This file is indexed.

/usr/lib/python2.7/dist-packages/geopandas/plotting.py is in python-geopandas 0.3.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
from __future__ import print_function

from distutils.version import LooseVersion
import warnings

import numpy as np


def _flatten_multi_geoms(geoms, colors=None):
    """
    Returns Series like geoms and colors, except that any Multi geometries
    are split into their components and colors are repeated for all component
    in the same Multi geometry.  Maintains 1:1 matching of geometry to color.
    Passing `color` is optional, and when no `color` is passed a list of None
    values is returned as `component_colors`.

    "Colors" are treated opaquely and so can actually contain any values.

    Returns
    -------

    components : list of geometry

    component_colors : list of whatever type `colors` contains
    """
    if colors is None:
        colors = [None] * len(geoms)

    components, component_colors = [], []

    # precondition, so zip can't short-circuit
    assert len(geoms) == len(colors)
    for geom, color in zip(geoms, colors):
        if geom.type.startswith('Multi'):
            for poly in geom:
                components.append(poly)
                # repeat same color for all components
                component_colors.append(color)
        else:
            components.append(geom)
            component_colors.append(color)

    return components, component_colors


def plot_polygon_collection(ax, geoms, values=None, color=None,
                            cmap=None, vmin=None, vmax=None, **kwargs):
    """
    Plots a collection of Polygon and MultiPolygon geometries to `ax`

    Parameters
    ----------

    ax : matplotlib.axes.Axes
        where shapes will be plotted

    geoms : a sequence of `N` Polygons and/or MultiPolygons (can be mixed)

    values : a sequence of `N` values, optional
        Values will be mapped to colors using vmin/vmax/cmap. They should
        have 1:1 correspondence with the geometries (not their components).
        Otherwise follows `color` / `facecolor` kwargs.

    edgecolor : single color or sequence of `N` colors
        Color for the edge of the polygons

    facecolor : single color or sequence of `N` colors
        Color to fill the polygons. Cannot be used together with `values`.

    color : single color or sequence of `N` colors
        Sets both `edgecolor` and `facecolor`

    **kwargs
        Additional keyword arguments passed to the collection

    Returns
    -------

    collection : matplotlib.collections.Collection that was plotted
    """
    from descartes.patch import PolygonPatch
    from matplotlib.collections import PatchCollection

    geoms, values = _flatten_multi_geoms(geoms, values)
    if None in values:
        values = None

    # PatchCollection does not accept some kwargs.
    if 'markersize' in kwargs:
        del kwargs['markersize']

    # color=None overwrites specified facecolor/edgecolor with default color
    if color is not None:
        kwargs['color'] = color

    collection = PatchCollection([PolygonPatch(poly) for poly in geoms],
                                 **kwargs)

    if values is not None:
        collection.set_array(np.asarray(values))
        collection.set_cmap(cmap)
        collection.set_clim(vmin, vmax)

    ax.add_collection(collection, autolim=True)
    ax.autoscale_view()
    return collection


def plot_linestring_collection(ax, geoms, values=None, color=None,
                               cmap=None, vmin=None, vmax=None, **kwargs):
    """
    Plots a collection of LineString and MultiLineString geometries to `ax`

    Parameters
    ----------

    ax : matplotlib.axes.Axes
        where shapes will be plotted

    geoms : a sequence of `N` LineStrings and/or MultiLineStrings (can be
            mixed)

    values : a sequence of `N` values, optional
        Values will be mapped to colors using vmin/vmax/cmap. They should
        have 1:1 correspondence with the geometries (not their components).

    color : single color or sequence of `N` colors
        Cannot be used together with `values`.

    Returns
    -------

    collection : matplotlib.collections.Collection that was plotted

    """
    from matplotlib.collections import LineCollection

    geoms, values = _flatten_multi_geoms(geoms, values)
    if None in values:
        values = None

    # LineCollection does not accept some kwargs.
    if 'markersize' in kwargs:
        del kwargs['markersize']

    # color=None gives black instead of default color cycle
    if color is not None:
        kwargs['color'] = color

    segments = [np.array(linestring)[:, :2] for linestring in geoms]
    collection = LineCollection(segments, **kwargs)

    if values is not None:
        collection.set_array(np.asarray(values))
        collection.set_cmap(cmap)
        collection.set_clim(vmin, vmax)

    ax.add_collection(collection, autolim=True)
    ax.autoscale_view()
    return collection


def plot_point_collection(ax, geoms, values=None, color=None,
                          cmap=None, vmin=None, vmax=None,
                          marker='o', markersize=None, **kwargs):
    """
    Plots a collection of Point geometries to `ax`

    Parameters
    ----------

    ax : matplotlib.axes.Axes
        where shapes will be plotted

    geoms : sequence of `N` Points

    values : a sequence of `N` values, optional
        Values mapped to colors using vmin, vmax, and cmap.
        Cannot be specified together with `color`.

    markersize : scalar or array-like, optional
        Size of the markers. Note that under the hood ``scatter`` is
        used, so the specified value will be proportional to the
        area of the marker (size in points^2).

    Returns
    -------
    collection : matplotlib.collections.Collection that was plotted
    """
    if values is not None and color is not None:
        raise ValueError("Can only specify one of 'values' and 'color' kwargs")

    x = geoms.x.values
    y = geoms.y.values

    # matplotlib 1.4 does not support c=None, and < 2.0 does not support s=None
    if values is not None:
        kwargs['c'] = values
    if markersize is not None:
        kwargs['s'] = markersize

    collection = ax.scatter(x, y, color=color, vmin=vmin, vmax=vmax, cmap=cmap,
                            marker=marker, **kwargs)
    return collection


def plot_series(s, cmap=None, color=None, ax=None, figsize=None, **style_kwds):
    """
    Plot a GeoSeries.

    Generate a plot of a GeoSeries geometry with matplotlib.

    Parameters
    ----------

    s : Series
        The GeoSeries to be plotted.  Currently Polygon,
        MultiPolygon, LineString, MultiLineString and Point
        geometries can be plotted.

    cmap : str (default None)
        The name of a colormap recognized by matplotlib.  Any
        colormap will work, but categorical colormaps are
        generally recommended.  Examples of useful discrete
        colormaps include:

            tab10, tab20, Accent, Dark2, Paired, Pastel1, Set1, Set2

    color : str (default None)
        If specified, all objects will be colored uniformly.

    ax : matplotlib.pyplot.Artist (default None)
        axes on which to draw the plot

    figsize : pair of floats (default None)
        Size of the resulting matplotlib.figure.Figure. If the argument
        ax is given explicitly, figsize is ignored.

    **style_kwds : dict
        Color options to be passed on to the actual plot function, such
        as ``edgecolor``, ``facecolor``, ``linewidth``, ``markersize``,
        ``alpha``.

    Returns
    -------

    matplotlib axes instance
    """
    if 'colormap' in style_kwds:
        warnings.warn("'colormap' is deprecated, please use 'cmap' instead "
                      "(for consistency with matplotlib)", FutureWarning)
        cmap = style_kwds.pop('colormap')
    if 'axes' in style_kwds:
        warnings.warn("'axes' is deprecated, please use 'ax' instead "
                      "(for consistency with pandas)", FutureWarning)
        ax = style_kwds.pop('axes')

    import matplotlib.pyplot as plt
    if ax is None:
        fig, ax = plt.subplots(figsize=figsize)
        ax.set_aspect('equal')

    # if cmap is specified, create range of colors based on cmap
    values = None
    if cmap is not None:
        values = np.arange(len(s))
        if hasattr(cmap, 'N'):
            values = values % cmap.N
        style_kwds['vmin'] = style_kwds.get('vmin', values.min())
        style_kwds['vmax'] = style_kwds.get('vmax', values.max())

    geom_types = s.geometry.type
    poly_idx = np.asarray((geom_types == 'Polygon')
                          | (geom_types == 'MultiPolygon'))
    line_idx = np.asarray((geom_types == 'LineString')
                          | (geom_types == 'MultiLineString'))
    point_idx = np.asarray(geom_types == 'Point')

    # plot all Polygons and all MultiPolygon components in the same collection
    polys = s.geometry[poly_idx]

    if not polys.empty:
        # color overrides both face and edgecolor. As we want people to be
        # able to use edgecolor as well, pass color to facecolor
        facecolor = style_kwds.pop('facecolor', None)
        if color is not None:
            facecolor = color
        values_ = values[poly_idx] if cmap else None
        plot_polygon_collection(ax, polys, values_, facecolor=facecolor,
                                cmap=cmap, **style_kwds)

    # plot all LineStrings and MultiLineString components in same collection
    lines = s.geometry[line_idx]
    if not lines.empty:
        values_ = values[line_idx] if cmap else None
        plot_linestring_collection(ax, lines, values_, color=color, cmap=cmap,
                                   **style_kwds)

    # plot all Points in the same collection
    points = s.geometry[point_idx]
    if not points.empty:
        values_ = values[point_idx] if cmap else None
        plot_point_collection(ax, points, values_, color=color, cmap=cmap,
                              **style_kwds)

    plt.draw()
    return ax


def plot_dataframe(df, column=None, cmap=None, color=None, ax=None,
                   categorical=False, legend=False, scheme=None, k=5,
                   vmin=None, vmax=None, figsize=None, **style_kwds):
    """
    Plot a GeoDataFrame.

    Generate a plot of a GeoDataFrame with matplotlib.  If a
    column is specified, the plot coloring will be based on values
    in that column.

    Parameters
    ----------

    df : GeoDataFrame
        The GeoDataFrame to be plotted.  Currently Polygon,
        MultiPolygon, LineString, MultiLineString and Point
        geometries can be plotted.

    column : str (default None)
        The name of the column to be plotted. Ignored if `color` is also set.

    cmap : str (default None)
        The name of a colormap recognized by matplotlib.

    categorical : bool (default False)
        If False, cmap will reflect numerical values of the
        column being plotted.  For non-numerical columns, this
        will be set to True.

    color : str (default None)
        If specified, all objects will be colored uniformly.

    legend : bool (default False)
        Plot a legend. Ignored if no `column` is given, or if `color` is given.

    ax : matplotlib.pyplot.Artist (default None)
        axes on which to draw the plot

    scheme : str (default None)
        Name of a choropleth classification scheme (requires PySAL).
        A pysal.esda.mapclassify.Map_Classifier object will be used
        under the hood. Supported schemes: 'Equal_interval', 'Quantiles',
        'Fisher_Jenks'

    k   : int (default 5)
        Number of classes (ignored if scheme is None)

    vmin : None or float (default None)
        Minimum value of cmap. If None, the minimum data value
        in the column to be plotted is used.

    vmax : None or float (default None)
        Maximum value of cmap. If None, the maximum data value
        in the column to be plotted is used.

    figsize
        Size of the resulting matplotlib.figure.Figure. If the argument
        axes is given explicitly, figsize is ignored.

    **style_kwds : dict
        Color options to be passed on to the actual plot function, such
        as ``edgecolor``, ``facecolor``, ``linewidth``, ``markersize``,
        ``alpha``.

    Returns
    -------
    matplotlib axes instance

    """
    if 'colormap' in style_kwds:
        warnings.warn("'colormap' is deprecated, please use 'cmap' instead "
                      "(for consistency with matplotlib)", FutureWarning)
        cmap = style_kwds.pop('colormap')
    if 'axes' in style_kwds:
        warnings.warn("'axes' is deprecated, please use 'ax' instead "
                      "(for consistency with pandas)", FutureWarning)
        ax = style_kwds.pop('axes')
    if column and color:
        warnings.warn("Only specify one of 'column' or 'color'. Using "
                      "'color'.", UserWarning)
        column = None

    import matplotlib
    import matplotlib.pyplot as plt

    if column is None:
        return plot_series(df.geometry, cmap=cmap, color=color, ax=ax,
                           figsize=figsize, **style_kwds)

    if df[column].dtype is np.dtype('O'):
        categorical = True

    # Define `values` as a Series
    if categorical:
        if cmap is None:
            if LooseVersion(matplotlib.__version__) >= '2.0':
                cmap = 'tab10'
            else:
                cmap = 'Set1'
        categories = list(set(df[column].values))
        categories.sort()
        valuemap = dict([(k, v) for (v, k) in enumerate(categories)])
        values = np.array([valuemap[k] for k in df[column]])
    else:
        values = df[column]
    if scheme is not None:
        binning = __pysal_choro(values, scheme, k=k)
        # set categorical to True for creating the legend
        categorical = True
        binedges = [values.min()] + binning.bins.tolist()
        categories = ['{0:.2f} - {1:.2f}'.format(binedges[i], binedges[i+1])
                      for i in range(len(binedges)-1)]
        values = np.array(binning.yb)

    if ax is None:
        fig, ax = plt.subplots(figsize=figsize)
        ax.set_aspect('equal')

    mn = values.min() if vmin is None else vmin
    mx = values.max() if vmax is None else vmax

    geom_types = df.geometry.type
    poly_idx = np.asarray((geom_types == 'Polygon')
                          | (geom_types == 'MultiPolygon'))
    line_idx = np.asarray((geom_types == 'LineString')
                          | (geom_types == 'MultiLineString'))
    point_idx = np.asarray(geom_types == 'Point')

    # plot all Polygons and all MultiPolygon components in the same collection
    polys = df.geometry[poly_idx]
    if not polys.empty:
        plot_polygon_collection(ax, polys, values[poly_idx],
                                vmin=mn, vmax=mx, cmap=cmap, **style_kwds)

    # plot all LineStrings and MultiLineString components in same collection
    lines = df.geometry[line_idx]
    if not lines.empty:
        plot_linestring_collection(ax, lines, values[line_idx],
                                   vmin=mn, vmax=mx, cmap=cmap, **style_kwds)

    # plot all Points in the same collection
    points = df.geometry[point_idx]
    if not points.empty:
        plot_point_collection(ax, points, values[point_idx],
                              vmin=mn, vmax=mx, cmap=cmap, **style_kwds)

    if legend and not color:
        from matplotlib.lines import Line2D
        from matplotlib.colors import Normalize
        from matplotlib import cm

        norm = Normalize(vmin=mn, vmax=mx)
        n_cmap = cm.ScalarMappable(norm=norm, cmap=cmap)
        if categorical:
            patches = []
            for value, cat in enumerate(categories):
                patches.append(
                    Line2D([0], [0], linestyle="none", marker="o",
                           alpha=style_kwds.get('alpha', 1), markersize=10,
                           markerfacecolor=n_cmap.to_rgba(value)))
            ax.legend(patches, categories, numpoints=1, loc='best')
        else:
            n_cmap.set_array([])
            ax.get_figure().colorbar(n_cmap)

    plt.draw()
    return ax


def __pysal_choro(values, scheme, k=5):
    """
    Wrapper for choropleth schemes from PySAL for use with plot_dataframe

    Parameters
    ----------

    values
        Series to be plotted

    scheme
        pysal.esda.mapclassify classificatin scheme
        ['Equal_interval'|'Quantiles'|'Fisher_Jenks']

    k
        number of classes (2 <= k <=9)

    Returns
    -------

    binning
        Binning objects that holds the Series with values replaced with
        class identifier and the bins.

    """
    try:
        from pysal.esda.mapclassify import (
            Quantiles, Equal_Interval, Fisher_Jenks)
        schemes = {}
        schemes['equal_interval'] = Equal_Interval
        schemes['quantiles'] = Quantiles
        schemes['fisher_jenks'] = Fisher_Jenks
        scheme = scheme.lower()
        if scheme not in schemes:
            raise ValueError("Invalid scheme. Scheme must be in the"
                             " set: %r" % schemes.keys())
        binning = schemes[scheme](values, k)
        return binning
    except ImportError:
        raise ImportError("PySAL is required to use the 'scheme' keyword")