This file is indexed.

/usr/lib/python2.7/dist-packages/brian/threshold.py is in python-brian 1.4.3-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
# 
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
# 
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software.  You can  use, 
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info". 
# 
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability. 
# 
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or 
# data to be ensured and,  more generally, to use and operate it in the 
# same conditions as regards security. 
# 
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
# 
'''
Threshold mechanisms
'''

import re
from random import sample # Python standard random module (sample is different)

from numpy import clip, Inf
from numpy.random import rand, randn
try:
    import weave
except ImportError:
    from scipy import weave
from scipy import random

from brian.clock import guess_clock
from brian.globalprefs import get_global_preference
from brian.inspection import namespace, get_identifiers
from brian.log import log_warn
from brian.units import check_units, second, msecond, mvolt
from brian.utils.approximatecomparisons import is_approx_equal

__all__ = ['Threshold', 'FunThreshold', 'VariableThreshold', 'NoThreshold',
          'EmpiricalThreshold', 'SimpleFunThreshold', 'PoissonThreshold',
          'HomogeneousPoissonThreshold', 'StringThreshold']

CThreshold = PythonThreshold = None

def select_threshold(expr, eqs, level=0):
    '''
    Automatically selects the appropriate Threshold object from a string.
    
    Matches the following patterns:
    
    var_name > or >= const : Threshold
    var_name > or >= var_name : VariableThreshold
    others : StringThreshold
    '''
    global CThreshold, PythonThreshold
    use_codegen = (get_global_preference('usecodegen') and
                   get_global_preference('usecodegenthreshold'))
    use_weave = (get_global_preference('useweave') and
                 get_global_preference('usecodegenweave'))
    if use_codegen:
        if CThreshold is None:
            from brian.experimental.codegen.threshold import (CThreshold,
                                                              PythonThreshold)
        if use_weave:
            log_warn('brian.threshold', 'Using codegen CThreshold')
            return CThreshold(expr, level=level + 1)
        else:
            log_warn('brian.threshold', 'Using codegen PythonThreshold')
            return PythonThreshold(expr, level=level + 1)
    # plan:
    # - see if it matches A > B or A >= B, if not select StringThreshold
    # - check if A, B both match diffeq variable names, and if so
    #   select VariableThreshold
    # - check that A is a variable name, if not select StringThreshold
    # - extract all the identifiers from B, and if none of them are
    #   callable, assume it is a constant, try to eval it and then use
    #   Threshold. If not, or if eval fails, use StringThreshold.
    # This misses the case of e.g. V>10*mV*exp(1) because exp will be
    # callable, but in general a callable means that it could be
    # non-constant.
    expr = expr.strip()
    eqs.prepare()
    ns = namespace(expr, level=level + 1)
    s = re.search(r'^\s*(\w+)\s*>=?(.+)', expr)
    if not s:
        return StringThreshold(expr, level=level + 1)
    A = s.group(1)
    B = s.group(2).strip()
    if A not in eqs._diffeq_names:
        return StringThreshold(expr, level=level + 1)
    if B in eqs._diffeq_names:
        return VariableThreshold(B, A)
    try:
        vars = get_identifiers(B)
    except SyntaxError:
        return StringThreshold(expr, level=level + 1)
    all_vars = eqs._eq_names + eqs._diffeq_names + eqs._alias.keys() + ['t']
    for v in vars:
        if v not in ns or v in all_vars or callable(ns[v]):
            return StringThreshold(expr, level=level + 1)
    try:
        val = eval(B, ns)
    except:
        return StringThreshold(expr, level=level + 1)
    return Threshold(val, A)


class Threshold(object):
    '''
    All neurons with a specified state variable above a fixed value fire a spike.
    
    **Initialised as:** ::
    
        Threshold([threshold=1*mV[,state=0])
    
    with arguments:
    
    ``threshold``
        The value above which a neuron will fire.
    ``state``
        The state variable which is checked.
    
    **Compilation**
    
    Note that if the global variable ``useweave`` is set to ``True``
    then this function will use a ``C++`` accelerated version which
    runs approximately 3x faster.
    '''

    def __init__(self, threshold=1 * mvolt, state=0):
        self.threshold = threshold
        self.state = state
        self._useaccel = get_global_preference('useweave')
        self._cpp_compiler = get_global_preference('weavecompiler')
        self._extra_compile_args = ['-O3']
        if self._cpp_compiler == 'gcc':
            self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']

    def __call__(self, P):
        '''
        Checks the threshold condition and returns spike times.
        P is the neuron group.

        Note the accelerated version runs 3x faster.
        '''
        if self._useaccel:
            spikes = P._spikesarray
            V = P.state_(self.state)
            Vt = float(self.threshold)
            N = int(len(P))
            code = """
                    int numspikes=0;
                    for(int i=0;i<N;i++)
                        if(V(i)>Vt)
                            spikes(numspikes++) = i;
                    return_val = numspikes;
                    """
            # WEAVE NOTE: set the environment variable USER if your username has a space
            # in it, say set USER=DanGoodman if your username is Dan Goodman, this is
            # because weave uses this to create file names, but doesn't correctly send these
            # values to the compiler, causing problems.
            numspikes = weave.inline(code, ['spikes', 'V', 'Vt', 'N'],
                                     compiler=self._cpp_compiler,
                                     type_converters=weave.converters.blitz,
                                     extra_compile_args=self._extra_compile_args)
            # WEAVE NOTE: setting verbose=True in the weave.inline function may help in
            # finding errors.
            return spikes[0:numspikes]
        else:
            return ((P.state_(self.state) > self.threshold).nonzero())[0]

    def __repr__(self):
        return '%s(threshold=%s, state=%s)' % (self.__class__.__name__,
                                               repr(self.threshold),
                                               repr(self.state))

    def __str__(self):
        return ('Threshold mechanism with value=' + str(self.threshold) +
                ' acting on state ' + str(self.state))


class StringThreshold(Threshold):
    '''
    A threshold specified by a string expression.
    
    Initialised with arguments:
    
    ``expr``
        The expression used to test whether a neuron has fired a spike.
        Should be a single statement that returns a value. For example,
        ``'V>50*mV'`` or ``'V>Vt'``.
    ``level``
        How many levels up in the calling sequence to look for
        names in the namespace. Usually 0 for user code.
    '''
    def __init__(self, expr, level=0):
        self._namespace, unknowns = namespace(expr, level=level + 1, return_unknowns=True)
        self._vars = unknowns
        self._expr = expr
        self._code = compile(expr, "StringThreshold", "eval")
        class Replacer(object):
            def __init__(self, func, n):
                self.n = n
                self.func = func
            def __call__(self):
                return self.func(self.n)
        self._Replacer = Replacer

    def __call__(self, P):
        for var in self._vars: # couldn't we do this just once?
            self._namespace[var] = P.state(var)
        self._namespace['rand'] = self._Replacer(rand, len(P))
        self._namespace['randn'] = self._Replacer(randn, len(P))
        return eval(self._code, self._namespace).nonzero()[0]

    def __repr__(self):
        return '%s(%s)' % (self.__class__.__name__, repr(self._expr))
    
    def __str__(self):
        return '%s using expression "%s"' % (self.__class__.__name__,
                                             str(self._expr))


class NoThreshold(Threshold):
    '''
    No thresholding mechanism.
    
    **Initialised as:** ::
    
        NoThreshold()
    '''
    def __init__(self):
        pass

    def __call__(self, P):
        return []

    def __repr__(self):
        return "NoThreshold()"
    
    def __str__(self):
        return "No threshold"


class FunThreshold(Threshold):
    '''
    Threshold mechanism with a user-specified function.
    
    **Initialised as:** ::
    
        FunThreshold(thresholdfun)
    
    where ``thresholdfun`` is a function with one argument,
    the 2d state value array, where each row is an array of
    values for one state, of length N for N the number of
    neurons in the group. For efficiency, data are numpy
    arrays and there is no unit checking.
    
    Note: if you only need to consider one state variable,
    use the :class:`SimpleFunThreshold` object instead.
    '''
    def __init__(self, thresholdfun):
        self.thresholdfun = thresholdfun # Threshold function

    def __call__(self, P):
        '''
        Checks the threshold condition and returns spike times.
        P is the neuron group.
        '''
        spikes = (self.thresholdfun(*P._S).nonzero())[0]
        return spikes

    def __repr__(self):
        return '%s(%r)' % (self.__class__.__name__, self.thresholdfun)

    def __str__(self):
        return 'Functional threshold mechanism'


class SimpleFunThreshold(FunThreshold):
    '''
    Threshold mechanism with a user-specified function.
    
    **Initialised as:** ::
    
        FunThreshold(thresholdfun[,state=0])
    
    with arguments:
    
    ``thresholdfun``
        A function with one argument, the array of values for
        the specified state variable. For efficiency, this is
        a numpy array, and there is no unit checking.
    ``state``
        The name or number of the state variable to pass to
        the threshold function.
    
    **Sample usage:** ::
    
        FunThreshold(lambda V:V>=Vt,state='V')
    '''
    def __init__(self, thresholdfun, state=0):
        self.thresholdfun = thresholdfun # Threshold function
        self.state = state

    def __call__(self, P):
        '''
        Checks the threshold condition and returns spike times.
        P is the neuron group.
        '''
        spikes = (self.thresholdfun(P.state_(self.state)).nonzero())[0]
        #P.LS[spikes]=P.clock.t # Time of last spike (this line should be general)
        return spikes


class VariableThreshold(Threshold):
    '''
    Threshold mechanism where one state variable is compared to another.
    
    **Initialised as:** ::
    
        VariableThreshold([threshold_state=1[,state=0]])
        
    with arguments:
    
    ``threshold_state``
        The state holding the lower bound for spiking.
    ``state``
        The state that is checked.
    
    If ``x`` is the value of state variable ``threshold_state`` on neuron
    ``i`` and ``y`` is the value of state variable ``state`` on neuron
    ``i`` then neuron ``i`` will fire if ``y>x``.
    
    Typically, using this class is more time efficient than writing
    a custom thresholding operation.
    
    **Compilation**
    
    Note that if the global variable ``useweave`` is set to ``True``
    then this function will use a ``C++`` accelerated version.
    '''
    def __init__(self, threshold_state=1, state=0):
        self.threshold_state = threshold_state # State variable representing the threshold
        self.state = state
        self._useaccel = get_global_preference('useweave')
        self._cpp_compiler = get_global_preference('weavecompiler')
        self._extra_compile_args = ['-O3']
        if self._cpp_compiler == 'gcc':
            self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']

    def __call__(self, P):
        '''
        Checks the threshold condition, resets and returns spike times.
        P is the neuron group.
        '''
        if self._useaccel:
            spikes = P._spikesarray
            V = P.state_(self.state)
            Vt = P.state_(self.threshold_state)
            N = int(len(P))
            code = """
                    int numspikes=0;
                    for(int i=0;i<N;i++)
                        if(V(i)>Vt(i))
                            spikes(numspikes++) = i;
                    return_val = numspikes;
                    """
            numspikes = weave.inline(code, ['spikes', 'V', 'Vt', 'N'], \
                                     compiler=self._cpp_compiler,
                                     type_converters=weave.converters.blitz,
                                     extra_compile_args=self._extra_compile_args)
            return spikes[0:numspikes]
        else:
            return ((P.state_(self.state) > P.state_(self.threshold_state)).nonzero())[0]

    def __repr__(self):
        return '%s(threshold_state=%s, state=%s)' % (self.__class__.__name__, 
                                                     repr(self.threshold_state),
                                                     repr(self.state))
    
    def __str__(self):
        return '%s comparing "%s" to the threshold "%s"' % (self.__class__.__name__,
                                                            self.state,
                                                            self.threshold_state)


class EmpiricalThreshold(Threshold):
    '''
    Empirical threshold, e.g. for Hodgkin-Huxley models.
    
    In empirical models such as the Hodgkin-Huxley method, after a spike
    neurons are not instantaneously reset, but reset themselves
    as part of the dynamical equations defining their behaviour. This class
    can be used to model that. It is a simple threshold mechanism that
    checks e.g. ``V>=Vt`` but it only does so for neurons that haven't
    recently fired (giving the dynamical equations time to reset
    the values naturally). It should be used in conjunction with the
    :class:`NoReset` object.
    
    **Initialised as:** ::
    
        EmpiricalThreshold([threshold=1*mV[,refractory=1*ms[,state=0[,clock]]]])

    with arguments:
    
    ``threshold``
        The lower bound for the state variable to induce a spike.
    ``refractory``
        The time to wait after a spike before checking for spikes again.
    ``state``
        The name or number of the state variable to check.
    ``clock``
        If this object is being used for a :class:`NeuronGroup` which doesn't
        use the default clock, you need to specify its clock here.
    '''
    @check_units(refractory=second)
    def __init__(self, threshold=1 * mvolt, refractory=1 * msecond, state=0, clock=None):
        self.threshold = threshold # Threshold value
        self.state = state
        clock = guess_clock(clock)
        self.refractory = int(refractory / clock.dt)
        # this assumes that if the state stays over the threshold, and say
        # refractory=5ms the user wants spiking at 0ms 5ms 10ms 15ms etc.
        if is_approx_equal(self.refractory * clock.dt, refractory) and self.refractory > 0:
            self.refractory -= 1

    def __call__(self, P):
        '''
        Checks the threshold condition, resets and returns spike times.
        P is the neuron group.
        '''
        #spikes=where((P._S[0,:]>self.Vt) & ((P.LS<P.clock.t-self.refractory) | (P.LS==P.clock.t)))[0]
        spikescond = P.state_(self.state) > self.threshold
        spikescond[P.LS[0:self.refractory]] = False
        return spikescond.nonzero()[0]
        #P.LS[spikes]=P.clock.t # Time of last spike (this line should be general)
        #return spikes

class PoissonThreshold(Threshold):
    '''
    Poisson threshold: a spike is produced with some probability S[0]*dt,
    or S[state]*dt.
    '''
    # TODO: check the state has units in Hz
    def __init__(self, state=0):
        self.state = state

    def __call__(self, P):
        return (random.rand(len(P)) < P.state_(self.state)[:] * P.clock.dt).nonzero()[0]

    def __repr__(self):
        return '%s(state=%s)' % (self.__class__.__name__,
                                 repr(self.state))
    
    def __str__(self):
        return '%s using state variable %s' % (self.__class__.__name__,
                                               str(self.state))


class HomogeneousPoissonThreshold(PoissonThreshold):
    '''
    Poisson threshold for spike trains with identical rates.
    The underlying NeuronGroup has only one state variable.
    N.B.: "homogeneous" is meant in the spatial (not temporal) sense,
    the rate may change in time.
    '''
    def __call__(self, P):
        # N.B.: is "float" necessary?
        # Other possibility to avoid sorting: use an exponential distribution
        n = random.poisson(float(len(P) * P.clock.dt * clip(P._S[self.state][0], 0, Inf))) # number of spikes
        if n > len(P):
            n = len(P)
            log_warn('brian.HomogeneousPoissonThreshold', 'HomogeneousPoissonThreshold cannot generate enough spikes.')
        spikes = sample(xrange(len(P)), n)
        spikes.sort() # necessary only for subgrouping
        return spikes