/usr/lib/python2.7/dist-packages/ase/constraints.py is in python-ase 3.15.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 | from __future__ import division, print_function
from math import sqrt
from ase.geometry import find_mic
from ase.calculators.calculator import PropertyNotImplementedError
import numpy as np
__all__ = ['FixCartesian', 'FixBondLength', 'FixedMode', 'FixConstraintSingle',
'FixAtoms', 'UnitCellFilter', 'FixScaled', 'StrainFilter',
'FixedPlane', 'Filter', 'FixConstraint', 'FixedLine',
'FixBondLengths', 'FixInternals', 'Hookean', 'ExternalForce']
def dict2constraint(dct):
if dct['name'] not in __all__:
raise ValueError
return globals()[dct['name']](**dct['kwargs'])
def slice2enlist(s, n):
"""Convert a slice object into a list of (new, old) tuples."""
if isinstance(s, slice):
return enumerate(range(*s.indices(n)))
return enumerate(s)
def constrained_indices(atoms, only_include=None):
"""Returns a list of indices for the atoms that are constrained
by a constraint that is applied. By setting only_include to a
specific type of constraint you can make it only look for that
given constraint.
"""
indices = []
for constraint in atoms.constraints:
if only_include is not None:
if not isinstance(constraint, only_include):
continue
indices.extend(np.array(constraint.get_indices()))
return np.array(np.unique(indices))
class FixConstraint:
"""Base class for classes that fix one or more atoms in some way."""
def index_shuffle(self, atoms, ind):
"""Change the indices.
When the ordering of the atoms in the Atoms object changes,
this method can be called to shuffle the indices of the
constraints.
ind -- List or tuple of indices.
"""
raise NotImplementedError
def repeat(self, m, n):
""" basic method to multiply by m, needs to know the length
of the underlying atoms object for the assignment of
multiplied constraints to work.
"""
msg = ("Repeat is not compatible with your atoms' constraints."
' Use atoms.set_constraint() before calling repeat to '
'remove your constraints.')
raise NotImplementedError(msg)
def adjust_momenta(self, atoms, momenta):
"""Adjusts momenta in identical manner to forces."""
self.adjust_forces(atoms, momenta)
def copy(self):
return dict2constraint(self.todict().copy())
class FixConstraintSingle(FixConstraint):
"""Base class for classes that fix a single atom."""
def __init__(self, a):
self.a = a
def index_shuffle(self, atoms, ind):
"""The atom index must be stored as self.a."""
newa = None # Signal error
if self.a < 0:
self.a += len(atoms)
for new, old in slice2enlist(ind, len(atoms)):
if old == self.a:
newa = new
break
if newa is None:
raise IndexError('Constraint not part of slice')
self.a = newa
def get_indices(self):
return [self.a]
class FixAtoms(FixConstraint):
"""Constraint object for fixing some chosen atoms."""
def __init__(self, indices=None, mask=None):
"""Constrain chosen atoms.
Parameters
----------
indices : list of int
Indices for those atoms that should be constrained.
mask : list of bool
One boolean per atom indicating if the atom should be
constrained or not.
Examples
--------
Fix all Copper atoms:
>>> mask = [s == 'Cu' for s in atoms.get_chemical_symbols()]
>>> c = FixAtoms(mask=mask)
>>> atoms.set_constraint(c)
Fix all atoms with z-coordinate less than 1.0 Angstrom:
>>> c = FixAtoms(mask=atoms.positions[:, 2] < 1.0)
>>> atoms.set_constraint(c)
"""
if indices is None and mask is None:
raise ValueError('Use "indices" or "mask".')
if indices is not None and mask is not None:
raise ValueError('Use only one of "indices" and "mask".')
if mask is not None:
indices = np.arange(len(mask))[np.asarray(mask, bool)]
else:
# Check for duplicates:
srt = np.sort(indices)
if (np.diff(srt) == 0).any():
raise ValueError(
'FixAtoms: The indices array contained duplicates. '
'Perhaps you wanted to specify a mask instead, but '
'forgot the mask= keyword.')
self.index = np.asarray(indices, int)
if self.index.ndim != 1:
raise ValueError('Wrong argument to FixAtoms class!')
self.removed_dof = 3 * len(self.index)
def adjust_positions(self, atoms, new):
new[self.index] = atoms.positions[self.index]
def adjust_forces(self, atoms, forces):
forces[self.index] = 0.0
def index_shuffle(self, atoms, ind):
# See docstring of superclass
index = []
for new, old in slice2enlist(ind, len(atoms)):
if old in self.index:
index.append(new)
if len(index) == 0:
raise IndexError('All indices in FixAtoms not part of slice')
self.index = np.asarray(index, int)
def get_indices(self):
return self.index
def __repr__(self):
return 'FixAtoms(indices=%s)' % ints2string(self.index)
def todict(self):
return {'name': 'FixAtoms',
'kwargs': {'indices': self.index}}
def repeat(self, m, n):
i0 = 0
natoms = 0
if isinstance(m, int):
m = (m, m, m)
index_new = []
for m2 in range(m[2]):
for m1 in range(m[1]):
for m0 in range(m[0]):
i1 = i0 + n
index_new += [i + natoms for i in self.index]
i0 = i1
natoms += n
self.index = np.asarray(index_new, int)
return self
def delete_atoms(self, indices, natoms):
"""Removes atom number ind from the index array, if present.
Required for removing atoms with existing FixAtoms constraints.
"""
i = np.zeros(natoms, int) - 1
new = np.delete(np.arange(natoms), indices)
i[new] = np.arange(len(new))
index = i[self.index]
self.index = index[index >= 0]
if len(self.index) == 0:
return None
return self
def ints2string(x, threshold=None):
"""Convert ndarray of ints to string."""
if threshold is None or len(x) <= threshold:
return str(x.tolist())
return str(x[:threshold].tolist())[:-1] + ', ...]'
class FixBondLengths(FixConstraint):
maxiter = 500
def __init__(self, pairs, tolerance=1e-13, bondlengths=None, iterations=None):
"""iterations:
Ignored"""
self.pairs = np.asarray(pairs)
self.tolerance = tolerance
self.bondlengths = bondlengths
self.removed_dof = len(pairs)
def adjust_positions(self, atoms, new):
old = atoms.positions
masses = atoms.get_masses()
if self.bondlengths is None:
self.bondlengths = self.initialize_bond_lengths(atoms)
for i in range(self.maxiter):
converged = True
for j, ab in enumerate(self.pairs):
a = ab[0]
b = ab[1]
cd = self.bondlengths[j]
r0 = old[a] - old[b]
d0 = find_mic([r0], atoms.cell, atoms._pbc)[0][0]
d1 = new[a] - new[b] - r0 + d0
m = 1 / (1 / masses[a] + 1 / masses[b])
x = 0.5 * (cd**2 - np.dot(d1, d1)) / np.dot(d0, d1)
if abs(x) > self.tolerance:
new[a] += x * m / masses[a] * d0
new[b] -= x * m / masses[b] * d0
converged = False
if converged:
break
else:
raise RuntimeError('Did not converge')
def adjust_momenta(self, atoms, p):
old = atoms.positions
masses = atoms.get_masses()
if self.bondlengths is None:
self.bondlengths = self.initialize_bond_lengths(atoms)
for i in range(self.maxiter):
converged = True
for j, ab in enumerate(self.pairs):
a = ab[0]
b = ab[1]
cd = self.bondlengths[j]
d = old[a] - old[b]
d = find_mic([d], atoms.cell, atoms._pbc)[0][0]
dv = p[a] / masses[a] - p[b] / masses[b]
m = 1 / (1 / masses[a] + 1 / masses[b])
x = -np.dot(dv, d) / cd**2
if abs(x) > self.tolerance:
p[a] += x * m * d
p[b] -= x * m * d
converged = False
if converged:
break
else:
raise RuntimeError('Did not converge')
def adjust_forces(self, atoms, forces):
self.constraint_forces = -forces
self.adjust_momenta(atoms, forces)
self.constraint_forces += forces
def initialize_bond_lengths(self, atoms):
bondlengths = np.zeros(len(self.pairs))
for i, ab in enumerate(self.pairs):
bondlengths[i] = atoms.get_distance(ab[0], ab[1], mic=True)
return bondlengths
def get_indices(self):
return np.unique(self.pairs.ravel())
def todict(self):
return {'name': 'FixBondLengths',
'kwargs': {'pairs': self.pairs,
'tolerance': self.tolerance}}
def index_shuffle(self, atoms, ind):
"""Shuffle the indices of the two atoms in this constraint"""
map = np.zeros(len(atoms), int)
map[ind] = 1
n = map.sum()
map[:] = -1
map[ind] = range(n)
pairs = map[self.pairs]
self.pairs = pairs[(pairs != -1).all(1)]
if len(self.pairs) == 0:
raise IndexError('Constraint not part of slice')
def FixBondLength(a1, a2):
"""Fix distance between atoms with indices a1 and a2."""
return FixBondLengths([(a1, a2)])
class FixedMode(FixConstraint):
"""Constrain atoms to move along directions orthogonal to
a given mode only."""
def __init__(self, mode):
self.mode = (np.asarray(mode) / np.sqrt((mode**2).sum())).reshape(-1)
def adjust_positions(self, atoms, newpositions):
newpositions = newpositions.ravel()
oldpositions = atoms.positions.ravel()
step = newpositions - oldpositions
newpositions -= self.mode * np.dot(step, self.mode)
def adjust_forces(self, atoms, forces):
forces = forces.ravel()
forces -= self.mode * np.dot(forces, self.mode)
def index_shuffle(self, atoms, ind):
eps = 1e-12
mode = self.mode.reshape(-1, 3)
excluded = np.ones(len(mode), dtype=bool)
excluded[ind] = False
if (abs(mode[excluded]) > eps).any():
raise IndexError('All nonzero parts of mode not in slice')
self.mode = mode[ind].ravel()
def get_indices(self):
# This function will never properly work because it works on all
# atoms and it has no idea how to tell how many atoms it is
# attached to. If it is being used, surely the user knows
# everything is being constrained.
return []
def todict(self):
return {'name': 'FixedMode',
'kwargs': {'mode': self.mode}}
def __repr__(self):
return 'FixedMode(%s)' % self.mode.tolist()
class FixedPlane(FixConstraintSingle):
"""Constrain an atom index *a* to move in a given plane only.
The plane is defined by its normal vector *direction*."""
removed_dof = 1
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, atoms, newpositions):
step = newpositions[self.a] - atoms.positions[self.a]
newpositions[self.a] -= self.dir * np.dot(step, self.dir)
def adjust_forces(self, atoms, forces):
forces[self.a] -= self.dir * np.dot(forces[self.a], self.dir)
def todict(self):
return {'name': 'FixedPlane',
'kwargs': {'a': self.a, 'direction': self.dir}}
def __repr__(self):
return 'FixedPlane(%d, %s)' % (self.a, self.dir.tolist())
class FixedLine(FixConstraintSingle):
"""Constrain an atom index *a* to move on a given line only.
The line is defined by its vector *direction*."""
removed_dof = 2
def __init__(self, a, direction):
self.a = a
self.dir = np.asarray(direction) / sqrt(np.dot(direction, direction))
def adjust_positions(self, atoms, newpositions):
step = newpositions[self.a] - atoms.positions[self.a]
x = np.dot(step, self.dir)
newpositions[self.a] = atoms.positions[self.a] + x * self.dir
def adjust_forces(self, atoms, forces):
forces[self.a] = self.dir * np.dot(forces[self.a], self.dir)
def __repr__(self):
return 'FixedLine(%d, %s)' % (self.a, self.dir.tolist())
def todict(self):
return {'name': 'FixedLine',
'kwargs': {'a': self.a, 'direction': self.dir}}
class FixCartesian(FixConstraintSingle):
'Fix an atom index *a* in the directions of the cartesian coordinates.'
def __init__(self, a, mask=(1, 1, 1)):
self.a = a
self.mask = ~np.asarray(mask, bool)
self.removed_dof = 3 - self.mask.sum()
def adjust_positions(self, atoms, new):
step = new[self.a] - atoms.positions[self.a]
step *= self.mask
new[self.a] = atoms.positions[self.a] + step
def adjust_forces(self, atoms, forces):
forces[self.a] *= self.mask
def __repr__(self):
return 'FixCartesian(a={0}, mask={1})'.format(self.a,
list(~self.mask))
def todict(self):
return {'name': 'FixCartesian',
'kwargs': {'a': self.a, 'mask': ~self.mask}}
class FixScaled(FixConstraintSingle):
'Fix an atom index *a* in the directions of the unit vectors.'
def __init__(self, cell, a, mask=(1, 1, 1)):
self.cell = np.asarray(cell)
self.a = a
self.mask = np.array(mask, bool)
self.removed_dof = self.mask.sum()
def adjust_positions(self, atoms, new):
scaled_old = np.linalg.solve(self.cell.T, atoms.positions.T).T
scaled_new = np.linalg.solve(self.cell.T, new.T).T
for n in range(3):
if self.mask[n]:
scaled_new[self.a, n] = scaled_old[self.a, n]
new[self.a] = np.dot(scaled_new, self.cell)[self.a]
def adjust_forces(self, atoms, forces):
scaled_forces = np.linalg.solve(self.cell.T, forces.T).T
scaled_forces[self.a] *= -(self.mask - 1)
forces[self.a] = np.dot(scaled_forces, self.cell)[self.a]
def todict(self):
return {'name': 'FixScaled',
'kwargs': {'a': self.a,
'cell': self.cell,
'mask': self.mask}}
def __repr__(self):
return 'FixScaled(%s, %d, %s)' % (repr(self.cell),
self.a,
repr(self.mask))
# TODO: Better interface might be to use dictionaries in place of very
# nested lists/tuples
class FixInternals(FixConstraint):
"""Constraint object for fixing multiple internal coordinates.
Allows fixing bonds, angles, and dihedrals."""
def __init__(self, bonds=None, angles=None, dihedrals=None,
epsilon=1.e-7):
self.bonds = bonds or []
self.angles = angles or []
self.dihedrals = dihedrals or []
# Initialize these at run-time:
self.n = 0
self.constraints = []
self.epsilon = epsilon
self.initialized = False
self.removed_dof = (len(self.bonds) +
len(self.angles) +
len(self.dihedrals))
def initialize(self, atoms):
if self.initialized:
return
masses = atoms.get_masses()
self.n = len(self.bonds) + len(self.angles) + len(self.dihedrals)
self.constraints = []
for bond in self.bonds:
masses_bond = masses.take(bond[1])
self.constraints.append(self.FixBondLengthAlt(bond[0], bond[1],
masses_bond))
for angle in self.angles:
masses_angle = masses.take(angle[1])
self.constraints.append(self.FixAngle(angle[0], angle[1],
masses_angle))
for dihedral in self.dihedrals:
masses_dihedral = masses.take(dihedral[1])
self.constraints.append(self.FixDihedral(dihedral[0],
dihedral[1],
masses_dihedral))
self.initialized = True
def get_indices(self):
cons = self.bonds + self.dihedrals + self.angles
return np.unique(np.ravel([constraint[1]
for constraint in cons]))
def todict(self):
return {'name': 'FixInternals',
'kwargs': {'bonds': self.bonds,
'angles': self.angles,
'dihedrals': self.dihedrals,
'epsilon': self.epsilon}}
def adjust_positions(self, atoms, new):
self.initialize(atoms)
for constraint in self.constraints:
constraint.set_h_vectors(atoms.positions)
for j in range(50):
maxerr = 0.0
for constraint in self.constraints:
constraint.adjust_positions(atoms.positions, new)
maxerr = max(abs(constraint.sigma), maxerr)
if maxerr < self.epsilon:
return
raise ValueError('Shake did not converge.')
def adjust_forces(self, atoms, forces):
"""Project out translations and rotations and all other constraints"""
self.initialize(atoms)
positions = atoms.positions
N = len(forces)
list2_constraints = list(np.zeros((6, N, 3)))
tx, ty, tz, rx, ry, rz = list2_constraints
list_constraints = [r.ravel() for r in list2_constraints]
tx[:, 0] = 1.0
ty[:, 1] = 1.0
tz[:, 2] = 1.0
ff = forces.ravel()
# Calculate the center of mass
center = positions.sum(axis=0) / N
rx[:, 1] = -(positions[:, 2] - center[2])
rx[:, 2] = positions[:, 1] - center[1]
ry[:, 0] = positions[:, 2] - center[2]
ry[:, 2] = -(positions[:, 0] - center[0])
rz[:, 0] = -(positions[:, 1] - center[1])
rz[:, 1] = positions[:, 0] - center[0]
# Normalizing transl., rotat. constraints
for r in list2_constraints:
r /= np.linalg.norm(r.ravel())
# Add all angle, etc. constraint vectors
for constraint in self.constraints:
constraint.adjust_forces(positions, forces)
list_constraints.insert(0, constraint.h)
# QR DECOMPOSITION - GRAM SCHMIDT
list_constraints = [r.ravel() for r in list_constraints]
aa = np.column_stack(list_constraints)
(aa, bb) = np.linalg.qr(aa)
# Projection
hh = []
for i, constraint in enumerate(self.constraints):
hh.append(aa[:, i] * np.row_stack(aa[:, i]))
txx = aa[:, self.n] * np.row_stack(aa[:, self.n])
tyy = aa[:, self.n + 1] * np.row_stack(aa[:, self.n + 1])
tzz = aa[:, self.n + 2] * np.row_stack(aa[:, self.n + 2])
rxx = aa[:, self.n + 3] * np.row_stack(aa[:, self.n + 3])
ryy = aa[:, self.n + 4] * np.row_stack(aa[:, self.n + 4])
rzz = aa[:, self.n + 5] * np.row_stack(aa[:, self.n + 5])
T = txx + tyy + tzz + rxx + ryy + rzz
for vec in hh:
T += vec
ff = np.dot(T, np.row_stack(ff))
forces[:, :] -= np.dot(T, np.row_stack(ff)).reshape(-1, 3)
def __repr__(self):
constraints = repr(self.constraints)
return 'FixInternals(_copy_init=%s, epsilon=%s)' % (constraints,
repr(self.epsilon))
def __str__(self):
return '\n'.join([repr(c) for c in self.constraints])
# Classes for internal use in FixInternals
class FixBondLengthAlt:
"""Constraint subobject for fixing bond length within FixInternals."""
def __init__(self, bond, indices, masses, maxstep=0.01):
"""Fix distance between atoms with indices a1, a2."""
self.indices = indices
self.bond = bond
self.h1 = None
self.h2 = None
self.masses = masses
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
dist1 = pos[self.indices[0]] - pos[self.indices[1]]
self.h1 = 2 * dist1
self.h2 = -self.h1
def adjust_positions(self, old, new):
h1 = self.h1 / self.masses[0]
h2 = self.h2 / self.masses[1]
dist1 = new[self.indices[0]] - new[self.indices[1]]
dist = np.dot(dist1, dist1)
self.sigma = dist - self.bond**2
lamda = -self.sigma / (2 * np.dot(dist1, (h1 - h2)))
new[self.indices[0]] += lamda * h1
new[self.indices[1]] += lamda * h2
def adjust_forces(self, positions, forces):
self.h1 = 2 * (positions[self.indices[0]] -
positions[self.indices[1]])
self.h2 = -self.h1
self.h = np.zeros([len(forces) * 3])
self.h[(self.indices[0]) * 3] = self.h1[0]
self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
self.h[(self.indices[1]) * 3] = self.h2[0]
self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixBondLengthAlt(%s, %d, %d)' % \
(repr(self.bond), self.indices[0], self.indices[1])
class FixAngle:
"""Constraint object for fixing an angle within
FixInternals."""
def __init__(self, angle, indices, masses):
"""Fix atom movement to construct a constant angle."""
self.indices = indices
self.a1m, self.a2m, self.a3m = masses
self.angle = np.cos(angle)
self.h1 = self.h2 = self.h3 = None
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
r21 = pos[self.indices[0]] - pos[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = pos[self.indices[2]] - pos[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.h1 = -2 * angle * ((angle * e21 - e23) / (r21_len))
self.h3 = -2 * angle * ((angle * e23 - e21) / (r23_len))
self.h2 = -(self.h1 + self.h3)
def adjust_positions(self, oldpositions, newpositions):
r21 = newpositions[self.indices[0]] - newpositions[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.sigma = (angle - self.angle) * (angle + self.angle)
h1 = self.h1 / self.a1m
h3 = self.h3 / self.a3m
h2 = self.h2 / self.a2m
h21 = h1 - h2
h23 = h3 - h2
# Calculating new positions
deriv = (((np.dot(r21, h23) + np.dot(r23, h21)) /
(r21_len * r23_len)) -
(np.dot(r21, h21) / (r21_len * r21_len) +
np.dot(r23, h23) / (r23_len * r23_len)) * angle)
deriv *= 2 * angle
lamda = -self.sigma / deriv
newpositions[self.indices[0]] += lamda * h1
newpositions[self.indices[1]] += lamda * h2
newpositions[self.indices[2]] += lamda * h3
def adjust_forces(self, positions, forces):
r21 = positions[self.indices[0]] - positions[self.indices[1]]
r21_len = np.linalg.norm(r21)
e21 = r21 / r21_len
r23 = positions[self.indices[2]] - positions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
angle = np.dot(e21, e23)
self.h1 = -2 * angle * (angle * e21 - e23) / r21_len
self.h3 = -2 * angle * (angle * e23 - e21) / r23_len
self.h2 = -(self.h1 + self.h3)
self.h = np.zeros([len(positions) * 3])
self.h[(self.indices[0]) * 3] = self.h1[0]
self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
self.h[(self.indices[1]) * 3] = self.h2[0]
self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
self.h[(self.indices[2]) * 3] = self.h3[0]
self.h[(self.indices[2]) * 3 + 1] = self.h3[1]
self.h[(self.indices[2]) * 3 + 2] = self.h3[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixAngle(%s, %f)' % (tuple(self.indices),
np.arccos(self.angle))
class FixDihedral:
"""Constraint object for fixing an dihedral using
the shake algorithm. This one allows also other constraints."""
def __init__(self, angle, indices, masses):
"""Fix atom movement to construct a constant dihedral angle."""
self.indices = indices
self.a1m, self.a2m, self.a3m, self.a4m = masses
self.angle = np.cos(angle)
self.h1 = self.h2 = self.h3 = self.h4 = None
self.h = []
self.sigma = 1.
def set_h_vectors(self, pos):
r12 = pos[self.indices[1]] - pos[self.indices[0]]
r23 = pos[self.indices[2]] - pos[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
r34 = pos[self.indices[3]] - pos[self.indices[2]]
a = -r12 - np.dot(-r12, e23) * e23
a_len = np.linalg.norm(a)
ea = a / a_len
b = r34 - np.dot(r34, e23) * e23
b_len = np.linalg.norm(b)
eb = b / b_len
angle = np.dot(ea, eb).clip(-1.0, 1.0)
self.h1 = (eb - angle * ea) / a_len
self.h4 = (ea - angle * eb) / b_len
self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len - 1)
self.h2 += np.dot(r34, e23) / r23_len * self.h4
self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
self.h3 += np.dot(r12, e23) / r23_len * self.h1
def adjust_positions(self, oldpositions, newpositions):
r12 = newpositions[self.indices[1]] - newpositions[self.indices[0]]
r23 = newpositions[self.indices[2]] - newpositions[self.indices[1]]
r34 = newpositions[self.indices[3]] - newpositions[self.indices[2]]
n1 = np.cross(r12, r23)
n1_len = np.linalg.norm(n1)
n1e = n1 / n1_len
n2 = np.cross(r23, r34)
n2_len = np.linalg.norm(n2)
n2e = n2 / n2_len
angle = np.dot(n1e, n2e).clip(-1.0, 1.0)
self.sigma = (angle - self.angle) * (angle + self.angle)
h1 = self.h1 / self.a1m
h2 = self.h2 / self.a2m
h3 = self.h3 / self.a3m
h4 = self.h4 / self.a4m
h12 = h2 - h1
h23 = h3 - h2
h34 = h4 - h3
deriv = ((np.dot(n1, np.cross(r34, h23) + np.cross(h34, r23)) +
np.dot(n2, np.cross(r23, h12) + np.cross(h23, r12))) /
(n1_len * n2_len))
deriv -= (((np.dot(n1, np.cross(r23, h12) + np.cross(h23, r12)) /
n1_len**2) +
(np.dot(n2, np.cross(r34, h23) + np.cross(h34, r23)) /
n2_len**2)) * angle)
deriv *= -2 * angle
lamda = -self.sigma / deriv
newpositions[self.indices[0]] += lamda * h1
newpositions[self.indices[1]] += lamda * h2
newpositions[self.indices[2]] += lamda * h3
newpositions[self.indices[3]] += lamda * h4
def adjust_forces(self, positions, forces):
r12 = positions[self.indices[1]] - positions[self.indices[0]]
r23 = positions[self.indices[2]] - positions[self.indices[1]]
r23_len = np.linalg.norm(r23)
e23 = r23 / r23_len
r34 = positions[self.indices[3]] - positions[self.indices[2]]
a = -r12 - np.dot(-r12, e23) * e23
a_len = np.linalg.norm(a)
ea = a / a_len
b = r34 - np.dot(r34, e23) * e23
b_len = np.linalg.norm(b)
eb = b / b_len
angle = np.dot(ea, eb).clip(-1.0, 1.0)
self.h1 = (eb - angle * ea) / a_len
self.h4 = (ea - angle * eb) / b_len
self.h2 = self.h1 * (np.dot(-r12, e23) / r23_len - 1)
self.h2 += np.dot(r34, e23) / r23_len * self.h4
self.h3 = -self.h4 * (np.dot(r34, e23) / r23_len + 1)
self.h3 -= np.dot(-r12, e23) / r23_len * self.h1
self.h = np.zeros([len(positions) * 3])
self.h[(self.indices[0]) * 3] = self.h1[0]
self.h[(self.indices[0]) * 3 + 1] = self.h1[1]
self.h[(self.indices[0]) * 3 + 2] = self.h1[2]
self.h[(self.indices[1]) * 3] = self.h2[0]
self.h[(self.indices[1]) * 3 + 1] = self.h2[1]
self.h[(self.indices[1]) * 3 + 2] = self.h2[2]
self.h[(self.indices[2]) * 3] = self.h3[0]
self.h[(self.indices[2]) * 3 + 1] = self.h3[1]
self.h[(self.indices[2]) * 3 + 2] = self.h3[2]
self.h[(self.indices[3]) * 3] = self.h4[0]
self.h[(self.indices[3]) * 3 + 1] = self.h4[1]
self.h[(self.indices[3]) * 3 + 2] = self.h4[2]
self.h /= np.linalg.norm(self.h)
def __repr__(self):
return 'FixDihedral(%s, %f)' % (tuple(self.indices), self.angle)
class Hookean(FixConstraint):
"""Applies a Hookean restorative force between a pair of atoms, an atom
and a point, or an atom and a plane."""
def __init__(self, a1, a2, k, rt=None):
"""Forces two atoms to stay close together by applying no force if
they are below a threshold length, rt, and applying a Hookean
restorative force when the distance between them exceeds rt. Can
also be used to tether an atom to a fixed point in space or to a
distance above a plane.
a1 : int
Index of atom 1
a2 : one of three options
1) index of atom 2
2) a fixed point in cartesian space to which to tether a1
3) a plane given as (A, B, C, D) in A x + B y + C z + D = 0.
k : float
Hooke's law (spring) constant to apply when distance
exceeds threshold_length. Units of eV A^-2.
rt : float
The threshold length below which there is no force. The
length is 1) between two atoms, 2) between atom and point.
This argument is not supplied in case 3. Units of A.
If a plane is specified, the Hooke's law force is applied if the atom
is on the normal side of the plane. For instance, the plane with
(A, B, C, D) = (0, 0, 1, -7) defines a plane in the xy plane with a z
intercept of +7 and a normal vector pointing in the +z direction.
If the atom has z > 7, then a downward force would be applied of
k * (atom.z - 7). The same plane with the normal vector pointing in
the -z direction would be given by (A, B, C, D) = (0, 0, -1, 7).
"""
if isinstance(a2, int):
self._type = 'two atoms'
self.indices = [a1, a2]
elif len(a2) == 3:
self._type = 'point'
self.index = a1
self.origin = np.array(a2)
elif len(a2) == 4:
self._type = 'plane'
self.index = a1
self.plane = a2
else:
raise RuntimeError('Unknown type for a2')
self.threshold = rt
self.spring = k
def todict(self):
dct = {'name': 'Hookean'}
dct['kwargs'] = {'rt': self.threshold,
'k': self.spring}
if self._type == 'two atoms':
dct['kwargs']['a1'] = self.indices[0]
dct['kwargs']['a2'] = self.indices[1]
elif self._type == 'point':
dct['kwargs']['a1'] = self.index
dct['kwargs']['a2'] = self.origin
elif self._type == 'plane':
dct['kwargs']['a1'] = self.index
dct['kwargs']['a2'] = self.plane
else:
raise NotImplementedError('Bad type: %s' % self._type)
return dct
def adjust_positions(self, atoms, newpositions):
pass
def adjust_momenta(self, atoms, momenta):
pass
def adjust_forces(self, atoms, forces):
positions = atoms.positions
if self._type == 'plane':
A, B, C, D = self.plane
x, y, z = positions[self.index]
d = ((A * x + B * y + C * z + D) /
np.sqrt(A**2 + B**2 + C**2))
if d < 0:
return
magnitude = self.spring * d
direction = - np.array((A, B, C)) / np.linalg.norm((A, B, C))
forces[self.index] += direction * magnitude
return
if self._type == 'two atoms':
p1, p2 = positions[self.indices]
elif self._type == 'point':
p1 = positions[self.index]
p2 = self.origin
displace = p2 - p1
bondlength = np.linalg.norm(displace)
if bondlength > self.threshold:
magnitude = self.spring * (bondlength - self.threshold)
direction = displace / np.linalg.norm(displace)
if self._type == 'two atoms':
forces[self.indices[0]] += direction * magnitude
forces[self.indices[1]] -= direction * magnitude
else:
forces[self.index] += direction * magnitude
def adjust_potential_energy(self, atoms):
"""Returns the difference to the potential energy due to an active
constraint. (That is, the quantity returned is to be added to the
potential energy.)"""
positions = atoms.positions
if self._type == 'plane':
A, B, C, D = self.plane
x, y, z = positions[self.index]
d = ((A * x + B * y + C * z + D) /
np.sqrt(A**2 + B**2 + C**2))
if d > 0:
return 0.5 * self.spring * d**2
else:
return 0.
if self._type == 'two atoms':
p1, p2 = positions[self.indices]
elif self._type == 'point':
p1 = positions[self.index]
p2 = self.origin
displace = p2 - p1
bondlength = np.linalg.norm(displace)
if bondlength > self.threshold:
return 0.5 * self.spring * (bondlength - self.threshold)**2
else:
return 0.
def get_indices(self):
if self._type == 'two atoms':
return self.indices
elif self._type == 'point':
return self.index
elif self._type == 'plane':
return self.index
def index_shuffle(self, atoms, ind):
# See docstring of superclass
if self._type == 'two atoms':
newa = [-1, -1] # Signal error
for new, old in slice2enlist(ind, len(atoms)):
for i, a in enumerate(self.indices):
if old == a:
newa[i] = new
if newa[0] == -1 or newa[1] == -1:
raise IndexError('Constraint not part of slice')
self.indices = newa
elif (self._type == 'point') or (self._type == 'plane'):
newa = -1 # Signal error
for new, old in slice2enlist(ind, len(atoms)):
if old == self.index:
newa = new
break
if newa == -1:
raise IndexError('Constraint not part of slice')
self.index = newa
def __repr__(self):
if self._type == 'two atoms':
return 'Hookean(%d, %d)' % tuple(self.indices)
elif self._type == 'point':
return 'Hookean(%d) to cartesian' % self.index
else:
return 'Hookean(%d) to plane' % self.index
class ExternalForce(FixConstraint):
"""Constraint object for pulling two atoms apart by an external force.
You can combine this constraint for example with FixBondLength but make
sure that the ExternalForce-constraint comes first in the list:
>>> con1 = ExternalForce(atom1, atom2, f_ext)
>>> con2 = FixBondLength(atom3, atom4)
>>> atoms.set_constraint([con1, con2])
see ase/test/external_force.py"""
def __init__(self, a1, a2, f_ext):
self.indices = [a1, a2]
self.external_force = f_ext
def adjust_positions(self, atoms, new):
pass
def adjust_forces(self, atoms, forces):
dist = np.subtract.reduce(atoms.positions[self.indices])
force = self.external_force * dist / np.linalg.norm(dist)
forces[self.indices] += (force, -force)
def adjust_potential_energy(self, atoms):
dist = np.subtract.reduce(atoms.positions[self.indices])
return -np.linalg.norm(dist) * self.external_force
def index_shuffle(self, atoms, ind):
"""Shuffle the indices of the two atoms in this constraint"""
newa = [-1, -1] # Signal error
for new, old in slice2enlist(ind, len(atoms)):
for i, a in enumerate(self.indices):
if old == a:
newa[i] = new
if newa[0] == -1 or newa[1] == -1:
raise IndexError('Constraint not part of slice')
self.indices = newa
def __repr__(self):
return 'ExternalForce(%d, %d, %f)' % (self.indices[0],
self.indices[1],
self.external_force)
def todict(self):
return {'name': 'ExternalForce',
'kwargs': {'a1': self.indices[0], 'a2': self.indices[1],
'f_ext': self.external_force}}
class Filter:
"""Subset filter class."""
def __init__(self, atoms, indices=None, mask=None):
"""Filter atoms.
This filter can be used to hide degrees of freedom in an Atoms
object.
Parameters
----------
indices : list of int
Indices for those atoms that should remain visible.
mask : list of bool
One boolean per atom indicating if the atom should remain
visible or not.
If a Trajectory tries to save this object, it will instead
save the underlying Atoms object. To prevent this, override
the _images_ method.
"""
self.atoms = atoms
self.constraints = []
# Make self.info a reference to the underlying atoms' info dictionary.
self.info = self.atoms.info
if indices is None and mask is None:
raise ValueError('Use "indices" or "mask".')
if indices is not None and mask is not None:
raise ValueError('Use only one of "indices" and "mask".')
if mask is not None:
self.index = np.asarray(mask, bool)
self.n = self.index.sum()
else:
self.index = np.asarray(indices, int)
self.n = len(self.index)
def _images_(self):
# Present the real atoms object to Trajectory and friends
return self.atoms._images_()
def get_cell(self):
"""Returns the computational cell.
The computational cell is the same as for the original system.
"""
return self.atoms.get_cell()
def get_pbc(self):
"""Returns the periodic boundary conditions.
The boundary conditions are the same as for the original system.
"""
return self.atoms.get_pbc()
def get_positions(self):
'Return the positions of the visible atoms.'
return self.atoms.get_positions()[self.index]
def set_positions(self, positions, **kwargs):
'Set the positions of the visible atoms.'
pos = self.atoms.get_positions()
pos[self.index] = positions
self.atoms.set_positions(pos, **kwargs)
positions = property(get_positions, set_positions,
doc='Positions of the atoms')
def get_momenta(self):
'Return the momenta of the visible atoms.'
return self.atoms.get_momenta()[self.index]
def set_momenta(self, momenta, **kwargs):
'Set the momenta of the visible atoms.'
mom = self.atoms.get_momenta()
mom[self.index] = momenta
self.atoms.set_momenta(mom, **kwargs)
def get_atomic_numbers(self):
'Return the atomic numbers of the visible atoms.'
return self.atoms.get_atomic_numbers()[self.index]
def set_atomic_numbers(self, atomic_numbers):
'Set the atomic numbers of the visible atoms.'
z = self.atoms.get_atomic_numbers()
z[self.index] = atomic_numbers
self.atoms.set_atomic_numbers(z)
def get_tags(self):
'Return the tags of the visible atoms.'
return self.atoms.get_tags()[self.index]
def set_tags(self, tags):
'Set the tags of the visible atoms.'
tg = self.atoms.get_tags()
tg[self.index] = tags
self.atoms.set_tags(tg)
def get_forces(self, *args, **kwargs):
return self.atoms.get_forces(*args, **kwargs)[self.index]
def get_stress(self):
return self.atoms.get_stress()
def get_stresses(self):
return self.atoms.get_stresses()[self.index]
def get_masses(self):
return self.atoms.get_masses()[self.index]
def get_potential_energy(self, **kwargs):
"""Calculate potential energy.
Returns the potential energy of the full system.
"""
return self.atoms.get_potential_energy(**kwargs)
def get_chemical_symbols(self):
return self.atoms.get_chemical_symbols()
def get_initial_magnetic_moments(self):
return self.atoms.get_initial_magnetic_moments()
def get_calculator(self):
"""Returns the calculator.
WARNING: The calculator is unaware of this filter, and sees a
different number of atoms.
"""
return self.atoms.get_calculator()
def get_celldisp(self):
return self.atoms.get_celldisp()
def has(self, name):
'Check for existence of array.'
return self.atoms.has(name)
def __len__(self):
'Return the number of movable atoms.'
return self.n
def __getitem__(self, i):
'Return an atom.'
return self.atoms[self.index[i]]
class StrainFilter(Filter):
"""Modify the supercell while keeping the scaled positions fixed.
Presents the strain of the supercell as the generalized positions,
and the global stress tensor (times the volume) as the generalized
force.
This filter can be used to relax the unit cell until the stress is
zero. If MDMin is used for this, the timestep (dt) to be used
depends on the system size. 0.01/x where x is a typical dimension
seems like a good choice.
The stress and strain are presented as 6-vectors, the order of the
components follow the standard engingeering practice: xx, yy, zz,
yz, xz, xy.
"""
def __init__(self, atoms, mask=None):
"""Create a filter applying a homogeneous strain to a list of atoms.
The first argument, atoms, is the atoms object.
The optional second argument, mask, is a list of six booleans,
indicating which of the six independent components of the
strain that are allowed to become non-zero. It defaults to
[1,1,1,1,1,1].
"""
self.strain = np.zeros(6)
if mask is None:
mask = np.ones(6)
else:
mask = np.array(mask)
Filter.__init__(self, atoms, mask=mask)
self.mask = mask
self.origcell = atoms.get_cell()
def get_positions(self):
return self.strain.reshape((2, 3)).copy()
def set_positions(self, new):
new = new.ravel() * self.mask
eps = np.array([[1.0 + new[0], 0.5 * new[5], 0.5 * new[4]],
[0.5 * new[5], 1.0 + new[1], 0.5 * new[3]],
[0.5 * new[4], 0.5 * new[3], 1.0 + new[2]]])
self.atoms.set_cell(np.dot(self.origcell, eps), scale_atoms=True)
self.strain[:] = new
def get_forces(self):
stress = self.atoms.get_stress()
return -self.atoms.get_volume() * (stress * self.mask).reshape((2, 3))
def has(self, x):
return self.atoms.has(x)
def __len__(self):
return 2
# The indices of the full stiffness matrix of (orthorhombic) interest
voigt_notation = [(0, 0), (1, 1), (2, 2), (1, 2), (0, 2), (0, 1)]
def full_3x3_to_voigt_6_index(i, j):
if i == j:
return i
return 6 - i - j
def voigt_6_to_full_3x3_strain(strain_vector):
"""
Form a 3x3 strain matrix from a 6 component vector in Voigt notation
"""
e1, e2, e3, e4, e5, e6 = np.transpose(strain_vector)
return np.transpose([[1.0 + e1, 0.5 * e6, 0.5 * e5],
[0.5 * e6, 1.0 + e2, 0.5 * e4],
[0.5 * e5, 0.5 * e4, 1.0 + e3]])
def voigt_6_to_full_3x3_stress(stress_vector):
"""
Form a 3x3 stress matrix from a 6 component vector in Voigt notation
"""
s1, s2, s3, s4, s5, s6 = np.transpose(stress_vector)
return np.transpose([[s1, s6, s5],
[s6, s2, s4],
[s5, s4, s3]])
def full_3x3_to_voigt_6_strain(strain_matrix):
"""
Form a 6 component strain vector in Voigt notation from a 3x3 matrix
"""
strain_matrix = np.asarray(strain_matrix)
return np.transpose([strain_matrix[..., 0, 0] - 1.0,
strain_matrix[..., 1, 1] - 1.0,
strain_matrix[..., 2, 2] - 1.0,
strain_matrix[..., 1, 2] + strain_matrix[..., 2, 1],
strain_matrix[..., 0, 2] + strain_matrix[..., 2, 0],
strain_matrix[..., 0, 1] + strain_matrix[..., 1, 0]])
def full_3x3_to_voigt_6_stress(stress_matrix):
"""
Form a 6 component stress vector in Voigt notation from a 3x3 matrix
"""
stress_matrix = np.asarray(stress_matrix)
return np.transpose([stress_matrix[..., 0, 0],
stress_matrix[..., 1, 1],
stress_matrix[..., 2, 2],
(stress_matrix[..., 1, 2] +
stress_matrix[..., 1, 2]) / 2,
(stress_matrix[..., 0, 2] +
stress_matrix[..., 0, 2]) / 2,
(stress_matrix[..., 0, 1] +
stress_matrix[..., 0, 1]) / 2])
class UnitCellFilter(Filter):
"""Modify the supercell and the atom positions. """
def __init__(self, atoms, mask=None,
cell_factor=None,
hydrostatic_strain=False,
constant_volume=False):
"""Create a filter that returns the atomic forces and unit cell
stresses together, so they can simultaneously be minimized.
The first argument, atoms, is the atoms object. The optional second
argument, mask, is a list of booleans, indicating which of the six
independent components of the strain are relaxed.
- True = relax to zero
- False = fixed, ignore this component
Degrees of freedom are the positions in the original undeformed cell,
plus the deformation tensor (extra 3 "atoms"). This gives forces
consistent with numerical derivatives of the potential energy
with respect to the cell degreees of freedom.
For full details see:
E. B. Tadmor, G. S. Smith, N. Bernstein, and E. Kaxiras,
Phys. Rev. B 59, 235 (1999)
You can still use constraints on the atoms, e.g. FixAtoms, to control
the relaxation of the atoms.
>>> # this should be equivalent to the StrainFilter
>>> atoms = Atoms(...)
>>> atoms.set_constraint(FixAtoms(mask=[True for atom in atoms]))
>>> ucf = UnitCellFilter(atoms)
You should not attach this UnitCellFilter object to a
trajectory. Instead, create a trajectory for the atoms, and
attach it to an optimizer like this:
>>> atoms = Atoms(...)
>>> ucf = UnitCellFilter(atoms)
>>> qn = QuasiNewton(ucf)
>>> traj = Trajectory('TiO2.traj', 'w', atoms)
>>> qn.attach(traj)
>>> qn.run(fmax=0.05)
Helpful conversion table:
- 0.05 eV/A^3 = 8 GPA
- 0.003 eV/A^3 = 0.48 GPa
- 0.0006 eV/A^3 = 0.096 GPa
- 0.0003 eV/A^3 = 0.048 GPa
- 0.0001 eV/A^3 = 0.02 GPa
Additional optional arguments:
cell_factor: float (default float(len(atoms)))
Factor by which deformation gradient is multiplied to put
it on the same scale as the positions when assembling
the combined position/cell vector. The stress contribution to
the forces is scaled down by the same factor. This can be thought
of as a very simple preconditioners. Default is number of atoms
which gives approximately the correct scaling.
hydrostatic_strain: bool (default False)
Constrain the cell by only allowing hydrostatic deformation.
The virial tensor is replaced by np.diag([np.trace(virial)]*3).
constant_volume: bool (default False)
Project out the diagonal elements of the virial tensor to allow
relaxations at constant volume, e.g. for mapping out an
energy-volume curve. Note: this only approximately conserves
the volume and breaks energy/force consistency so can only be
used with optimizers that do require do a line minimisation
(e.g. FIRE).
"""
Filter.__init__(self, atoms, indices=range(len(atoms)))
self.atoms = atoms
self.deform_grad = np.eye(3)
self.atom_positions = atoms.get_positions()
self.orig_cell = atoms.get_cell()
self.stress = None
if mask is None:
mask = np.ones(6)
mask = np.asarray(mask)
if mask.shape == (6,):
self.mask = voigt_6_to_full_3x3_stress(mask)
elif mask.shape == (3, 3):
self.mask = mask
else:
raise ValueError('shape of mask should be (3,3) or (6,)')
if cell_factor is None:
cell_factor = float(len(atoms))
self.hydrostatic_strain = hydrostatic_strain
self.constant_volume = constant_volume
self.cell_factor = cell_factor
self.copy = self.atoms.copy
self.arrays = self.atoms.arrays
def get_positions(self):
'''
this returns an array with shape (natoms + 3,3).
the first natoms rows are the positions of the atoms, the last
three rows are the deformation tensor associated with the unit cell,
scaled by self.cell_factor.
'''
natoms = len(self.atoms)
pos = np.zeros((natoms + 3, 3))
pos[:natoms] = self.atom_positions
pos[natoms:] = self.cell_factor * self.deform_grad
return pos
def set_positions(self, new, **kwargs):
'''
new is an array with shape (natoms+3,3).
the first natoms rows are the positions of the atoms, the last
three rows are the deformation tensor used to change the cell shape.
the positions are first set with respect to the original
undeformed cell, and then the cell is transformed by the
current deformation gradient.
'''
natoms = len(self.atoms)
self.atom_positions[:] = new[:natoms]
self.deform_grad = new[natoms:] / self.cell_factor
self.atoms.set_positions(self.atom_positions, **kwargs)
self.atoms.set_cell(self.orig_cell, scale_atoms=False)
self.atoms.set_cell(np.dot(self.orig_cell, self.deform_grad.T),
scale_atoms=True)
def get_forces(self, apply_constraint=False):
'''
returns an array with shape (natoms+2,3) of the atomic forces
and unit cell stresses.
the first natoms rows are the forces on the atoms, the last
three rows are the forces on the unit cell, which are
computed from the stress tensor.
'''
atoms_forces = self.atoms.get_forces()
stress = self.atoms.get_stress()
self.stress = voigt_6_to_full_3x3_stress(stress) * self.mask
volume = self.atoms.get_volume()
virial = -volume * voigt_6_to_full_3x3_stress(stress)
atoms_forces = np.dot(atoms_forces, self.deform_grad)
dg_inv = np.linalg.inv(self.deform_grad)
virial = np.dot(virial, dg_inv.T)
if self.hydrostatic_strain:
vtr = virial.trace()
virial = np.diag([vtr / 3.0, vtr / 3.0, vtr / 3.0])
# Zero out components corresponding to fixed lattice elements
if (self.mask != 1.0).any():
virial *= self.mask
if self.constant_volume:
vtr = virial.trace()
np.fill_diagonal(virial, np.diag(virial) - vtr / 3.0)
natoms = len(self.atoms)
forces = np.zeros((natoms + 3, 3))
forces[:natoms] = atoms_forces
forces[natoms:] = virial / self.cell_factor
return forces
def get_stress(self):
raise PropertyNotImplementedError
def has(self, x):
return self.atoms.has(x)
def __len__(self):
return (len(self.atoms) + 3)
|