/usr/lib/python2.7/dist-packages/aplpy/grid.py is in python-aplpy 1.1.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 | from __future__ import absolute_import, print_function, division
import warnings
import numpy as np
from matplotlib.collections import LineCollection
from . import math_util
from . import wcs_util
from . import angle_util as au
from .ticks import tick_positions, default_spacing
from .decorators import auto_refresh
class Grid(object):
@auto_refresh
def __init__(self, parent):
# Save axes and wcs information
self.ax = parent._ax1
self._wcs = parent._wcs
self._figure = parent._figure
# Save plotting parameters (required for @auto_refresh)
self._parameters = parent._parameters
# Initialize grid container
self._grid = None
self._active = False
# Set defaults
self.x_auto_spacing = True
self.y_auto_spacing = True
self.default_color = 'white'
self.default_alpha = 0.5
# Set grid event handler
self.ax.callbacks.connect('xlim_changed', self._update_norefresh)
self.ax.callbacks.connect('ylim_changed', self._update_norefresh)
@auto_refresh
def _remove(self):
self._grid.remove()
@auto_refresh
def set_xspacing(self, xspacing):
'''
Set the grid line spacing in the longitudinal direction
Parameters
----------
xspacing : { float, str }
The spacing in the longitudinal direction. To set the spacing
to be the same as the ticks, set this to 'tick'
'''
if xspacing == 'tick':
self.x_auto_spacing = True
elif np.isreal(xspacing):
self.x_auto_spacing = False
if self._wcs.xaxis_coord_type in ['longitude', 'latitude']:
self.x_grid_spacing = au.Angle(
degrees=xspacing,
latitude=self._wcs.xaxis_coord_type == 'latitude')
else:
self.x_grid_spacing = xspacing
else:
raise ValueError("Grid spacing should be a scalar or 'tick'")
self._update()
@auto_refresh
def set_yspacing(self, yspacing):
'''
Set the grid line spacing in the latitudinal direction
Parameters
----------
yspacing : { float, str }
The spacing in the latitudinal direction. To set the spacing
to be the same as the ticks, set this to 'tick'
'''
if yspacing == 'tick':
self.y_auto_spacing = True
elif np.isreal(yspacing):
self.y_auto_spacing = False
if self._wcs.yaxis_coord_type in ['longitude', 'latitude']:
self.y_grid_spacing = au.Angle(
degrees=yspacing,
latitude=self._wcs.yaxis_coord_type == 'latitude')
else:
self.y_grid_spacing = yspacing
else:
raise ValueError("Grid spacing should be a scalar or 'tick'")
self._update()
@auto_refresh
def set_color(self, color):
'''
Set the color of the grid lines
Parameters
----------
color : str
The color of the grid lines
'''
if self._grid:
self._grid.set_edgecolor(color)
else:
self.default_color = color
@auto_refresh
def set_alpha(self, alpha):
'''
Set the alpha (transparency) of the grid lines
Parameters
----------
alpha : float
The alpha value of the grid. This should be a floating
point value between 0 and 1, where 0 is completely
transparent, and 1 is completely opaque.
'''
if self._grid:
self._grid.set_alpha(alpha)
else:
self.default_alpha = alpha
@auto_refresh
def set_linewidth(self, linewidth):
self._grid.set_linewidth(linewidth)
@auto_refresh
def set_linestyle(self, linestyle):
self._grid.set_linestyle(linestyle)
@auto_refresh
def show(self):
if self._grid:
self._grid.set_visible(True)
else:
self._active = True
self._update()
self.set_color(self.default_color)
self.set_alpha(self.default_alpha)
@auto_refresh
def hide(self):
self._grid.set_visible(False)
@auto_refresh
def _update(self, *args):
self._update_norefresh(*args)
def _update_norefresh(self, *args):
if not self._active:
return self.ax
if len(args) == 1:
if id(self.ax) != id(args[0]):
raise Exception("ax ids should match")
lines = []
# Set x grid spacing
if self.x_auto_spacing:
if self.ax.xaxis.apl_auto_tick_spacing:
xspacing = default_spacing(self.ax, 'x',
self.ax.xaxis.apl_label_form)
else:
xspacing = self.ax.xaxis.apl_tick_spacing
else:
xspacing = self.x_grid_spacing
if xspacing is None:
warnings.warn("Could not determine x tick spacing - grid cannot be drawn")
return
if self._wcs.xaxis_coord_type in ['longitude', 'latitude']:
xspacing = xspacing.todegrees()
# Set y grid spacing
if self.y_auto_spacing:
if self.ax.yaxis.apl_auto_tick_spacing:
yspacing = default_spacing(self.ax, 'y',
self.ax.yaxis.apl_label_form)
else:
yspacing = self.ax.yaxis.apl_tick_spacing
else:
yspacing = self.y_grid_spacing
if yspacing is None:
warnings.warn("Could not determine y tick spacing - grid cannot be drawn")
return
if self._wcs.yaxis_coord_type in ['longitude', 'latitude']:
yspacing = yspacing.todegrees()
# Find x lines that intersect with axes
grid_x_i, grid_y_i = find_intersections(self.ax, 'x', xspacing)
# Ensure that longitudes are between 0 and 360, and latitudes between
# -90 and 90
if self._wcs.xaxis_coord_type == 'longitude':
grid_x_i = np.mod(grid_x_i, 360.)
elif self._wcs.xaxis_coord_type == 'latitude':
grid_x_i = np.mod(grid_x_i + 90., 180.) - 90.
if self._wcs.yaxis_coord_type == 'longitude':
grid_y_i = np.mod(grid_y_i, 360.)
elif self._wcs.yaxis_coord_type == 'latitude':
grid_y_i = np.mod(grid_y_i + 90., 180.) - 90.
# If we are dealing with longitude/latitude then can search all
# neighboring grid lines to see if there are any closed longitude
# lines
if self._wcs.xaxis_coord_type == 'latitude' and self._wcs.yaxis_coord_type == 'longitude' and len(grid_x_i) > 0:
gx = grid_x_i.min()
while True:
gx -= xspacing
xpix, ypix = wcs_util.world2pix(self._wcs, gx, 0.)
if in_plot(self.ax, xpix, ypix) and gx >= -90.:
grid_x_i = np.hstack([grid_x_i, gx, gx])
grid_y_i = np.hstack([grid_y_i, 0., 360.])
else:
break
gx = grid_x_i.max()
while True:
gx += xspacing
xpix, ypix = wcs_util.world2pix(self._wcs, gx, 0.)
if in_plot(self.ax, xpix, ypix) and gx <= +90.:
grid_x_i = np.hstack([grid_x_i, gx, gx])
grid_y_i = np.hstack([grid_y_i, 0., 360.])
else:
break
# Plot those lines
for gx in np.unique(grid_x_i):
for line in plot_grid_x(self.ax, grid_x_i, grid_y_i, gx):
lines.append(line)
# Find y lines that intersect with axes
grid_x_i, grid_y_i = find_intersections(self.ax, 'y', yspacing)
if self._wcs.xaxis_coord_type == 'longitude':
grid_x_i = np.mod(grid_x_i, 360.)
elif self._wcs.xaxis_coord_type == 'latitude':
grid_x_i = np.mod(grid_x_i + 90., 180.) - 90.
if self._wcs.yaxis_coord_type == 'longitude':
grid_y_i = np.mod(grid_y_i, 360.)
elif self._wcs.yaxis_coord_type == 'latitude':
grid_y_i = np.mod(grid_y_i + 90., 180.) - 90.
# If we are dealing with longitude/latitude then can search all
# neighboring grid lines to see if there are any closed longitude
# lines
if (self._wcs.xaxis_coord_type == 'longitude' and
self._wcs.yaxis_coord_type == 'latitude' and len(grid_y_i) > 0):
gy = grid_y_i.min()
while True:
gy -= yspacing
xpix, ypix = wcs_util.world2pix(self._wcs, 0., gy)
if in_plot(self.ax, xpix, ypix) and gy >= -90.:
grid_x_i = np.hstack([grid_x_i, 0., 360.])
grid_y_i = np.hstack([grid_y_i, gy, gy])
else:
break
gy = grid_y_i.max()
while True:
gy += yspacing
xpix, ypix = wcs_util.world2pix(self._wcs, 0., gy)
if in_plot(self.ax, xpix, ypix) and gy <= +90.:
grid_x_i = np.hstack([grid_x_i, 0., 360.])
grid_y_i = np.hstack([grid_y_i, gy, gy])
else:
break
# Plot those lines
for gy in np.unique(grid_y_i):
for line in plot_grid_y(self.ax, grid_x_i, grid_y_i, gy):
lines.append(line)
if self._grid:
self._grid.set_verts(lines)
else:
self._grid = LineCollection(lines, transOffset=self.ax.transData)
self.ax.add_collection(self._grid, False)
return self.ax
def plot_grid_y(ax, grid_x, grid_y, gy, alpha=0.5):
'''Plot a single grid line in the y direction'''
wcs = ax._wcs
lines_out = []
# Find intersections that correspond to latitude lat0
index = np.where(grid_y == gy)
# Produce sorted array of the longitudes of all intersections
grid_x_sorted = np.sort(grid_x[index])
# If coordinate type is a latitude or longitude, also need to check if
# end-points fall inside the plot
if wcs.xaxis_coord_type == 'latitude':
if not np.any(grid_x_sorted == -90):
xpix, ypix = wcs_util.world2pix(wcs, max(grid_x_sorted[0] - 1., -90.), gy)
if in_plot(ax, xpix, ypix):
grid_x_sorted = np.hstack([-90., grid_x_sorted])
if not np.any(grid_x_sorted == +90):
xpix, ypix = wcs_util.world2pix(wcs, min(grid_x_sorted[-1] + 1., +90.), gy)
if in_plot(ax, xpix, ypix):
grid_x_sorted = np.hstack([grid_x_sorted, +90.])
elif wcs.xaxis_coord_type == 'longitude':
if not np.any(grid_x_sorted == 0.):
xpix, ypix = wcs_util.world2pix(wcs, max(grid_x_sorted[0] - 1., 0.), gy)
if in_plot(ax, xpix, ypix):
grid_x_sorted = np.hstack([0., grid_x_sorted])
if not np.any(grid_x_sorted == 360.):
xpix, ypix = wcs_util.world2pix(wcs, min(grid_x_sorted[-1] + 1., 360.), gy)
if in_plot(ax, xpix, ypix):
grid_x_sorted = np.hstack([grid_x_sorted, 360.])
# Check if the first mid-point with coordinates is inside the viewport
xpix, ypix = wcs_util.world2pix(wcs, (grid_x_sorted[0] + grid_x_sorted[1]) / 2., gy)
if not in_plot(ax, xpix, ypix):
grid_x_sorted = np.roll(grid_x_sorted, 1)
# Check that number of grid points is even
if len(grid_x_sorted) % 2 == 1:
warnings.warn("Unexpected number of grid points - x grid lines cannot be drawn")
return []
# Cycle through intersections
for i in range(0, len(grid_x_sorted), 2):
grid_x_min = grid_x_sorted[i]
grid_x_max = grid_x_sorted[i + 1]
x_world = math_util.complete_range(grid_x_min, grid_x_max, 100)
y_world = np.repeat(gy, len(x_world))
x_pix, y_pix = wcs_util.world2pix(wcs, x_world, y_world)
lines_out.append(list(zip(x_pix, y_pix)))
return lines_out
def plot_grid_x(ax, grid_x, grid_y, gx, alpha=0.5):
'''Plot a single longitude line'''
wcs = ax._wcs
lines_out = []
# Find intersections that correspond to longitude gx
index = np.where(grid_x == gx)
# Produce sorted array of the latitudes of all intersections
grid_y_sorted = np.sort(grid_y[index])
# If coordinate type is a latitude or longitude, also need to check if
# end-points fall inside the plot
if wcs.yaxis_coord_type == 'latitude':
if not np.any(grid_y_sorted == -90):
xpix, ypix = wcs_util.world2pix(wcs, gx, max(grid_y_sorted[0] - 1., -90.))
if in_plot(ax, xpix, ypix):
grid_y_sorted = np.hstack([-90., grid_y_sorted])
if not np.any(grid_y_sorted == +90):
xpix, ypix = wcs_util.world2pix(wcs, gx, min(grid_y_sorted[-1] + 1., +90.))
if in_plot(ax, xpix, ypix):
grid_y_sorted = np.hstack([grid_y_sorted, +90.])
elif wcs.yaxis_coord_type == 'longitude':
if not np.any(grid_y_sorted == 0.):
xpix, ypix = wcs_util.world2pix(wcs, gx, max(grid_y_sorted[0] - 1., 0.))
if in_plot(ax, xpix, ypix):
grid_y_sorted = np.hstack([0., grid_y_sorted])
if not np.any(grid_y_sorted == 360.):
xpix, ypix = wcs_util.world2pix(wcs, gx, min(grid_y_sorted[-1] + 1., 360.))
if in_plot(ax, xpix, ypix):
grid_y_sorted = np.hstack([grid_y_sorted, 360.])
# Check if the first mid-point with coordinates is inside the viewport
xpix, ypix = wcs_util.world2pix(wcs, gx, (grid_y_sorted[0] + grid_y_sorted[1]) / 2.)
if not in_plot(ax, xpix, ypix):
grid_y_sorted = np.roll(grid_y_sorted, 1)
# Check that number of grid points is even
if len(grid_y_sorted) % 2 == 1:
warnings.warn("Unexpected number of grid points - y grid lines cannot be drawn")
return []
# Cycle through intersections
for i in range(0, len(grid_y_sorted), 2):
grid_y_min = grid_y_sorted[i]
grid_y_max = grid_y_sorted[i + 1]
y_world = math_util.complete_range(grid_y_min, grid_y_max, 100)
x_world = np.repeat(gx, len(y_world))
x_pix, y_pix = wcs_util.world2pix(wcs, x_world, y_world)
lines_out.append(list(zip(x_pix, y_pix)))
return lines_out
def in_plot(ax, x_pix, y_pix):
'''Check whether a given point is in a plot'''
xmin, xmax = ax.xaxis.get_view_interval()
ymin, ymax = ax.yaxis.get_view_interval()
return (x_pix > xmin + 0.5 and x_pix < xmax + 0.5 and
y_pix > ymin + 0.5 and y_pix < ymax + 0.5)
def find_intersections(ax, coord, spacing):
'''
Find intersections of a given coordinate with all axes
Parameters
----------
ax :
The matplotlib axis instance for the figure.
coord : { 'x', 'y' }
The coordinate for which we are looking for ticks.
spacing : float
The spacing along the axis.
'''
wcs = ax._wcs
xmin, xmax = ax.xaxis.get_view_interval()
ymin, ymax = ax.yaxis.get_view_interval()
options = dict(mode='xy', xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax)
# Initialize arrays
x, y = [], []
# Bottom X axis
(labels_x, labels_y, world_x, world_y) = tick_positions(
wcs, spacing, 'x', coord, farside=False, **options)
x.extend(world_x)
y.extend(world_y)
# Top X axis
(labels_x, labels_y, world_x, world_y) = tick_positions(
wcs, spacing, 'x', coord, farside=True, **options)
x.extend(world_x)
y.extend(world_y)
# Left Y axis
(labels_x, labels_y, world_x, world_y) = tick_positions(
wcs, spacing, 'y', coord, farside=False, **options)
x.extend(world_x)
y.extend(world_y)
# Right Y axis
(labels_x, labels_y, world_x, world_y) = tick_positions(
wcs, spacing, 'y', coord, farside=True, **options)
x.extend(world_x)
y.extend(world_y)
return np.array(x), np.array(y)
|