This file is indexed.

/usr/lib/python2.7/dist-packages/ecdsa/ellipticcurve.py is in python-ecdsa 0.13-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
#! /usr/bin/env python
#
# Implementation of elliptic curves, for cryptographic applications.
#
# This module doesn't provide any way to choose a random elliptic
# curve, nor to verify that an elliptic curve was chosen randomly,
# because one can simply use NIST's standard curves.
#
# Notes from X9.62-1998 (draft):
#   Nomenclature:
#     - Q is a public key.
#     The "Elliptic Curve Domain Parameters" include:
#     - q is the "field size", which in our case equals p.
#     - p is a big prime.
#     - G is a point of prime order (5.1.1.1).
#     - n is the order of G (5.1.1.1).
#   Public-key validation (5.2.2):
#     - Verify that Q is not the point at infinity.
#     - Verify that X_Q and Y_Q are in [0,p-1].
#     - Verify that Q is on the curve.
#     - Verify that nQ is the point at infinity.
#   Signature generation (5.3):
#     - Pick random k from [1,n-1].
#   Signature checking (5.4.2):
#     - Verify that r and s are in [1,n-1].
#
# Version of 2008.11.25.
#
# Revision history:
#    2005.12.31 - Initial version.
#    2008.11.25 - Change CurveFp.is_on to contains_point.
#
# Written in 2005 by Peter Pearson and placed in the public domain.

from __future__ import division

from six import print_
from . import numbertheory

class CurveFp( object ):
  """Elliptic Curve over the field of integers modulo a prime."""
  def __init__( self, p, a, b ):
    """The curve of points satisfying y^2 = x^3 + a*x + b (mod p)."""
    self.__p = p
    self.__a = a
    self.__b = b

  def p( self ):
    return self.__p

  def a( self ):
    return self.__a

  def b( self ):
    return self.__b

  def contains_point( self, x, y ):
    """Is the point (x,y) on this curve?"""
    return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0



class Point( object ):
  """A point on an elliptic curve. Altering x and y is forbidding,
     but they can be read by the x() and y() methods."""
  def __init__( self, curve, x, y, order = None ):
    """curve, x, y, order; order (optional) is the order of this point."""
    self.__curve = curve
    self.__x = x
    self.__y = y
    self.__order = order
    # self.curve is allowed to be None only for INFINITY:
    if self.__curve: assert self.__curve.contains_point( x, y )
    if order: assert self * order == INFINITY

  def __eq__( self, other ):
    """Return True if the points are identical, False otherwise."""
    if self.__curve == other.__curve \
       and self.__x == other.__x \
       and self.__y == other.__y:
      return True
    else:
      return False

  def __add__( self, other ):
    """Add one point to another point."""

    # X9.62 B.3:

    if other == INFINITY: return self
    if self == INFINITY: return other
    assert self.__curve == other.__curve
    if self.__x == other.__x:
      if ( self.__y + other.__y ) % self.__curve.p() == 0:
        return INFINITY
      else:
        return self.double()

    p = self.__curve.p()

    l = ( ( other.__y - self.__y ) * \
          numbertheory.inverse_mod( other.__x - self.__x, p ) ) % p

    x3 = ( l * l - self.__x - other.__x ) % p
    y3 = ( l * ( self.__x - x3 ) - self.__y ) % p

    return Point( self.__curve, x3, y3 )

  def __mul__( self, other ):
    """Multiply a point by an integer."""

    def leftmost_bit( x ):
      assert x > 0
      result = 1
      while result <= x: result = 2 * result
      return result // 2

    e = other
    if self.__order: e = e % self.__order
    if e == 0: return INFINITY
    if self == INFINITY: return INFINITY
    assert e > 0

    # From X9.62 D.3.2:

    e3 = 3 * e
    negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
    i = leftmost_bit( e3 ) // 2
    result = self
    # print_("Multiplying %s by %d (e3 = %d):" % ( self, other, e3 ))
    while i > 1:
      result = result.double()
      if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
      if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
      # print_(". . . i = %d, result = %s" % ( i, result ))
      i = i // 2

    return result

  def __rmul__( self, other ):
    """Multiply a point by an integer."""

    return self * other

  def __str__( self ):
    if self == INFINITY: return "infinity"
    return "(%d,%d)" % ( self.__x, self.__y )

  def double( self ):
    """Return a new point that is twice the old."""

    if self == INFINITY:
      return INFINITY

    # X9.62 B.3:

    p = self.__curve.p()
    a = self.__curve.a()

    l = ( ( 3 * self.__x * self.__x + a ) * \
          numbertheory.inverse_mod( 2 * self.__y, p ) ) % p

    x3 = ( l * l - 2 * self.__x ) % p
    y3 = ( l * ( self.__x - x3 ) - self.__y ) % p

    return Point( self.__curve, x3, y3 )

  def x( self ):
    return self.__x

  def y( self ):
    return self.__y

  def curve( self ):
    return self.__curve

  def order( self ):
    return self.__order


# This one point is the Point At Infinity for all purposes:
INFINITY = Point( None, None, None )

def __main__():

  class FailedTest(Exception): pass
  def test_add( c, x1, y1, x2,  y2, x3, y3 ):
    """We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
    p1 = Point( c, x1, y1 )
    p2 = Point( c, x2, y2 )
    p3 = p1 + p2
    print_("%s + %s = %s" % ( p1, p2, p3 ), end=' ')
    if p3.x() != x3 or p3.y() != y3:
      raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
    else:
      print_(" Good.")

  def test_double( c, x1, y1, x3, y3 ):
    """We expect that on curve c, 2*(x1,y1) = (x3, y3)."""
    p1 = Point( c, x1, y1 )
    p3 = p1.double()
    print_("%s doubled = %s" % ( p1, p3 ), end=' ')
    if p3.x() != x3 or p3.y() != y3:
      raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
    else:
      print_(" Good.")

  def test_double_infinity( c ):
    """We expect that on curve c, 2*INFINITY = INFINITY."""
    p1 = INFINITY
    p3 = p1.double()
    print_("%s doubled = %s" % ( p1, p3 ), end=' ')
    if p3.x() != INFINITY.x() or p3.y() != INFINITY.y():
      raise FailedTest("Failure: should give (%d,%d)." % ( INFINITY.x(), INFINITY.y() ))
    else:
      print_(" Good.")

  def test_multiply( c, x1, y1, m, x3, y3 ):
    """We expect that on curve c, m*(x1,y1) = (x3,y3)."""
    p1 = Point( c, x1, y1 )
    p3 = p1 * m
    print_("%s * %d = %s" % ( p1, m, p3 ), end=' ')
    if p3.x() != x3 or p3.y() != y3:
      raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
    else:
      print_(" Good.")


  # A few tests from X9.62 B.3:

  c = CurveFp( 23, 1, 1 )
  test_add( c, 3, 10, 9, 7, 17, 20 )
  test_double( c, 3, 10, 7, 12 )
  test_add( c, 3, 10, 3, 10, 7, 12 )	# (Should just invoke double.)
  test_multiply( c, 3, 10, 2, 7, 12 )

  test_double_infinity(c)

  # From X9.62 I.1 (p. 96):

  g = Point( c, 13, 7, 7 )

  check = INFINITY
  for i in range( 7 + 1 ):
    p = ( i % 7 ) * g
    print_("%s * %d = %s, expected %s . . ." % ( g, i, p, check ), end=' ')
    if p == check:
      print_(" Good.")
    else:
      raise FailedTest("Bad.")
    check = check + g

  # NIST Curve P-192:
  p = 6277101735386680763835789423207666416083908700390324961279
  r = 6277101735386680763835789423176059013767194773182842284081
  #s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
  c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65
  b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
  Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
  Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811

  c192 = CurveFp( p, -3, b )
  p192 = Point( c192, Gx, Gy, r )

  # Checking against some sample computations presented
  # in X9.62:

  d = 651056770906015076056810763456358567190100156695615665659
  Q = d * p192
  if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
    raise FailedTest("p192 * d came out wrong.")
  else:
    print_("p192 * d came out right.")

  k = 6140507067065001063065065565667405560006161556565665656654
  R = k * p192
  if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
     or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
    raise FailedTest("k * p192 came out wrong.")
  else:
    print_("k * p192 came out right.")

  u1 = 2563697409189434185194736134579731015366492496392189760599
  u2 = 6266643813348617967186477710235785849136406323338782220568
  temp = u1 * p192 + u2 * Q
  if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
     or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
    raise FailedTest("u1 * p192 + u2 * Q came out wrong.")
  else:
    print_("u1 * p192 + u2 * Q came out right.")

if __name__ == "__main__":
  __main__()