This file is indexed.

/usr/lib/python2.7/dist-packages/arrayfire/interop.py is in python-arrayfire 3.3.20160624-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
#######################################################
# Copyright (c) 2015, ArrayFire
# All rights reserved.
#
# This file is distributed under 3-clause BSD license.
# The complete license agreement can be obtained at:
# http://arrayfire.com/licenses/BSD-3-Clause
########################################################

"""
Interop with other python packages.

This module provides interoperability with the following python packages.

     1. numpy
     2. pycuda
     3. pyopencl
"""

from .array import *
from .device import *

try:
    import numpy as np
    from numpy import ndarray as NumpyArray
    from .data import reorder

    AF_NUMPY_FOUND=True

    def np_to_af_array(np_arr):
        """
        Convert numpy.ndarray to arrayfire.Array.

        Parameters
        ----------
        np_arr  : numpy.ndarray()

        Returns
        ---------
        af_arr  : arrayfire.Array()
        """

        in_shape = np_arr.shape
        in_ptr = np_arr.ctypes.data_as(ct.c_void_p)
        in_dtype = np_arr.dtype.char

        if (np_arr.flags['F_CONTIGUOUS']):
            return Array(in_ptr, in_shape, in_dtype)
        elif (np_arr.flags['C_CONTIGUOUS']):
            if np_arr.ndim == 1:
                return Array(in_ptr, in_shape, in_dtype)
            elif np_arr.ndim == 2:
                shape = (in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype)
                return reorder(res, 1, 0)
            elif np_arr.ndim == 3:
                shape = (in_shape[2], in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype)
                return reorder(res, 2, 1, 0)
            elif np_arr.ndim == 4:
                shape = (in_shape[3], in_shape[2], in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype)
                return reorder(res, 3, 2, 1, 0)
            else:
                raise RuntimeError("Unsupported ndim")
        else:
            return np_to_af_array(np.asfortranarray(np_arr))

    from_ndarray = np_to_af_array
except:
    AF_NUMPY_FOUND=False

try:
    import pycuda.gpuarray
    from pycuda.gpuarray import GPUArray as CudaArray
    AF_PYCUDA_FOUND=True

    def pycuda_to_af_array(pycu_arr):
        """
        Convert pycuda.gpuarray to arrayfire.Array

        Parameters
        -----------
        pycu_arr  : pycuda.GPUArray()

        Returns
        ----------
        af_arr    : arrayfire.Array()

        Note
        ----------
        The input array is copied to af.Array
        """

        in_ptr = pycu_arr.ptr
        in_shape = pycu_arr.shape
        in_dtype = pycu_arr.dtype.char

        if (pycu_arr.flags.f_contiguous):
            res = Array(in_ptr, in_shape, in_dtype, is_device=True)
            lock_array(res)
            res = res.copy()
            return res
        elif (pycu_arr.flags.c_contiguous):
            if pycu_arr.ndim == 1:
                return Array(in_ptr, in_shape, in_dtype, is_device=True)
            elif pycu_arr.ndim == 2:
                shape = (in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype, is_device=True)
                lock_array(res)
                return reorder(res, 1, 0)
            elif pycu_arr.ndim == 3:
                shape = (in_shape[2], in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype, is_device=True)
                lock_array(res)
                return reorder(res, 2, 1, 0)
            elif pycu_arr.ndim == 4:
                shape = (in_shape[3], in_shape[2], in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype, is_device=True)
                lock_array(res)
                return reorder(res, 3, 2, 1, 0)
            else:
                raise RuntimeError("Unsupported ndim")
        else:
            return pycuda_to_af_array(pycu_arr.copy())
except:
    AF_PYCUDA_FOUND=False

try:
    from pyopencl.array import Array as OpenclArray
    from .opencl import add_device_context as _add_device_context
    from .opencl import set_device_context as _set_device_context
    from .opencl import get_device_id as _get_device_id
    from .opencl import get_context as _get_context
    AF_PYOPENCL_FOUND=True

    def pyopencl_to_af_array(pycl_arr):
        """
        Convert pyopencl.gpuarray to arrayfire.Array

        Parameters
        -----------
        pycl_arr  : pyopencl.Array()

        Returns
        ----------
        af_arr    : arrayfire.Array()

        Note
        ----------
        The input array is copied to af.Array
        """

        ctx = pycl_arr.context.int_ptr
        que = pycl_arr.queue.int_ptr
        dev = pycl_arr.queue.device.int_ptr

        dev_idx = None
        ctx_idx = None
        for n in range(get_device_count()):
            set_device(n)
            dev_idx = _get_device_id()
            ctx_idx = _get_context()
            if (dev_idx == dev and ctx_idx == ctx):
                break

        if (dev_idx == None or ctx_idx == None or
            dev_idx != dev or ctx_idx != ctx):
            _add_device_context(dev, ctx, que)
            _set_device_context(dev, ctx)

        in_ptr = pycl_arr.base_data.int_ptr
        in_shape = pycl_arr.shape
        in_dtype = pycl_arr.dtype.char

        if (pycl_arr.flags.f_contiguous):
            res = Array(in_ptr, in_shape, in_dtype, is_device=True)
            lock_array(res)
            return res
        elif (pycl_arr.flags.c_contiguous):
            if pycl_arr.ndim == 1:
                return Array(in_ptr, in_shape, in_dtype, is_device=True)
            elif pycl_arr.ndim == 2:
                shape = (in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype, is_device=True)
                lock_array(res)
                return reorder(res, 1, 0)
            elif pycl_arr.ndim == 3:
                shape = (in_shape[2], in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype, is_device=True)
                lock_array(res)
                return reorder(res, 2, 1, 0)
            elif pycl_arr.ndim == 4:
                shape = (in_shape[3], in_shape[2], in_shape[1], in_shape[0])
                res = Array(in_ptr, shape, in_dtype, is_device=True)
                lock_array(res)
                return reorder(res, 3, 2, 1, 0)
            else:
                raise RuntimeError("Unsupported ndim")
        else:
            return pyopencl_to_af_array(pycl_arr.copy())
except:
    AF_PYOPENCL_FOUND=False


def to_array(in_array):
    """
    Helper function to convert input from a different module to af.Array

    Parameters
    -------------

    in_array : array like object
             Can be one of numpy.ndarray, pycuda.GPUArray, pyopencl.Array, array.array, list

    Returns
    --------------
    af.Array of same dimensions as input after copying the data from the input


    """
    if AF_NUMPY_FOUND and isinstance(in_array, NumpyArray):
        return np_to_af_array(in_array)
    if AF_PYCUDA_FOUND and isinstance(in_array, CudaArray):
        return pycuda_to_af_array(in_array)
    if AF_PYOPENCL_FOUND and isinstance(in_array, OpenclArray):
        return pyopencl_to_af_array(in_array)
    return Array(src=in_array)