/usr/lib/python2.7/dist-packages/ffc/representation.py is in python-ffc 2017.2.0.post0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 | # -*- coding: utf-8 -*-
"""
Compiler stage 2: Code representation
-------------------------------------
This module computes intermediate representations of forms,
elements and dofmaps. For each UFC function, we extract the
data needed for code generation at a later stage.
The representation should conform strictly to the naming and
order of functions in UFC. Thus, for code generation of the
function "foo", one should only need to use the data stored
in the intermediate representation under the key "foo".
"""
# Copyright (C) 2009-2017 Anders Logg, Martin Sandve Alnæs, Marie E. Rognes,
# Kristian B. Oelgaard, and others
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
# Python modules
from itertools import chain
import numpy
from six.moves import range
# Import UFL
import ufl
# FFC modules
from ffc.utils import compute_permutations, product
from ffc.log import info, error, begin, end
from ffc.fiatinterface import create_element, reference_cell
from ffc.fiatinterface import EnrichedElement, HDivTrace, MixedElement, SpaceOfReals, QuadratureElement
from ffc.classname import make_classname, make_integral_classname
from six import itervalues
# List of supported integral types
ufc_integral_types = ("cell",
"exterior_facet",
"interior_facet",
"vertex",
"custom",
"cutcell",
"interface",
"overlap")
def pick_representation(representation):
"Return one of the specialized code generation modules from a representation string."
if representation == "quadrature":
from ffc import quadrature as r
elif representation == "uflacs":
from ffc import uflacs as r
elif representation == "tsfc":
from ffc import tsfc as r
else:
error("Unknown representation: %s" % str(representation))
return r
def make_finite_element_jit_classname(ufl_element, parameters):
from ffc.jitcompiler import compute_jit_prefix # FIXME circular file dependency
kind, prefix = compute_jit_prefix(ufl_element, parameters)
return make_classname(prefix, "finite_element", "main")
def make_dofmap_jit_classname(ufl_element, parameters):
from ffc.jitcompiler import compute_jit_prefix # FIXME circular file dependency
kind, prefix = compute_jit_prefix(ufl_element, parameters)
return make_classname(prefix, "dofmap", "main")
def make_coordinate_mapping_jit_classname(ufl_mesh, parameters):
from ffc.jitcompiler import compute_jit_prefix # FIXME circular file dependency
kind, prefix = compute_jit_prefix(ufl_mesh, parameters, kind="coordinate_mapping")
return make_classname(prefix, "coordinate_mapping", "main")
def make_all_element_classnames(prefix, elements, coordinate_elements,
element_numbers, parameters, jit):
if jit:
# Make unique classnames to match separately jit-compiled
# module
classnames = {
"finite_element": {
e: make_finite_element_jit_classname(e, parameters)
for e in elements },
"dofmap": {
e: make_dofmap_jit_classname(e, parameters)
for e in elements },
"coordinate_mapping": {
e: make_coordinate_mapping_jit_classname(e, parameters)
for e in coordinate_elements },
}
else:
# Make unique classnames only within this module (using a
# shared prefix and element numbers that are only unique
# within this module)
classnames = {
"finite_element": {
e: make_classname(prefix, "finite_element", element_numbers[e])
for e in elements },
"dofmap": {
e: make_classname(prefix, "dofmap", element_numbers[e])
for e in elements },
"coordinate_mapping": {
e: make_classname(prefix, "coordinate_mapping", element_numbers[e])
for e in coordinate_elements },
}
return classnames
def compute_ir(analysis, prefix, parameters, jit=False):
"Compute intermediate representation."
begin("Compiler stage 2: Computing intermediate representation")
# Set code generation parameters (this is not actually a 'formatting'
# parameter, used for table value clamping as well)
# FIXME: Global state?!
# set_float_formatting(parameters["precision"])
# Extract data from analysis
form_datas, elements, element_numbers, coordinate_elements = analysis
# Construct classnames for all element objects and coordinate mappings
classnames = make_all_element_classnames(prefix, elements,
coordinate_elements,
element_numbers,
parameters, jit)
# Skip processing elements if jitting forms
# NB! it's important that this happens _after_ the element numbers and classnames
# above have been created.
if jit and form_datas:
# While we may get multiple forms during command line action,
# not so during jit
assert len(form_datas) == 1, "Expecting only one form data instance during jit."
# Drop some processing
elements = []
coordinate_elements = []
elif jit and coordinate_elements:
# While we may get multiple coordinate elements during command
# line action, or during form jit, not so during coordinate
# mapping jit
assert len(coordinate_elements) == 1, "Expecting only one form data instance during jit."
# Drop some processing
elements = []
elif jit and elements:
# Assuming a topological sorting of the elements,
# only process the last (main) element from here on
elements = [elements[-1]]
# Compute representation of elements
info("Computing representation of %d elements" % len(elements))
ir_elements = [_compute_element_ir(e, element_numbers, classnames, parameters, jit)
for e in elements]
# Compute representation of dofmaps
info("Computing representation of %d dofmaps" % len(elements))
ir_dofmaps = [_compute_dofmap_ir(e, element_numbers, classnames, parameters, jit)
for e in elements]
# Compute representation of coordinate mappings
info("Computing representation of %d coordinate mappings" % len(coordinate_elements))
ir_coordinate_mappings = [_compute_coordinate_mapping_ir(e, element_numbers, classnames, parameters, jit)
for e in coordinate_elements]
# Compute and flatten representation of integrals
info("Computing representation of integrals")
irs = [_compute_integral_ir(fd, form_id, prefix, element_numbers, classnames, parameters, jit)
for (form_id, fd) in enumerate(form_datas)]
ir_integrals = list(chain(*irs))
# Compute representation of forms
info("Computing representation of forms")
ir_forms = [_compute_form_ir(fd, form_id, prefix, element_numbers, classnames, parameters, jit)
for (form_id, fd) in enumerate(form_datas)]
end()
return ir_elements, ir_dofmaps, ir_coordinate_mappings, ir_integrals, ir_forms
def _compute_element_ir(ufl_element, element_numbers, classnames, parameters, jit):
"Compute intermediate representation of element."
# Create FIAT element
fiat_element = create_element(ufl_element)
cell = ufl_element.cell()
cellname = cell.cellname()
# Store id
ir = {"id": element_numbers[ufl_element]}
ir["classname"] = classnames["finite_element"][ufl_element]
# Remember jit status
ir["jit"] = jit
# Compute data for each function
ir["signature"] = repr(ufl_element)
ir["cell_shape"] = cellname
ir["topological_dimension"] = cell.topological_dimension()
ir["geometric_dimension"] = cell.geometric_dimension()
ir["space_dimension"] = fiat_element.space_dimension()
ir["value_shape"] = ufl_element.value_shape()
ir["reference_value_shape"] = ufl_element.reference_value_shape()
ir["degree"] = ufl_element.degree()
ir["family"] = ufl_element.family()
ir["evaluate_basis"] = _evaluate_basis(ufl_element, fiat_element, parameters["epsilon"])
ir["evaluate_dof"] = _evaluate_dof(ufl_element, fiat_element)
ir["interpolate_vertex_values"] = _interpolate_vertex_values(ufl_element,
fiat_element)
ir["tabulate_dof_coordinates"] = _tabulate_dof_coordinates(ufl_element,
fiat_element)
ir["num_sub_elements"] = ufl_element.num_sub_elements()
ir["create_sub_element"] = [classnames["finite_element"][e]
for e in ufl_element.sub_elements()]
# debug_ir(ir, "finite_element")
return ir
def _compute_dofmap_ir(ufl_element, element_numbers, classnames, parameters, jit=False):
"Compute intermediate representation of dofmap."
# Create FIAT element
fiat_element = create_element(ufl_element)
cell = ufl_element.cell()
# Precompute repeatedly used items
num_dofs_per_entity = _num_dofs_per_entity(fiat_element)
entity_dofs = fiat_element.entity_dofs()
facet_dofs = _tabulate_facet_dofs(fiat_element, cell)
entity_closure_dofs, num_dofs_per_entity_closure = \
_tabulate_entity_closure_dofs(fiat_element, cell)
# Store id
ir = {"id": element_numbers[ufl_element]}
ir["classname"] = classnames["dofmap"][ufl_element]
# Remember jit status
ir["jit"] = jit
# Compute data for each function
ir["signature"] = "FFC dofmap for " + repr(ufl_element)
ir["needs_mesh_entities"] = _needs_mesh_entities(fiat_element)
ir["topological_dimension"] = cell.topological_dimension()
ir["geometric_dimension"] = cell.geometric_dimension()
ir["global_dimension"] = _global_dimension(fiat_element)
ir["num_global_support_dofs"] = _num_global_support_dofs(fiat_element)
ir["num_element_support_dofs"] = fiat_element.space_dimension() - ir["num_global_support_dofs"]
ir["num_element_dofs"] = fiat_element.space_dimension()
ir["num_facet_dofs"] = len(facet_dofs[0])
ir["num_entity_dofs"] = num_dofs_per_entity
ir["num_entity_closure_dofs"] = num_dofs_per_entity_closure
ir["tabulate_dofs"] = _tabulate_dofs(fiat_element, cell)
ir["tabulate_facet_dofs"] = facet_dofs
ir["tabulate_entity_dofs"] = (entity_dofs, num_dofs_per_entity)
ir["tabulate_entity_closure_dofs"] = (entity_closure_dofs, entity_dofs, num_dofs_per_entity)
ir["num_sub_dofmaps"] = ufl_element.num_sub_elements()
ir["create_sub_dofmap"] = [classnames["dofmap"][e]
for e in ufl_element.sub_elements()]
return ir
_midpoints = {
"interval": (0.5,),
"triangle": (1.0 / 3.0, 1.0 / 3.0),
"tetrahedron": (0.25, 0.25, 0.25),
"quadrilateral": (0.5, 0.5),
"hexahedron": (0.5, 0.5, 0.5),
}
def cell_midpoint(cell):
# TODO: Is this defined somewhere more central where we can get it from?
return _midpoints[cell.cellname()]
def _tabulate_coordinate_mapping_basis(ufl_element):
# TODO: Move this function to a table generation module?
# Get scalar element, assuming coordinates are represented
# with a VectorElement of scalar subelements
selement = ufl_element.sub_elements()[0]
fiat_element = create_element(selement)
cell = selement.cell()
tdim = cell.topological_dimension()
tables = {}
# Get points
origo = (0.0,) * tdim
midpoint = cell_midpoint(cell)
# Tabulate basis
t0 = fiat_element.tabulate(1, [origo])
tm = fiat_element.tabulate(1, [midpoint])
# Get basis values at cell origo
tables["x0"] = t0[(0,) * tdim][:, 0]
# Get basis values at cell midpoint
tables["xm"] = tm[(0,) * tdim][:, 0]
# Single direction derivatives, e.g. [(1,0), (0,1)] in 2d
derivatives = [(0,) * i + (1,) + (0,) * (tdim - 1 - i) for i in range(tdim)]
# Get basis derivative values at cell origo
tables["J0"] = numpy.asarray([t0[d][:, 0] for d in derivatives])
# Get basis derivative values at cell midpoint
tables["Jm"] = numpy.asarray([tm[d][:, 0] for d in derivatives])
return tables
def _compute_coordinate_mapping_ir(ufl_coordinate_element, element_numbers,
classnames, parameters, jit=False):
"Compute intermediate representation of coordinate mapping."
cell = ufl_coordinate_element.cell()
cellname = cell.cellname()
assert ufl_coordinate_element.value_shape() == (cell.geometric_dimension(),)
# Compute element values via fiat element
tables = _tabulate_coordinate_mapping_basis(ufl_coordinate_element)
# Store id
ir = {"id": element_numbers[ufl_coordinate_element]}
ir["classname"] = classnames["coordinate_mapping"][ufl_coordinate_element]
# Remember jit status
ir["jit"] = jit
# Compute data for each function
ir["signature"] = "FFC coordinate_mapping from " + repr(ufl_coordinate_element)
ir["cell_shape"] = cellname
ir["topological_dimension"] = cell.topological_dimension()
ir["geometric_dimension"] = ufl_coordinate_element.value_size()
ir["create_coordinate_finite_element"] = \
classnames["finite_element"][ufl_coordinate_element]
ir["create_coordinate_dofmap"] = \
classnames["dofmap"][ufl_coordinate_element]
ir["compute_physical_coordinates"] = None # currently unused, corresponds to function name
ir["compute_reference_coordinates"] = None # currently unused, corresponds to function name
ir["compute_jacobians"] = None # currently unused, corresponds to function name
ir["compute_jacobian_determinants"] = None # currently unused, corresponds to function name
ir["compute_jacobian_inverses"] = None # currently unused, corresponds to function name
ir["compute_geometry"] = None # currently unused, corresponds to function name
# NB! The entries below breaks the pattern of using ir keywords == code keywords,
# which I personally don't find very useful anyway (martinal).
# Store tables and other coordinate element data
ir["tables"] = tables
ir["coordinate_element_degree"] = ufl_coordinate_element.degree()
ir["num_scalar_coordinate_element_dofs"] = tables["x0"].shape[0]
# Get classnames for coordinate element and its scalar subelement:
ir["coordinate_finite_element_classname"] = \
classnames["finite_element"][ufl_coordinate_element]
ir["scalar_coordinate_finite_element_classname"] = \
classnames["finite_element"][ufl_coordinate_element.sub_elements()[0]]
return ir
def _num_global_support_dofs(fiat_element):
"Compute number of global support dofs."
if not isinstance(fiat_element, MixedElement):
if isinstance(fiat_element, SpaceOfReals):
return 1
return 0
num_reals = 0
for e in fiat_element.elements():
if isinstance(e, SpaceOfReals):
num_reals += 1
return num_reals
def _global_dimension(fiat_element):
"Compute intermediate representation for global_dimension."
if not isinstance(fiat_element, MixedElement):
if isinstance(fiat_element, SpaceOfReals):
return ([], 1)
return (_num_dofs_per_entity(fiat_element), 0)
elements = []
num_reals = 0
for e in fiat_element.elements():
if not isinstance(e, SpaceOfReals):
elements += [e]
else:
num_reals += 1
fiat_cell, = set(e.get_reference_element()
for e in fiat_element.elements())
fiat_element = MixedElement(elements, ref_el=fiat_cell)
return (_num_dofs_per_entity(fiat_element), num_reals)
def _needs_mesh_entities(fiat_element):
"Compute intermediate representation for needs_mesh_entities."
# Note: The dof map for Real elements does not depend on the mesh
num_dofs_per_entity = _num_dofs_per_entity(fiat_element)
if isinstance(fiat_element, SpaceOfReals):
return [False for d in num_dofs_per_entity]
else:
return [d > 0 for d in num_dofs_per_entity]
def _compute_integral_ir(form_data, form_id, prefix, element_numbers, classnames,
parameters, jit):
"Compute intermediate represention for form integrals."
# For consistency, all jit objects now have classnames with postfix "main"
if jit:
assert form_id == 0
form_id = "main"
irs = []
# Iterate over integrals
for itg_data in form_data.integral_data:
# Select representation
# TODO: Is it possible to detach this metadata from
# IntegralData? It's a bit strange from the ufl side.
r = pick_representation(itg_data.metadata["representation"])
# Compute representation
ir = r.compute_integral_ir(itg_data,
form_data,
form_id, # FIXME: Can we remove this?
element_numbers,
classnames,
parameters)
# Remember jit status
ir["jit"] = jit
# Build classname
ir["classname"] = make_integral_classname(prefix, itg_data.integral_type,
form_id, itg_data.subdomain_id)
ir["classnames"] = classnames # FIXME XXX: Use this everywhere needed?
# Storing prefix here for reconstruction of classnames on code
# generation side
ir["prefix"] = prefix # FIXME: Drop this?
# Store metadata for later reference (eg. printing as comment)
# NOTE: We make a commitment not to modify it!
ir["integrals_metadata"] = itg_data.metadata
ir["integral_metadata"] = [integral.metadata()
for integral in itg_data.integrals]
# Append representation
irs.append(ir)
return irs
def _compute_form_ir(form_data, form_id, prefix, element_numbers,
classnames, parameters, jit=False):
"Compute intermediate representation of form."
# For consistency, all jit objects now have classnames with postfix "main"
if jit:
assert form_id == 0
form_id = "main"
# Store id
ir = {"id": form_id}
# Storing prefix here for reconstruction of classnames on code
# generation side
ir["prefix"] = prefix
# Remember jit status
ir["jit"] = jit
# Compute common data
ir["classname"] = make_classname(prefix, "form", form_id)
# ir["members"] = None # unused
# ir["constructor"] = None # unused
# ir["destructor"] = None # unused
ir["signature"] = form_data.original_form.signature()
ir["rank"] = len(form_data.original_form.arguments())
ir["num_coefficients"] = len(form_data.reduced_coefficients)
ir["original_coefficient_position"] = form_data.original_coefficient_positions
# TODO: Remove create_coordinate_{finite_element,dofmap} and
# access through coordinate_mapping instead in dolfin, when that's
# in place
ir["create_coordinate_finite_element"] = [
classnames["finite_element"][e]
for e in form_data.coordinate_elements
]
ir["create_coordinate_dofmap"] = [
classnames["dofmap"][e]
for e in form_data.coordinate_elements
]
ir["create_coordinate_mapping"] = [
classnames["coordinate_mapping"][e]
for e in form_data.coordinate_elements
]
ir["create_finite_element"] = [
classnames["finite_element"][e]
for e in form_data.argument_elements + form_data.coefficient_elements
]
ir["create_dofmap"] = [
classnames["dofmap"][e]
for e in form_data.argument_elements + form_data.coefficient_elements
]
# Create integral ids and names using form prefix
# (integrals are always generated as part of form so don't get
# their own prefix)
for integral_type in ufc_integral_types:
ir["max_%s_subdomain_id" % integral_type] = \
form_data.max_subdomain_ids.get(integral_type, 0)
ir["has_%s_integrals" % integral_type] = \
_has_foo_integrals(prefix, form_id, integral_type, form_data)
ir["create_%s_integral" % integral_type] = \
_create_foo_integral(prefix, form_id, integral_type, form_data)
ir["create_default_%s_integral" % integral_type] = \
_create_default_foo_integral(prefix, form_id, integral_type, form_data)
return ir
# --- Computation of intermediate representation for non-trivial functions ---
def _generate_reference_offsets(fiat_element, offset=0):
"""Generate offsets: i.e value offset for each basis function
relative to a reference element representation."""
if isinstance(fiat_element, MixedElement):
offsets = []
for e in fiat_element.elements():
offsets += _generate_reference_offsets(e, offset)
# NB! This is the fiat element and therefore value_shape
# means reference_value_shape
offset += product(e.value_shape())
return offsets
elif isinstance(fiat_element, EnrichedElement):
offsets = []
for e in fiat_element.elements():
offsets += _generate_reference_offsets(e, offset)
return offsets
else:
return [offset] * fiat_element.space_dimension()
def _generate_physical_offsets(ufl_element, offset=0):
"""Generate offsets: i.e value offset for each basis function
relative to a physical element representation."""
cell = ufl_element.cell()
gdim = cell.geometric_dimension()
tdim = cell.topological_dimension()
# Refer to reference if gdim == tdim. This is a hack to support
# more stuff (in particular restricted elements)
if gdim == tdim:
return _generate_reference_offsets(create_element(ufl_element))
if isinstance(ufl_element, ufl.MixedElement):
offsets = []
for e in ufl_element.sub_elements():
offsets += _generate_physical_offsets(e, offset)
# e is a ufl element, so value_size means the physical value size
offset += e.value_size()
return offsets
elif isinstance(ufl_element, ufl.EnrichedElement):
offsets = []
for e in ufl_element._elements: # TODO: Avoid private member access
offsets += _generate_physical_offsets(e, offset)
return offsets
elif isinstance(ufl_element, ufl.FiniteElement):
fiat_element = create_element(ufl_element)
return [offset] * fiat_element.space_dimension()
else:
raise NotImplementedError("This element combination is not implemented")
def _generate_offsets(ufl_element, reference_offset=0, physical_offset=0):
"""Generate offsets: i.e value offset for each basis function
relative to a physical element representation."""
if isinstance(ufl_element, ufl.MixedElement):
offsets = []
for e in ufl_element.sub_elements():
offsets += _generate_offsets(e, reference_offset, physical_offset)
# e is a ufl element, so value_size means the physical value size
reference_offset += e.reference_value_size()
physical_offset += e.value_size()
return offsets
elif isinstance(ufl_element, ufl.EnrichedElement):
offsets = []
for e in ufl_element._elements: # TODO: Avoid private member access
offsets += _generate_offsets(e, reference_offset, physical_offset)
return offsets
elif isinstance(ufl_element, ufl.FiniteElement):
fiat_element = create_element(ufl_element)
return [(reference_offset, physical_offset)] * fiat_element.space_dimension()
else:
# TODO: Support RestrictedElement, QuadratureElement,
# TensorProductElement, etc.! and replace
# _generate_{physical|reference}_offsets with this
# function.
raise NotImplementedError("This element combination is not implemented")
def _evaluate_dof(ufl_element, fiat_element):
"Compute intermediate representation of evaluate_dof."
cell = ufl_element.cell()
if fiat_element.is_nodal():
dofs = [L.pt_dict for L in fiat_element.dual_basis()]
else:
dofs = [None] * fiat_element.space_dimension()
return {"mappings": fiat_element.mapping(),
"reference_value_size": ufl_element.reference_value_size(),
"physical_value_size": ufl_element.value_size(),
"geometric_dimension": cell.geometric_dimension(),
"topological_dimension": cell.topological_dimension(),
"dofs": dofs,
"physical_offsets": _generate_physical_offsets(ufl_element),
"cell_shape": cell.cellname()}
def _extract_elements(fiat_element):
new_elements = []
if isinstance(fiat_element, (MixedElement, EnrichedElement)):
for e in fiat_element.elements():
new_elements += _extract_elements(e)
else:
new_elements.append(fiat_element)
return new_elements
def _evaluate_basis(ufl_element, fiat_element, epsilon):
"Compute intermediate representation for evaluate_basis."
cell = ufl_element.cell()
cellname = cell.cellname()
# Handle Mixed and EnrichedElements by extracting 'sub' elements.
elements = _extract_elements(fiat_element)
physical_offsets = _generate_physical_offsets(ufl_element)
reference_offsets = _generate_reference_offsets(fiat_element)
mappings = fiat_element.mapping()
# This function is evidently not implemented for TensorElements
for e in elements:
if (len(e.value_shape()) > 1) and (e.num_sub_elements() != 1):
return "Function not supported/implemented for TensorElements."
# Handle QuadratureElement, not supported because the basis is
# only defined at the dof coordinates where the value is 1, so not
# very interesting.
for e in elements:
if isinstance(e, QuadratureElement):
return "Function not supported/implemented for QuadratureElement."
if isinstance(e, HDivTrace):
return "Function not supported for Trace elements"
# Skip this function for TensorProductElement if get_coeffs is not implemented
for e in elements:
try:
e.get_coeffs()
except NotImplementedError:
return "Function is not supported/implemented."
# Initialise data with 'global' values.
data = {"reference_value_size": ufl_element.reference_value_size(),
"physical_value_size": ufl_element.value_size(),
"cellname": cellname,
"topological_dimension": cell.topological_dimension(),
"geometric_dimension": cell.geometric_dimension(),
"space_dimension": fiat_element.space_dimension(),
"needs_oriented": needs_oriented_jacobian(fiat_element),
"max_degree": max([e.degree() for e in elements])
}
# Loop element and space dimensions to generate dof data.
dof = 0
dofs_data = []
for e in elements:
num_components = product(e.value_shape())
coeffs = e.get_coeffs()
num_expansion_members = e.get_num_members(e.degree())
dmats = e.dmats()
# Clamp dmats zeros
dmats = numpy.asarray(dmats)
dmats[numpy.where(numpy.isclose(dmats, 0.0, rtol=epsilon, atol=epsilon))] = 0.0
# Extracted parts of dd below that are common for the element
# here. These dict entries are added to each dof_data dict
# for each dof, because that's what the code generation
# implementation expects. If the code generation needs this
# structure to be optimized in the future, we can store this
# data for each subelement instead of for each dof.
subelement_data = {
"embedded_degree": e.degree(),
"num_components": num_components,
"dmats": dmats,
"num_expansion_members": num_expansion_members,
}
value_rank = len(e.value_shape())
for i in range(e.space_dimension()):
if num_components == 1:
coefficients = [coeffs[i]]
elif value_rank == 1:
# Handle coefficients for vector valued basis elements
# [Raviart-Thomas, Brezzi-Douglas-Marini (BDM)].
coefficients = [coeffs[i][c]
for c in range(num_components)]
elif value_rank == 2:
# Handle coefficients for tensor valued basis elements.
# [Regge]
coefficients = [coeffs[i][p][q]
for p in range(e.value_shape()[0])
for q in range(e.value_shape()[1])]
else:
error("Unknown situation with num_components > 1")
# Clamp coefficient zeros
coefficients = numpy.asarray(coefficients)
coefficients[numpy.where(numpy.isclose(coefficients, 0.0, rtol=epsilon, atol=epsilon))] = 0.0
dof_data = {
"coeffs": coefficients,
"mapping": mappings[dof],
"physical_offset": physical_offsets[dof],
"reference_offset": reference_offsets[dof],
}
# Still storing element data in dd to avoid rewriting dependent code
dof_data.update(subelement_data)
# This list will hold one dd dict for each dof
dofs_data.append(dof_data)
dof += 1
data["dofs_data"] = dofs_data
return data
def _tabulate_dof_coordinates(ufl_element, element):
"Compute intermediate representation of tabulate_dof_coordinates."
if uses_integral_moments(element):
return {}
# Bail out if any dual basis member is missing (element is not nodal),
# this is strictly not necessary but simpler
if any(L is None for L in element.dual_basis()):
return {}
cell = ufl_element.cell()
data = {}
data["tdim"] = cell.topological_dimension()
data["gdim"] = cell.geometric_dimension()
data["points"] = [sorted(L.pt_dict.keys())[0] for L in element.dual_basis()]
data["cell_shape"] = cell.cellname()
return data
def _tabulate_dofs(element, cell):
"Compute intermediate representation of tabulate_dofs."
if isinstance(element, SpaceOfReals):
return None
# Extract number of dofs per entity for each element
elements = all_elements(element)
num_dofs_per_element = [_num_dofs_per_entity(e) for e in elements]
# Extract local dof numbers per entity for each element
all_entity_dofs = [e.entity_dofs() for e in elements]
dofs_per_element = [[[list(dofs[dim][entity])
for entity in sorted(dofs[dim].keys())]
for dim in sorted(dofs.keys())]
for dofs in all_entity_dofs]
# Check whether we need offset
multiple_entities = any([sum(n > 0 for n in num_dofs) - 1
for num_dofs in num_dofs_per_element])
need_offset = len(elements) > 1 or multiple_entities
num_dofs_per_element = [e.space_dimension() for e in elements]
# Handle global "elements"
fakes = [isinstance(e, SpaceOfReals) for e in elements]
return (dofs_per_element, num_dofs_per_element, need_offset, fakes)
def _tabulate_facet_dofs(element, cell):
"Compute intermediate representation of tabulate_facet_dofs."
# Get topological dimension
D = cell.topological_dimension()
# Get the number of facets
num_facets = cell.num_facets()
# Make list of dofs
facet_dofs = list(itervalues(element.entity_closure_dofs()[D-1]))
assert num_facets == len(facet_dofs)
facet_dofs = [facet_dofs[facet] for facet in range(num_facets)]
return facet_dofs
def _tabulate_entity_closure_dofs(element, cell):
"Compute intermediate representation of tabulate_entity_closure_dofs."
# Get topological dimension
D = cell.topological_dimension()
# Get entity closure dofs from FIAT element
fiat_entity_closure_dofs = element.entity_closure_dofs()
entity_closure_dofs = {}
for d0 in sorted(fiat_entity_closure_dofs.keys()):
for e0 in sorted(fiat_entity_closure_dofs[d0].keys()):
entity_closure_dofs[(d0, e0)] = fiat_entity_closure_dofs[d0][e0]
num_entity_closure_dofs = [len(fiat_entity_closure_dofs[d0][0]) for d0 in sorted(fiat_entity_closure_dofs.keys())]
return entity_closure_dofs, num_entity_closure_dofs
def _interpolate_vertex_values(ufl_element, fiat_element):
"Compute intermediate representation of interpolate_vertex_values."
# Check for QuadratureElement
for e in all_elements(fiat_element):
if isinstance(e, QuadratureElement):
return "Function is not supported/implemented for QuadratureElement."
if isinstance(e, HDivTrace):
return "Function is not implemented for HDivTrace."
cell = ufl_element.cell()
cellname = cell.cellname()
tdim = cell.topological_dimension()
gdim = cell.geometric_dimension()
ir = {}
ir["geometric_dimension"] = gdim
ir["topological_dimension"] = tdim
# Check whether computing the Jacobian is necessary
mappings = fiat_element.mapping()
ir["needs_jacobian"] = any("piola" in m for m in mappings)
ir["needs_oriented"] = needs_oriented_jacobian(fiat_element)
# See note in _evaluate_dofs
ir["reference_value_size"] = ufl_element.reference_value_size()
ir["physical_value_size"] = ufl_element.value_size()
# Get vertices of reference cell
fiat_cell = reference_cell(cellname)
vertices = fiat_cell.get_vertices()
# Compute data for each constituent element
all_fiat_elm = all_elements(fiat_element)
ir["element_data"] = [
{
# NB! value_shape of fiat element e means reference_value_shape
"reference_value_size": product(e.value_shape()),
# FIXME: THIS IS A BUG:
"physical_value_size": product(e.value_shape()), # FIXME: Get from corresponding ufl element?
"basis_values": e.tabulate(0, vertices)[(0,) * tdim].transpose(),
"mapping": e.mapping()[0],
"space_dim": e.space_dimension(),
}
for e in all_fiat_elm]
# FIXME: Temporary hack!
if len(ir["element_data"]) == 1:
ir["element_data"][0]["physical_value_size"] = ir["physical_value_size"]
# Consistency check, related to note in _evaluate_dofs
# This will fail for e.g. (RT1 x DG0) on a manifold because of the above bug
if sum(data["physical_value_size"] for data in ir["element_data"]) != ir["physical_value_size"]:
ir = "Failed to set physical value size correctly for subelements."
elif sum(data["reference_value_size"] for data in ir["element_data"]) != ir["reference_value_size"]:
ir = "Failed to set reference value size correctly for subelements."
return ir
def _has_foo_integrals(prefix, form_id, integral_type, form_data):
"Compute intermediate representation of has_foo_integrals."
v = (form_data.max_subdomain_ids.get(integral_type, 0) > 0
or _create_default_foo_integral(prefix, form_id, integral_type, form_data) is not None)
return bool(v)
def _create_foo_integral(prefix, form_id, integral_type, form_data):
"Compute intermediate representation of create_foo_integral."
subdomain_ids = [itg_data.subdomain_id
for itg_data in form_data.integral_data
if (itg_data.integral_type == integral_type
and isinstance(itg_data.subdomain_id, int))]
classnames = [make_integral_classname(prefix, integral_type, form_id, subdomain_id)
for subdomain_id in subdomain_ids]
return subdomain_ids, classnames
def _create_default_foo_integral(prefix, form_id, integral_type, form_data):
"Compute intermediate representation of create_default_foo_integral."
itg_data = [itg_data for itg_data in form_data.integral_data
if (itg_data.integral_type == integral_type and
itg_data.subdomain_id == "otherwise")]
if len(itg_data) > 1:
error("Expecting at most one default integral of each type.")
if itg_data:
classname = make_integral_classname(prefix, integral_type, form_id, "otherwise")
return classname
else:
return None
#--- Utility functions ---
def all_elements(fiat_element):
if isinstance(fiat_element, MixedElement):
return fiat_element.elements()
return [fiat_element]
def _num_dofs_per_entity(fiat_element):
"""
Compute list of integers representing the number of dofs
associated with a single mesh entity.
Example: Lagrange of degree 3 on triangle: [1, 2, 1]
"""
entity_dofs = fiat_element.entity_dofs()
return [len(entity_dofs[e][0]) for e in sorted(entity_dofs.keys())]
def uses_integral_moments(fiat_element):
"True if element uses integral moments for its degrees of freedom."
integrals = set(["IntegralMoment", "FrobeniusIntegralMoment"])
tags = set([L.get_type_tag() for L in fiat_element.dual_basis() if L])
return len(integrals & tags) > 0
def needs_oriented_jacobian(fiat_element):
# Check whether this element needs an oriented jacobian
# (only contravariant piolas seem to need it)
return "contravariant piola" in fiat_element.mapping()
|