This file is indexed.

/usr/share/puredata/doc/3.audio.examples/J01.even.odd.pd is in puredata-doc 0.48.1-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
#N canvas 213 27 782 599 12;
#X obj 80 156 wrap~;
#N canvas 0 0 450 300 graph1 0;
#X array \$0-phasor 882 float 0;
#X coords 0 1.02 882 -1.02 200 130 1;
#X restore 567 35 graph;
#X obj 24 57 -~ 0.5;
#X obj 80 184 -~ 0.5;
#N canvas 0 0 450 300 graph1 0;
#X array \$0-sum 882 float 0;
#X coords 0 1.02 882 -1.02 200 130 1;
#X restore 567 189 graph;
#N canvas 0 0 450 300 graph1 0;
#X array \$0-difference 882 float 0;
#X coords 0 1.02 882 -1.02 200 130 1;
#X restore 566 343 graph;
#X text 570 475 ---- 0.02 seconds ----;
#X text 528 567 updated for Pd version 0.39;
#X obj 22 335 output~;
#X obj 138 78 bng 15 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 29 270 output~;
#X text 41 -1 Splitting a sawtooth wave into even and odd harmonics
;
#X obj 24 29 phasor~ 100;
#X text 87 58 remove DC bias;
#X text 132 29 original sawtooth;
#X text 144 173 180-degree-out-of-phase;
#X text 147 188 sawtooth;
#X text 145 212 form the sum and difference;
#X obj 23 224 +~;
#X obj 59 223 -~;
#X text 4 408 This patch splits a sawtooth wave into its even and odd
harmonics. The wrap~ object is used to make the phased copy. Adding
and subtracting this to and from the original gives the results shown
and heard. (Listen to the two outputs separately \, then together.)
;
#X text 102 291 output level;
#X text 93 367 for sum;
#X text 95 350 output level;
#X text 100 308 for difference;
#X text 157 77 <-- click to graph;
#X msg 148 97 \; pd dsp 1;
#X obj 138 247 tabwrite~ \$0-difference;
#X obj 138 270 tabwrite~ \$0-sum;
#X obj 138 138 tabwrite~ \$0-phasor;
#X text 4 491 This is a classic technique for gaining separate control
over the even and odd harmonics in a synthetic sound. It can also be
used conceptually to understand the harmonic content of a square wave
in terms of that of a sawtooth \, or vice versa.;
#X connect 0 0 3 0;
#X connect 2 0 0 0;
#X connect 2 0 18 0;
#X connect 2 0 19 0;
#X connect 2 0 29 0;
#X connect 3 0 18 1;
#X connect 3 0 19 1;
#X connect 9 0 26 0;
#X connect 9 0 27 0;
#X connect 9 0 28 0;
#X connect 9 0 29 0;
#X connect 12 0 2 0;
#X connect 18 0 8 0;
#X connect 18 0 28 0;
#X connect 19 0 10 1;
#X connect 19 0 27 0;