This file is indexed.

/usr/include/gamera/plugins/features.hpp is in python-gamera-dev 1:3.4.2+git20160808.1725654-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/*
 *
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, Karl MacMillan
 *               2009-2012 Christoph Dalitz
 *               2010      Robert Butz
 *               2012      Andrew Hankinson
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef kwm10242002_features
#define kwm10242002_features

#include "gamera.hpp"
#include "image_utilities.hpp"
#include "morphology.hpp"
#include "thinning.hpp"
#include "plugins/projections.hpp"
#include "plugins/transformation.hpp"
#include <cmath>
#include <vector>

namespace Gamera {
  //
  // Black Area
  //
  // Find the number of black pixels in an image. This is just a convenience
  // routine, but it demonstrates the correct method for determining whether
  // a pixel is black or white.
  //
  template<class T>
  void black_area(const T& mat, feature_t* buf) {
    *buf = 0;
    for (typename T::const_vec_iterator i = mat.vec_begin();
         i != mat.vec_end(); ++i) {
      if (is_black(*i))
        (*buf)++;
    }
  }
  // Old-style version, since it is called from C++ elsewhere
  template<class T>
  feature_t black_area(const T& mat) {
    int black_pixels = 0;
    for (typename T::const_vec_iterator i = mat.vec_begin();
         i != mat.vec_end(); ++i) {
      if (is_black(*i))
        black_pixels++;
    }
    return (feature_t)black_pixels;
  }

  // Ratio of black to white pixels
  template<class T>
  feature_t volume(const T &m) {
    unsigned int count = 0;
    typename T::const_vec_iterator i = m.vec_begin();
    for (; i != m.vec_end(); i++)
      if (is_black(*i))
        count++;
    return (feature_t(count) / (m.nrows() * m.ncols()));
  }
  
  template<class T>
  void volume(const T &m, feature_t* buf) {
    *buf = volume(m);
  }
  

  //
  // Normalized Central Moments 
  //
  // Returns vector containing:
  // u10, u01, u20, u02, u11, u30, u12, u21, u03
  //

  template<class Iterator>
  void moments_1d(Iterator begin, Iterator end, feature_t& m0, feature_t& m1,
                  feature_t& m2, feature_t& m3) {
    // zeroeth, first, second, third order on one axis
    feature_t tmp = 0;
    size_t x = 0;
    Iterator itx = begin;
    for (; itx != end; ++itx, x++) {
      size_t y = 0, proj = 0;
      typename Iterator::iterator ity = itx.begin();
      for (; ity != itx.end(); ++ity, ++y)
        if (is_black(*ity))
          proj++;
      m0 += proj;
      m1 += (tmp = x * proj);
      m2 += (tmp *= x);
      m3 += (tmp * x);
    }
  }

  template<class Iterator>
  void moments_2d(Iterator begin, Iterator end, feature_t& m11, feature_t& m12,
                  feature_t& m21) {
    feature_t tmp = 0;
    size_t x = 0;
    Iterator itx = begin;
    for (; itx != end; itx++, x++) {
      size_t y = 0;
      typename Iterator::iterator ity = itx.begin();
      for (; ity != itx.end(); ity++, y++)
        if (is_black(*ity)) {
          m11 += (tmp = x * y);
          m21 += (tmp * x);
          m12 += (tmp * y);
        }
    }
  }

  template<class T>
  void moments(T &m, feature_t* buf) {
    feature_t m10 = 0, m11 = 0, m20 = 0, m21 = 0, m12 = 0, 
      m01 = 0, m02 = 0, m30 = 0, m03 = 0, m00 = 0, dummy = 0;
    moments_1d(m.row_begin(), m.row_end(), m00, m01, m02, m03);
    moments_1d(m.col_begin(), m.col_end(), dummy, m10, m20, m30);
    moments_2d(m.col_begin(), m.col_end(), m11, m12, m21);

    if (m00 == 0.0) m00 = 1.0; // special case: no black pixels

    feature_t x, y, x2, y2, div;
    x = (feature_t)m10 / m00;
    x2 = 2 * x * x;
    y = (feature_t)m01 / m00;
    y2 = 2 * y * y;

    // normalized center of gravity [0,1]
    if (m.ncols() > 1)
      *(buf++) = x / (m.ncols()-1);
    else
      *(buf++) = 0.5; // only one pixel wide
    if (m.nrows() > 1)
      *(buf++) = y / (m.nrows()-1);
    else
      *(buf++) = 0.5; // only one pixel high
  
    div = (feature_t)m00 * m00; // common normalization divisor 
    *(buf++) = (m20 - (x * m10)) / div; // u20 
    *(buf++) = (m02 - (y * m01)) / div; // u02 
    *(buf++) = (m11 - (y * m10)) / div; // u11 
  
    div *= (feature_t)sqrt((double)m00);  
    *(buf++) = (m30 - (3 * x * m20) + (x2 * m10)) / div;                // u30
    *(buf++) = (m12 - (2 * y * m11) - (x * m02) + (y2 * m10)) / div;    // u12
    *(buf++) = (m21 - (2 * x * m11) - (y * m20) + (x2 * m01)) / div;    // u21
    *buf = (m03 - (3 * y * m02) + (y2 * m01)) / div;                // u03
  }
 
  // Number of holes in x and y direction
  
  // Counts the number of black runs (runs that "wrap-around" considered
  // two runs).
  // This is the Euler number
  
  // See:
  // Di Zenzo, S.; Cinque, L.; Levialdi, S. 
  // Run-based algorithms for binary image processing
  // Pattern Analysis and Machine Intelligence, IEEE Transactions on , 
  // Volume: 18 Issue: 1 , Jan. 1996 
  // Page(s): 83 -89
  
  template<class Iterator>
  inline int nholes_1d(Iterator begin, Iterator end) {

    int hole_count = 0;
    bool last;
    bool has_black;
    Iterator r = begin;
    for (; r != end; r++) {
      last = false;
      has_black = false;
      typename Iterator::iterator c = r.begin();
      for (; c != r.end(); c++) {
        if (is_black(*c)){
          last = true;
          has_black = true;
        }
        else if (last) {
          last = false;
          hole_count++;
        }
      }
      if (!last && hole_count && has_black){ 
        hole_count--;
      }
    }
    return hole_count;
  }
  
  template<class T>
  void nholes(T &m, feature_t* buf) {
    int vert, horiz;
    
    vert = nholes_1d(m.col_begin(), m.col_end());
    horiz = nholes_1d(m.row_begin(), m.row_end());
    
    *(buf++) = (feature_t)vert / m.ncols();
    *buf = (feature_t)horiz / m.nrows();
  }

  //
  // nholes_extended
  //
  // This divides the image into strips (both horizontally
  // and vertically) and computes the number of holes on each strip.
  //
  template<class T>
  void nholes_extended(const T& m, feature_t* buf) {
    double quarter_cols = m.ncols() / 4.0;
    double start = 0.0;
    for (size_t i = 0; i < 4; ++i) {
      *(buf++) = nholes_1d(m.col_begin() + size_t(start),
                m.col_begin() + size_t(start) + size_t(quarter_cols))
                /quarter_cols;
      start += quarter_cols;
    }
    double quarter_rows = m.nrows() / 4.0;
    start = 0.0;
    for (size_t i = 0; i < 4; ++i) {
      *(buf++) = nholes_1d(m.row_begin() + size_t(start),
               m.row_begin() + size_t(start) + size_t(quarter_rows))
               / quarter_rows;
      start += quarter_rows;
    }
  }

  template<class T>
  void area(const T& image, feature_t* buf) {
    *buf = feature_t(image.nrows() * image.ncols()) / image.scaling();
  }

  template<class T>
  void aspect_ratio(const T& image, feature_t* buf) {
    *buf = feature_t(image.ncols()) / feature_t(image.nrows());
  }

  template<class T>
  void nrows_feature(const T& image, feature_t* buf) {
    *buf = feature_t(image.nrows());
  }

  template<class T>
  void ncols_feature(const T& image, feature_t* buf) {
    *buf = feature_t(image.ncols());
  }


  // helper function for compactness which computes the surface
  // of pixels lying on the image bounding box that are ignored
  // by a dilation
  template<class T>
  feature_t compactness_border_outer_volume(const T &m) {
    int lastPx = 0;
    int i, rows, cols;
    int startPx = 0;
    feature_t num_dil_px = 0;
    rows = m.nrows();
    cols = m.ncols();

    startPx = m.get(Point(0,0)); // needed for the last pxs

    // 1st row left to right, including both corners
    for (i=0; i<cols; i++) {
      if (is_black(m.get(Point(i,0)))) {
        if (lastPx == 2)       num_dil_px += 1;
        else if (lastPx == 1)  num_dil_px += 2;
        else                   num_dil_px += 3;
        if (i == 0 || i== rows-1) // upper left or upper right corner
          num_dil_px += 2;
        lastPx = 2;
      } else { // px is white
        lastPx -=1;
        if (i== rows-1) // upper right corner
          lastPx = 0;
      }
    }
    // last column top-> down, including lower right corner
    for (i=1; i<rows; i++) {
      if (is_black( m.get(Point(cols-1,i)))) {
        if (lastPx == 2)       num_dil_px += 1;
        else if (lastPx == 1)  num_dil_px += 2;
        else                   num_dil_px += 3;
        if (i== rows-1)// lower right corner
          num_dil_px += 2;
        lastPx = 2;
      } else { // px is white
        lastPx -=1;
        if (i== rows-1)// lower right corner
          lastPx = 0;
      }
    }
    // last row right to left, including lower left corner
    for (i=cols-2; i>=0; i--) {
      if (is_black(m.get(Point(i,rows-1)))) {
        if (lastPx == 2)       num_dil_px += 1;
        else if (lastPx == 1)  num_dil_px += 2;
        else                   num_dil_px += 3;
        if (i== 0)// lower left corner
          num_dil_px += 2;
        lastPx = 2;
      }
      else{ // px is white
        lastPx -=1;
        if (i== 0) // lower left corner
          lastPx = 0;
      }
    }
    // 1st column down->top, no corners included
    for (i=rows-2; i>0; i--) {
      if (is_black(m.get(Point(0,i)))) {
        if (lastPx == 2)       num_dil_px += 1;
        else if (lastPx == 1)  num_dil_px += 2;
        else                   num_dil_px += 3;
        lastPx = 2;
      } else { // px is white
        lastPx -=1;
      }
    }

    // avoiding overlapping dilated_px: Start-End
    if (is_black(startPx)) {
      if (is_black(m.get(Point(0,1)))) {
        num_dil_px -= 2;
      }
      else if (is_black( m.get(Point(0,2)))) {
        num_dil_px -= 1;
      }
    }
    return num_dil_px / (rows*cols); // volume
  }

  //
  // compactness
  //
  // compactness is ratio of the volume of the outline of an image to
  // the volume of the image.
  //
  template<class T>
  void compactness(const T& image, feature_t* buf) {
    // I've converted this to a more efficient method.  Rather than
    // using (volume(outline) / volume(original)), I just use
    // volume(dilated) - volume(original) / volume(original).  This
    // prevents the unnecessary xor_image pixel-by-pixel operation from
    // happening.  We still need to create a copy to dilate, however,
    // since we don't want to change the original.
    // as dilate does not extend beyond the image borders,
    // we must compute the surface of the border pixels separately
    feature_t vol = volume(image);
    feature_t outer_vol = compactness_border_outer_volume(image);
    feature_t result;
    if (vol == 0)
      result = std::numeric_limits<feature_t>::max();
    else {
      typedef typename ImageFactory<T>::view_type* view_type;
      view_type copy = erode_dilate(image, 1, 0, 0);
      // dilate(*copy);
      result = (volume(*copy) + outer_vol - vol) / vol;
      delete copy->data();
      delete copy;
    }
    *buf = result;
  }

  //
  // volume16regions
  //
  // This function divides the image into 16 regions and takes the volume of
  // each of those regions.
  //
  template<class T>
  void volume16regions(const T& image, feature_t* buf) {
    double rows = image.nrows() / 4.0;
    double cols = image.ncols() / 4.0;
    size_t rows_int = size_t(rows);
    size_t cols_int = size_t(cols);
    Dim size(cols_int, rows_int);
    if (size.ncols() == 0)
        size.ncols(1);
    if (size.nrows() == 0)
        size.nrows(1);
    double start_col = double(image.offset_x());
    for (size_t i = 0; i < 4; ++i) {
      double start_row = double(image.offset_y());
      for (size_t j = 0; j < 4; ++j) {
        T tmp(image, Point((size_t)start_col, (size_t)start_row), size);
        *(buf++) = volume(tmp);
        start_row += rows;
        size.nrows( size_t(start_row + rows)-size_t(start_row));
        if (size.nrows() == 0)
            size.nrows(1);
      }
      start_col += cols;
      size.ncols( size_t(start_col + cols) - size_t(start_col));
      if (size.ncols() == 0)
        size.ncols(1);
    }
  }

  //
  // volume64regions
  //
  // This function divides the image into 64 regions and takes the volume of
  // each of those regions.
  //
  template<class T>
  void volume64regions(const T& image, feature_t* buf) {
    double rows = image.nrows() / 8.0;
    double cols = image.ncols() / 8.0;
    size_t rows_int = size_t(rows);
    size_t cols_int = size_t(cols);
    Dim size(cols_int, rows_int);
    if (size.ncols() == 0)
        size.ncols(1);
    if (size.nrows() == 0)
        size.nrows(1);
    double start_col = double(image.offset_x());
    for (size_t i = 0; i < 8; ++i) {
      double start_row = double(image.offset_y());
      for (size_t j = 0; j < 8; ++j) {
        T tmp(image, Point((size_t)start_col, (size_t)start_row), size);
        *(buf++) = volume(tmp);
        start_row += rows;
        size.nrows( size_t(start_row + rows)-size_t(start_row));
        if (size.nrows() == 0)
            size.nrows(1);
      }
      start_col += cols;
      size.ncols( size_t(start_col + cols) - size_t(start_col));
      if (size.ncols() == 0)
            size.ncols(1);
    }
  }


  //
  // Zernike Moments
  //

  inline double zer_pol_R(int n, int m, double x, double y) {
    // precomputed factorials => make sure that n < 11
    static const long int fak_a[] = {1, 1, 2, 2*3, 2*3*4, 2*3*4*5, 2*3*4*5*6, 2*3*4*5*6*7, 2*3*4*5*6*7*8, 2*3*4*5*6*7*8*9, 2*3*4*5*6*7*8*9*10, 2*3*4*5*6*7*8*9*10*11, 
                              (long int)2*3*4*5*6*7*8*9*10*11*12, (long int)2*3*4*5*6*7*8*9*10*11*12*13, (long int)2*3*4*5*6*7*8*9*10*11*12*13*14, (long int)2*3*4*5*6*7*8*9*10*11*12*13*14*15};
    long int s,Na,Nb,Nc;
    int sign = 1;
    double result = 0;
    double distance = sqrt(x * x + y * y);
    
    double d_pow_n = pow(distance, n);
    double d_pow_2s = 1;
    
    double Zb = d_pow_n;
    

    for(s=0; s<=(n-m)/2; s++)
    {
        Na = fak_a[n-s] / fak_a[s];
        Nb = fak_a[(n+m)/2-s];
        Nc = fak_a[(n-m)/2-s];
        result += (sign * Na * Zb) / (Nb * Nc);
        sign = -sign;
        
        // Replaced:
        // Zb = pow(distance,n-2*s);
        // by:
        d_pow_2s *= distance * distance;
        Zb = d_pow_n / d_pow_2s;
    }
    return result;
  }

  inline void zer_pol(int n, int m, double x, double y, double& real, double& imag, double norm_scale=1.0) {
    const complex<double> I(0.0, 1.0);
    // theoretically redundant due to scaling,
    // but with translation-normalizing after all needed
    if (sqrt(x*x + y*y) > 1.0) {
      real = 0.0;
      imag = 0.0; 
    } else {
      double Rnm = zer_pol_R(n, m, x*norm_scale, y*norm_scale);
      double angle_Theta = atan2(y,x);
      complex<double> Inm = exp(m*angle_Theta*I);
      complex<double> result = conj(Rnm * Inm); // complex conj.
      real = result.real();
      imag = result.imag();
    }
  }

  // we use this wrapper so that it is easy to
  // change the maximum order in the future
  template<class T>
  void zernike_moments(const T& image, feature_t* buf) {
    // beware that, when changing the maximum order from six to
    // something different, the dimension of the feature vector
    // needs to be adjusted in the python interface features.py
    zernike_moments( image, buf, 6);
  }

  template<class T>
  void zernike_moments(const T& image, feature_t* buf, size_t order_n) {
    size_t const max_order_n=order_n; 
    size_t num_features=0; // evaluated by max_order_n
    double x_dist, y_dist, real_tmp, imag_tmp;
    
    
    // number of features depends on maximum order
    for (size_t i=0 ; i<=max_order_n; i++)
        num_features += i/2 + 1;
    num_features -= 2; // A00 and A11 are constants
    
    size_t m, n, idx;
    double* tmp_real = new double[num_features];
    double* tmp_imag = new double[num_features];
    
    memset(tmp_real, 0, num_features * sizeof(double));
    memset(tmp_imag, 0, num_features * sizeof(double));
    
    feature_t* begin = buf;
    for (size_t i = 0; i < num_features; ++i)                       
      *(buf++) = 0.0;
    buf = begin;
    
    const T* scaled_image = &image; // we do not scale

    //compute center of mass and normalization factor m00
    feature_t m00=0, m10=0, m01=0, dummy1=0, dummy2=0, dummy3=0;
    moments_1d(scaled_image->row_begin(), scaled_image->row_end(), m00, m01, dummy1, dummy2);
    moments_1d(scaled_image->col_begin(), scaled_image->col_end(), dummy1, m10, dummy2, dummy3);
    
    double centroid_x = m10/m00;
    double centroid_y = m01/m00;

    // we use a Zernike circle that includes the entire image
    // beware however that some pixels can fall outside the circle
    // by normalizing ZMs to be translation invariant, e.g. a large
    // bunch of pixels in the upper left corner which draws the
    // center to it, excludes pixels in the lower right corner.

    double unit_circle_scale = 0;

    for(size_t y = 0; y < scaled_image->nrows(); ++y) {
      for (size_t x = 0; x < scaled_image->ncols(); ++x) {
        if (is_black(scaled_image->get(Point(x,y)))) {
          double scale_tmp = (centroid_x - (double)x)*(centroid_x - (double)x) + (centroid_y - (double)y)*(centroid_y - (double)y);
          if(scale_tmp > unit_circle_scale)
            unit_circle_scale = scale_tmp;
        }
      }
    }
    
    // Make sure that the farthest pixel is within our analysis circle
    unit_circle_scale = 1.01 * sqrt(unit_circle_scale);
    if (unit_circle_scale < 0.00001) unit_circle_scale = 1.0;
    
    typename T::const_vec_iterator it = scaled_image->vec_begin();
    for (size_t y = 0; y < scaled_image->nrows(); ++y) {
      for (size_t x = 0; x < scaled_image->ncols(); ++x, ++it) {
        if (is_black(*it)) {
          x_dist = (x - centroid_x) / unit_circle_scale;
          y_dist = (y - centroid_y) / unit_circle_scale;
          if (abs(x_dist) > 0.00001 || abs(y_dist) > 0.00001) {   
            for (n = 2, idx=0; n <= max_order_n; ++n) {
              for (m = n%2; m <= n; m+=2) {
                zer_pol(n, m, x_dist, y_dist, real_tmp, imag_tmp);
                tmp_real[idx] += real_tmp;
                tmp_imag[idx++] += imag_tmp;
              }
            }
          }
        }
      }
    }
    
    for(idx = 0; idx<num_features; idx++)
      buf[idx] = sqrt(tmp_real[idx]*tmp_real[idx] + tmp_imag[idx]*tmp_imag[idx]);
    
    // scale normalization by m00
    for (size_t n = 2, idx=0; n <= max_order_n; ++n) {
      double multiplier = (n + 1) / M_PI;
      if (m00 != 0.0)
        multiplier /= m00;
      for (m= n%2; m<= n; m+=2)
        buf[idx++] *= multiplier;
    }

    delete [] tmp_real;
    delete [] tmp_imag;
  }

  //
  // Skeleton features
  //
  template<class T>
  void skeleton_features(const T& image, feature_t* buf) {
    if (image.nrows() == 1 || image.ncols() == 1) {
      *(buf++) = 0.0;
      *(buf++) = 0.0;
      *(buf++) = 0.0;
      *(buf++) = 3.0;
      *(buf++) = 3.0;
      *buf = 3.0;
      return;
    }

    typedef typename ImageFactory<T>::view_type* view_type;
    view_type skel = thin_lc(image);
    unsigned char p;
    size_t T_joints = 0, X_joints = 0, bend_points = 0;
    size_t end_points = 0, total_pixels = 0;
    size_t center_x = 0, center_y = 0;
    for (size_t y = 0; y < skel->nrows(); ++y) {
      size_t y_before = (y == 0) ? 1 : y - 1;
      size_t y_after = (y == skel->nrows() - 1) ? skel->nrows() - 2 : y + 1;
      for (size_t x = 0; x < skel->ncols(); ++x) {
    if (is_black(skel->get(Point(x, y)))) {
      ++total_pixels;
      center_x += x;
      center_y += y;
      size_t N, S;
      thin_zs_get(y, y_before, y_after, x, *skel, p, N, S);
      switch (N) {
      case 4:
        ++X_joints;
        break;
      case 3:
        ++T_joints;
        break;
      case 2:
        if (!(((p & 17) == 17) || // Crosswise pairs
          ((p & 34) == 34) ||
          ((p & 68) == 68) ||
          ((p & 136) == 136))) 
          ++bend_points;
        break;
      case 1:
        ++end_points;
        break;
      }
    }
      }
    }
    if (total_pixels == 0) {
      for (size_t i = 0; i < 6; ++i)
    *(buf++) = 0.0;
      return;
    }

    center_x /= total_pixels;
    size_t x_axis_crossings = 0;
    bool last_pixel = false;
    for (size_t y = 0; y < skel->nrows(); ++y)
      if (is_black(skel->get(Point(center_x, y))) && !last_pixel) {
        last_pixel = true;
        ++x_axis_crossings;
      } else {
        last_pixel = false;
      }
  
    center_y /= total_pixels;
    size_t y_axis_crossings = 0;
    last_pixel = false;
    for (size_t x = 0; x < skel->ncols(); ++x) {
      if (is_black(skel->get(Point(x, center_y))) && !last_pixel) {
        last_pixel = true;
        ++y_axis_crossings;
      } else {
        last_pixel = false;
      }
    }
    
    delete skel->data();
    delete skel;

    *(buf++) = feature_t(X_joints);
    *(buf++) = feature_t(T_joints);
    *(buf++) = feature_t(bend_points) / feature_t(total_pixels);
    *(buf++) = feature_t(end_points);
    *(buf++) = feature_t(x_axis_crossings);
    *buf = feature_t(y_axis_crossings);
  }

  //
  // Top Bottom
  //
  template<class T>
  void top_bottom(const T& m, feature_t* buf) {
    int top = -1;
    typename T::const_row_iterator ri = m.row_begin();
    for (int i = 0; ri != m.row_end(); ri++, i++) {
      typename T::const_col_iterator ci = ri.begin();
      for (; ci != ri.end(); ci++)
    if (is_black(*ci)) {
      top = i;
      break;
    }
      if (top != -1)
    break;
    }
    if (top == -1) {
      *(buf++) = 1.0;
      *buf = 0.0;
      return;
    }
    int bottom = -1;
    ri = m.row_end();
    --ri;
    for (int i = m.nrows() - 1; ri != m.row_begin(); ri--, i--) {
      typename T::const_col_iterator ci = ri.begin();
      for (; ci != ri.end(); ci++)
    if (is_black(*ci)) {
      bottom = i;
      break;
    }
      if (bottom != -1)
    break;
    }
    *(buf++) = feature_t(top) / feature_t(m.nrows());
    *buf = feature_t(bottom) / feature_t(m.nrows());
  }

  template<class T>
  void diagonal_projection(const T& image, feature_t* buf) {
    typedef typename ImageFactory<T>::view_type* view_type;
    view_type rotated_image = rotate(image, 45, 0, 1);

    IntVector *proj_x = projection_cols(*rotated_image);
    IntVector *proj_y = projection_rows(*rotated_image);

    size_t i;
    size_t size_x = (*proj_x).size();
    unsigned int sum_x = 0;
    double mean_x = 1.0;

    if (size_x > 1) {
      for (i = size_x/4; i < size_x*3/4+1; i++) {
      sum_x += (*proj_x)[i];
      }
      mean_x = double(sum_x) / (size_x / 2);      
    }
    
    size_t size_y = (*proj_y).size();
    unsigned int sum_y = 0;
    double mean_y = 1.0;

    if (size_y > 1) {
      for (i = size_y/4; i < size_y*3/4+1; i++) {
        sum_y += (*proj_y)[i];
      }
      mean_y = double(sum_y) / (size_y / 2);
    }

    if (mean_y == 0.0)
      *buf = 0.0;
    else
      *buf = (mean_x / mean_y);
    
    delete proj_x;
    delete proj_y;
    delete rotated_image;
  }
}
#endif