This file is indexed.

/usr/lib/python2.7/dist-packages/arrayfire/lapack.py is in python-arrayfire 3.3.20160624-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
#######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

"""
Dense Linear Algebra functions (solve, inverse, etc).
"""

from .library import *
from .array import *

def lu(A):
    """
    LU decomposition.

    Parameters
    ----------
    A: af.Array
       A 2 dimensional arrayfire array.

    Returns
    -------
    (L,U,P): tuple of af.Arrays
           - L - Lower triangular matrix.
           - U - Upper triangular matrix.
           - P - Permutation array.

    Note
    ----

    The original matrix `A` can be reconstructed using the outputs in the following manner.

    >>> A[P, :] = af.matmul(L, U)

    """
    L = Array()
    U = Array()
    P = Array()
    safe_call(backend.get().af_lu(ct.pointer(L.arr), ct.pointer(U.arr), ct.pointer(P.arr), A.arr))
    return L,U,P

def lu_inplace(A, pivot="lapack"):
    """
    In place LU decomposition.

    Parameters
    ----------
    A: af.Array
       - a 2 dimensional arrayfire array on entry.
       - Contains L in the lower triangle on exit.
       - Contains U in the upper triangle on exit.

    Returns
    -------
    P: af.Array
       - Permutation array.

    Note
    ----

    This function is primarily used with `af.solve_lu` to reduce computations.

    """
    P = Array()
    is_pivot_lapack = False if (pivot == "full") else True
    safe_call(backend.get().af_lu_inplace(ct.pointer(P.arr), A.arr, is_pivot_lapack))
    return P

def qr(A):
    """
    QR decomposition.

    Parameters
    ----------
    A: af.Array
       A 2 dimensional arrayfire array.

    Returns
    -------
    (Q,R,T): tuple of af.Arrays
           - Q - Orthogonal matrix.
           - R - Upper triangular matrix.
           - T - Vector containing additional information to solve a least squares problem.

    Note
    ----

    The outputs of this funciton have the following properties.

    >>> A = af.matmul(Q, R)
    >>> I = af.matmulNT(Q, Q) # Identity matrix
    """
    Q = Array()
    R = Array()
    T = Array()
    safe_call(backend.get().af_lu(ct.pointer(Q.arr), ct.pointer(R.arr), ct.pointer(T.arr), A.arr))
    return Q,R,T

def qr_inplace(A):
    """
    In place QR decomposition.

    Parameters
    ----------
    A: af.Array
       - a 2 dimensional arrayfire array on entry.
       - Packed Q and R matrices on exit.

    Returns
    -------
    T: af.Array
       - Vector containing additional information to solve a least squares problem.

    Note
    ----

    This function is used to save space only when `R` is required.
    """
    T = Array()
    safe_call(backend.get().af_qr_inplace(ct.pointer(T.arr), A.arr))
    return T

def cholesky(A, is_upper=True):
    """
    Cholesky decomposition

    Parameters
    ----------
    A: af.Array
       A 2 dimensional, symmetric, positive definite matrix.

    is_upper: optional: bool. default: True
       Specifies if output `R` is upper triangular (if True) or lower triangular (if False).

    Returns
    -------
    (R,info): tuple of af.Array, int.
           - R - triangular matrix.
           - info - 0 if decomposition sucessful.
    Note
    ----

    The original matrix `A` can be reconstructed using the outputs in the following manner.

    >>> A = af.matmulNT(R, R) #if R is upper triangular

    """
    R = Array()
    info = ct.c_int(0)
    safe_call(backend.get().af_cholesky(ct.pointer(R.arr), ct.pointer(info), A.arr, is_upper))
    return R, info.value

def cholesky_inplace(A, is_upper=True):
    """
    In place Cholesky decomposition.

    Parameters
    ----------
    A: af.Array
       - a 2 dimensional, symmetric, positive definite matrix.
       - Trinangular matrix on exit.

    is_upper: optional: bool. default: True.
       Specifies if output `R` is upper triangular (if True) or lower triangular (if False).

    Returns
    -------
    info : int.
           0 if decomposition sucessful.

    """
    info = ct.c_int(0)
    safe_call(backend.get().af_cholesky_inplace(ct.pointer(info), A.arr, is_upper))
    return info.value

def solve(A, B, options=MATPROP.NONE):
    """
    Solve a system of linear equations.

    Parameters
    ----------

    A: af.Array
       A 2 dimensional arrayfire array representing the coefficients of the system.

    B: af.Array
       A 1 or 2 dimensional arrayfire array representing the constants of the system.

    options: optional: af.MATPROP. default: af.MATPROP.NONE.
       - Additional options to speed up computations.
       - Currently needs to be one of `af.MATPROP.NONE`, `af.MATPROP.LOWER`, `af.MATPROP.UPPER`.

    Returns
    -------
    X: af.Array
       A 1 or 2 dimensional arrayfire array representing the unknowns in the system.

    """
    X = Array()
    safe_call(backend.get().af_solve(ct.pointer(X.arr), A.arr, B.arr, options.value))
    return X

def solve_lu(A, P, B, options=MATPROP.NONE):
    """
    Solve a system of linear equations, using LU decomposition.

    Parameters
    ----------

    A: af.Array
       - A 2 dimensional arrayfire array representing the coefficients of the system.
       - This matrix should be decomposed previously using `lu_inplace(A)`.

    P: af.Array
       - Permutation array.
       - This array is the output of an earlier call to `lu_inplace(A)`

    B: af.Array
       A 1 or 2 dimensional arrayfire array representing the constants of the system.

    Returns
    -------
    X: af.Array
       A 1 or 2 dimensional arrayfire array representing the unknowns in the system.

    """
    X = Array()
    safe_call(backend.get().af_solve_lu(ct.pointer(X.arr), A.arr, P.arr, B.arr, options.value))
    return X

def inverse(A, options=MATPROP.NONE):
    """
    Invert a matrix.

    Parameters
    ----------

    A: af.Array
       - A 2 dimensional arrayfire array

    options: optional: af.MATPROP. default: af.MATPROP.NONE.
       - Additional options to speed up computations.
       - Currently needs to be one of `af.MATPROP.NONE`.

    Returns
    -------

    AI: af.Array
       - A 2 dimensional array that is the inverse of `A`

    Note
    ----

    `A` needs to be a square matrix.

    """
    AI = Array()
    safe_call(backend.get().af_inverse(ct.pointer(AI.arr), A.arr, options.value))
    return AI

def rank(A, tol=1E-5):
    """
    Rank of a matrix.

    Parameters
    ----------

    A: af.Array
       - A 2 dimensional arrayfire array

    tol: optional: scalar. default: 1E-5.
       - Tolerance for calculating rank

    Returns
    -------

    r: int
       - Rank of `A` within the given tolerance
    """
    r = ct.c_uint(0)
    safe_call(backend.get().af_rank(ct.pointer(r), A.arr, ct.c_double(tol)))
    return r.value

def det(A):
    """
    Determinant of a matrix.

    Parameters
    ----------

    A: af.Array
       - A 2 dimensional arrayfire array

    Returns
    -------

    res: scalar
       - Determinant of the matrix.
    """
    re = ct.c_double(0)
    im = ct.c_double(0)
    safe_call(backend.get().af_det(ct.pointer(re), ct.pointer(im), A.arr))
    re = re.value
    im = im.value
    return re if (im == 0) else re + im * 1j

def norm(A, norm_type=NORM.EUCLID, p=1.0, q=1.0):
    """
    Norm of an array or a matrix.

    Parameters
    ----------

    A: af.Array
       - A 1 or 2 dimensional arrayfire array

    norm_type: optional: af.NORM. default: af.NORM.EUCLID.
       - Type of norm to be calculated.

    p: scalar. default 1.0.
       - Used only if `norm_type` is one of `af.NORM.VECTOR_P`, `af.NORM_MATRIX_L_PQ`

    q: scalar. default 1.0.
       - Used only if `norm_type` is `af.NORM_MATRIX_L_PQ`

    Returns
    -------

    res: scalar
       - norm of the input

    """
    res = ct.c_double(0)
    safe_call(backend.get().af_norm(ct.pointer(res), A.arr, norm_type.value,
                                    ct.c_double(p), ct.c_double(q)))
    return res.value

def svd(A):
    """
    Singular Value Decomposition

    Parameters
    ----------
    A: af.Array
       A 2 dimensional arrayfire array.

    Returns
    -------
    (U,S,Vt): tuple of af.Arrays
           - U - A unitary matrix
           - S - An array containing the elements of diagonal matrix
           - Vt - A unitary matrix

    Note
    ----

    - The original matrix `A` is preserved and additional storage space is required for decomposition.

    - If the original matrix `A` need not be preserved, use `svd_inplace` instead.

    - The original matrix `A` can be reconstructed using the outputs in the following manner.
    >>> Smat = af.diag(S, 0, False)
    >>> A_recon = af.matmul(af.matmul(U, Smat), Vt)

    """
    U = Array()
    S = Array()
    Vt = Array()
    safe_call(backend.get().af_svd(ct.pointer(U.arr), ct.pointer(S.arr), ct.pointer(Vt.arr), A.arr))
    return U, S, Vt

def svd_inplace(A):
    """
    Singular Value Decomposition

    Parameters
    ----------
    A: af.Array
       A 2 dimensional arrayfire array.

    Returns
    -------
    (U,S,Vt): tuple of af.Arrays
           - U - A unitary matrix
           - S - An array containing the elements of diagonal matrix
           - Vt - A unitary matrix

    Note
    ----

    - The original matrix `A` is not preserved.

    - If the original matrix `A` needs to be preserved, use `svd` instead.

    - The original matrix `A` can be reconstructed using the outputs in the following manner.
    >>> Smat = af.diag(S, 0, False)
    >>> A_recon = af.matmul(af.matmul(U, Smat), Vt)

    """
    U = Array()
    S = Array()
    Vt = Array()
    safe_call(backend.get().af_svd_inplace(ct.pointer(U.arr), ct.pointer(S.arr), ct.pointer(Vt.arr),
                                           A.arr))
    return U, S, Vt

def is_lapack_available():
    """
    Function to check if the arrayfire library was built with lapack support.
    """
    res = ct.c_bool(False)
    safe_call(backend.get().af_is_lapack_available(ct.pointer(res)))
    return res.value