/usr/lib/python2.7/dist-packages/brian/fundamentalunits.py is in python-brian 1.4.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 | # ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
#
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
#
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software. You can use,
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info".
#
# As a counterpart to the access to the source code and rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty and the software's author, the holder of the
# economic rights, and the successive licensors have only limited
# liability.
#
# In this respect, the user's attention is drawn to the risks associated
# with loading, using, modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean that it is complicated to manipulate, and that also
# therefore means that it is reserved for developers and experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or
# data to be ensured and, more generally, to use and operate it in the
# same conditions as regards security.
#
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
#
"""Defines physical units and quantities
The standard way to use this class is as follows:
V = 3 * volt
I = 2 * amp
R=V/I
print R
will return
1.5 ohm
The following fundamental units are defined:
metre, kilogram, second, amp, kelvin, mole, candle
And these additional basic units:
radian, steradian, hertz, newton, pascal, joule, watt,
coulomb, volt, farad, ohm, siemens, weber, tesla, henry,
celsius, lumen, lux, becquerel, gray, sievert, katal,
gram, gramme
Additionally, it includes all scaled versions of these
units using the standard SI prefixes (see the documentation
for the Unit class for more details), e.g. uamp,
mmetre, etc. It also includes the second and third powers
of each of these units, e.g. mvolt2 = mvolt*mvolt,
metre3 = metre**3, etc.
The module also defines these classes:
-- Dimension
Stores the physical dimensions (length, mass, etc.)
-- DimensionMismatchError
Exception raised if you try to add inconsistent units,
etc.
-- Quantity
The class of a value with a unit
-- Unit
The class of the defined units like mvolt, etc.
-- UnitRegistry
Stores 'known' units for printing
These functions:
-- get_dimensions(x)
Returns the dimensions of a quantity or number x
-- have_same_dimensions(x,y)
Tests if x and y have the same dimensions
-- is_dimensionless(x)
Tests if x is dimensionless
-- display_in_unit(x,u)
Displays quantity x in unit u
-- register_new_unit(u)
Add a new unit u to the list of 'known' units for
printing purposes
-- get_unit(x)
Returns the fundamental unit of value x if one is known, or
simply the value 1 with dimensions of x if none is known
And this decorator for function argument checking:
-- check_units(...)
If you want to use shorter named units, import the stdunits
module, which defines things like mV for mvolt, etc. They
are not included by default in the units module because of
the potential for variable name clashes.
"""
__all__ = [
'Dimension', 'Scale', 'DimensionMismatchError',
'get_dimensions', 'is_dimensionless', 'have_same_dimensions',
'display_in_unit', 'Quantity', 'Unit', 'register_new_unit',
'check_units', 'is_scalar_type', 'get_unit', 'get_unit_fast',
'scalar_representation', 'quantity_with_dimensions',
]
from brian_unit_prefs import bup
from operator import isNumberType, isSequenceType
from itertools import izip
import math, numpy
from utils.approximatecomparisons import *
import types
from functools import *
import sys
# Note that the decorator module below is used to provide signature preserving
# decorators, but it has the unfortunate side effect of messing up the tracebacks
# because it uses eval, so we only use it when we want to generate documentation,
# i.e. if 'sphinx' or 'docutils' or 'epydoc' are loaded.
# TODO: this has stopped working anyway, so it's now removed
#try:
# import decorator
# use_decorator = 'sphinx' in sys.modules or 'docutils' in sys.modules or 'epydoc' in sys.modules
#except:
# use_decorator = False
# SI dimensions (see table at end of file) and various descriptions,
# each description maps to an index i, and the power of each dimension
# is stored in the variable dims[i]
_di = { "Length":0, "length": 0, "metre":0, "metres":0, "metre": 0, "metres":0, "metre":0, "metres":0, "metre": 0, "metres":0, "m": 0, \
"Mass":1, "mass": 1, "kilogram":1, "kilograms":1, "kilogram": 1, "kilograms":1, "kg": 1, \
"Time":2, "time": 2, "second":2, "seconds":2, "second": 2, "seconds":2, "s": 2, \
"Electric Current":3, "Electric Current":3, "electric current": 3, "Current":3, "current":3, "ampere":3, "amperes":3, "ampere": 3, "amperes":3, "A": 3, \
"Temperature":4, "temperature": 4, "kelvin":4, "kelvins":4, "kelvin": 4, "kelvins":4, "K": 4, \
"Quantity of Substance":5, "Quantity of substance": 5, "quantity of substance": 5, "Substance":5, "substance":5, "mole":5, "moles":5, "mole": 5, "moles":5, "mol": 5, \
"Luminosity":6, "luminosity": 6, "candle":6, "candles":6, "candle": 6, "candles":6, "cd": 6 }
_ilabel = ["m", "kg", "s", "A", "K", "mol", "cd"]
# The same labels with the names used for constructing them in Python code
_iclass_label = ["metre", "kilogram", "second", "amp", "kelvin", "mole", "candle"]
# SI unit _prefixes, see table at end of file
_siprefixes = {"y":1e-24, "z":1e-21, "a":1e-18, "f":1e-15, "p":1e-12, "n":1e-9, "u":1e-6, "m":1e-3, "c":1e-2, "d":1e-1, \
"":1, \
"da":1e1, "h":1e2, "k":1e3, "M":1e6, "G":1e9, "T":1e12, "P":1e15, "E":1e18, "Z":1e21, "Y":1e24}
class Dimension(object):
'''Stores the indices of the 7 basic SI unit dimension (length, mass, etc.)
Provides a subset of arithmetic operations appropriate to dimensions:
multiplication, division and powers, and equality testing.
Methods:
is_dimensionless() returns Boolean value
Notes:
Most users shouldn't use this class directly, but instead write things
like:
x = 3 * mvolt, etc.
'''
__slots__ = ["_dims"]
#### INITIALISATION ####
def __init__(self, *args, **keywords):
"""Initialise Dimension object with a vector or keywords
Call as Dimension(list), Dimension(keywords) or Dimension(dim)
list -- a list with the indices of the 7 elements of an SI dimension
keywords -- a sequence of keyword=value pairs where the keywords are
the names of the SI dimensions, or the standard unit
dim -- a dimension object to copy
Examples:
The following are all definitions of the dimensions of force
Dimension(length=1, mass=1, time=-2)
Dimension(m=1, kg=1, s=-2)
Dimension([1,1,-2,0,0,0,0])
The 7 units are (in order):
Length, Mass, Time, Electric Current, Temperature,
Quantity of Substance, Luminosity
and can be referred to either by these names or their SI unit names,
e.g. length, metre, and m all refer to the same thing here.
"""
if len(args):
if isSequenceType(args[0]) and len(args[0]) == 7:
# initialisation by list
self._dims = args[0]
elif isinstance(args[0], Dimension):
# initialisation by another dimension object
self._dims = args[0]._dims
else:
# initialisation by keywords
self._dims = [0, 0, 0, 0, 0, 0, 0]
for k in keywords.keys():
# _di stores the index of the dimension with name 'k'
self._dims[_di[k]] = keywords[k]
#### METHODS ####
def get_dimension(self, d):
"""Returns the list of dimension indices.
See documentation for __init__.
"""
return self._dims[_di[d]]
def set_dimension(self, d, value):
"""Sets the list of dimension indices.
See documentation for __init__.
"""
self._dims[_di[d]] = value
def is_dimensionless(self):
"""Tells you whether the object is dimensionless."""
return sum([x == 0 for x in self._dims]) == 7
#### REPRESENTATION ####
def _str_representation(self, python_code=False):
"""String representation in basic SI units, or 1 for dimensionless.
Use `python_code=False` for display purposes and `True` for valid
Python code."""
if python_code:
power_operator = " ** "
else:
power_operator = "^"
parts = []
for i in range(len(self._dims)):
if self._dims[i]:
if python_code:
s = _iclass_label[i]
else:
s = _ilabel[i]
if self._dims[i] != 1:
s += power_operator + str(self._dims[i])
parts.append(s)
if python_code:
s = " * ".join(parts)
if not len(s):
return "%s()" % self.__class__.__name__
else:
s = " ".join(parts)
if not len(s):
return "1"
return s.strip()
def __repr__(self):
return self._str_representation(python_code=True)
def __str__(self):
return self._str_representation(python_code=False)
#### ARITHMETIC ####
# Note that none of the dimension arithmetic objects do sanity checking
# on their inputs, although most will throw an exception if you pass the
# wrong sort of input
def __mul__(self, value):
return Dimension([x + y for x, y in izip(self._dims, value._dims)])
def __div__(self, value):
return Dimension([x - y for x, y in izip(self._dims, value._dims)])
def __truediv__(self, value):
return self.__div__(value)
def __pow__(self, value):
return Dimension([x * value for x in self._dims])
def __imul__(self, value):
self._dims = [x + y for x, y in izip(self._dims, value._dims)]
return self
def __idiv__(self, value):
self._dims = [x - y for x, y in izip(self._dims, value._dims)]
return self
def __itruediv__(self, value):
return self.__idiv__(value)
def __ipow__(self, value):
self._dims = [x * value for x in self._dims]
return self
#### COMPARISON ####
def __eq__(self, value):
#return sum([x==y for x,y in izip(self._dims,value._dims)])==7
return sum([is_within_absolute_tolerance(x, y) for x, y in izip(self._dims, value._dims)]) == 7
def __ne__(self, value):
return not self.__eq__(value)
#### MAKE DIMENSION PICKABLE ####
def __getstate__(self):
return self._dims
def __setstate__(self, state):
self._dims = state
class Scale(object):
"""Stores the scale factor for each SI dimension.
Probably would only be very rarely used by a user, but might
conceivably be useful in certain circumstances.
Methods:
-- Initialisation by list of keywords
-- scale_factor(dim) gives the overall scaling for a value in
dimension dim
-- unit_representation(dim) gives a string representation of
the unit defined by the Scale object applied to dimension
dim
"""
__slots__ = ["scale"]
def __init__(self, *args, **keywords):
"""Initialise by list of scales or keywords, see Dimension documentation
e.g. Scale(length="m", time="u") =
Scale(["m","","u","","","",""])
corresponds to measuring the unit of length at the milli scale
and the unit of time at the u scale.
"""
self.scale = [ "", "", "", "", "", "", "" ]
for k in keywords:
self.scale[_di[k]] = keywords[k]
def scale_factor(self, dim):
"""Returns the scaling factor for dimension dim
For example, if the scale factor of length is milli, and the
dimensions of dim are length^2 then the scale factor will be
0.001^2.
"""
sf = 1
for s, i in izip(self.scale, dim._dims):
if i: sf *= _siprefixes[s] ** i
return sf
def unit_representation(self, dim):
"""Returns a representation of the dimension dim at this scale
For example, if the scale factor of length is milli, and the
dimensions of dim are length^2 then this will return mm^2.
"""
s = ""
for i in range(7):
if dim._dims[i]:
s += self.scale[i] + _ilabel[i]
if dim._dims[i] != 1:
s += "^" + str(dim._dims[i])
s += " "
return s.strip()
class DimensionMismatchError(Exception):
"""Exception class for attempted operations with inconsistent dimensions
For example, ``3*mvolt + 2*amp`` raises this exception. The purpose of this
class is to help catch errors based on incorrect units. The exception will
print a representation of the dimensions of the two inconsistent objects
that were operated on. If you want to check for inconsistent units in your
code, do something like::
try:
...
your code here
...
except DimensionMismatchError, inst:
...
cleanup code here, e.g.
print "Found dimension mismatch, details:", inst
...
"""
def __init__(self, description, *dims):
"""Raise as DimensionMismatchError(desc,dim1,dim2,...)
desc -- a description of the type of operation being performed, e.g.
Addition, Multiplication, etc.
dim -- the dimensions of the objects involved in the operation, any
number of them is possible
"""
# Call the base class constructor to make Exception pickable, see:
# http://bugs.python.org/issue1692335
Exception.__init__(self, description, *dims)
self._dims = dims
self.desc = description
def __repr__(self):
return self.__str__()
def __str__(self):
s = self.desc + ", dimensions were "
for d in self._dims:
s += "(" + str(d) + ") "
return s
def is_scalar_type(obj):
"""Tells you if the object is a 1d number type
This function is mostly used internally by the module for
argument type checking. A scalar type can be considered
a dimensionless quantity (see the documentation for
Quantity for more information).
"""
return isNumberType(obj) and not isSequenceType(obj)
def get_dimensions(obj):
"""Returns the dimensions of any object that has them.
Slightly more general than obj.get_dimensions() because it will return
a new dimensionless Dimension() object if the object is of number type
but not a Quantity (e.g. a float or int).
"""
if isNumberType(obj) and not isinstance(obj, Quantity): return Dimension()
return obj.get_dimensions()
def is_dimensionless(obj):
"""Tests if a scalar value is dimensionless or not, returns a ``bool``.
Note that the syntax may change in later releases of Brian, with tighter
integration of scalar and array valued quantities.
"""
return get_dimensions(obj) == Dimension()
def have_same_dimensions(obj1, obj2):
"""Tests if two scalar values have the same dimensions, returns a ``bool``.
Note that the syntax may change in later releases of Brian, with tighter
integration of scalar and array valued quantities.
"""
return get_dimensions(obj1) == get_dimensions(obj2)
def display_in_unit(x, u):
"""String representation of the object x in unit u.
"""
if not have_same_dimensions(x, u):
raise DimensionMismatchError("Non-matching unit for function display_in_unit", get_dimensions(x), get_dimensions(u))
s = str(float(x / u)) + " "
if not is_dimensionless(u):
if isinstance(u, Unit):
s += str(u)
else:
s += str(u.dim)
return s.strip()
def quantity_with_dimensions(floatval, dims):
return Quantity.with_dimensions(floatval, dims)
class Quantity(numpy.float64):
"""A number with an associated physical dimension.
In most cases, it is not necessary to create a :class:`Quantity` object
by hand, instead use the constant unit names ``second``, ``kilogram``,
etc. The details of how :class:`Quantity` objects work is subject to
change in future releases of Brian, as we plan to reimplement it
in a more efficient manner, more tightly integrated with numpy. The
following can be safely used:
* :class:`Quantity`, this name will not change, and the usage
``isinstance(x,Quantity)`` should be safe.
* The standard unit objects, ``second``, ``kilogram``, etc.
documented in the main documentation will not be subject
to change (as they are based on SI standardisation).
* Scalar arithmetic will work with future implementations.
"""
# This documentation is subject to change.
"""
This is the main user class for the units module, although
in most cases it is not necessary to initialise a new
quantity by hand (see construction below for details).
The Quantity class defines arithmetic operations which
check for consistency of dimensions and raise the
DimensionMismatchError exception if they are inconsistent.
The class also defines default and other representations
of a number for printing purposes.
Typical usage:
I = 3 * amp # I is a Quantity object
R = 2 * ohm # same for R
print I*R # displays "6 V"
print (I*R).in_unit(mvolt) # displays "6000 mV"
print (I*R)/mvolt # displays "6000"
x = I + R # raises DimensionMismatchError
See the documentation on the Unit class for more details
about the available unit names like mvolt, etc.
Casting rules:
The three rules that define the casting operations for
Quantity object are:
1. Quantity op Quantity = Quantity
- Performs dimension checking if appropriate
2. Scalar op Quantity = Quantity
- Assumes that the scalar is dimensionless
3. other op Quantity = other
- The Quantity object is downcast to a float
Scalar types are 1 dimensional number types, including float, int, etc.
but not array.
The Quantity class is a derived class of float, so many other operations
will also downcast to float. For example, sin(x) where x is a quantity
will return sin(float(x)) without doing any dimension checking.
Construction details:
x = Quantity(value) returns a dimensionless object, you can then
set the dimensions via x.set_dimensions(dim)
x = Quantity.with_dimensions(value,dim) returns an object with
floating point value value, and dimensions dim, see the
documentation for Quantity.with_dimensions(...) for more.
Static constructors:
-- with_dimensions(dim)
-- with_dimensions(keywords...)
Methods:
-- get_dimensions() return Dimension
-- set_dimensions(dim)
-- is_dimensionless() return boolean
-- at_scale(scale) return string
-- has_same_dimensions(other) return boolean
-- in_unit(unit) return string
-- in_best_unit() return string
"""
__slots__ = ["dim"]
#### CONSTRUCTION ####
def __init__(self, value):
"""Initialises as dimensionless
"""
super(Quantity, self).__init__()
self.dim = Dimension()
@staticmethod
def with_dimensions(value, *args, **keywords):
"""Static method to create a Quantity object with dimensions
Use as Quantity.with_dimensions(value,dim),
Quantity.with_dimensions(value,dimlist) or
Quantity.with_dimensions(value,keywords...)
-- value is a float or other scalar type
-- dim is a dimension object
-- dimlist, keywords (see the Dimension constructor)
e.g.
x = Quantity.with_dimensions(2,Dimension(length=1))
x = Quantity.with_dimensions(2,length=1)
x = 2 * metre
all define the same object.
"""
x = Quantity(value)
if len(args) and isinstance(args[0], Dimension):
x.set_dimensions(args[0])
else:
x.set_dimensions(Dimension(*args, **keywords))
return x
#### METHODS ####
def get_dimensions(self):
"""Returns the dimensions of this object
"""
return self.dim
def set_dimensions(self, dim):
"""Set the dimensions of this object
"""
self.dim = dim
def is_dimensionless(self):
"""Tells you whether this is a dimensionless object
"""
return self.dim.is_dimensionless()
def at_scale(self, scale):
"""Returns a string representation at given scale
"""
return str(float(self) / scale.scale_factor(self.dim)) + " " + scale.unit_representation(self.dim)
def has_same_dimensions(self, other):
"""Tells you if this object has the same dimensions as another.
"""
return self.dim == get_dimensions(other)
def in_unit(self, u, python_code=False):
"""String representation of the object in unit `u`.
If `python_code` is `True`, this will return valid python code, i.e. a
string like `5.0 * um ** 2`instead of `5.0 um^2`
"""
if not self.has_same_dimensions(u):
raise DimensionMismatchError("Non-matching unit for method in_unit", self.dim, u.dim)
s = str(float(self / u)) + " "
if not u.is_dimensionless():
if isinstance(u, Unit):
if python_code:
s += '* ' + repr(u)
else:
s += str(u)
else:
if python_code:
s += "* " + repr(u.dim)
else:
s += str(u.dim)
elif python_code == True: # A quantity without unit is not recognisable otherwise
return '%s(%s)' % (self.__class__.__name__, s.strip())
return s.strip()
def in_best_unit(self, python_code=False, *regs):
"""String representation of the object in the 'best unit'
If `python_code` is `True`, this will return valid python code, i.e. a
string like `5.0 * um ** 2`instead of `5.0 um^2`
For more information, see the documentation for the UnitRegistry
class. Essentially, this looks at the value of the quantity for
all 'known' matching units (e.g. mvolt, namp, etc.) and returns
the one with the most compact representation. Standard units are
built in, but you can register new units for consideration.
"""
u = _get_best_unit(self, *regs)
return self.in_unit(u, python_code)
#### METHODS (NUMERICAL) ####
def sqrt(self):
return self ** 0.5
def log(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.log(float(self)), self.dim)
raise DimensionMismatchError('log', self.dim)
def exp(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.exp(float(self)), self.dim)
raise DimensionMismatchError('exp', self.dim)
def sin(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.sin(float(self)), self.dim)
raise DimensionMismatchError('sin', self.dim)
def cos(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.cos(float(self)), self.dim)
raise DimensionMismatchError('cos', self.dim)
def tan(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.tan(float(self)), self.dim)
raise DimensionMismatchError('tan', self.dim)
def asin(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.asin(float(self)), self.dim)
raise DimensionMismatchError('asin', self.dim)
def acos(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.acos(float(self)), self.dim)
raise DimensionMismatchError('acos', self.dim)
def atan(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.atan(float(self)), self.dim)
raise DimensionMismatchError('atan', self.dim)
arcsin = asin
arccos = cos
arctan = tan
def sinh(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.sinh(float(self)), self.dim)
raise DimensionMismatchError('sinh', self.dim)
def cosh(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.cosh(float(self)), self.dim)
raise DimensionMismatchError('cosh', self.dim)
def tanh(self):
if self.is_dimensionless():
return Quantity.with_dimensions(math.tanh(float(self)), self.dim)
raise DimensionMismatchError('tanh', self.dim)
def arcsinh(self):
if self.is_dimensionless():
return Quantity.with_dimensions(numpy.arcsinh(float(self)), self.dim)
raise DimensionMismatchError('sinh', self.dim)
def arccosh(self):
if self.is_dimensionless():
return Quantity.with_dimensions(numpy.arccosh(float(self)), self.dim)
raise DimensionMismatchError('cosh', self.dim)
def arctanh(self):
if self.is_dimensionless():
return Quantity.with_dimensions(numpy.arctanh(float(self)), self.dim)
raise DimensionMismatchError('tanh', self.dim)
#### REPRESENTATION ####
def __repr__(self):
return self.in_best_unit(python_code=True)
def __str__(self):
#s = super(Quantity,self).__str__()
#if not self.is_dimensionless(): s += " " + str(self.dim)
#return s
return self.in_best_unit()
#return str(float(self))+'*'+str(get_unit(self))
#### ARITHMETIC ####
# Arithmetic operations implement the following set of rules for
# determining casting:
# 1. Quantity op Quantity returns Quantity (and performs dimension checking if appropriate)
# 2. Scalar op Quantity returns Quantity (and performs dimension checking assuming Scalar is dimensionless)
# 3. other op Quantity returns other (Quantity is downcast to float)
# Scalar types are those for which is_scalar_type() returns True, including float, int, long, complex but not array
def __mul__(self, other):
# This code, like all the other arithmetic code below, implements the casting rules
# defined above.
if isinstance(other, Quantity):
return Quantity.with_dimensions(float(self) * float(other), self.dim * other.dim)
elif is_scalar_type(other):
return Quantity.with_dimensions(float(self) * other, self.dim)
else:
return NotImplemented
#return super(Quantity,self).__mul__(other)
def __rmul__(self, other):
return self.__mul__(other)
def __div__(self, other):
if isinstance(other, Quantity):
return Quantity.with_dimensions(float(self) / float(other), self.dim / other.dim)
elif is_scalar_type(other):
return Quantity.with_dimensions(float(self) / other, self.dim)
else:
return NotImplemented
#return super(Quantity,self).__div__(other)
def __truediv__(self, other):
if isinstance(other, Quantity):
return Quantity.with_dimensions(float(self) / float(other), self.dim / other.dim)
elif is_scalar_type(other):
return Quantity.with_dimensions(float(self) / other, self.dim)
else:
return NotImplemented
#return super(Quantity,self).__truediv__(other)
def __rdiv__(self, other):
if isinstance(other, Quantity):
return Quantity.with_dimensions(float(other) / float(self), other.dim / self.dim)
elif is_scalar_type(other):
return Quantity.with_dimensions(other / float(self), [-x for x in self.dim._dims])
else:
return NotImplemented
#return super(Quantity,self).__rdiv__(other)
def __rtruediv__(self, other):
if isinstance(other, Quantity):
return Quantity.with_dimensions(float(other) / float(self), other.dim / self.dim)
elif is_scalar_type(other):
return Quantity.with_dimensions(other / float(self), [-x for x in self.dim._dims])
else:
return NotImplemented
#return super(Quantity,self).__rtruediv__(other)
def __mod__(self, other):
if isinstance(other, Quantity) or is_scalar_type(other):
dim = get_dimensions(other)
if dim == self.dim:
return Quantity.with_dimensions(float(self) % float(other), self.dim)
else: raise DimensionMismatchError("Addition", self.dim, dim)
else:
return NotImplemented
#return super(Quantity,self).__add__(other)
def __add__(self, other):
if isinstance(other, Quantity) or is_scalar_type(other):
dim = get_dimensions(other)
if dim == self.dim:
return Quantity.with_dimensions(float(self) + float(other), self.dim)
else: raise DimensionMismatchError("Addition", self.dim, dim)
else:
return NotImplemented
#return super(Quantity,self).__add__(other)
def __radd__(self, other):
return self.__add__(other)
def __sub__(self, other):
if isinstance(other, Quantity) or is_scalar_type(other):
dim = get_dimensions(other)
if dim == self.dim:
return Quantity.with_dimensions(float(self) - float(other), self.dim)
else: raise DimensionMismatchError("Subtraction", self.dim, dim)
else:
return NotImplemented
#return super(Quantity,self).__sub__(other)
def __rsub__(self, other):
if isinstance(other, Quantity) or is_scalar_type(other):
dim = get_dimensions(other)
if dim == self.dim:
return Quantity.with_dimensions(float(other) - float(self), self.dim)
else: raise DimensionMismatchError("Subtraction(R)", self.dim, dim)
else:
return NotImplemented
#return super(Quantity,self).__rsub__(other)
def __pow__(self, other):
if isinstance(other, Quantity):
if other.is_dimensionless():
# WARNING: because dimension consistency is checked by exact comparison of dimensions,
# this may lead to unexpected behaviour (e.g. (x**2)**0.5 may not have the same dimensions as x)
return Quantity.with_dimensions(float(self) ** float(other), self.dim ** float(other))
else: raise DimensionMismatchError("Power", self.dim, other.dim)
elif is_scalar_type(other):
return Quantity.with_dimensions(float(self) ** other, self.dim ** other)
else:
return NotImplemented
#return super(Quantity,self).__pow__(other)
def __rpow__(self, other):
if self.is_dimensionless():
if isinstance(other, Quantity):
return Quantity.with_dimensions(float(other) ** float(self), other.dim ** float(self))
elif is_scalar_type(other):
return Quantity(other ** float(self))
else:
return NotImplemented
#return super(Quantity,self).__pow__(other)
else:
raise DimensionMismatchError("Power(R)", self.dim)
def __neg__(self):
return Quantity.with_dimensions(-float(self), self.dim)
def __pos__(self):
return self
def __abs__(self):
return Quantity.with_dimensions(abs(float(self)), self.dim)
#### COMPARISONS ####
def __lt__(self, other):
if isinstance(other, Quantity):
if self.dim == other.dim:
return float(self) < float(other)
else: raise DimensionMismatchError("LessThan", self.dim, other.dim)
elif is_scalar_type(other):
if other == 0 or other == 0.: return float(self) < other
if numpy.isposinf(other): return True
if numpy.isneginf(other): return False
if self.is_dimensionless():
return float(self) < other
else: raise DimensionMismatchError("LessThan", self.dim, Dimension())
else:
return NotImplemented
#return super(Quantity,self).__lt__(other)
def __le__(self, other):
if isinstance(other, Quantity):
if self.dim == other.dim:
return float(self) <= float(other)
else: raise DimensionMismatchError("LessThanOrEquals", self.dim, other.dim)
elif is_scalar_type(other):
if other == 0 or other == 0.: return float(self) <= other
if numpy.isposinf(other): return True
if numpy.isneginf(other): return False
if self.is_dimensionless():
return float(self) <= other
else: raise DimensionMismatchError("LessThanOrEquals", self.dim, Dimension())
else:
return NotImplemented
#return super(Quantity,self).__le__(other)
def __gt__(self, other):
if isinstance(other, Quantity):
if self.dim == other.dim:
return float(self) > float(other)
else: raise DimensionMismatchError("GreaterThan", self.dim, other.dim)
elif is_scalar_type(other):
if other == 0 or other == 0.: return float(self) > other
if numpy.isneginf(other): return True
if numpy.isposinf(other): return False
if self.is_dimensionless():
return float(self) > other
else: raise DimensionMismatchError("GreaterThan", self.dim, Dimension())
else:
return NotImplemented
#return super(Quantity,self).__gt__(other)
def __ge__(self, other):
if isinstance(other, Quantity):
if self.dim == other.dim:
return float(self) >= float(other)
else: raise DimensionMismatchError("GreaterThanOrEquals", self.dim, other.dim)
elif is_scalar_type(other):
if other == 0 or other == 0.: return float(self) >= other
if numpy.isneginf(other): return True
if numpy.isposinf(other): return False
if self.is_dimensionless():
return float(self) >= other
else: raise DimensionMismatchError("GreaterThanOrEquals", self.dim, Dimension())
else:
return NotImplemented
#return super(Quantity,self).__ge__(other)
def __eq__(self, other):
if isinstance(other, Quantity):
if self.dim == other.dim:
return float(self) == float(other)
else: raise DimensionMismatchError("Equals", self.dim, other.dim)
elif is_scalar_type(other):
if other == 0 or other == 0. or numpy.isinf(other): return float(self) == other
if self.dim.is_dimensionless():
return float(self) == other
else: raise DimensionMismatchError("Equals", self.dim, Dimension())
else:
return NotImplemented
#return super(Quantity,self).__eq__(other)
def __ne__(self, other):
if isinstance(other, Quantity):
if self.dim == other.dim:
return float(self) != float(other)
else: raise DimensionMismatchError("Equals", self.dim, other.dim)
elif is_scalar_type(other):
if other == 0 or other == 0. or numpy.isinf(other): return float(self) != other
if self.dim.is_dimensionless():
return float(self) != other
else: raise DimensionMismatchError("NotEquals", self.dim, Dimension())
else:
return NotImplemented
#return super(Quantity,self).__ne__(other)
#### MAKE QUANTITY PICKABLE ####
def __reduce__(self):
return (quantity_with_dimensions, (float(self), self.dim))
class Unit(Quantity):
'''
A physical unit
Normally, you do not need to worry about the implementation of
units. They are derived from the :class:`Quantity` object with
some additional information (name and string representation).
You can define new units which will be used when generating
string representations of quantities simply by doing an
arithmetical operation with only units, for example::
Nm = newton * metre
Note that operations with units are slower than operations with
:class:`Quantity` objects, so for efficiency if you do not need the
extra information that a :class:`Unit` object carries around, write
``1*second`` in preference to ``second``.
'''
# original documentation
"""A physical unit
Basically, a unit is just a quantity with given dimensions, e.g.
mvolt = 0.001 with the dimensions of voltage. The units module
defines a large number of standard units, and you can also define
your own (see below).
The unit class also keeps track of various things that were used
to define it so as to generate a nice string representation of it.
See Representation below.
Typical usage:
x = 3 * mvolt # returns a quantity
print x.in_unit(uvolt) # returns 3000 uV
Standard units:
The units class has the following fundamental units:
metre, kilogram, second, amp, kelvin, mole, candle
And these additional basic units:
radian, steradian, hertz, newton, pascal, joule, watt,
coulomb, volt, farad, ohm, siemens, weber, tesla, henry,
celsius, lumen, lux, becquerel, gray, sievert, katal
And additionally, it includes all scaled versions of these
units using the following prefixes
Factor Name Prefix
----- ---- ------
10^24 yotta Y
10^21 zetta Z
10^18 exa E
10^15 peta P
10^12 tera T
10^9 giga G
10^6 mega M
10^3 kilo k
10^2 hecto h
10^1 deka da
1
10^-1 deci d
10^-2 centi c
10^-3 milli m
10^-6 micro u (\mu in SI)
10^-9 nano n
10^-12 pico p
10^-15 femto f
10^-18 atto a
10^-21 zepto z
10^-24 yocto y
So for example nohm, ytesla, etc. are all defined.
Defining your own:
It can be useful to define your own units for printing
purposes. So for example, to define the newton metre, you
write:
Nm = newton * metre
Writing:
print (1*Nm).in_unit(Nm)
will return "1 Nm" because the Unit class generates a new
display name of "Nm" from the display names "N" and "m" for
newtons and metres automatically (see Representation below).
To register this unit for use in the automatic printing
of the Quantity.in_best_unit() method, see the documentation
for the UnitRegistry class.
Construction:
The best way to construct a new unit is to use standard units
already defined and arithmetic operations, e.g. newton*metre.
See the documentation for __init__ and the static methods create(...)
and create_scaled_units(...) for more details.
If you don't like the automatically generated display name for
the unit, use the set_display_name(name) method.
Representation:
A new unit defined by multiplication, division or taking powers
generates a name for the unit automatically, so that for
example the name for pfarad/mmetre**2 is "pF/mm^2", etc. If you
don't like the automatically generated name, use the
set_display_name(name) method.
"""
__slots__ = ["dim", "scale", "scalefactor", "dispname", "name", "iscompound"]
#### CONSTRUCTION ####
def __init__(self, value):
"""Initialises a dimensionless unit
"""
super(Unit, self).__init__(value)
self.dim = Dimension()
self.scale = [ "", "", "", "", "", "", "" ]
self.scalefactor = ""
self.name = ""
self.dispname = ""
self.iscompound = False
def __new__(typ, *args, **kw):
obj = super(Unit, typ).__new__(typ, *args, **kw)
global automatically_register_units
if automatically_register_units:
register_new_unit(obj)
return obj
@staticmethod
def create(dim, name="", dispname="", scalefactor="", **keywords):
"""Creates a new named unit
dim -- the dimensions of the unit
name -- the full name of the unit, e.g. volt
dispname -- the display name, e.g. V
scalefactor -- scaling factor, e.g. m for mvolt
keywords -- the scaling for each SI dimension, e.g. length="m", mass="-1", etc.
"""
scale = [ "", "", "", "", "", "", "" ]
for k in keywords:
scale[_di[k]] = keywords[k]
v = 1.0
for s, i in izip(scale, dim._dims):
if i: v *= _siprefixes[s] ** i
u = Unit(v * _siprefixes[scalefactor])
u.dim = dim
u.scale = scale
u.scalefactor = scalefactor + ""
u.name = name + ""
u.dispname = dispname + ""
u.iscompound = False
return u
@staticmethod
def create_scaled_unit(baseunit, scalefactor):
"""Create a scaled unit from a base unit
baseunit -- e.g. volt, amp
scalefactor -- e.g. "m" for mvolt, mamp
"""
u = Unit(float(baseunit) * _siprefixes[scalefactor])
u.dim = baseunit.dim
u.scale = baseunit.scale
u.scalefactor = scalefactor
u.name = scalefactor + baseunit.name
u.dispname = scalefactor + baseunit.dispname
u.iscompound = False
return u
#### METHODS ####
def set_name(self, name):
"""Sets the name for the unit
"""
self.name = name
def set_display_name(self, name):
"""Sets the display name for the unit
"""
self.dispname = name
#### REPRESENTATION ####
def __repr__(self):
if self.name == "":
if self.scalefactor:
parts = [repr(_siprefixes[self.scalefactor])]
else:
parts = []
for i in range(7):
if self.dim._dims[i]:
s = self.scale[i] + _iclass_label[i]
if self.dim._dims[i] != 1:
s += ' ** ' + str(self.dim._dims[i])
parts.append(s)
s = " * ".join(parts)
if not len(s):
return "%s(1)" % self.__class__.__name__
return s.strip()
else:
return self.name
def __str__(self):
if self.dispname == "":
s = self.scalefactor + " "
for i in range(7):
if self.dim._dims[i]:
s += self.scale[i] + _ilabel[i]
if self.dim._dims[i] != 1:
s += "^" + str(self.dim._dims[i])
s += " "
if not len(s):
return "1"
return s.strip()
else:
return self.dispname
#### ARITHMETIC ####
def __mul__(self, other):
if isinstance(other, Unit):
u = Unit(float(self) * float(other))
u.name = self.name + " * " + other.name
u.dispname = self.dispname + ' ' + other.dispname
u.dim = self.dim * other.dim
u.iscompound = True
return u
else:
return super(Unit, self).__mul__(other)
def __div__(self, other):
if isinstance(other, Unit):
u = Unit(float(self) / float(other))
if other.iscompound:
u.dispname = '(' + self.dispname + ')'
u.name = '(' + self.name + ')'
else:
u.dispname = self.dispname
u.name = self.name
u.dispname += '/'
u.name += ' / '
if other.iscompound:
u.dispname += '(' + other.dispname + ')'
u.name += '(' + other.name + ')'
else:
u.dispname += other.dispname
u.name += other.name
u.dim = self.dim / other.dim
u.iscompound = True
return u
else:
return super(Unit, self).__div__(other)
def __pow__(self, other):
if is_scalar_type(other):
u = Unit(float(self) ** other)
if self.iscompound:
u.dispname = '(' + self.dispname + ')'
u.name = '(' + self.name + ')'
else:
u.dispname = self.dispname
u.name = self.name
u.dispname += '^' + str(other)
u.name += ' ** ' + repr(other)
u.dim = self.dim ** other
return u
else:
return super(Unit, self).__mul__(other)
automatically_register_units = True
class UnitRegistry(object):
"""Stores known units for printing in best units
All a user needs to do is to use the register_new_unit(u)
function.
Default registries:
The units module defines three registries, the standard units,
user units, and additional units. Finding best units is done
by first checking standard, then user, then additional. New
user units are added by using the register_new_unit(u) function.
Standard units includes all the basic non-compound unit names
built in to the module, including volt, amp, etc. Additional
units defines some compound units like newton metre (Nm) etc.
Methods:
add(u) - add a new unit
__getitem__(x) - get the best unit for quantity x
e.g. UnitRegistry ur; ur[3*mvolt] returns mvolt
"""
def __init__(self):
self.objs = []
def add(self, u):
"""Add a unit to the registry
"""
self.objs.append(u)
def __getitem__(self, x):
"""Returns the best unit for quantity x
The algorithm is to consider the value:
m=abs(x/u)
for all matching units u. If there is a unit u with a value of
m in [1,1000) then we select that unit. Otherwise, we select
the first matching unit (which will typically be the unscaled
version).
"""
matching = filter(lambda o: have_same_dimensions(o, x), self.objs)
if len(matching) == 0:
raise KeyError("Unit not found in registry.")
floatrep = filter(lambda o: 0.1 <= abs(float(x / o)) < 100, matching)
if len(floatrep):
return floatrep[0]
else:
return matching[0]
def register_new_unit(u):
"""Register a new unit for automatic displaying of quantities
Example usage:
2.0*farad/metre**2 = 2.0 m^-4 kg^-1 s^4 A^2
register_new_unit(pfarad / mmetre**2)
2.0*farad/metre**2 = 2000000.0 pF/mm^2
"""
UserUnitRegister.add(u)
standard_unit_register = UnitRegistry()
additional_unit_register = UnitRegistry()
UserUnitRegister = UnitRegistry()
def all_registered_units(*regs):
"""Returns all registered units in the correct order
"""
if not len(regs):
regs = [ standard_unit_register, UserUnitRegister, additional_unit_register]
for r in regs:
for u in r.objs:
yield u
def _get_best_unit(x, *regs):
"""Returns the best unit for quantity x
Checks the registries regs, unless none are provided in which
case it will check the standard, user and additional unit
registers in turn.
"""
if get_dimensions(x) == Dimension():
return Quantity(1)
if len(regs):
for r in regs:
try:
return r[x]
except KeyError:
pass
return Quantity.with_dimensions(1, x.dim)
else:
return _get_best_unit(x, standard_unit_register, UserUnitRegister, additional_unit_register)
def get_unit(x, *regs):
'''
Find the most appropriate consistent unit from the unit registries, or just return a Quantity with the same dimensions and value 1
'''
for u in all_registered_units(*regs):
if is_equal(float(u), 1) and have_same_dimensions(u, x):
return u
return Quantity.with_dimensions(1, get_dimensions(x))
def get_unit_fast(x):
'''
Return a quantity with value 1 and the same dimensions
'''
return Quantity.with_dimensions(1, get_dimensions(x))
#### DECORATORS
def check_units(**au):
"""Decorator to check units of arguments passed to a function
**Sample usage:** ::
@check_units(I=amp,R=ohm,wibble=metre,result=volt)
def getvoltage(I,R,**k):
return I*R
You don't have to check the units of every variable in the function, and
you can define what the units should be for variables that aren't
explicitly named in the definition of the function. For example, the code
above checks that the variable wibble should be a length, so writing::
getvoltage(1*amp,1*ohm,wibble=1)
would fail, but::
getvoltage(1*amp,1*ohm,wibble=1*metre)
would pass.
String arguments are not checked (e.g. ``getvoltage(wibble='hello')`` would pass).
The special name ``result`` is for the return value of the function.
An error in the input value raises a :exc:`DimensionMismatchError`, and an error
in the return value raises an ``AssertionError`` (because it is a code
problem rather than a value problem).
**Notes**
This decorator will destroy the signature of the original function, and
replace it with the signature ``(*args, **kwds)``. Other decorators will
do the same thing, and this decorator critically needs to know the signature
of the function it is acting on, so it is important that it is the first
decorator to act on a function. It cannot be used in combination with another
decorator that also needs to know the signature of the function.
"""
def do_check_units(f):
@wraps(f)
def new_f(*args, **kwds):
newkeyset = kwds.copy()
arg_names = f.func_code.co_varnames[0:f.func_code.co_argcount]
for (n, v) in zip(arg_names, args[0:f.func_code.co_argcount]):
newkeyset[n] = v
for k in newkeyset.iterkeys():
# string variables are allowed to pass, the presumption is they
# name another variable. None is also allowed, useful for
# default parameters
if (k in au.keys() and not isinstance(newkeyset[k], str) and
not newkeyset[k] is None and
not isinstance(newkeyset[k],
numpy.ndarray)):
if not have_same_dimensions(newkeyset[k], au[k]):
raise DimensionMismatchError("Function " + f.__name__ +
" variable " + k +
" should have dimensions of " +
str(au[k]),
get_dimensions(newkeyset[k]))
result = f(*args, **kwds)
if "result" in au:
assert have_same_dimensions(result, au["result"]), \
("Function " + f.__name__ + " should return a value with unit " +
str(au["result"]) + " but has returned " +
str(get_dimensions(result)))
return result
# new_f.__name__ = f.__name__
# new_f.__doc__ = f.__doc__
# new_f.__dict__.update(f.__dict__)
return new_f
return do_check_units
## Note: do not normally call this, see note on importing of decorator module at the top of this module
#if use_decorator:
# old_check_units = check_units
# def check_units(**au):
# return lambda f : decorator.new_wrapper(old_check_units(**au)(f), f)
# check_units.__doc__ = old_check_units.__doc__
def _check_nounits(**au):
"""Don't bother checking units decorator
"""
def dont_check_units(f):
return f
return dont_check_units
if 'sphinx' in sys.modules:
check_units = _check_nounits
def scalar_representation(x):
if isinstance(x, Unit):
return x.name
u = get_unit(x)
if isinstance(u, Unit):
return '(' + repr(float(x)) + '*' + u.name + ')'
if isinstance(x, Quantity):
return '(Quantity.with_dimensions(' + repr(float(x)) + ',' + repr(x.dim._dims) + '))'
return repr(x)
# Remove all units
if not bup.use_units:
check_units = _check_nounits
def get_dimensions(obj):
return Dimension()
def is_dimensionless(obj):
return True
def have_same_dimensions(obj1, obj2):
return True
def get_unit(x, *regs):
return 1.
def scalar_representation(x):
return '1.0'
###################################################
##### ADDITIONAL INFORMATION
#SI DIMENSIONS
#-------------
#Quantity Unit Symbol
#-------- ---- ------
#Length metre m
#Mass kilogram kg
#Time second s
#Electric current ampere A
#Temperature kelvin K
#Quantity of substance mole mol
#Luminosity candle cd
# SI UNIT PREFIXES
# ----------------
# Factor Name Prefix
# ----- ---- ------
# 10^24 yotta Y
# 10^21 zetta Z
# 10^18 exa E
# 10^15 peta P
# 10^12 tera T
# 10^9 giga G
# 10^6 mega M
# 10^3 kilo k
# 10^2 hecto h
# 10^1 deka da
# 1
# 10^-1 deci d
# 10^-2 centi c
# 10^-3 milli m
# 10^-6 micro u (\mu in SI)
# 10^-9 nano n
# 10^-12 pico p
# 10^-15 femto f
# 10^-18 atto a
# 10^-21 zepto z
# 10^-24 yocto y
|