/usr/share/puredata/doc/3.audio.examples/E10.complex.FM.pd is in puredata-doc 0.48.1-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | #N canvas 165 123 695 505 12;
#X obj 94 247 *~;
#X obj 109 223 line~;
#X obj 18 179 cos~;
#X obj 18 154 +~;
#X obj 109 200 pack 0 50;
#X floatatom 109 152 0 0 300 0 - - -;
#X obj 109 176 / 100;
#X obj 18 129 phasor~;
#X obj 20 340 output~;
#X obj 19 309 hip~;
#X text 437 472 updated for Pd version 0.37;
#N canvas 62 299 558 609 fft 0;
#X obj 19 61 inlet~;
#X obj 208 212 inlet;
#X obj 29 92 rfft~;
#X obj 29 125 *~;
#X obj 60 125 *~;
#X obj 29 155 sqrt~;
#X obj 332 109 block~ 4096 1;
#X obj 29 181 biquad~ 0 0 0 0 1;
#X text 93 93 Fourier series;
#X text 98 146 magnitude;
#X text 96 131 calculate;
#X text 21 3 This subpatch computes the spectrum of the incoming signal
with a (rectangular windowed) FFT. FFTs aren't properly introduced
until much later.;
#X text 83 61 signal to analyze;
#X text 193 164 delay two samples;
#X text 191 182 for better graphing;
#X obj 16 425 samplerate~;
#X obj 16 402 bng 18 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X floatatom 16 472 5 0 0 0 - - -;
#X obj 16 448 / 256;
#X obj 16 378 loadbang;
#X obj 72 494 s fundamental;
#X text 14 319 At load time \, calculate a good choice of fundamental
frequency for showing spectra: the 16th bin in a 4096-point spectrum
\, so SR*16/4096 or SR/256.;
#X obj 220 257 metro 500;
#X obj 220 234 inlet;
#X text 273 232 toggle to graph repeatedly;
#X text 262 212 bang to graph once;
#X obj 16 494 t b f;
#X obj 19 295 tabwrite~ E10-spectrum;
#X obj 208 295 tabwrite~ E10-spectrum;
#X text 72 536 set carrier multiplier and modulation multipliers after
fundamental;
#X msg 16 516 \; cm 8 \; m1 2 \; m2 3;
#X connect 0 0 2 0;
#X connect 0 0 27 0;
#X connect 1 0 27 0;
#X connect 1 0 28 0;
#X connect 2 0 3 0;
#X connect 2 0 3 1;
#X connect 2 1 4 0;
#X connect 2 1 4 1;
#X connect 3 0 5 0;
#X connect 4 0 5 0;
#X connect 5 0 7 0;
#X connect 7 0 28 0;
#X connect 15 0 18 0;
#X connect 16 0 15 0;
#X connect 17 0 26 0;
#X connect 18 0 17 0;
#X connect 19 0 16 0;
#X connect 22 0 27 0;
#X connect 22 0 28 0;
#X connect 23 0 22 0;
#X connect 26 0 30 0;
#X connect 26 1 20 0;
#X restore 65 311 pd fft;
#X obj 125 290 bng 18 250 50 0 empty empty empty 0 -6 0 8 -262144 -1
-1;
#X obj 125 311 tgl 18 0 empty empty empty 0 -6 0 8 -262144 -1 -1 1
1;
#X text 146 310 <-- repeatedly;
#X text 147 290 <-- graph once;
#N canvas 0 0 450 300 graph1 0;
#X array E10-spectrum 259 float 0;
#X coords 0 2100 258 -20 259 130 1;
#X restore 396 122 graph;
#X text 426 253 2;
#X text 457 253 4;
#X text 396 253 0;
#X text 434 268 -- partial number --;
#X text 490 104 SPECTRUM;
#X text 656 238 0;
#X text 657 120 0.5;
#X obj 93 128 osc~;
#X obj 267 79 r fundamental;
#X text 489 253 6;
#X text 522 253 8;
#X text 550 253 10;
#X text 582 253 12;
#X text 614 253 14;
#X floatatom 18 58 3 0 15 0 - - -;
#X obj 18 105 *;
#X obj 18 33 r cm;
#X text 43 3 SPECTRUM OF COMPLEX PHASE MODULATION;
#X text 23 73 carrier;
#X obj 93 107 *;
#X floatatom 93 60 3 0 15 0 - - -;
#X text 99 74 mod 1;
#X obj 93 35 r m1;
#X text 138 154 index1;
#X obj 197 249 *~;
#X obj 212 225 line~;
#X obj 212 202 pack 0 50;
#X floatatom 212 154 0 0 300 0 - - -;
#X obj 212 178 / 100;
#X obj 196 130 osc~;
#X obj 196 109 *;
#X floatatom 196 62 3 0 15 0 - - -;
#X text 202 76 mod 2;
#X text 246 154 index2;
#X obj 196 37 r m2;
#X text 126 349 Now we introduce a second modulator oscillator. The
carrier is on the 8th harmonic and the two modulators are at 2 and
3 times the fundamental. When either index of modulation is zero \,
changing the other index gives the familiar 2-operator FM result. But
if index2 is nonzero (try around 10 \, for example) then sliding index1
upward from 0 introduces sidebands around each of the sidebands.;
#X connect 0 0 3 1;
#X connect 1 0 0 1;
#X connect 2 0 9 0;
#X connect 2 0 11 0;
#X connect 3 0 2 0;
#X connect 4 0 1 0;
#X connect 5 0 6 0;
#X connect 6 0 4 0;
#X connect 7 0 3 0;
#X connect 9 0 8 0;
#X connect 9 0 8 1;
#X connect 12 0 11 1;
#X connect 13 0 11 2;
#X connect 24 0 0 0;
#X connect 25 0 32 1;
#X connect 25 0 36 1;
#X connect 25 0 47 1;
#X connect 31 0 32 0;
#X connect 32 0 7 0;
#X connect 33 0 31 0;
#X connect 36 0 24 0;
#X connect 37 0 36 0;
#X connect 39 0 37 0;
#X connect 41 0 3 1;
#X connect 42 0 41 1;
#X connect 43 0 42 0;
#X connect 44 0 45 0;
#X connect 45 0 43 0;
#X connect 46 0 41 0;
#X connect 47 0 46 0;
#X connect 48 0 47 0;
#X connect 51 0 48 0;
|