This file is indexed.

/usr/lib/python2.7/dist-packages/ase/autoneb.py is in python-ase 3.15.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# -*- coding: utf-8 -*-

from ase.io import Trajectory
from ase.io import read
from ase.neb import NEB
from ase.optimize import BFGS
from ase.optimize import FIRE
from ase.calculators.singlepoint import SinglePointCalculator
import ase.parallel as mpi
import numpy as np
import shutil
import os
import types
from math import log
from math import exp


class AutoNEB(object):
    """AutoNEB object.

    The AutoNEB algorithm streamlines the execution of NEB and CI-NEB
    calculations following the algorithm described in:

    E. L. Kolsbjerg, M. N. Groves, and B. Hammer, J. Chem. Phys,
    145, 094107, 2016. (doi: 10.1063/1.4961868)

    The user supplies at minimum the two end-points and possibly also some
    intermediate images.

    The stages are:
        1) Define a set of images and name them sequentially.
                Must at least have a relaxed starting and ending image
                User can supply intermediate guesses which do not need to
                have previously determined energies (probably from another
                NEB calculation with a lower level of theory)
        2) AutoNEB will first evaluate the user provided intermediate images
        3) AutoNEB will then add additional images dynamically until n_max
           is reached
        4) A climbing image will attempt to locate the saddle point
        5) All the images between the highest point and the starting point
           are further relaxed to smooth the path
        6) All the images between the highest point and the ending point are
           further relaxed to smooth the path

           Step 4 and 5-6 are optional steps!

    Parameters:

    attach_calculators:
        Function which adds valid calculators to the list of images supplied.
    prefix: string
        All files that the AutoNEB method reads and writes are prefixed with
        this string
    n_simul: int
        The number of relaxations run in parallel.
    n_max: int
        The number of images along the NEB path when done.
        This number includes the two end-points.
        Important: due to the dynamic adding of images around the peak n_max
        must be updated if the NEB is restarted.
    climb: boolean
        Should a CI-NEB calculation be done at the top-point
    fmax: float or list of floats
        The maximum force along the NEB path
    maxsteps: int
        The maximum number of steps in each NEB relaxation.
        If a list is given the first number of steps is used in the build-up
        and final scan phase;
        the second number of steps is used in the CI step after all images
        have been inserted.
    k: float
        The spring constant along the NEB path
    method: str (see neb.py)
        Choice betweeen three method:
        'aseneb', standard ase NEB implementation
        'improvedtangent', published NEB implementation
        'eb', full spring force implementation (defualt)
    optimizer: str
        Which optimizer to use in the relaxation. Valid values are 'BFGS'
        and 'FIRE' (defualt)
    space_energy_ratio: float
        The preference for new images to be added in a big energy gab
        with a preference around the peak or in the biggest geometric gab.
        A space_energy_ratio set to 1 will only considder geometric gabs
        while one set to 0 will result in only images for energy
        resolution.

    The AutoNEB method uses a fixed file-naming convention.
    The initial images should have the naming prefix000.traj, prefix001.traj,
    ... up until the final image in prefix00N.traj
    Images are dynamically added in between the first and last image until
    n_max images have been reached.
    When doing the i'th NEB optimization a set of files
    prefixXXXiter00i.traj exists with XXX ranging from 000 to the N images
    currently in the NEB.

    The most recent NEB path can always be monitored by:
        $ ase-gui -n -1 neb???.traj
    """

    def __init__(self, attach_calculators, prefix, n_simul, n_max,
                 iter_folder='AutoNEB_iter',
                 fmax=0.025, maxsteps=10000, k=0.1, climb=True, method='eb',
                 optimizer='FIRE',
                 remove_rotation_and_translation=False, space_energy_ratio=0.5,
                 world=None,
                 parallel=True, smooth_curve=False, interpolate_method='idpp'):
        self.attach_calculators = attach_calculators
        self.prefix = prefix
        self.n_simul = n_simul
        self.n_max = n_max
        self.climb = climb
        self.all_images = []

        self.parallel = parallel
        self.maxsteps = maxsteps
        self.fmax = fmax
        self.k = k
        self.method = method
        self.remove_rotation_and_translation = remove_rotation_and_translation
        self.space_energy_ratio = space_energy_ratio
        if interpolate_method not in ['idpp', 'linear']:
            self.interpolate_method = 'idpp'
            print('Interpolation method not implementet.',
                  'Using the IDPP method.')
        else:
            self.interpolate_method = interpolate_method
        if world is None:
            world = mpi.world
        self.world = world
        self.smooth_curve = smooth_curve

        if optimizer == 'BFGS':
            self.optimizer = BFGS
        elif optimizer == 'FIRE':
            self.optimizer = FIRE
        else:
            raise Exception('Optimizer needs to be BFGS or FIRE')
        self.iter_folder = iter_folder
        if not os.path.exists(self.iter_folder) and self.world.rank == 0:
            os.makedirs(self.iter_folder)

    def execute_one_neb(self, n_cur, to_run, climb=False, many_steps=False):
        '''Internal method which executes one NEB optimization.'''
        self.iteration += 1
        # First we copy around all the images we are not using in this
        # neb (for reproducability purposes)
        if self.world.rank == 0:
            for i in range(n_cur):
                if i not in to_run[1: -1]:
                    filename = '%s%03d.traj' % (self.prefix, i)
                    t = Trajectory(filename, mode='w', atoms=self.all_images[i])
                    t.write()
                    filename_ref = self.iter_folder + \
                        '/%s%03diter%03d.traj' % (self.prefix, i,
                                                  self.iteration)
                    if os.path.isfile(filename):
                        shutil.copy2(filename, filename_ref)
        if self.world.rank == 0:
            print('Now starting iteration %d on ' % self.iteration, to_run)
        # Attach calculators to all the images we will include in the NEB
        self.attach_calculators([self.all_images[i] for i in to_run[1: -1]])
        neb = NEB([self.all_images[i] for i in to_run],
                  k=[self.k[i] for i in to_run[0:-1]],
                  method=self.method,
                  parallel=self.parallel,
                  remove_rotation_and_translation=self
                  .remove_rotation_and_translation,
                  climb=climb)

        # Do the actual NEB calculation
        qn = self.optimizer(neb,
                            logfile=self.iter_folder +
                            '/%s_log_iter%03d.log' % (self.prefix,
                                                      self.iteration))

        # Find the ranks which are masters for each their calculation
        if self.parallel:
            nneb = to_run[0]
            nim = len(to_run) - 2
            n = self.world.size // nim      # number of cpu's per image
            j = 1 + self.world.rank // n    # my image number
            assert nim * n == self.world.size
            traj = Trajectory('%s%03d.traj' % (self.prefix, j + nneb), 'w',
                              self.all_images[j + nneb],
                              master=(self.world.rank % n == 0))
            filename_ref = self.iter_folder + \
                '/%s%03diter%03d.traj' % (self.prefix,
                                          j + nneb, self.iteration)
            trajhist = Trajectory(filename_ref, 'w',
                                  self.all_images[j + nneb],
                                  master=(self.world.rank % n == 0))
            qn.attach(traj)
            qn.attach(trajhist)
        else:
            num = 1
            for i, j in enumerate(to_run[1: -1]):
                filename_ref = self.iter_folder + \
                    '/%s%03diter%03d.traj' % (self.prefix, j, self.iteration)
                trajhist = Trajectory(filename_ref, 'w', self.all_images[j])
                qn.attach(seriel_writer(trajhist, i, num).write)

                traj = Trajectory('%s%03d.traj' % (self.prefix, j), 'w',
                                  self.all_images[j])
                qn.attach(seriel_writer(traj, i, num).write)
                num += 1

        if isinstance(self.maxsteps, (list, tuple)) and many_steps:
            steps = self.maxsteps[1]
        elif isinstance(self.maxsteps, (list, tuple)) and not many_steps:
            steps = self.maxsteps[0]
        else:
            steps = self.maxsteps

        if isinstance(self.fmax, (list, tuple)) and many_steps:
            fmax = self.fmax[1]
        elif isinstance(self.fmax, (list, tuple)) and not many_steps:
            fmax = self.fmax[0]
        else:
            fmax = self.fmax
        qn.run(fmax=fmax, steps=steps)

        # Remove the calculators and replace them with single
        # point calculators and update all the nodes for
        # preperration for next iteration
        neb.distribute = types.MethodType(store_E_and_F_in_spc, neb)
        neb.distribute()

    def run(self):
        '''Run the AutoNEB optimization algorithm.'''
        n_cur = self.__initialize__()
        while len(self.all_images) < self.n_simul + 2:
            if isinstance(self.k, (float, int)):
                self.k = [self.k] * (len(self.all_images) - 1)
            if self.world.rank == 0:
                print('Now adding images for initial run')
            # Insert a new image where the distance between two images is
            # the largest
            spring_lengths = []
            for j in range(n_cur - 1):
                spring_vec = self.all_images[j + 1].get_positions() - \
                    self.all_images[j].get_positions()
                spring_lengths.append(np.linalg.norm(spring_vec))
            jmax = np.argmax(spring_lengths)

            if self.world.rank == 0:
                print('Max length between images is at ', jmax)

            # The interpolation used to make initial guesses
            # If only start and end images supplied make all img at ones
            if len(self.all_images) == 2:
                n_between = self.n_simul
            else:
                n_between = 1

            toInterpolate = [self.all_images[jmax]]
            for i in range(n_between):
                toInterpolate += [toInterpolate[0].copy()]
            toInterpolate += [self.all_images[jmax + 1]]

            neb = NEB(toInterpolate)
            neb.interpolate(method=self.interpolate_method)

            tmp = self.all_images[:jmax + 1]
            tmp += toInterpolate[1:-1]
            tmp.extend(self.all_images[jmax + 1:])

            self.all_images = tmp

            # Expect springs to be in equilibrium
            k_tmp = self.k[:jmax]
            k_tmp += [self.k[jmax] * (n_between + 1)] * (n_between + 1)
            k_tmp.extend(self.k[jmax + 1:])
            self.k = k_tmp

            # Run the NEB calculation with the new image included
            n_cur += n_between

        # Determine if any images do not have a valid energy yet
        energies = self.get_energies()

        n_non_valid_energies = len([e for e in energies if e != e])

        if self.world.rank == 0:
            print('Start of evaluation of the initial images')

        while n_non_valid_energies != 0:
            if isinstance(self.k, (float, int)):
                self.k = [self.k] * (len(self.all_images) - 1)

            # First do one run since some energie are non-determined
            to_run, climb_safe = self.which_images_to_run_on()
            self.execute_one_neb(n_cur, to_run, climb=False)

            energies = self.get_energies()
            n_non_valid_energies = len([e for e in energies if e != e])

        if self.world.rank == 0:
            print('Finished initialisation phase.')

        # Then add one image at a time until we have n_max images
        while n_cur < self.n_max:
            if isinstance(self.k, (float, int)):
                self.k = [self.k] * (len(self.all_images) - 1)
            # Insert a new image where the distance between two images
            # is the largest OR where a higher energy reselution is needed
            if self.world.rank == 0:
                print('****Now adding another image until n_max is reached',
                      '({0}/{1})****'.format(n_cur, self.n_max))
            spring_lengths = []
            for j in range(n_cur - 1):
                spring_vec = self.all_images[j + 1].get_positions() - \
                    self.all_images[j].get_positions()
                spring_lengths.append(np.linalg.norm(spring_vec))

            total_vec = self.all_images[0].get_positions() - \
                self.all_images[-1].get_positions()
            tl = np.linalg.norm(total_vec)

            fR = max(spring_lengths) / tl

            e = self.get_energies()
            ed = []
            emin = min(e)
            enorm = max(e) - emin
            for j in range(n_cur - 1):
                delta_E = (e[j + 1] - e[j]) * (e[j + 1] + e[j] - 2 *
                                               emin) / 2 / enorm
                ed.append(abs(delta_E))

            gR = max(ed) / enorm

            if fR / gR > self.space_energy_ratio:
                jmax = np.argmax(spring_lengths)
                t = 'spring length!'
            else:
                jmax = np.argmax(ed)
                t = 'energy difference between neighbours!'

            if self.world.rank == 0:
                print('Adding image between {0} and'.format(jmax),
                      '{0}. New image point is selected'.format(jmax + 1),
                      'on the basis of the biggest ' + t)

            toInterpolate = [self.all_images[jmax]]
            toInterpolate += [toInterpolate[0].copy()]
            toInterpolate += [self.all_images[jmax + 1]]

            neb = NEB(toInterpolate)
            neb.interpolate(method=self.interpolate_method)

            tmp = self.all_images[:jmax + 1]
            tmp += toInterpolate[1:-1]
            tmp.extend(self.all_images[jmax + 1:])

            self.all_images = tmp

            # Expect springs to be in equilibrium
            k_tmp = self.k[:jmax]
            k_tmp += [self.k[jmax] * 2] * 2
            k_tmp.extend(self.k[jmax + 1:])
            self.k = k_tmp

            # Run the NEB calculation with the new image included
            n_cur += 1
            to_run, climb_safe = self.which_images_to_run_on()

            self.execute_one_neb(n_cur, to_run, climb=False)

        if self.world.rank == 0:
            print('n_max images has been reached')

        # Do a single climb around the top-point if requested
        if self.climb:
            if isinstance(self.k, (float, int)):
                self.k = [self.k] * (len(self.all_images) - 1)
            if self.world.rank == 0:
                print('****Now doing the CI-NEB calculation****')
            to_run, climb_safe = self.which_images_to_run_on()

            assert climb_safe, 'climb_safe should be true at this point!'
            self.execute_one_neb(n_cur, to_run, climb=True, many_steps=True)

        if not self.smooth_curve:
            return self.all_images

        # If a smooth_curve is requsted ajust the springs to follow two
        # gaussian distributions
        e = self.get_energies()
        peak = self.get_highest_energy_index()
        k_max = 10

        d1 = np.linalg.norm(self.all_images[peak].get_positions() -
                            self.all_images[0].get_positions())
        d2 = np.linalg.norm(self.all_images[peak].get_positions() -
                            self.all_images[-1].get_positions())
        l1 = -d1 ** 2 / log(0.2)
        l2 = -d2 ** 2 / log(0.2)

        x1 = []
        x2 = []
        for i in range(peak):
            v = (self.all_images[i].get_positions() +
                 self.all_images[i + 1].get_positions()) / 2 - \
                self.all_images[0].get_positions()
            x1.append(np.linalg.norm(v))

        for i in range(peak, len(self.all_images) - 1):
            v = (self.all_images[i].get_positions() +
                 self.all_images[i + 1].get_positions()) / 2 - \
                self.all_images[0].get_positions()
            x2.append(np.linalg.norm(v))
        k_tmp = []
        for x in x1:
            k_tmp.append(k_max * exp(-((x - d1) ** 2) / l1))
        for x in x2:
            k_tmp.append(k_max * exp(-((x - d1) ** 2) / l2))

        self.k = k_tmp
        # Roll back to start from the top-point
        if self.world.rank == 0:
            print('Now moving from top to start')
        highest_energy_index = self.get_highest_energy_index()
        nneb = highest_energy_index - self.n_simul - 1
        while nneb >= 0:
            self.execute_one_neb(n_cur, range(nneb, nneb + self.n_simul + 2),
                                 climb=False)
            nneb -= 1

        # Roll forward from the top-point until the end
        nneb = self.get_highest_energy_index()

        if self.world.rank == 0:
            print('Now moving from top to end')
        while nneb <= self.n_max - self.n_simul - 2:
            self.execute_one_neb(n_cur, range(nneb, nneb + self.n_simul + 2),
                                 climb=False)
            nneb += 1
        return self.all_images

    def __initialize__(self):
        '''Load files from the filesystem.'''
        if not os.path.isfile('%s000.traj' % self.prefix):
            raise IOError('No file with name %s000.traj' % self.prefix,
                          'was found. Should contain initial image')

        # Find the images that exist
        index_exists = [i for i in range(self.n_max) if
                        os.path.isfile('%s%03d.traj' % (self.prefix, i))]

        n_cur = index_exists[-1] + 1

        if self.world.rank == 0:
            print('The NEB initially has %d images ' % len(index_exists),
                  '(including the end-points)')
        if len(index_exists) == 1:
            raise Exception('Only a start point exists')

        for i in range(len(index_exists)):
            if i != index_exists[i]:
                raise Exception('Files must be ordered sequentially',
                                'without gaps.')
        if self.world.rank == 0:
            for i in index_exists:
                filename_ref = self.iter_folder + \
                    '/%s%03diter000.traj' % (self.prefix, i)
                if os.path.isfile(filename_ref):
                    try:
                        os.rename(filename_ref, filename_ref + '.bak')
                    except IOError:
                        pass
                filename = '%s%03d.traj' % (self.prefix, i)
                try:
                    shutil.copy2(filename, filename_ref)
                except IOError:
                    pass
        # Wait for file system on all nodes is syncronized
        self.world.barrier()
        # And now lets read in the configurations
        for i in range(n_cur):
            if i in index_exists:
                filename = '%s%03d.traj' % (self.prefix, i)
                newim = read(filename)
                self.all_images.append(newim)
            else:
                self.all_images.append(self.all_images[0].copy())

        self.iteration = 0
        return n_cur

    def get_energies(self):
        """Utility method to extract all energies and insert np.NaN at
        invalid images."""
        energies = []
        for a in self.all_images:
            try:
                energies.append(a.get_potential_energy())
            except RuntimeError:
                energies.append(np.NaN)
        return energies

    def get_energies_one_image(self, image):
        """Utility method to extract energy of an image and return np.NaN
        if invalid."""
        try:
            energy = image.get_potential_energy()
        except RuntimeError:
            energy = np.NaN
        return energy

    def get_highest_energy_index(self):
        """Find the index of the image with the highest energy."""
        energies = self.get_energies()
        valid_entries = [(i, e) for i, e in enumerate(energies) if e == e]
        highest_energy_index = max(valid_entries, key=lambda x: x[1])[0]
        return highest_energy_index

    def which_images_to_run_on(self):
        """Determine which set of images to do a NEB at.
        The priority is to first include all images without valid energies,
        secondly include the highest energy image."""
        n_cur = len(self.all_images)
        energies = self.get_energies()
        # Find out which image is the first one missing the energy and
        # which is the last one missing the energy
        first_missing = n_cur
        last_missing = 0
        n_missing = 0
        for i in range(1, n_cur - 1):
            if energies[i] != energies[i]:
                n_missing += 1
                first_missing = min(first_missing, i)
                last_missing = max(last_missing, i)

        highest_energy_index = self.get_highest_energy_index()

        nneb = highest_energy_index - 1 - self.n_simul // 2
        nneb = max(nneb, 0)
        nneb = min(nneb, n_cur - self.n_simul - 2)
        nneb = min(nneb, first_missing - 1)
        nneb = max(nneb + self.n_simul, last_missing) - self.n_simul
        to_use = range(nneb, nneb + self.n_simul + 2)

        while self.get_energies_one_image(self.all_images[to_use[0]]) != \
                self.get_energies_one_image(self.all_images[to_use[0]]):
            to_use[0] -= 1
        while self.get_energies_one_image(self.all_images[to_use[-1]]) != \
                self.get_energies_one_image(self.all_images[to_use[-1]]):
            to_use[-1] += 1

        return to_use, (highest_energy_index in to_use[1: -1])


class seriel_writer:
    def __init__(self, traj, i, num):
        self.traj = traj
        self.i = i
        self.num = num

    def write(self):
        if self.num % (self.i + 1) == 0:
            self.traj.write()



def store_E_and_F_in_spc(self):
    """Collect the energies and forces on all nodes and store as
    single point calculators"""
    # Make sure energies and forces are known on all nodes
    self.get_forces()
    images = self.images
    if self.parallel:
        energy = np.empty(1)
        forces = np.empty((self.natoms, 3))

        for i in range(1, self.nimages - 1):
            # Determine which node is the leading for image i
            root = (i - 1) * self.world.size // (self.nimages - 2)
            # If on this node, extract the calculated numbers
            if self.world.rank == root:
                energy[0] = images[i].get_potential_energy()
                forces = images[i].get_forces()
            # Distribute these numbers to other nodes
            self.world.broadcast(energy, root)
            self.world.broadcast(forces, root)
            # On all nodes, remove the calculator, keep only energy
            # and force in single point calculator
            self.images[i].set_calculator(
                SinglePointCalculator(self.images[i],
                                      energy=energy[0],
                                      forces=forces))