/usr/lib/python2.7/dist-packages/geopandas/plotting.py is in python-geopandas 0.3.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 | from __future__ import print_function
from distutils.version import LooseVersion
import warnings
import numpy as np
def _flatten_multi_geoms(geoms, colors=None):
"""
Returns Series like geoms and colors, except that any Multi geometries
are split into their components and colors are repeated for all component
in the same Multi geometry. Maintains 1:1 matching of geometry to color.
Passing `color` is optional, and when no `color` is passed a list of None
values is returned as `component_colors`.
"Colors" are treated opaquely and so can actually contain any values.
Returns
-------
components : list of geometry
component_colors : list of whatever type `colors` contains
"""
if colors is None:
colors = [None] * len(geoms)
components, component_colors = [], []
# precondition, so zip can't short-circuit
assert len(geoms) == len(colors)
for geom, color in zip(geoms, colors):
if geom.type.startswith('Multi'):
for poly in geom:
components.append(poly)
# repeat same color for all components
component_colors.append(color)
else:
components.append(geom)
component_colors.append(color)
return components, component_colors
def plot_polygon_collection(ax, geoms, values=None, color=None,
cmap=None, vmin=None, vmax=None, **kwargs):
"""
Plots a collection of Polygon and MultiPolygon geometries to `ax`
Parameters
----------
ax : matplotlib.axes.Axes
where shapes will be plotted
geoms : a sequence of `N` Polygons and/or MultiPolygons (can be mixed)
values : a sequence of `N` values, optional
Values will be mapped to colors using vmin/vmax/cmap. They should
have 1:1 correspondence with the geometries (not their components).
Otherwise follows `color` / `facecolor` kwargs.
edgecolor : single color or sequence of `N` colors
Color for the edge of the polygons
facecolor : single color or sequence of `N` colors
Color to fill the polygons. Cannot be used together with `values`.
color : single color or sequence of `N` colors
Sets both `edgecolor` and `facecolor`
**kwargs
Additional keyword arguments passed to the collection
Returns
-------
collection : matplotlib.collections.Collection that was plotted
"""
from descartes.patch import PolygonPatch
from matplotlib.collections import PatchCollection
geoms, values = _flatten_multi_geoms(geoms, values)
if None in values:
values = None
# PatchCollection does not accept some kwargs.
if 'markersize' in kwargs:
del kwargs['markersize']
# color=None overwrites specified facecolor/edgecolor with default color
if color is not None:
kwargs['color'] = color
collection = PatchCollection([PolygonPatch(poly) for poly in geoms],
**kwargs)
if values is not None:
collection.set_array(np.asarray(values))
collection.set_cmap(cmap)
collection.set_clim(vmin, vmax)
ax.add_collection(collection, autolim=True)
ax.autoscale_view()
return collection
def plot_linestring_collection(ax, geoms, values=None, color=None,
cmap=None, vmin=None, vmax=None, **kwargs):
"""
Plots a collection of LineString and MultiLineString geometries to `ax`
Parameters
----------
ax : matplotlib.axes.Axes
where shapes will be plotted
geoms : a sequence of `N` LineStrings and/or MultiLineStrings (can be
mixed)
values : a sequence of `N` values, optional
Values will be mapped to colors using vmin/vmax/cmap. They should
have 1:1 correspondence with the geometries (not their components).
color : single color or sequence of `N` colors
Cannot be used together with `values`.
Returns
-------
collection : matplotlib.collections.Collection that was plotted
"""
from matplotlib.collections import LineCollection
geoms, values = _flatten_multi_geoms(geoms, values)
if None in values:
values = None
# LineCollection does not accept some kwargs.
if 'markersize' in kwargs:
del kwargs['markersize']
# color=None gives black instead of default color cycle
if color is not None:
kwargs['color'] = color
segments = [np.array(linestring)[:, :2] for linestring in geoms]
collection = LineCollection(segments, **kwargs)
if values is not None:
collection.set_array(np.asarray(values))
collection.set_cmap(cmap)
collection.set_clim(vmin, vmax)
ax.add_collection(collection, autolim=True)
ax.autoscale_view()
return collection
def plot_point_collection(ax, geoms, values=None, color=None,
cmap=None, vmin=None, vmax=None,
marker='o', markersize=None, **kwargs):
"""
Plots a collection of Point geometries to `ax`
Parameters
----------
ax : matplotlib.axes.Axes
where shapes will be plotted
geoms : sequence of `N` Points
values : a sequence of `N` values, optional
Values mapped to colors using vmin, vmax, and cmap.
Cannot be specified together with `color`.
markersize : scalar or array-like, optional
Size of the markers. Note that under the hood ``scatter`` is
used, so the specified value will be proportional to the
area of the marker (size in points^2).
Returns
-------
collection : matplotlib.collections.Collection that was plotted
"""
if values is not None and color is not None:
raise ValueError("Can only specify one of 'values' and 'color' kwargs")
x = geoms.x.values
y = geoms.y.values
# matplotlib 1.4 does not support c=None, and < 2.0 does not support s=None
if values is not None:
kwargs['c'] = values
if markersize is not None:
kwargs['s'] = markersize
collection = ax.scatter(x, y, color=color, vmin=vmin, vmax=vmax, cmap=cmap,
marker=marker, **kwargs)
return collection
def plot_series(s, cmap=None, color=None, ax=None, figsize=None, **style_kwds):
"""
Plot a GeoSeries.
Generate a plot of a GeoSeries geometry with matplotlib.
Parameters
----------
s : Series
The GeoSeries to be plotted. Currently Polygon,
MultiPolygon, LineString, MultiLineString and Point
geometries can be plotted.
cmap : str (default None)
The name of a colormap recognized by matplotlib. Any
colormap will work, but categorical colormaps are
generally recommended. Examples of useful discrete
colormaps include:
tab10, tab20, Accent, Dark2, Paired, Pastel1, Set1, Set2
color : str (default None)
If specified, all objects will be colored uniformly.
ax : matplotlib.pyplot.Artist (default None)
axes on which to draw the plot
figsize : pair of floats (default None)
Size of the resulting matplotlib.figure.Figure. If the argument
ax is given explicitly, figsize is ignored.
**style_kwds : dict
Color options to be passed on to the actual plot function, such
as ``edgecolor``, ``facecolor``, ``linewidth``, ``markersize``,
``alpha``.
Returns
-------
matplotlib axes instance
"""
if 'colormap' in style_kwds:
warnings.warn("'colormap' is deprecated, please use 'cmap' instead "
"(for consistency with matplotlib)", FutureWarning)
cmap = style_kwds.pop('colormap')
if 'axes' in style_kwds:
warnings.warn("'axes' is deprecated, please use 'ax' instead "
"(for consistency with pandas)", FutureWarning)
ax = style_kwds.pop('axes')
import matplotlib.pyplot as plt
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
ax.set_aspect('equal')
# if cmap is specified, create range of colors based on cmap
values = None
if cmap is not None:
values = np.arange(len(s))
if hasattr(cmap, 'N'):
values = values % cmap.N
style_kwds['vmin'] = style_kwds.get('vmin', values.min())
style_kwds['vmax'] = style_kwds.get('vmax', values.max())
geom_types = s.geometry.type
poly_idx = np.asarray((geom_types == 'Polygon')
| (geom_types == 'MultiPolygon'))
line_idx = np.asarray((geom_types == 'LineString')
| (geom_types == 'MultiLineString'))
point_idx = np.asarray(geom_types == 'Point')
# plot all Polygons and all MultiPolygon components in the same collection
polys = s.geometry[poly_idx]
if not polys.empty:
# color overrides both face and edgecolor. As we want people to be
# able to use edgecolor as well, pass color to facecolor
facecolor = style_kwds.pop('facecolor', None)
if color is not None:
facecolor = color
values_ = values[poly_idx] if cmap else None
plot_polygon_collection(ax, polys, values_, facecolor=facecolor,
cmap=cmap, **style_kwds)
# plot all LineStrings and MultiLineString components in same collection
lines = s.geometry[line_idx]
if not lines.empty:
values_ = values[line_idx] if cmap else None
plot_linestring_collection(ax, lines, values_, color=color, cmap=cmap,
**style_kwds)
# plot all Points in the same collection
points = s.geometry[point_idx]
if not points.empty:
values_ = values[point_idx] if cmap else None
plot_point_collection(ax, points, values_, color=color, cmap=cmap,
**style_kwds)
plt.draw()
return ax
def plot_dataframe(df, column=None, cmap=None, color=None, ax=None,
categorical=False, legend=False, scheme=None, k=5,
vmin=None, vmax=None, figsize=None, **style_kwds):
"""
Plot a GeoDataFrame.
Generate a plot of a GeoDataFrame with matplotlib. If a
column is specified, the plot coloring will be based on values
in that column.
Parameters
----------
df : GeoDataFrame
The GeoDataFrame to be plotted. Currently Polygon,
MultiPolygon, LineString, MultiLineString and Point
geometries can be plotted.
column : str (default None)
The name of the column to be plotted. Ignored if `color` is also set.
cmap : str (default None)
The name of a colormap recognized by matplotlib.
categorical : bool (default False)
If False, cmap will reflect numerical values of the
column being plotted. For non-numerical columns, this
will be set to True.
color : str (default None)
If specified, all objects will be colored uniformly.
legend : bool (default False)
Plot a legend. Ignored if no `column` is given, or if `color` is given.
ax : matplotlib.pyplot.Artist (default None)
axes on which to draw the plot
scheme : str (default None)
Name of a choropleth classification scheme (requires PySAL).
A pysal.esda.mapclassify.Map_Classifier object will be used
under the hood. Supported schemes: 'Equal_interval', 'Quantiles',
'Fisher_Jenks'
k : int (default 5)
Number of classes (ignored if scheme is None)
vmin : None or float (default None)
Minimum value of cmap. If None, the minimum data value
in the column to be plotted is used.
vmax : None or float (default None)
Maximum value of cmap. If None, the maximum data value
in the column to be plotted is used.
figsize
Size of the resulting matplotlib.figure.Figure. If the argument
axes is given explicitly, figsize is ignored.
**style_kwds : dict
Color options to be passed on to the actual plot function, such
as ``edgecolor``, ``facecolor``, ``linewidth``, ``markersize``,
``alpha``.
Returns
-------
matplotlib axes instance
"""
if 'colormap' in style_kwds:
warnings.warn("'colormap' is deprecated, please use 'cmap' instead "
"(for consistency with matplotlib)", FutureWarning)
cmap = style_kwds.pop('colormap')
if 'axes' in style_kwds:
warnings.warn("'axes' is deprecated, please use 'ax' instead "
"(for consistency with pandas)", FutureWarning)
ax = style_kwds.pop('axes')
if column and color:
warnings.warn("Only specify one of 'column' or 'color'. Using "
"'color'.", UserWarning)
column = None
import matplotlib
import matplotlib.pyplot as plt
if column is None:
return plot_series(df.geometry, cmap=cmap, color=color, ax=ax,
figsize=figsize, **style_kwds)
if df[column].dtype is np.dtype('O'):
categorical = True
# Define `values` as a Series
if categorical:
if cmap is None:
if LooseVersion(matplotlib.__version__) >= '2.0':
cmap = 'tab10'
else:
cmap = 'Set1'
categories = list(set(df[column].values))
categories.sort()
valuemap = dict([(k, v) for (v, k) in enumerate(categories)])
values = np.array([valuemap[k] for k in df[column]])
else:
values = df[column]
if scheme is not None:
binning = __pysal_choro(values, scheme, k=k)
# set categorical to True for creating the legend
categorical = True
binedges = [values.min()] + binning.bins.tolist()
categories = ['{0:.2f} - {1:.2f}'.format(binedges[i], binedges[i+1])
for i in range(len(binedges)-1)]
values = np.array(binning.yb)
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
ax.set_aspect('equal')
mn = values.min() if vmin is None else vmin
mx = values.max() if vmax is None else vmax
geom_types = df.geometry.type
poly_idx = np.asarray((geom_types == 'Polygon')
| (geom_types == 'MultiPolygon'))
line_idx = np.asarray((geom_types == 'LineString')
| (geom_types == 'MultiLineString'))
point_idx = np.asarray(geom_types == 'Point')
# plot all Polygons and all MultiPolygon components in the same collection
polys = df.geometry[poly_idx]
if not polys.empty:
plot_polygon_collection(ax, polys, values[poly_idx],
vmin=mn, vmax=mx, cmap=cmap, **style_kwds)
# plot all LineStrings and MultiLineString components in same collection
lines = df.geometry[line_idx]
if not lines.empty:
plot_linestring_collection(ax, lines, values[line_idx],
vmin=mn, vmax=mx, cmap=cmap, **style_kwds)
# plot all Points in the same collection
points = df.geometry[point_idx]
if not points.empty:
plot_point_collection(ax, points, values[point_idx],
vmin=mn, vmax=mx, cmap=cmap, **style_kwds)
if legend and not color:
from matplotlib.lines import Line2D
from matplotlib.colors import Normalize
from matplotlib import cm
norm = Normalize(vmin=mn, vmax=mx)
n_cmap = cm.ScalarMappable(norm=norm, cmap=cmap)
if categorical:
patches = []
for value, cat in enumerate(categories):
patches.append(
Line2D([0], [0], linestyle="none", marker="o",
alpha=style_kwds.get('alpha', 1), markersize=10,
markerfacecolor=n_cmap.to_rgba(value)))
ax.legend(patches, categories, numpoints=1, loc='best')
else:
n_cmap.set_array([])
ax.get_figure().colorbar(n_cmap)
plt.draw()
return ax
def __pysal_choro(values, scheme, k=5):
"""
Wrapper for choropleth schemes from PySAL for use with plot_dataframe
Parameters
----------
values
Series to be plotted
scheme
pysal.esda.mapclassify classificatin scheme
['Equal_interval'|'Quantiles'|'Fisher_Jenks']
k
number of classes (2 <= k <=9)
Returns
-------
binning
Binning objects that holds the Series with values replaced with
class identifier and the bins.
"""
try:
from pysal.esda.mapclassify import (
Quantiles, Equal_Interval, Fisher_Jenks)
schemes = {}
schemes['equal_interval'] = Equal_Interval
schemes['quantiles'] = Quantiles
schemes['fisher_jenks'] = Fisher_Jenks
scheme = scheme.lower()
if scheme not in schemes:
raise ValueError("Invalid scheme. Scheme must be in the"
" set: %r" % schemes.keys())
binning = schemes[scheme](values, k)
return binning
except ImportError:
raise ImportError("PySAL is required to use the 'scheme' keyword")
|