coerce string to boolean! (%r)"
            raise ValueError(msg % value)
    else:
        return bool(value)


def format_size(num_bytes, keep_width=False, binary=False):
    """
    Format a byte count as a human readable file size.

    :param num_bytes: The size to format in bytes (an integer).
    :param keep_width: :data:`True` if trailing zeros should not be stripped,
                       :data:`False` if they can be stripped.
    :param binary: :data:`True` to use binary multiples of bytes (base-2),
                   :data:`False` to use decimal multiples of bytes (base-10).
    :returns: The corresponding human readable file size (a string).

    This function knows how to format sizes in bytes, kilobytes, megabytes,
    gigabytes, terabytes and petabytes. Some examples:

    >>> from humanfriendly import format_size
    >>> format_size(0)
    '0 bytes'
    >>> format_size(1)
    '1 byte'
    >>> format_size(5)
    '5 bytes'
    > format_size(1000)
    '1 KB'
    > format_size(1024, binary=True)
    '1 KiB'
    >>> format_size(1000 ** 3 * 4)
    '4 GB'
    """
    for unit in reversed(disk_size_units):
        if num_bytes >= unit.binary.divider and binary:
            number = round_number(float(num_bytes) / unit.binary.divider, keep_width=keep_width)
            return pluralize(number, unit.binary.symbol, unit.binary.symbol)
        elif num_bytes >= unit.decimal.divider and not binary:
            number = round_number(float(num_bytes) / unit.decimal.divider, keep_width=keep_width)
            return pluralize(number, unit.decimal.symbol, unit.decimal.symbol)
    return pluralize(num_bytes, 'byte')


def parse_size(size, binary=False):
    """
    Parse a human readable data size and return the number of bytes.

    :param size: The human readable file size to parse (a string).
    :param binary: :data:`True` to use binary multiples of bytes (base-2) for
                   ambiguous unit symbols and names, :data:`False` to use
                   decimal multiples of bytes (base-10).
    :returns: The corresponding size in bytes (an integer).
    :raises: :exc:`InvalidSize` when the input can't be parsed.

    This function knows how to parse sizes in bytes, kilobytes, megabytes,
    gigabytes, terabytes and petabytes. Some examples:

    >>> from humanfriendly import parse_size
    >>> parse_size('42')
    42
    >>> parse_size('13b')
    13
    >>> parse_size('5 bytes')
    5
    >>> parse_size('1 KB')
    1000
    >>> parse_size('1 kilobyte')
    1000
    >>> parse_size('1 KiB')
    1024
    >>> parse_size('1 KB', binary=True)
    1024
    >>> parse_size('1.5 GB')
    1500000000
    >>> parse_size('1.5 GB', binary=True)
    1610612736
    """
    tokens = tokenize(size)
    if tokens and isinstance(tokens[0], numbers.Number):
        # Get the normalized unit (if any) from the tokenized input.
        normalized_unit = tokens[1].lower() if len(tokens) == 2 and is_string(tokens[1]) else ''
        # If the input contains only a number, it's assumed to be the number of
        # bytes. The second token can also explicitly reference the unit bytes.
        if len(tokens) == 1 or normalized_unit.startswith('b'):
            return int(tokens[0])
        # Otherwise we expect two tokens: A number and a unit.
        if normalized_unit:
            for unit in disk_size_units:
                # First we check for unambiguous symbols (KiB, MiB, GiB, etc)
                # and names (kibibyte, mebibyte, gibibyte, etc) because their
                # handling is always the same.
                if normalized_unit in (unit.binary.symbol.lower(), unit.binary.name.lower()):
                    return int(tokens[0] * unit.binary.divider)
                # Now we will deal with ambiguous prefixes (K, M, G, etc),
                # symbols (KB, MB, GB, etc) and names (kilobyte, megabyte,
                # gigabyte, etc) according to the caller's preference.
                if (normalized_unit in (unit.decimal.symbol.lower(), unit.decimal.name.lower()) or
                        normalized_unit.startswith(unit.decimal.symbol[0].lower())):
                    return int(tokens[0] * (unit.binary.divider if binary else unit.decimal.divider))
    # We failed to parse the size specification.
    msg = "Failed to parse size! (input %r was tokenized as %r)"
    raise InvalidSize(msg % (size, tokens))


def format_length(num_metres, keep_width=False):
    """
    Format a metre count as a human readable length.

    :param num_metres: The length to format in metres (float / integer).
    :param keep_width: :data:`True` if trailing zeros should not be stripped,
                       :data:`False` if they can be stripped.
    :returns: The corresponding human readable length (a string).

    This function supports ranges from nanometres to kilometres.

    Some examples:

    >>> from humanfriendly import format_length
    >>> format_length(0)
    '0 metres'
    >>> format_length(1)
    '1 metre'
    >>> format_length(5)
    '5 metres'
    >>> format_length(1000)
    '1 km'
    >>> format_length(0.004)
    '4 mm'
    """
    for unit in reversed(length_size_units):
        if num_metres >= unit['divider']:
            number = round_number(float(num_metres) / unit['divider'], keep_width=keep_width)
            return pluralize(number, unit['singular'], unit['plural'])
    return pluralize(num_metres, 'metre')


def parse_length(length):
    """
    Parse a human readable length and return the number of metres.

    :param length: The human readable length to parse (a string).
    :returns: The corresponding length in metres (a float).
    :raises: :exc:`InvalidLength` when the input can't be parsed.

    Some examples:

    >>> from humanfriendly import parse_length
    >>> parse_length('42')
    42
    >>> parse_length('1 km')
    1000
    >>> parse_length('5mm')
    0.005
    >>> parse_length('15.3cm')
    0.153
    """
    tokens = tokenize(length)
    if tokens and isinstance(tokens[0], numbers.Number):
        # If the input contains only a number, it's assumed to be the number of metres.
        if len(tokens) == 1:
            return int(tokens[0])
        # Otherwise we expect to find two tokens: A number and a unit.
        if len(tokens) == 2 and is_string(tokens[1]):
            normalized_unit = tokens[1].lower()
            # Try to match the first letter of the unit.
            for unit in length_size_units:
                if normalized_unit.startswith(unit['prefix']):
                    return tokens[0] * unit['divider']
    # We failed to parse the length specification.
    msg = "Failed to parse length! (input %r was tokenized as %r)"
    raise InvalidLength(msg % (length, tokens))


def format_number(number, num_decimals=2):
    """
    Format a number as a string including thousands separators.

    :param number: The number to format (a number like an :class:`int`,
                   :class:`long` or :class:`float`).
    :param num_decimals: The number of decimals to render (2 by default). If no
                         decimal places are required to represent the number
                         they will be omitted regardless of this argument.
    :returns: The formatted number (a string).

    This function is intended to make it easier to recognize the order of size
    of the number being formatted.

    Here's an example:

    >>> from humanfriendly import format_number
    >>> print(format_number(6000000))
    6,000,000
    > print(format_number(6000000000.42))
    6,000,000,000.42
    > print(format_number(6000000000.42, num_decimals=0))
    6,000,000,000
    """
    integer_part, _, decimal_part = str(float(number)).partition('.')
    reversed_digits = ''.join(reversed(integer_part))
    parts = []
    while reversed_digits:
        parts.append(reversed_digits[:3])
        reversed_digits = reversed_digits[3:]
    formatted_number = ''.join(reversed(','.join(parts)))
    decimals_to_add = decimal_part[:num_decimals].rstrip('0')
    if decimals_to_add:
        formatted_number += '.' + decimals_to_add
    return formatted_number


def round_number(count, keep_width=False):
    """
    Round a floating point number to two decimal places in a human friendly format.

    :param count: The number to format.
    :param keep_width: :data:`True` if trailing zeros should not be stripped,
                       :data:`False` if they can be stripped.
    :returns: The formatted number as a string. If no decimal places are
              required to represent the number, they will be omitted.

    The main purpose of this function is to be used by functions like
    :func:`format_length()`, :func:`format_size()` and
    :func:`format_timespan()`.

    Here are some examples:

    >>> from humanfriendly import round_number
    >>> round_number(1)
    '1'
    >>> round_number(math.pi)
    '3.14'
    >>> round_number(5.001)
    '5'
    """
    text = '%.2f' % float(count)
    if not keep_width:
        text = re.sub('0+$', '', text)
        text = re.sub('\.$', '', text)
    return text


def format_timespan(num_seconds, detailed=False, max_units=3):
    """
    Format a timespan in seconds as a human readable string.

    :param num_seconds: Number of seconds (integer or float).
    :param detailed: If :data:`True` milliseconds are represented separately
                     instead of being represented as fractional seconds
                     (defaults to :data:`False`).
    :param max_units: The maximum number of units to show in the formatted time
                      span (an integer, defaults to three).
    :returns: The formatted timespan as a string.

    Some examples:

    >>> from humanfriendly import format_timespan
    >>> format_timespan(0)
    '0 seconds'
    >>> format_timespan(1)
    '1 second'
    >>> import math
    >>> format_timespan(math.pi)
    '3.14 seconds'
    >>> hour = 60 * 60
    >>> day = hour * 24
    >>> week = day * 7
    >>> format_timespan(week * 52 + day * 2 + hour * 3)
    '1 year, 2 days and 3 hours'
    """
    if num_seconds < 60 and not detailed:
        # Fast path.
        return pluralize(round_number(num_seconds), 'second')
    else:
        # Slow path.
        result = []
        num_seconds = decimal.Decimal(str(num_seconds))
        relevant_units = list(reversed(time_units[0 if detailed else 1:]))
        for unit in relevant_units:
            # Extract the unit count from the remaining time.
            divider = decimal.Decimal(str(unit['divider']))
            count = num_seconds / divider
            num_seconds %= divider
            # Round the unit count appropriately.
            if unit != relevant_units[-1]:
                # Integer rounding for all but the smallest unit.
                count = int(count)
            else:
                # Floating point rounding for the smallest unit.
                count = round_number(count)
            # Only include relevant units in the result.
            if count not in (0, '0'):
                result.append(pluralize(count, unit['singular'], unit['plural']))
        if len(result) == 1:
            # A single count/unit combination.
            return result[0]
        else:
            if not detailed:
                # Remove `insignificant' data from the formatted timespan.
                result = result[:max_units]
            # Format the timespan in a readable way.
            return concatenate(result)


def parse_timespan(timespan):
    """
    Parse a "human friendly" timespan into the number of seconds.

    :param value: A string like ``5h`` (5 hours), ``10m`` (10 minutes) or
                  ``42s`` (42 seconds).
    :returns: The number of seconds as a floating point number.
    :raises: :exc:`InvalidTimespan` when the input can't be parsed.

    Note that the :func:`parse_timespan()` function is not meant to be the
    "mirror image" of the :func:`format_timespan()` function. Instead it's
    meant to allow humans to easily and succinctly specify a timespan with a
    minimal amount of typing. It's very useful to accept easy to write time
    spans as e.g. command line arguments to programs.

    The time units (and abbreviations) supported by this function are:

    - ms, millisecond, milliseconds
    - s, sec, secs, second, seconds
    - m, min, mins, minute, minutes
    - h, hour, hours
    - d, day, days
    - w, week, weeks
    - y, year, years

    Some examples:

    >>> from humanfriendly import parse_timespan
    >>> parse_timespan('42')
    42.0
    >>> parse_timespan('42s')
    42.0
    >>> parse_timespan('1m')
    60.0
    >>> parse_timespan('1h')
    3600.0
    >>> parse_timespan('1d')
    86400.0
    """
    tokens = tokenize(timespan)
    if tokens and isinstance(tokens[0], numbers.Number):
        # If the input contains only a number, it's assumed to be the number of seconds.
        if len(tokens) == 1:
            return float(tokens[0])
        # Otherwise we expect to find two tokens: A number and a unit.
        if len(tokens) == 2 and is_string(tokens[1]):
            normalized_unit = tokens[1].lower()
            for unit in time_units:
                if (normalized_unit == unit['singular'] or
                        normalized_unit == unit['plural'] or
                        normalized_unit in unit['abbreviations']):
                    return float(tokens[0]) * unit['divider']
    # We failed to parse the timespan specification.
    msg = "Failed to parse timespan! (input %r was tokenized as %r)"
    raise InvalidTimespan(msg % (timespan, tokens))


def parse_date(datestring):
    """
    Parse a date/time string into a tuple of integers.

    :param datestring: The date/time string to parse.
    :returns: A tuple with the numbers ``(year, month, day, hour, minute,
              second)`` (all numbers are integers).
    :raises: :exc:`InvalidDate` when the date cannot be parsed.

    Supported date/time formats:

    - ``YYYY-MM-DD``
    - ``YYYY-MM-DD HH:MM:SS``

    .. note:: If you want to parse date/time strings with a fixed, known
              format and :func:`parse_date()` isn't useful to you, consider
              :func:`time.strptime()` or :meth:`datetime.datetime.strptime()`,
              both of which are included in the Python standard library.
              Alternatively for more complex tasks consider using the date/time
              parsing module in the dateutil_ package.

    Examples:

    >>> from humanfriendly import parse_date
    >>> parse_date('2013-06-17')
    (2013, 6, 17, 0, 0, 0)
    >>> parse_date('2013-06-17 02:47:42')
    (2013, 6, 17, 2, 47, 42)

    Here's how you convert the result to a number (`Unix time`_):

    >>> from humanfriendly import parse_date
    >>> from time import mktime
    >>> mktime(parse_date('2013-06-17 02:47:42') + (-1, -1, -1))
    1371430062.0

    And here's how you convert it to a :class:`datetime.datetime` object:

    >>> from humanfriendly import parse_date
    >>> from datetime import datetime
    >>> datetime(*parse_date('2013-06-17 02:47:42'))
    datetime.datetime(2013, 6, 17, 2, 47, 42)

    Here's an example that combines :func:`format_timespan()` and
    :func:`parse_date()` to calculate a human friendly timespan since a
    given date:

    >>> from humanfriendly import format_timespan, parse_date
    >>> from time import mktime, time
    >>> unix_time = mktime(parse_date('2013-06-17 02:47:42') + (-1, -1, -1))
    >>> seconds_since_then = time() - unix_time
    >>> print(format_timespan(seconds_since_then))
    1 year, 43 weeks and 1 day

    .. _dateutil: https://dateutil.readthedocs.io/en/latest/parser.html
    .. _Unix time: http://en.wikipedia.org/wiki/Unix_time
    """
    try:
        tokens = [t.strip() for t in datestring.split()]
        if len(tokens) >= 2:
            date_parts = list(map(int, tokens[0].split('-'))) + [1, 1]
            time_parts = list(map(int, tokens[1].split(':'))) + [0, 0, 0]
            return tuple(date_parts[0:3] + time_parts[0:3])
        else:
            year, month, day = (list(map(int, datestring.split('-'))) + [1, 1])[0:3]
            return (year, month, day, 0, 0, 0)
    except Exception:
        msg = "Invalid date! (expected 'YYYY-MM-DD' or 'YYYY-MM-DD HH:MM:SS' but got: %r)"
        raise InvalidDate(msg % datestring)


def format_path(pathname):
    """
    Shorten a pathname to make it more human friendly.

    :param pathname: An absolute pathname (a string).
    :returns: The pathname with the user's home directory abbreviated.

    Given an absolute pathname, this function abbreviates the user's home
    directory to ``~/`` in order to shorten the pathname without losing
    information. It is not an error if the pathname is not relative to the
    current user's home directory.

    Here's an example of its usage:

    >>> from os import environ
    >>> from os.path import join
    >>> vimrc = join(environ['HOME'], '.vimrc')
    >>> vimrc
    '/home/peter/.vimrc'
    >>> from humanfriendly import format_path
    >>> format_path(vimrc)
    '~/.vimrc'
    """
    pathname = os.path.abspath(pathname)
    home = os.environ.get('HOME')
    if home:
        home = os.path.abspath(home)
        if pathname.startswith(home):
            pathname = os.path.join('~', os.path.relpath(pathname, home))
    return pathname


def parse_path(pathname):
    """
    Convert a human friendly pathname to an absolute pathname.

    Expands leading tildes using :func:`os.path.expanduser()` and
    environment variables using :func:`os.path.expandvars()` and makes the
    resulting pathname absolute using :func:`os.path.abspath()`.

    :param pathname: A human friendly pathname (a string).
    :returns: An absolute pathname (a string).
    """
    return os.path.abspath(os.path.expanduser(os.path.expandvars(pathname)))


class Timer(object):

    """
    Easy to use timer to keep track of long during operations.
    """

    def __init__(self, start_time=None, resumable=False):
        """
        Remember the time when the :class:`Timer` was created.

        :param start_time: The start time (a float, defaults to the current time).
        :param resumable: Create a resumable timer (defaults to :data:`False`).

        When `start_time` is given :class:`Timer` uses :func:`time.time()` as a
        clock source, otherwise it uses :func:`humanfriendly.compat.monotonic()`.
        """
        if resumable:
            self.monotonic = True
            self.resumable = True
            self.start_time = 0.0
            self.total_time = 0.0
        elif start_time:
            self.monotonic = False
            self.resumable = False
            self.start_time = start_time
        else:
            self.monotonic = True
            self.resumable = False
            self.start_time = monotonic()

    def __enter__(self):
        """
        Start or resume counting elapsed time.

        :returns: The :class:`Timer` object.
        :raises: :exc:`~exceptions.ValueError` when the timer isn't resumable.
        """
        if not self.resumable:
            raise ValueError("Timer is not resumable!")
        self.start_time = monotonic()
        return self

    def __exit__(self, exc_type=None, exc_value=None, traceback=None):
        """
        Stop counting elapsed time.

        :raises: :exc:`~exceptions.ValueError` when the timer isn't resumable.
        """
        if not self.resumable:
            raise ValueError("Timer is not resumable!")
        if self.start_time:
            self.total_time += monotonic() - self.start_time
            self.start_time = 0.0

    @property
    def elapsed_time(self):
        """
        Get the number of seconds counted so far.
        """
        elapsed_time = 0
        if self.resumable:
            elapsed_time += self.total_time
        if self.start_time:
            current_time = monotonic() if self.monotonic else time.time()
            elapsed_time += current_time - self.start_time
        return elapsed_time

    @property
    def rounded(self):
        """Human readable timespan rounded to seconds (a string)."""
        return format_timespan(round(self.elapsed_time))

    def __str__(self):
        """Show the elapsed time since the :class:`Timer` was created."""
        return format_timespan(self.elapsed_time)


class Spinner(object):

    """
    Show a spinner on the terminal as a simple means of feedback to the user.

    The :class:`Spinner` class shows a "spinner" on the terminal to let the
    user know that something is happening during long running operations that
    would otherwise be silent (leaving the user to wonder what they're waiting
    for). Below are some visual examples that should illustrate the point.

    **Simple spinners:**

     Here's a screen capture that shows the simplest form of spinner:

      .. image:: images/spinner-basic.gif
         :alt: Animated screen capture of a simple spinner.

     The following code was used to create the spinner above:

     .. code-block:: python

        import itertools
        import time
        from humanfriendly import Spinner

        with Spinner(label="Downloading") as spinner:
            for i in itertools.count():
                # Do something useful here.
                time.sleep(0.1)
                # Advance the spinner.
                spinner.step()

    **Spinners that show elapsed time:**

     Here's a spinner that shows the elapsed time since it started:

      .. image:: images/spinner-with-timer.gif
         :alt: Animated screen capture of a spinner showing elapsed time.

     The following code was used to create the spinner above:

     .. code-block:: python

        import itertools
        import time
        from humanfriendly import Spinner, Timer

        with Spinner(label="Downloading", timer=Timer()) as spinner:
            for i in itertools.count():
                # Do something useful here.
                time.sleep(0.1)
                # Advance the spinner.
                spinner.step()

    **Spinners that show progress:**

     Here's a spinner that shows a progress percentage:

      .. image:: images/spinner-with-progress.gif
         :alt: Animated screen capture of spinner showing progress.

     The following code was used to create the spinner above:

     .. code-block:: python

        import itertools
        import random
        import time
        from humanfriendly import Spinner, Timer

        with Spinner(label="Downloading", total=100) as spinner:
            progress = 0
            while progress < 100:
                # Do something useful here.
                time.sleep(0.1)
                # Advance the spinner.
                spinner.step(progress)
                # Determine the new progress value.
                progress += random.random() * 5

    If you want to provide user feedback during a long running operation but
    it's not practical to periodically call the :func:`~Spinner.step()`
    method consider using :class:`AutomaticSpinner` instead.

    As you may already have noticed in the examples above, :class:`Spinner`
    objects can be used as context managers to automatically call
    :func:`clear()` when the spinner ends. This helps to make sure that if the
    text cursor is hidden its visibility is restored before the spinner ends
    (even if an exception interrupts the spinner).
    """

    def __init__(self, label=None, total=0, stream=sys.stderr, interactive=None, timer=None, hide_cursor=True):
        """
        Initialize a spinner.

        :param label: The label for the spinner (a string, defaults to :data:`None`).
        :param total: The expected number of steps (an integer).
        :param stream: The output stream to show the spinner on (defaults to
                       :data:`sys.stderr`).
        :param interactive: If this is :data:`False` then the spinner doesn't write
                            to the output stream at all. It defaults to the
                            return value of ``stream.isatty()``.
        :param timer: A :class:`Timer` object (optional). If this is given
                      the spinner will show the elapsed time according to the
                      timer.
        :param hide_cursor: If :data:`True` (the default) the text cursor is hidden
                            as long as the spinner is active.
        """
        self.label = label
        self.total = total
        self.stream = stream
        self.states = ['-', '\\', '|', '/']
        self.counter = 0
        self.last_update = 0
        if interactive is None:
            # Try to automatically discover whether the stream is connected to
            # a terminal, but don't fail if no isatty() method is available.
            try:
                interactive = stream.isatty()
            except Exception:
                interactive = False
        self.interactive = interactive
        self.timer = timer
        self.hide_cursor = hide_cursor
        if self.interactive and self.hide_cursor:
            self.stream.write(hide_cursor_code)

    def step(self, progress=0, label=None):
        """
        Advance the spinner by one step and redraw it.

        :param progress: The number of the current step, relative to the total
                         given to the :class:`Spinner` constructor (an integer,
                         optional). If not provided the spinner will not show
                         progress.
        :param label: The label to use while redrawing (a string, optional). If
                      not provided the label given to the :class:`Spinner`
                      constructor is used instead.

        This method advances the spinner by one step without starting a new
        line, causing an animated effect which is very simple but much nicer
        than waiting for a prompt which is completely silent for a long time.

        .. note:: This method uses time based rate limiting to avoid redrawing
                  the spinner too frequently. If you know you're dealing with
                  code that will call :func:`step()` at a high frequency,
                  consider using :func:`sleep()` to avoid creating the
                  equivalent of a busy loop that's rate limiting the spinner
                  99% of the time.
        """
        if self.interactive:
            time_now = time.time()
            if time_now - self.last_update >= minimum_spinner_interval:
                self.last_update = time_now
                state = self.states[self.counter % len(self.states)]
                label = label or self.label
                if not label:
                    raise Exception("No label set for spinner!")
                elif self.total and progress:
                    label = "%s: %.2f%%" % (label, progress / (self.total / 100.0))
                elif self.timer and self.timer.elapsed_time > 2:
                    label = "%s (%s)" % (label, self.timer.rounded)
                self.stream.write("%s %s %s ..\r" % (erase_line_code, state, label))
                self.counter += 1

    def sleep(self):
        """
        Sleep for a short period before redrawing the spinner.

        This method is useful when you know you're dealing with code that will
        call :func:`step()` at a high frequency. It will sleep for the interval
        with which the spinner is redrawn (less than a second). This avoids
        creating the equivalent of a busy loop that's rate limiting the
        spinner 99% of the time.

        This method doesn't redraw the spinner, you still have to call
        :func:`step()` in order to do that.
        """
        time.sleep(minimum_spinner_interval)

    def clear(self):
        """
        Clear the spinner.

        The next line which is shown on the standard output or error stream
        after calling this method will overwrite the line that used to show the
        spinner. Also the visibility of the text cursor is restored.
        """
        if self.interactive:
            if self.hide_cursor:
                self.stream.write(show_cursor_code)
            self.stream.write(erase_line_code)

    def __enter__(self):
        """
        Enable the use of spinners as context managers.

        :returns: The :class:`Spinner` object.
        """
        return self

    def __exit__(self, exc_type=None, exc_value=None, traceback=None):
        """Clear the spinner when leaving the context."""
        self.clear()


class AutomaticSpinner(object):

    """
    Show a spinner on the terminal that automatically starts animating.

    This class shows a spinner on the terminal (just like :class:`Spinner`
    does) that automatically starts animating. This class should be used as a
    context manager using the :keyword:`with` statement. The animation
    continues for as long as the context is active.

    :class:`AutomaticSpinner` provides an alternative to :class:`Spinner`
    for situations where it is not practical for the caller to periodically
    call :func:`~Spinner.step()` to advance the animation, e.g. because
    you're performing a blocking call and don't fancy implementing threading or
    subprocess handling just to provide some user feedback.

    This works using the :mod:`multiprocessing` module by spawning a
    subprocess to render the spinner while the main process is busy doing
    something more useful. By using the :keyword:`with` statement you're
    guaranteed that the subprocess is properly terminated at the appropriate
    time.
    """

    def __init__(self, label, show_time=True):
        """
        Initialize an automatic spinner.

        :param label: The label for the spinner (a string).
        :param show_time: If this is :data:`True` (the default) then the spinner
                          shows elapsed time.
        """
        self.label = label
        self.show_time = show_time
        self.shutdown_event = multiprocessing.Event()
        self.subprocess = multiprocessing.Process(target=self._target)

    def __enter__(self):
        """Enable the use of automatic spinners as context managers."""
        self.subprocess.start()

    def __exit__(self, exc_type=None, exc_value=None, traceback=None):
        """Enable the use of automatic spinners as context managers."""
        self.shutdown_event.set()
        self.subprocess.join()

    def _target(self):
        try:
            timer = Timer() if self.show_time else None
            with Spinner(label=self.label, timer=timer) as spinner:
                while not self.shutdown_event.is_set():
                    spinner.step()
                    spinner.sleep()
        except KeyboardInterrupt:
            # Swallow Control-C signals without producing a nasty traceback that
            # won't make any sense to the average user.
            pass


class InvalidDate(Exception):

    """
    Raised when a string cannot be parsed into a date.

    For example:

    >>> from humanfriendly import parse_date
    >>> parse_date('2013-06-XY')
    Traceback (most recent call last):
      File "humanfriendly.py", line 206, in parse_date
        raise InvalidDate, msg % datestring
    humanfriendly.InvalidDate: Invalid date! (expected 'YYYY-MM-DD' or 'YYYY-MM-DD HH:MM:SS' but got: '2013-06-XY')
    """


class InvalidSize(Exception):

    """
    Raised when a string cannot be parsed into a file size.

    For example:

    >>> from humanfriendly import parse_size
    >>> parse_size('5 Z')
    Traceback (most recent call last):
      File "humanfriendly/__init__.py", line 267, in parse_size
        raise InvalidSize(msg % (size, tokens))
    humanfriendly.InvalidSize: Failed to parse size! (input '5 Z' was tokenized as [5, 'Z'])
    """


class InvalidLength(Exception):

    """
    Raised when a string cannot be parsed into a length.

    For example:

    >>> from humanfriendly import parse_length
    >>> parse_length('5 Z')
    Traceback (most recent call last):
      File "humanfriendly/__init__.py", line 267, in parse_length
        raise InvalidLength(msg % (length, tokens))
    humanfriendly.InvalidLength: Failed to parse length! (input '5 Z' was tokenized as [5, 'Z'])
    """


class InvalidTimespan(Exception):

    """
    Raised when a string cannot be parsed into a timespan.

    For example:

    >>> from humanfriendly import parse_timespan
    >>> parse_timespan('1 age')
    Traceback (most recent call last):
      File "humanfriendly/__init__.py", line 419, in parse_timespan
        raise InvalidTimespan(msg % (timespan, tokens))
    humanfriendly.InvalidTimespan: Failed to parse timespan! (input '1 age' was tokenized as [1, 'age'])
    """