This file is indexed.

/usr/lib/python2.7/dist-packages/ffc/representationutils.py is in python-ffc 2017.2.0.post0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
# -*- coding: utf-8 -*-
"""This module contains utility functions for some code shared between
quadrature and tensor representation."""

# Copyright (C) 2012-2017 Marie Rognes
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Martin Sandve Alnæs 2013-2017
# Modified by Anders Logg 2014

import numpy

from ufl.measure import integral_type_to_measure_name, point_integral_types, facet_integral_types, custom_integral_types
from ufl.cell import cellname2facetname

from ffc.log import error
from ffc.fiatinterface import create_element
from ffc.fiatinterface import create_quadrature
from ffc.fiatinterface import map_facet_points
from ffc.fiatinterface import reference_cell_vertices
from ffc.classname import make_integral_classname


def create_quadrature_points_and_weights(integral_type, cell, degree, rule):
    "Create quadrature rule and return points and weights."
    if integral_type == "cell":
        (points, weights) = create_quadrature(cell.cellname(), degree, rule)
    elif integral_type in facet_integral_types:
        (points, weights) = create_quadrature(cellname2facetname[cell.cellname()], degree, rule)
    elif integral_type in point_integral_types:
        (points, weights) = create_quadrature("vertex", degree, rule)
    elif integral_type in custom_integral_types:
        (points, weights) = (None, None)
    else:
        error("Unknown integral type: " + str(integral_type))
    return (points, weights)


def integral_type_to_entity_dim(integral_type, tdim):
    "Given integral_type and domain tdim, return the tdim of the integration entity."
    if integral_type == "cell":
        entity_dim = tdim
    elif integral_type in facet_integral_types:
        entity_dim = tdim - 1
    elif integral_type in point_integral_types:
        entity_dim = 0
    elif integral_type in custom_integral_types:
        entity_dim = tdim
    else:
        error("Unknown integral_type: %s" % integral_type)
    return entity_dim


def map_integral_points(points, integral_type, cell, entity):
    """Map points from reference entity to its parent reference cell."""
    tdim = cell.topological_dimension()
    entity_dim = integral_type_to_entity_dim(integral_type, tdim)
    if entity_dim == tdim:
        assert points.shape[1] == tdim
        assert entity == 0
        return numpy.asarray(points)
    elif entity_dim == tdim - 1:
        assert points.shape[1] == tdim - 1
        return numpy.asarray(map_facet_points(points, entity, cell.cellname()))
    elif entity_dim == 0:
        return numpy.asarray([reference_cell_vertices(cell.cellname())[entity]])
    else:
        error("Can't map points from entity_dim=%s" % (entity_dim,))


def transform_component(component, offset, ufl_element):
    """
    This function accounts for the fact that if the geometrical and
    topological dimension does not match, then for native vector
    elements, in particular the Piola-mapped ones, the physical value
    dimensions and the reference value dimensions are not the
    same. This has certain consequences for mixed elements, aka 'fun
    with offsets'.
    """
    # This code is used for tensor/monomialtransformation.py and
    # quadrature/quadraturetransformerbase.py.

    cell = ufl_element.cell()
    gdim = cell.geometric_dimension()
    tdim = cell.topological_dimension()

    # Do nothing if we are not in a special case: The special cases
    # occur if we have piola mapped elements (for which value_shape !=
    # ()), and if gdim != tdim)
    if gdim == tdim:
        return component, offset
    all_mappings = create_element(ufl_element).mapping()
    special_case = (any(['piola' in m for m in all_mappings])
                    and ufl_element.num_sub_elements() > 1)
    if not special_case:
        return component, offset

    # Extract lists of reference and physical value dimensions by
    # sub-element
    reference_value_dims = []
    physical_value_dims = []
    for sub_element in ufl_element.sub_elements():
        assert (len(sub_element.value_shape()) < 2), \
            "Vector-valued assumption failed"
        if sub_element.value_shape() == ():
            reference_value_dims += [1]
            physical_value_dims += [1]
        else:
            reference_value_dims += [sub_element.value_shape()[0]
                                     - (gdim - tdim)]
            physical_value_dims += [sub_element.value_shape()[0]]

    # Figure out which sub-element number 'component' is in,
    # 'sub_element_number' contains the result
    tot = physical_value_dims[0]
    for sub_element_number in range(len(physical_value_dims)):
        if component < tot:
            break
        else:
            tot += physical_value_dims[sub_element_number + 1]

    # Compute the new reference offset:
    reference_offset = sum(reference_value_dims[:sub_element_number])
    physical_offset = sum(physical_value_dims[:sub_element_number])
    shift = physical_offset - reference_offset

    # Compute the component relative to the reference frame
    reference_component = component - shift

    return reference_component, reference_offset


def needs_oriented_jacobian(form_data):
    # Check whether this form needs an oriented jacobian (only forms
    # involgin contravariant piola mappings seem to need it)
    for ufl_element in form_data.unique_elements:
        element = create_element(ufl_element)
        if "contravariant piola" in element.mapping():
            return True
    return False


# Mapping from recognized domain types to entity types
_entity_types = {
    "cell": "cell",
    "exterior_facet": "facet",
    "interior_facet": "facet",
    "vertex": "vertex",
    # "point":          "vertex", # TODO: Not sure, clarify here what 'entity_type' refers to?
    "custom": "cell",
    "cutcell": "cell",
    "interface": "cell",  # "facet"  # TODO: ?
    "overlap": "cell",
    }


def entity_type_from_integral_type(integral_type):
    return _entity_types[integral_type]


def initialize_integral_ir(representation, itg_data, form_data, form_id):
    """Initialize a representation dict with common information that is
    expected independently of which representation is chosen."""

    entitytype = entity_type_from_integral_type(itg_data.integral_type)
    cell = itg_data.domain.ufl_cell()
    #cellname = cell.cellname()
    tdim = cell.topological_dimension()
    assert all(tdim == itg.ufl_domain().topological_dimension() for itg in itg_data.integrals)

    # Set number of cells if not set  TODO: Get automatically from number of domains
    num_cells = itg_data.metadata.get("num_cells")

    return {"representation": representation,
            "integral_type": itg_data.integral_type,
            "subdomain_id": itg_data.subdomain_id,
            "form_id": form_id,
            "rank": form_data.rank,
            "geometric_dimension": form_data.geometric_dimension,
            "topological_dimension": tdim,
            "entitytype": entitytype,
            "num_facets": cell.num_facets(),
            "num_vertices": cell.num_vertices(),
            "needs_oriented": needs_oriented_jacobian(form_data),
            "num_cells": num_cells,
            "enabled_coefficients": itg_data.enabled_coefficients,
            }


def generate_enabled_coefficients(enabled_coefficients):
    # TODO: I don't know how to implement this using the format dict, this will do for now:
    initializer_list = ", ".join("true" if enabled else "false"
                                 for enabled in enabled_coefficients)
    code = '\n'.join([
        "static const std::vector<bool> enabled({%s});" % initializer_list,
        "return enabled;",
    ])
    return code


def initialize_integral_code(ir, prefix, parameters):
    "Representation independent default initialization of code dict for integral from intermediate representation."
    code = {}
    code["class_type"] = ir["integral_type"] + "_integral"
    code["classname"] = make_integral_classname(prefix, ir["integral_type"], ir["form_id"], ir["subdomain_id"])
    code["members"] = ""
    code["constructor"] = ""
    code["constructor_arguments"] = ""
    code["initializer_list"] = ""
    code["destructor"] = ""
    code["enabled_coefficients"] = generate_enabled_coefficients(ir["enabled_coefficients"])
    code["additional_includes_set"] = set()  # FIXME: Get this out of code[]
    return code