/usr/lib/python2.7/dist-packages/arrayfire/interop.py is in python-arrayfire 3.3.20160624-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | #######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################
"""
Interop with other python packages.
This module provides interoperability with the following python packages.
1. numpy
2. pycuda
3. pyopencl
"""
from .array import *
from .device import *
try:
import numpy as np
from numpy import ndarray as NumpyArray
from .data import reorder
AF_NUMPY_FOUND=True
def np_to_af_array(np_arr):
"""
Convert numpy.ndarray to arrayfire.Array.
Parameters
----------
np_arr : numpy.ndarray()
Returns
---------
af_arr : arrayfire.Array()
"""
in_shape = np_arr.shape
in_ptr = np_arr.ctypes.data_as(ct.c_void_p)
in_dtype = np_arr.dtype.char
if (np_arr.flags['F_CONTIGUOUS']):
return Array(in_ptr, in_shape, in_dtype)
elif (np_arr.flags['C_CONTIGUOUS']):
if np_arr.ndim == 1:
return Array(in_ptr, in_shape, in_dtype)
elif np_arr.ndim == 2:
shape = (in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype)
return reorder(res, 1, 0)
elif np_arr.ndim == 3:
shape = (in_shape[2], in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype)
return reorder(res, 2, 1, 0)
elif np_arr.ndim == 4:
shape = (in_shape[3], in_shape[2], in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype)
return reorder(res, 3, 2, 1, 0)
else:
raise RuntimeError("Unsupported ndim")
else:
return np_to_af_array(np.asfortranarray(np_arr))
from_ndarray = np_to_af_array
except:
AF_NUMPY_FOUND=False
try:
import pycuda.gpuarray
from pycuda.gpuarray import GPUArray as CudaArray
AF_PYCUDA_FOUND=True
def pycuda_to_af_array(pycu_arr):
"""
Convert pycuda.gpuarray to arrayfire.Array
Parameters
-----------
pycu_arr : pycuda.GPUArray()
Returns
----------
af_arr : arrayfire.Array()
Note
----------
The input array is copied to af.Array
"""
in_ptr = pycu_arr.ptr
in_shape = pycu_arr.shape
in_dtype = pycu_arr.dtype.char
if (pycu_arr.flags.f_contiguous):
res = Array(in_ptr, in_shape, in_dtype, is_device=True)
lock_array(res)
res = res.copy()
return res
elif (pycu_arr.flags.c_contiguous):
if pycu_arr.ndim == 1:
return Array(in_ptr, in_shape, in_dtype, is_device=True)
elif pycu_arr.ndim == 2:
shape = (in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype, is_device=True)
lock_array(res)
return reorder(res, 1, 0)
elif pycu_arr.ndim == 3:
shape = (in_shape[2], in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype, is_device=True)
lock_array(res)
return reorder(res, 2, 1, 0)
elif pycu_arr.ndim == 4:
shape = (in_shape[3], in_shape[2], in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype, is_device=True)
lock_array(res)
return reorder(res, 3, 2, 1, 0)
else:
raise RuntimeError("Unsupported ndim")
else:
return pycuda_to_af_array(pycu_arr.copy())
except:
AF_PYCUDA_FOUND=False
try:
from pyopencl.array import Array as OpenclArray
from .opencl import add_device_context as _add_device_context
from .opencl import set_device_context as _set_device_context
from .opencl import get_device_id as _get_device_id
from .opencl import get_context as _get_context
AF_PYOPENCL_FOUND=True
def pyopencl_to_af_array(pycl_arr):
"""
Convert pyopencl.gpuarray to arrayfire.Array
Parameters
-----------
pycl_arr : pyopencl.Array()
Returns
----------
af_arr : arrayfire.Array()
Note
----------
The input array is copied to af.Array
"""
ctx = pycl_arr.context.int_ptr
que = pycl_arr.queue.int_ptr
dev = pycl_arr.queue.device.int_ptr
dev_idx = None
ctx_idx = None
for n in range(get_device_count()):
set_device(n)
dev_idx = _get_device_id()
ctx_idx = _get_context()
if (dev_idx == dev and ctx_idx == ctx):
break
if (dev_idx == None or ctx_idx == None or
dev_idx != dev or ctx_idx != ctx):
_add_device_context(dev, ctx, que)
_set_device_context(dev, ctx)
in_ptr = pycl_arr.base_data.int_ptr
in_shape = pycl_arr.shape
in_dtype = pycl_arr.dtype.char
if (pycl_arr.flags.f_contiguous):
res = Array(in_ptr, in_shape, in_dtype, is_device=True)
lock_array(res)
return res
elif (pycl_arr.flags.c_contiguous):
if pycl_arr.ndim == 1:
return Array(in_ptr, in_shape, in_dtype, is_device=True)
elif pycl_arr.ndim == 2:
shape = (in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype, is_device=True)
lock_array(res)
return reorder(res, 1, 0)
elif pycl_arr.ndim == 3:
shape = (in_shape[2], in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype, is_device=True)
lock_array(res)
return reorder(res, 2, 1, 0)
elif pycl_arr.ndim == 4:
shape = (in_shape[3], in_shape[2], in_shape[1], in_shape[0])
res = Array(in_ptr, shape, in_dtype, is_device=True)
lock_array(res)
return reorder(res, 3, 2, 1, 0)
else:
raise RuntimeError("Unsupported ndim")
else:
return pyopencl_to_af_array(pycl_arr.copy())
except:
AF_PYOPENCL_FOUND=False
def to_array(in_array):
"""
Helper function to convert input from a different module to af.Array
Parameters
-------------
in_array : array like object
Can be one of numpy.ndarray, pycuda.GPUArray, pyopencl.Array, array.array, list
Returns
--------------
af.Array of same dimensions as input after copying the data from the input
"""
if AF_NUMPY_FOUND and isinstance(in_array, NumpyArray):
return np_to_af_array(in_array)
if AF_PYCUDA_FOUND and isinstance(in_array, CudaArray):
return pycuda_to_af_array(in_array)
if AF_PYOPENCL_FOUND and isinstance(in_array, OpenclArray):
return pyopencl_to_af_array(in_array)
return Array(src=in_array)
|