This file is indexed.

/usr/lib/python2.7/dist-packages/astroplan/constraints.py is in python-astroplan 0.4-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
# Licensed under a 3-clause BSD style license - see LICENSE.rst
"""
Specify and constraints to determine which targets are observable for
an observer.
"""

from __future__ import (absolute_import, division, print_function,
                        unicode_literals)

# Standard library
from abc import ABCMeta, abstractmethod
import datetime
import warnings

# Third-party
from astropy.time import Time
import astropy.units as u
from astropy.coordinates import get_body, get_sun, get_moon, SkyCoord
from astropy import table

import numpy as np
from numpy.lib.stride_tricks import as_strided

# Package
from .moon import moon_illumination
from .utils import time_grid_from_range
from .target import get_skycoord

__all__ = ["AltitudeConstraint", "AirmassConstraint", "AtNightConstraint",
           "is_observable", "is_always_observable", "time_grid_from_range",
           "SunSeparationConstraint", "MoonSeparationConstraint",
           "MoonIlluminationConstraint", "LocalTimeConstraint",
           "PrimaryEclipseConstraint", "SecondaryEclipseConstraint",
           "Constraint", "TimeConstraint", "observability_table",
           "months_observable", "max_best_rescale", "min_best_rescale",
           "PhaseConstraint", "is_event_observable"]


def _make_cache_key(times, targets):
    """
    Make a unique key to reference this combination of ``times`` and ``targets``.

    Often, we wish to store expensive calculations for a combination of
    ``targets`` and ``times`` in a cache on an ``observer``` object. This
    routine will provide an appropriate, hashable, key to store these
    calculations in a dictionary.

    Parameters
    ----------
    times : `~astropy.time.Time`
        Array of times on which to test the constraint.
    targets : `~astropy.coordinates.SkyCoord`
        Target or list of targets.

    Returns
    -------
    cache_key : tuple
        A hashable tuple for use as a cache key
    """
    # make a tuple from times
    try:
        timekey = tuple(times.jd) + times.shape
    except BaseException:        # must be scalar
        timekey = (times.jd,)
    # make hashable thing from targets coords
    try:
        if hasattr(targets, 'frame'):
            # treat as a SkyCoord object. Accessing the longitude
            # attribute of the frame data should be unique and is
            # quicker than accessing the ra attribute.
            targkey = tuple(targets.frame.data.lon.value.ravel()) + targets.shape
        else:
            # assume targets is a string.
            targkey = (targets,)
    except BaseException:
        targkey = (targets.frame.data.lon,)
    return timekey + targkey


def _get_altaz(times, observer, targets, force_zero_pressure=False):
    """
    Calculate alt/az for ``target`` at times linearly spaced between
    the two times in ``time_range`` with grid spacing ``time_resolution``
    for ``observer``.

    Cache the result on the ``observer`` object.

    Parameters
    ----------
    times : `~astropy.time.Time`
        Array of times on which to test the constraint.
    targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`}
        Target or list of targets.
    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``.
    force_zero_pressure : bool
        Forcefully use 0 pressure.

    Returns
    -------
    altaz_dict : dict
        Dictionary containing two key-value pairs. (1) 'times' contains the
        times for the alt/az computations, (2) 'altaz' contains the
        corresponding alt/az coordinates at those times.
    """
    if not hasattr(observer, '_altaz_cache'):
        observer._altaz_cache = {}

    # convert times, targets to tuple for hashing
    aakey = _make_cache_key(times, targets)

    if aakey not in observer._altaz_cache:
        try:
            if force_zero_pressure:
                observer_old_pressure = observer.pressure
                observer.pressure = 0

            altaz = observer.altaz(times, targets, grid_times_targets=False)
            observer._altaz_cache[aakey] = dict(times=times,
                                                altaz=altaz)
        finally:
            if force_zero_pressure:
                observer.pressure = observer_old_pressure

    return observer._altaz_cache[aakey]


def _get_moon_data(times, observer, force_zero_pressure=False):
    """
    Calculate moon altitude az and illumination for an array of times for
    ``observer``.

    Cache the result on the ``observer`` object.

    Parameters
    ----------
    times : `~astropy.time.Time`
        Array of times on which to test the constraint.
    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``.
    force_zero_pressure : bool
        Forcefully use 0 pressure.

    Returns
    -------
    moon_dict : dict
        Dictionary containing three key-value pairs. (1) 'times' contains the
        times for the computations, (2) 'altaz' contains the
        corresponding alt/az coordinates at those times and (3) contains
        the moon illumination for those times.
    """
    if not hasattr(observer, '_moon_cache'):
        observer._moon_cache = {}

    # convert times to tuple for hashing
    aakey = _make_cache_key(times, 'moon')

    if aakey not in observer._moon_cache:
        try:
            if force_zero_pressure:
                observer_old_pressure = observer.pressure
                observer.pressure = 0

            altaz = observer.moon_altaz(times)
            illumination = np.array(moon_illumination(times))
            observer._moon_cache[aakey] = dict(times=times,
                                               illum=illumination,
                                               altaz=altaz)
        finally:
            if force_zero_pressure:
                observer.pressure = observer_old_pressure

    return observer._moon_cache[aakey]


def _get_meridian_transit_times(times, observer, targets):
    """
    Calculate next meridian transit for an array of times for ``targets`` and
    ``observer``.

    Cache the result on the ``observer`` object.

    Parameters
    ----------
    times : `~astropy.time.Time`
        Array of times on which to test the constraint
    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``
    targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`}
        Target or list of targets

    Returns
    -------
    time_dict : dict
        Dictionary containing a key-value pair. 'times' contains the
        meridian_transit times.
    """
    if not hasattr(observer, '_meridian_transit_cache'):
        observer._meridian_transit_cache = {}

    # convert times to tuple for hashing
    aakey = _make_cache_key(times, targets)

    if aakey not in observer._meridian_transit_cache:
        meridian_transit_times = observer.target_meridian_transit_time(times, targets)
        observer._meridian_transit_cache[aakey] = dict(times=meridian_transit_times)

    return observer._meridian_transit_cache[aakey]


@abstractmethod
class Constraint(object):
    """
    Abstract class for objects defining observational constraints.
    """
    __metaclass__ = ABCMeta

    def __call__(self, observer, targets, times=None,
                 time_range=None, time_grid_resolution=0.5*u.hour,
                 grid_times_targets=False):
        """
        Compute the constraint for this class

        Parameters
        ----------
        observer : `~astroplan.Observer`
            the observation location from which to apply the constraints
        targets : sequence of `~astroplan.Target`
            The targets on which to apply the constraints.
        times : `~astropy.time.Time`
            The times to compute the constraint.
            WHAT HAPPENS WHEN BOTH TIMES AND TIME_RANGE ARE SET?
        time_range : `~astropy.time.Time` (length = 2)
            Lower and upper bounds on time sequence.
        time_grid_resolution : `~astropy.units.quantity`
            Time-grid spacing
        grid_times_targets : bool
            if True, grids the constraint result with targets along the first
            index and times along the second. Otherwise, we rely on broadcasting
            the shapes together using standard numpy rules.
        Returns
        -------
        constraint_result : 1D or 2D array of float or bool
            The constraints. If 2D with targets along the first index and times along
            the second.
        """

        if times is None and time_range is not None:
            times = time_grid_from_range(time_range,
                                         time_resolution=time_grid_resolution)

        if grid_times_targets:
            targets = get_skycoord(targets)
            # TODO: these broadcasting operations are relatively slow
            # but there is potential for huge speedup if the end user
            # disables gridding and re-shapes the coords themselves
            # prior to evaluating multiple constraints.
            if targets.isscalar:
                # ensure we have a (1, 1) shape coord
                targets = SkyCoord(np.tile(targets, 1))[:, np.newaxis]
            else:
                targets = targets[..., np.newaxis]
        times, targets = observer._preprocess_inputs(times, targets, grid_times_targets=False)
        result = self.compute_constraint(times, observer, targets)

        # make sure the output has the same shape as would result from
        # broadcasting times and targets against each other
        if targets is not None:
            # broadcasting times v targets is slow due to
            # complex nature of these objects. We make
            # to simple numpy arrays of the same shape and
            # broadcast these to find the correct shape
            shp1, shp2 = times.shape, targets.shape
            x = np.array([1])
            a = as_strided(x, shape=shp1, strides=[0] * len(shp1))
            b = as_strided(x, shape=shp2, strides=[0] * len(shp2))
            output_shape = np.broadcast(a, b).shape
            if output_shape != np.array(result).shape:
                result = np.broadcast_to(result, output_shape)

        return result

    @abstractmethod
    def compute_constraint(self, times, observer, targets):
        """
        Actually do the real work of computing the constraint.  Subclasses
        override this.

        Parameters
        ----------
        times : `~astropy.time.Time`
            The times to compute the constraint
        observer : `~astroplan.Observer`
            the observaton location from which to apply the constraints
        targets : sequence of `~astroplan.Target`
            The targets on which to apply the constraints.

        Returns
        -------
        constraint_result : 2D array of float or bool
            The constraints, with targets along the first index and times along
            the second.
        """
        # Should be implemented on each subclass of Constraint
        raise NotImplementedError


class AltitudeConstraint(Constraint):
    """
    Constrain the altitude of the target.

    .. note::
        This can misbehave if you try to constrain negative altitudes, as
        the `~astropy.coordinates.AltAz` frame tends to mishandle negative


    Parameters
    ----------
    min : `~astropy.units.Quantity` or `None`
        Minimum altitude of the target (inclusive). `None` indicates no limit.
    max : `~astropy.units.Quantity` or `None`
        Maximum altitude of the target (inclusive). `None` indicates no limit.
    boolean_constraint : bool
        If True, the constraint is treated as a boolean (True for within the
        limits and False for outside).  If False, the constraint returns a
        float on [0, 1], where 0 is the min altitude and 1 is the max.
    """

    def __init__(self, min=None, max=None, boolean_constraint=True):
        if min is None:
            self.min = -90*u.deg
        else:
            self.min = min
        if max is None:
            self.max = 90*u.deg
        else:
            self.max = max

        self.boolean_constraint = boolean_constraint

    def compute_constraint(self, times, observer, targets):
        cached_altaz = _get_altaz(times, observer, targets)
        alt = cached_altaz['altaz'].alt
        if self.boolean_constraint:
            lowermask = self.min <= alt
            uppermask = alt <= self.max
            return lowermask & uppermask
        else:
            return max_best_rescale(alt, self.min, self.max)


class AirmassConstraint(AltitudeConstraint):
    """
    Constrain the airmass of a target.

    In the current implementation the airmass is approximated by the secant of
    the zenith angle.

    .. note::
        The ``max`` and ``min`` arguments appear in the order (max, min)
        in this initializer to support the common case for users who care
        about the upper limit on the airmass (``max``) and not the lower
        limit.

    Parameters
    ----------
    max : float or `None`
        Maximum airmass of the target. `None` indicates no limit.
    min : float or `None`
        Minimum airmass of the target. `None` indicates no limit.
    boolean_contstraint : bool

    Examples
    --------
    To create a constraint that requires the airmass be "better than 2",
    i.e. at a higher altitude than airmass=2::

        AirmassConstraint(2)
    """

    def __init__(self, max=None, min=1, boolean_constraint=True):
        self.min = min
        self.max = max
        self.boolean_constraint = boolean_constraint

    def compute_constraint(self, times, observer, targets):
        cached_altaz = _get_altaz(times, observer, targets)
        secz = cached_altaz['altaz'].secz.value
        if self.boolean_constraint:
            if self.min is None and self.max is not None:
                mask = secz <= self.max
            elif self.max is None and self.min is not None:
                mask = self.min <= secz
            elif self.min is not None and self.max is not None:
                mask = (self.min <= secz) & (secz <= self.max)
            else:
                raise ValueError("No max and/or min specified in "
                                 "AirmassConstraint.")
            return mask
        else:
            if self.max is None:
                raise ValueError("Cannot have a float AirmassConstraint if max is None.")
            else:
                mx = self.max

            mi = 1 if self.min is None else self.min
            # values below 1 should be disregarded
            return min_best_rescale(secz, mi, mx, less_than_min=0)


class AtNightConstraint(Constraint):
    """
    Constrain the Sun to be below ``horizon``.
    """
    @u.quantity_input(horizon=u.deg)
    def __init__(self, max_solar_altitude=0*u.deg, force_pressure_zero=True):
        """
        Parameters
        ----------
        max_solar_altitude : `~astropy.units.Quantity`
            The altitude of the sun below which it is considered to be "night"
            (inclusive).
        force_pressure_zero : bool (optional)
            Force the pressure to zero for solar altitude calculations. This
            avoids errors in the altitude of the Sun that can occur when the
            Sun is below the horizon and the corrections for atmospheric
            refraction return nonsense values.
        """
        self.max_solar_altitude = max_solar_altitude
        self.force_pressure_zero = force_pressure_zero

    @classmethod
    def twilight_civil(cls, **kwargs):
        """
        Consider nighttime as time between civil twilights (-6 degrees).
        """
        return cls(max_solar_altitude=-6*u.deg, **kwargs)

    @classmethod
    def twilight_nautical(cls, **kwargs):
        """
        Consider nighttime as time between nautical twilights (-12 degrees).
        """
        return cls(max_solar_altitude=-12*u.deg, **kwargs)

    @classmethod
    def twilight_astronomical(cls, **kwargs):
        """
        Consider nighttime as time between astronomical twilights (-18 degrees).
        """
        return cls(max_solar_altitude=-18*u.deg, **kwargs)

    def _get_solar_altitudes(self, times, observer, targets):
        if not hasattr(observer, '_altaz_cache'):
            observer._altaz_cache = {}

        aakey = _make_cache_key(times, 'sun')

        if aakey not in observer._altaz_cache:
            try:
                if self.force_pressure_zero:
                    observer_old_pressure = observer.pressure
                    observer.pressure = 0

                # find solar altitude at these times
                altaz = observer.altaz(times, get_sun(times))
                altitude = altaz.alt
                # cache the altitude
                observer._altaz_cache[aakey] = dict(times=times,
                                                    altitude=altitude)
            finally:
                if self.force_pressure_zero:
                    observer.pressure = observer_old_pressure
        else:
            altitude = observer._altaz_cache[aakey]['altitude']

        return altitude

    def compute_constraint(self, times, observer, targets):
        solar_altitude = self._get_solar_altitudes(times, observer, targets)
        mask = solar_altitude <= self.max_solar_altitude
        return mask


class SunSeparationConstraint(Constraint):
    """
    Constrain the distance between the Sun and some targets.
    """

    def __init__(self, min=None, max=None):
        """
        Parameters
        ----------
        min : `~astropy.units.Quantity` or `None` (optional)
            Minimum acceptable separation between Sun and target (inclusive).
            `None` indicates no limit.
        max : `~astropy.units.Quantity` or `None` (optional)
            Minimum acceptable separation between Sun and target (inclusive).
            `None` indicates no limit.
        """
        self.min = min
        self.max = max

    def compute_constraint(self, times, observer, targets):
        # use get_body rather than get sun here, since
        # it returns the Sun's coordinates in an observer
        # centred frame, so the separation is as-seen
        # by the observer.
        # 'get_sun' returns ICRS coords.
        sun = get_body('sun', times, location=observer.location)
        solar_separation = sun.separation(targets)

        if self.min is None and self.max is not None:
            mask = self.max >= solar_separation
        elif self.max is None and self.min is not None:
            mask = self.min <= solar_separation
        elif self.min is not None and self.max is not None:
            mask = ((self.min <= solar_separation) &
                    (solar_separation <= self.max))
        else:
            raise ValueError("No max and/or min specified in "
                             "SunSeparationConstraint.")
        return mask


class MoonSeparationConstraint(Constraint):
    """
    Constrain the distance between the Earth's moon and some targets.
    """

    def __init__(self, min=None, max=None, ephemeris=None):
        """
        Parameters
        ----------
        min : `~astropy.units.Quantity` or `None` (optional)
            Minimum acceptable separation between moon and target (inclusive).
            `None` indicates no limit.
        max : `~astropy.units.Quantity` or `None` (optional)
            Maximum acceptable separation between moon and target (inclusive).
            `None` indicates no limit.
        ephemeris : str, optional
            Ephemeris to use.  If not given, use the one set with
            ``astropy.coordinates.solar_system_ephemeris.set`` (which is
            set to 'builtin' by default).
        """
        self.min = min
        self.max = max
        self.ephemeris = ephemeris

    def compute_constraint(self, times, observer, targets):
        # removed the location argument here, which causes small <1 deg
        # innacuracies, but it is needed until astropy PR #5897 is released
        # which should be astropy 1.3.2
        moon = get_moon(times,
                        ephemeris=self.ephemeris)
        # note to future editors - the order matters here
        # moon.separation(targets) is NOT the same as targets.separation(moon)
        # the former calculates the separation in the frame of the moon coord
        # which is GCRS, and that is what we want.
        moon_separation = moon.separation(targets)

        if self.min is None and self.max is not None:
            mask = self.max >= moon_separation
        elif self.max is None and self.min is not None:
            mask = self.min <= moon_separation
        elif self.min is not None and self.max is not None:
            mask = ((self.min <= moon_separation) &
                    (moon_separation <= self.max))
        else:
            raise ValueError("No max and/or min specified in "
                             "MoonSeparationConstraint.")
        return mask


class MoonIlluminationConstraint(Constraint):
    """
    Constrain the fractional illumination of the Earth's moon.

    Constraint is also satisfied if the Moon has set.
    """

    def __init__(self, min=None, max=None, ephemeris=None):
        """
        Parameters
        ----------
        min : float or `None` (optional)
            Minimum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        max : float or `None` (optional)
            Maximum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        ephemeris : str, optional
            Ephemeris to use.  If not given, use the one set with
            `~astropy.coordinates.solar_system_ephemeris` (which is
            set to 'builtin' by default).
        """
        self.min = min
        self.max = max
        self.ephemeris = ephemeris

    @classmethod
    def dark(cls, min=None, max=0.25, **kwargs):
        """
        initialize a `~astroplan.constraints.MoonIlluminationConstraint`
        with defaults of no minimum and a maximum of 0.25

        Parameters
        ----------
        min : float or `None` (optional)
            Minimum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        max : float or `None` (optional)
            Maximum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        """
        return cls(min, max, **kwargs)

    @classmethod
    def grey(cls, min=0.25, max=0.65, **kwargs):
        """
        initialize a `~astroplan.constraints.MoonIlluminationConstraint`
        with defaults of a minimum of 0.25 and a maximum of 0.65

        Parameters
        ----------
        min : float or `None` (optional)
            Minimum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        max : float or `None` (optional)
            Maximum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        """
        return cls(min, max, **kwargs)

    @classmethod
    def bright(cls, min=0.65, max=None, **kwargs):
        """
        initialize a `~astroplan.constraints.MoonIlluminationConstraint`
        with defaults of a minimum of 0.65 and no maximum

        Parameters
        ----------
        min : float or `None` (optional)
            Minimum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        max : float or `None` (optional)
            Maximum acceptable fractional illumination (inclusive). `None`
            indicates no limit.
        """
        return cls(min, max, **kwargs)

    def compute_constraint(self, times, observer, targets):
        # first is the moon up?
        cached_moon = _get_moon_data(times, observer)
        moon_alt = cached_moon['altaz'].alt
        moon_down_mask = moon_alt < 0
        moon_up_mask = moon_alt >= 0

        illumination = cached_moon['illum']
        if self.min is None and self.max is not None:
            mask = (self.max >= illumination) | moon_down_mask
        elif self.max is None and self.min is not None:
            mask = (self.min <= illumination) & moon_up_mask
        elif self.min is not None and self.max is not None:
            mask = ((self.min <= illumination) &
                    (illumination <= self.max)) & moon_up_mask
        else:
            raise ValueError("No max and/or min specified in "
                             "MoonSeparationConstraint.")

        return mask


class LocalTimeConstraint(Constraint):
    """
    Constrain the observable hours.
    """

    def __init__(self, min=None, max=None):
        """
        Parameters
        ----------
        min : `~datetime.time`
            Earliest local time (inclusive). `None` indicates no limit.

        max : `~datetime.time`
            Latest local time (inclusive). `None` indicates no limit.

        Examples
        --------
        Constrain the observations to targets that are observable between
        23:50 and 04:08 local time:

        >>> from astroplan import Observer
        >>> from astroplan.constraints import LocalTimeConstraint
        >>> import datetime as dt
        >>> subaru = Observer.at_site("Subaru", timezone="US/Hawaii")
        >>> # bound times between 23:50 and 04:08 local Hawaiian time
        >>> constraint = LocalTimeConstraint(min=dt.time(23,50), max=dt.time(4,8))
        """

        self.min = min
        self.max = max

        if self.min is None and self.max is None:
            raise ValueError("You must at least supply either a minimum or a maximum time.")

        if self.min is not None:
            if not isinstance(self.min, datetime.time):
                raise TypeError("Time limits must be specified as datetime.time objects.")

        if self.max is not None:
            if not isinstance(self.max, datetime.time):
                raise TypeError("Time limits must be specified as datetime.time objects.")

    def compute_constraint(self, times, observer, targets):

        timezone = None

        # get timezone from time objects, or from observer
        if self.min is not None:
            timezone = self.min.tzinfo

        elif self.max is not None:
            timezone = self.max.tzinfo

        if timezone is None:
            timezone = observer.timezone

        if self.min is not None:
            min_time = self.min
        else:
            min_time = self.min = datetime.time(0, 0, 0)

        if self.max is not None:
            max_time = self.max
        else:
            max_time = datetime.time(23, 59, 59)

        # If time limits occur on same day:
        if self.min < self.max:
            try:
                mask = np.array([min_time <= t.time() <= max_time for t in times.datetime])
            except BaseException:                # use np.bool so shape queries don't cause problems
                mask = np.bool_(min_time <= times.datetime.time() <= max_time)

        # If time boundaries straddle midnight:
        else:
            try:
                mask = np.array([(t.time() >= min_time) or
                                (t.time() <= max_time) for t in times.datetime])
            except BaseException:
                mask = np.bool_((times.datetime.time() >= min_time) or
                                (times.datetime.time() <= max_time))
        return mask


class TimeConstraint(Constraint):
    """Constrain the observing time to be within certain time limits.

    An example use case for this class would be to associate an acceptable
    time range with a specific observing block. This can be useful if not
    all observing blocks are valid over the time limits used in calls
    to `is_observable` or `is_always_observable`.
    """

    def __init__(self, min=None, max=None):
        """
        Parameters
        ----------
        min : `~astropy.time.Time`
            Earliest time (inclusive). `None` indicates no limit.

        max : `~astropy.time.Time`
            Latest time (inclusive). `None` indicates no limit.

        Examples
        --------
        Constrain the observations to targets that are observable between
        2016-03-28 and 2016-03-30:

        >>> from astroplan import Observer
        >>> from astropy.time import Time
        >>> subaru = Observer.at_site("Subaru")
        >>> t1 = Time("2016-03-28T12:00:00")
        >>> t2 = Time("2016-03-30T12:00:00")
        >>> constraint = TimeConstraint(t1,t2)
        """
        self.min = min
        self.max = max

        if self.min is None and self.max is None:
            raise ValueError("You must at least supply either a minimum or a "
                             "maximum time.")

        if self.min is not None:
            if not isinstance(self.min, Time):
                raise TypeError("Time limits must be specified as "
                                "astropy.time.Time objects.")

        if self.max is not None:
            if not isinstance(self.max, Time):
                raise TypeError("Time limits must be specified as "
                                "astropy.time.Time objects.")

    def compute_constraint(self, times, observer, targets):
        with warnings.catch_warnings():
            warnings.simplefilter('ignore')
            min_time = Time("1950-01-01T00:00:00") if self.min is None else self.min
            max_time = Time("2120-01-01T00:00:00") if self.max is None else self.max
        mask = np.logical_and(times > min_time, times < max_time)
        return mask


class PrimaryEclipseConstraint(Constraint):
    """
    Constrain observations to times during primary eclipse.
    """

    def __init__(self, eclipsing_system):
        """
        Parameters
        ----------
        eclipsing_system : `~astroplan.periodic.EclipsingSystem`
            System which must be in primary eclipse.
        """
        self.eclipsing_system = eclipsing_system

    def compute_constraint(self, times, observer=None, targets=None):
        mask = self.eclipsing_system.in_primary_eclipse(times)
        return mask


class SecondaryEclipseConstraint(Constraint):
    """
    Constrain observations to times during secondary eclipse.
    """

    def __init__(self, eclipsing_system):
        """
        Parameters
        ----------
        eclipsing_system : `~astroplan.periodic.EclipsingSystem`
            System which must be in secondary eclipse.
        """
        self.eclipsing_system = eclipsing_system

    def compute_constraint(self, times, observer=None, targets=None):
        mask = self.eclipsing_system.in_secondary_eclipse(times)
        return mask


class PhaseConstraint(Constraint):
    """
    Constrain observations to times in some range of phases for a periodic event
    (e.g.~transiting exoplanets, eclipsing binaries).
    """

    def __init__(self, periodic_event, min=None, max=None):
        """
        Parameters
        ----------
        periodic_event : `~astroplan.periodic.PeriodicEvent` or subclass
            System on which to compute the phase. For example, the system
            could be an eclipsing or non-eclipsing binary, or exoplanet system.
        min : float (optional)
            Minimum phase (inclusive) on interval [0, 1). Default is zero.
        max : float (optional)
            Maximum phase (inclusive) on interval [0, 1). Default is one.

        Examples
        --------
        To constrain observations on orbital phases between 0.4 and 0.6,
        >>> from astroplan import PeriodicEvent
        >>> from astropy.time import Time
        >>> import astropy.units as u
        >>> binary = PeriodicEvent(epoch=Time('2017-01-01 02:00'), period=1*u.day)
        >>> constraint = PhaseConstraint(binary, min=0.4, max=0.6)

        The minimum and maximum phase must be described on the interval [0, 1).
        To constrain observations on orbital phases between 0.6 and 1.2, for
        example, you should subtract one from the second number:
        >>> constraint = PhaseConstraint(binary, min=0.6, max=0.2)
        """
        self.periodic_event = periodic_event
        if (min < 0) or (min > 1) or (max < 0) or (max > 1):
            raise ValueError('The minimum of the PhaseConstraint must be within'
                             ' the interval [0, 1).')
        self.min = min if min is not None else 0.0
        self.max = max if max is not None else 1.0

    def compute_constraint(self, times, observer=None, targets=None):
        phase = self.periodic_event.phase(times)

        mask = np.where(self.max > self.min,
                        (phase >= self.min) & (phase <= self.max),
                        (phase >= self.min) | (phase <= self.max))
        return mask


def is_always_observable(constraints, observer, targets, times=None,
                         time_range=None, time_grid_resolution=0.5*u.hour):
    """
    A function to determine whether ``targets`` are always observable throughout
    ``time_range`` given constraints in the ``constraints_list`` for a
    particular ``observer``.

    Parameters
    ----------
    constraints : list or `~astroplan.constraints.Constraint`
        Observational constraint(s)

    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``

    targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`}
        Target or list of targets

    times : `~astropy.time.Time` (optional)
        Array of times on which to test the constraint

    time_range : `~astropy.time.Time` (optional)
        Lower and upper bounds on time sequence, with spacing
        ``time_resolution``. This will be passed as the first argument into
        `~astroplan.time_grid_from_range`.

    time_grid_resolution : `~astropy.units.Quantity` (optional)
        If ``time_range`` is specified, determine whether constraints are met
        between test times in ``time_range`` by checking constraint at
        linearly-spaced times separated by ``time_resolution``. Default is 0.5
        hours.

    Returns
    -------
    ever_observable : list
        List of booleans of same length as ``targets`` for whether or not each
        target is observable in the time range given the constraints.
    """
    if not hasattr(constraints, '__len__'):
        constraints = [constraints]

    applied_constraints = [constraint(observer, targets, times=times,
                                      time_range=time_range,
                                      time_grid_resolution=time_grid_resolution,
                                      grid_times_targets=True)
                           for constraint in constraints]
    constraint_arr = np.logical_and.reduce(applied_constraints)
    return np.all(constraint_arr, axis=1)


def is_observable(constraints, observer, targets, times=None,
                  time_range=None, time_grid_resolution=0.5*u.hour):
    """
    Determines if the ``targets`` are observable during ``time_range`` given
    constraints in ``constraints_list`` for a particular ``observer``.

    Parameters
    ----------
    constraints : list or `~astroplan.constraints.Constraint`
        Observational constraint(s)

    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``

    targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`}
        Target or list of targets

    times : `~astropy.time.Time` (optional)
        Array of times on which to test the constraint

    time_range : `~astropy.time.Time` (optional)
        Lower and upper bounds on time sequence, with spacing
        ``time_resolution``. This will be passed as the first argument into
        `~astroplan.time_grid_from_range`.

    time_grid_resolution : `~astropy.units.Quantity` (optional)
        If ``time_range`` is specified, determine whether constraints are met
        between test times in ``time_range`` by checking constraint at
        linearly-spaced times separated by ``time_resolution``. Default is 0.5
        hours.

    Returns
    -------
    ever_observable : list
        List of booleans of same length as ``targets`` for whether or not each
        target is ever observable in the time range given the constraints.
    """
    if not hasattr(constraints, '__len__'):
        constraints = [constraints]

    applied_constraints = [constraint(observer, targets, times=times,
                                      time_range=time_range,
                                      time_grid_resolution=time_grid_resolution,
                                      grid_times_targets=True)
                           for constraint in constraints]
    constraint_arr = np.logical_and.reduce(applied_constraints)
    return np.any(constraint_arr, axis=1)


def is_event_observable(constraints, observer, target, times=None,
                        times_ingress_egress=None):
    """
    Determines if the ``target`` is observable at each time in ``times``, given
    constraints in ``constraints`` for a particular ``observer``.

    Parameters
    ----------
    constraints : list or `~astroplan.constraints.Constraint`
        Observational constraint(s)

    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``

    target : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`}
        Target

    times : `~astropy.time.Time` (optional)
        Array of mid-event times on which to test the constraints

    times_ingress_egress : `~astropy.time.Time` (optional)
        Array of ingress and egress times for ``N`` events, with shape
        (``N``, 2).

    Returns
    -------
    event_observable : `~numpy.ndarray`
        Array of booleans of same length as ``times`` for whether or not the
        target is ever observable at each time, given the constraints.
    """
    if not hasattr(constraints, '__len__'):
        constraints = [constraints]

    if times is not None:
        applied_constraints = [constraint(observer, target, times=times,
                                          grid_times_targets=True)
                               for constraint in constraints]
        constraint_arr = np.logical_and.reduce(applied_constraints)

    else:
        times_ing = times_ingress_egress[:, 0]
        times_egr = times_ingress_egress[:, 1]
        applied_constraints_ing = [constraint(observer, target, times=times_ing,
                                              grid_times_targets=True)
                                   for constraint in constraints]
        applied_constraints_egr = [constraint(observer, target, times=times_egr,
                                              grid_times_targets=True)
                                   for constraint in constraints]

        constraint_arr = np.logical_and(np.logical_and.reduce(applied_constraints_ing),
                                        np.logical_and.reduce(applied_constraints_egr))
    return constraint_arr


def months_observable(constraints, observer, targets,
                      time_grid_resolution=0.5*u.hour):
    """
    Determines which month the specified ``targets`` are observable for a
    specific ``observer``, given the supplied ``constriants``.

    Parameters
    ----------
    constraints : list or `~astroplan.constraints.Constraint`
        Observational constraint(s)

    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``

    targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`}
        Target or list of targets

    time_grid_resolution : `~astropy.units.Quantity` (optional)
        If ``time_range`` is specified, determine whether constraints are met
        between test times in ``time_range`` by checking constraint at
        linearly-spaced times separated by ``time_resolution``. Default is 0.5
        hours.

    Returns
    -------
    observable_months : list
        List of sets of unique integers representing each month that a target is
        observable, one set per target. These integers are 1-based so that
        January maps to 1, February maps to 2, etc.

    """
    # TODO: This method could be sped up a lot by dropping to the trigonometric
    # altitude calculations.
    if not hasattr(constraints, '__len__'):
        constraints = [constraints]

    # Calculate throughout the year of 2014 so as not to require forward
    # extrapolation off of the IERS tables
    time_range = Time(['2014-01-01', '2014-12-31'])
    times = time_grid_from_range(time_range, time_grid_resolution)

    # TODO: This method could be sped up a lot by dropping to the trigonometric
    # altitude calculations.

    applied_constraints = [constraint(observer, targets,
                                      times=times,
                                      grid_times_targets=True)
                           for constraint in constraints]
    constraint_arr = np.logical_and.reduce(applied_constraints)

    months_observable = []
    for target, observable in zip(targets, constraint_arr):
        s = set([t.datetime.month for t in times[observable]])
        months_observable.append(s)

    return months_observable


def observability_table(constraints, observer, targets, times=None,
                        time_range=None, time_grid_resolution=0.5*u.hour):
    """
    Creates a table with information about observability for all  the ``targets``
    over the requested ``time_range``, given the constraints in
    ``constraints_list`` for ``observer``.

    Parameters
    ----------
    constraints : list or `~astroplan.constraints.Constraint`
        Observational constraint(s)

    observer : `~astroplan.Observer`
        The observer who has constraints ``constraints``

    targets : {list, `~astropy.coordinates.SkyCoord`, `~astroplan.FixedTarget`}
        Target or list of targets

    times : `~astropy.time.Time` (optional)
        Array of times on which to test the constraint

    time_range : `~astropy.time.Time` (optional)
        Lower and upper bounds on time sequence, with spacing
        ``time_resolution``. This will be passed as the first argument into
        `~astroplan.time_grid_from_range`.

    time_grid_resolution : `~astropy.units.Quantity` (optional)
        If ``time_range`` is specified, determine whether constraints are met
        between test times in ``time_range`` by checking constraint at
        linearly-spaced times separated by ``time_resolution``. Default is 0.5
        hours.

    Returns
    -------
    observability_table : `~astropy.table.Table`
        A Table containing the observability information for each of the
        ``targets``. The table contains four columns with information about the
        target and it's observability: ``'target name'``, ``'ever observable'``,
        ``'always observable'``, and ``'fraction of time observable'``.  It also
        contains metadata entries ``'times'`` (with an array of all the times),
        ``'observer'`` (the `~astroplan.Observer` object), and ``'constraints'``
        (containing the supplied ``constraints``).
    """
    if not hasattr(constraints, '__len__'):
        constraints = [constraints]

    applied_constraints = [constraint(observer, targets, times=times,
                                      time_range=time_range,
                                      time_grid_resolution=time_grid_resolution,
                                      grid_times_targets=True)
                           for constraint in constraints]
    constraint_arr = np.logical_and.reduce(applied_constraints)

    colnames = ['target name', 'ever observable', 'always observable',
                'fraction of time observable']

    target_names = [target.name for target in targets]
    ever_obs = np.any(constraint_arr, axis=1)
    always_obs = np.all(constraint_arr, axis=1)
    frac_obs = np.sum(constraint_arr, axis=1) / constraint_arr.shape[1]

    tab = table.Table(names=colnames, data=[target_names, ever_obs, always_obs,
                                            frac_obs])

    if times is None and time_range is not None:
        times = time_grid_from_range(time_range,
                                     time_resolution=time_grid_resolution)

    tab.meta['times'] = times.datetime
    tab.meta['observer'] = observer
    tab.meta['constraints'] = constraints

    return tab


def min_best_rescale(vals, min_val, max_val, less_than_min=1):
    """
    rescales an input array ``vals`` to be a score (between zero and one),
    where the ``min_val`` goes to one, and the ``max_val`` goes to zero.

    Parameters
    ----------
    vals : array-like
        the values that need to be rescaled to be between 0 and 1
    min_val : float
        worst acceptable value (rescales to 0)
    max_val : float
        best value cared about (rescales to 1)
    less_than_min : 0 or 1
        what is returned for ``vals`` below ``min_val``. (in some cases
        anything less than ``min_val`` should also return one,
        in some cases it should return zero)

    Returns
    -------
    array of floats between 0 and 1 inclusive rescaled so that
    ``vals`` equal to ``max_val`` equal 0 and those equal to
    ``min_val`` equal 1

    Examples
    --------
    rescale airmasses to between 0 and 1, with the best (1)
    and worst (2.25). All values outside the range should
    return 0.
    >>> from astroplan.constraints import min_best_rescale
    >>> import numpy as np
    >>> airmasses = np.array([1, 1.5, 2, 3, 0])
    >>> min_best_rescale(airmasses, 1, 2.25, less_than_min = 0)
    array([ 1. ,  0.6,  0.2,  0. , 0. ])
    """
    rescaled = (vals - max_val) / (min_val - max_val)
    below = vals < min_val
    above = vals > max_val
    rescaled[below] = less_than_min
    rescaled[above] = 0

    return rescaled


def max_best_rescale(vals, min_val, max_val, greater_than_max=1):
    """
    rescales an input array ``vals`` to be a score (between zero and one),
    where the ``max_val`` goes to one, and the ``min_val`` goes to zero.

    Parameters
    ----------
    vals : array-like
        the values that need to be rescaled to be between 0 and 1
    min_val : float
        worst acceptable value (rescales to 0)
    max_val : float
        best value cared about (rescales to 1)
    greater_than_max : 0 or 1
        what is returned for ``vals`` above ``max_val``. (in some cases
        anything higher than ``max_val`` should also return one,
        in some cases it should return zero)

    Returns
    -------
    array of floats between 0 and 1 inclusive rescaled so that
    ``vals`` equal to ``min_val`` equal 0 and those equal to
    ``max_val`` equal 1

    Examples
    --------
    rescale an array of altitudes to be between 0 and 1,
    with the best (60) going to 1 and worst (35) going to
    0. For values outside the range, the rescale should
    return 0 below 35 and 1 above 60.
    >>> from astroplan.constraints import max_best_rescale
    >>> import numpy as np
    >>> altitudes = np.array([20, 30, 40, 45, 55, 70])
    >>> max_best_rescale(altitudes, 35, 60)
    array([ 0. , 0. , 0.2, 0.4, 0.8, 1. ])
    """
    rescaled = (vals - min_val) / (max_val - min_val)
    below = vals < min_val
    above = vals > max_val
    rescaled[below] = 0
    rescaled[above] = greater_than_max

    return rescaled