This file is indexed.

/usr/share/psychtoolbox-3/PsychHardware/CedrusResponseBox.m is in psychtoolbox-3-common 3.0.14.20170103+git6-g605ff5c.dfsg1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
function varargout = CedrusResponseBox(cmd, varargin)
% CedrusResponseBox - Interface to Cedrus Response Boxes.
%
% This function provides an interface to response button boxes from Cedrus,
% specifically model RB 530,...,830 and compatible models supporting the
% XID protocol (see http://www.cedrus.com).
%
% These response boxes connect via a serial line link interface, or a USB
% interface which emulates a serial link interface. They support the XID
% protocol for communication. See http://www.cedrus.com/xid for details.
%
% This function allows to establish a connection to the box, control a few
% of its parameters and most importantly query its button state and
% associated button press timestamps.
%
% It supports multiple subcommands, which accept and return different
% arguments, as listed below.
%
% Limitations:
% ------------
%
% Functionality is currently limited mostly to button queries (and RJ-45
% connector state queries), including timestamps, as well as control of
% built-in timers of the box. We also support basic configuration of TTL
% ports, but not yet all settings of the box like e.g., button debounce
% time. Adding such calls is straightforward and simple.
%
% We found communication with the Cedrus boxes to be unreliable quite
% often. It is an open question if this is a flaw in the design of the
% Cedrus devices and their firmware or protocols, or if the programming
% documentation for them is incomplete and therefore our implementation of
% the driver. However, the problems were reproduced under different
% operating systems, serial port drivers, toolboxes by different
% implementations written by different people, so it doesn't seem to be a
% simple glitch in one implementation. In general, the boxes work, but
% don't be surprised if you need to restart your script multiple times
% before you can establish communication, or if the more advanced
% fucntions, e.g., for configuration of the TTL RJ-45 connector, work
% unreliably for no apparent reason. Cedrus has been contacted, but so far
% no resolution or response from them.
%
% In short: If you are looking for a reliable response box that is painfree
% to use, don't buy Cedrus devices!
%
%
% Subfunctions and their meaning:
% -------------------------------
%
% Functions for device init and shutdown: Call once at beginning/end of
% your script. These are slow!
%
% handle = CedrusResponseBox('Open', port [, lowbaudrate]);
% - Open a compatible response box which is connected to the given named
% serial 'port'. 'port'names differ accross operating systems. A typical
% port name for Windows would be 'COM2', whereas a typical port name on OS/X
% or Linux would be the name of a serial port device file, e.g.,
% '/dev/cu.usbserial-FTDI125ZX9' on OS/X, or '/dev/ttyS0' on Linux.
%
% All names on OS/X are like '/dev/cu.XXXXX', where the XXXXX part depends
% on your serial port device, typically '/dev/cu.usbserial-XXXXX' for
% serial over USB devices with product name XXXXX.
%
% On Linux, all names are of pattern '/dev/ttySxx' for standard serial
% ports, e.g., '/dev/ttyS0' for the first serial port in the system, and of
% type '/dev/ttyUSBxx' for serial over USB devices, e.g., '/dev/ttyUSB0'
% for the first serial line emulated over the USB protocol.
%
%
% After the connection is established and some testing and initialization is,
% done, the function returns a device 'handle', a unique identifier to use
% for all other subfunctions.
%
% By default the commlink is opened at a baud transmission rate of 115200
% Baud (All DIP switches on the box need to be in 'down' position!). If you
% specify the optional flag 'lowbaudrate' as 1, then the speed will be
% lowered to 56 kBaud at device open time -- in case your system works
% unreliably at the higher rate.
%
% By default, the script uses Psychtoolbox's own IOPort() serial link
% driver for communication (ptb_cedrus_drivertype = 2). If you want to use
% a different driver for testing, change the 'ptb_cedrus_drivertype'
% parameter inside the code with the id of a supported driver (Matlab
% serial() on Windows and Linux, SerialComm on OS/X). This option may go
% away in the future and is for debugging only!
%
%
% CedrusResponseBox('Close', handle);
% - Close connection to response box. The 'handle' becomes invalid after
% that command.
%
%
% CedrusResponseBox('CloseAll');
% - Close all connections to all response boxes. This is a convenience
% function for quick shutdown.
%
%
% dev = CedrusResponseBox('GetDeviceInfo', handle);
% - Return queried information about the device in a struct 'dev'. 'dev'
% contains (amongst other) the following fields:
%
% General information:
%  dev.Name = Device name string.
%  dev.VersionMajor and dev.VersionMinor = Major and Minor firmware revision.
%  dev.productId = Type of device, e.g., 'Lumina', 'VoiceKey' or 'RB response pad'.
%  dev.modelId   = Submodel of the device if the device is a RB response pad,
%                  e.g., 'RB-530', 'RB-730', 'RB-830' or 'RB-834'.
%
%  dev.port      = Portname of serial port, as passed to the open function.
%
% Diagnostic information for timing: Values of -1 or 0 usually mean "info
% not available".
%
%  dev.roundtriptime   = Median of estimated roundtrip latency for
%                        communication with the box - in seconds.
%
%  dev.roundtripstddev = Standard deviation from mean of roundtrip latency
%  measurements in seconds. Large numbers mean that your operating system
%  has bad scheduling and that reported event timestamps may be uncertain by
%  that amount.
%
%  dev.rttresetdelay   = Duration (in seconds) of a reaction time timer reset sequence
%  Values of more than 3 msecs indicate some problems with the box itself or
%  the communication link -- Measured event times or reaction times may not
%  be trustworthy!
%
%
% Functions for use within script. These are as fast as possible:
%
% CedrusResponseBox('ClearQueues', handle);
% - Clear all queues, discard all pending data.
%
% [status = ] CedrusResponseBox('FlushEvents', handle);
% - Empty/clear/flush the queue of pending events. Use this to get rid of
% any stale button press or release events before start of response
% collection in a trial. E.g., Assume you wait for a subjects keypress and
% finally receive that keypress via 'GetButtons' or 'WaitButtons'. You
% collected your response, the trial is done, but when the subject releases
% the button again, that will generate another event - a release event, in
% which you're not interested. Maybe the subject will accidentally hit the
% button as well. --> Good to clean the queue before a new trial.
%
% This function has a second use as well. It has an optional output
% argument, 'status', which will return the current status of all buttons
% (i.e. whether they are currently being pressed or not).
% Status is a 3 row by 8 column matrix: Row 1 describes the status of the
% up to eight pushbuttons of the box. Row 2 describes the status of the TTL
% lines of the RJ-45 accessory connector. Row 3 describes the status of the
% VoiceKey if any. Columns 1 to 8 of each row correspond to buttons 1-8,
% TTL lines 1-8 or inputs 1-8 of the VoiceKey.
%
% The mapping for the CB-530 for row 1 of 'status' status(1,:) is as follows:
%
% [top ??? left middle right bottom] -- the 2nd entry has no associated
% button, but it may be the scanner trigger input. The mapping on other boxes
% may be different.
%
% This is useful if you just want to know whether the subject is currently
% pressing any buttons before you proceed, but are not fussed about timing.
%
% E.g. I often find myself doing the following:
%   buttons = 1;
%   while any(buttons(1,:))
%     buttons = CedrusResponseBox('FlushEvents', mybox);
%   end
%
% ...to wait for the subject to release any buttons which might currently be down.
%
% evt = CedrusResponseBox('GetButtons', handle);
% - Return next queued button-press or button-release event from the box.
% Each time a button on the box is pressed or released, and each time the
% state of the accessory connector changes, an "event" data packet is sent
% from the box to the computer. The packet is timestamped with the time of
% the triggering event, as measured by the boxes reaction time timer.
%
% This function checks if such an event is available and returns its
% description in a 'evt' struct, if so. If no event is pending, it returns an
% empty 'evt', ie. isempty(evt) is true.
%
% 'evt' for a real fetched event is a struct with the following fields:
%
% evt.raw     = "raw" byte that describes the event. Only for debugging.
%
% evt.port    = Number of the device port on which the event occured. Push
%               buttons and scanner triggers are on port 0, the RJ-45 TTL
%               connector is on port 1, port 2 is the voice-key (if any).
%
% evt.action  = Action that triggered the event:
%               1 = Button press, 0 = Button release for pushbuttons.
%               1 = TTL line high, 0 = TTL line low for RJ-45 I/O lines.
%               1 = Voice onse, 0 = Voice offset/silence for Voicekey.
%
% evt.button  = Number of the button that was pressed or released (1 to 8)
%               or the TTL line that was going high/low. Numbers vary by
%               response box.
%
% evt.buttonID= Descriptive name string for pressed button, e.g., 'top' or
%               'left'. Please note that this mapping is only meaningful
%               for the RB-530 response box.
%
% evt.rawtime = Time of the event in secs since last reset of the reaction
%               time timer, measured in msecs resolution. This value is
%               always valid, but not directly comparable to any other
%               timestamps or time measurements within Psychtoolbox.
%
%
% evt = CedrusResponseBox('WaitButtons', handle);
% - Queries and returns the same info as 'GetButtons', but waits for
% events. If there isn't any event available, will wait until one becomes
% available.
%
% evt = CedrusResponseBox('WaitButtonPress', handle);
% - Like WaitButtons, but will wait until the subject /presses/ a key -- the
% signal that a key has been released is not acceptable -- Button release
% events are simply discarded.
%
%
% evt = CedrusResponseBox('GetBaseTimer', handle [, nSamples=1]);
% - Query current time of base timer of the box. Returned values are in
% seconds, resolution is milliseconds. evt.basetimer is the timers time,
% maybe corrected for serial link receive latency. evt.ptbreceivetime is a
% timestamp taken via PTB's GetSecs() at time of receive of the data.
% evt.ptbtime is the basetimers time mapped into PTB GetSecs time if such a
% mapping is possible, otherwise this field doesn't exist:
% evt.ptbreceivetime and evt.ptbtime shouldn't be significantly different
% if everything is good. Large differences indicate some timing problems
% with the connection to the box, or a timer problem - either with your
% computers timer or the hardware timer of the tox, or significant
% clock-drift between the computers timer and the boxes timer. In any case,
% reaction timer measurements and such will be problematic.
%
% Note that this automatically discards all pending events in the queue before
% performing the timer query!
%
% The optional argument 'nSamples' allows to specify if multiple samples of
% PTB timer vs. the response boxes timer should be measured. If 'nSamples'
% is set to a value greater than one, a cell array with nSamples elements
% will be returned, each corresponding to one measurement. This allows,
% e.g., to check if PTBs timer and the boxes timer drift against each
% other.
%
%
% resetTime = CedrusResponseBox('ResetRTTimer', handle);
% - Reset reaction time timer of box to zero. This should not be neccessary
% if you use the evt.ptbtime timestamps for time measurements or reaction
% time measurements. If you however use uncalibrated mode and the
% evt.rawtime values directly, this function may be useful to establish a
% zero baseline for reaction time measurements. However, as the communication
% delay for sending the reset command can't be reliably measured, using
% such a software triggered timer reset may not be the most reliable way of
% resetting the timer. The function returns 'resetTime' PTB's best guess of
% when the reset was carried out -- essentially a GetSecs() timestamp of
% when the reset command was sent.
%
% Note that this automatically discards all pending
% events in the queue before performing the query!
%
%
% slope = CedrusResponseBox('GetBoxTimerSlope', handle);
% - Compute slope (drift) between computer clock and device clock. 'slope'
% tells how many seconds of time "elapse" on the computer in GetSecs time
% for each "elapsed" second of box time. At device open time, the driver
% takes a timestamp from the device basetimer. This function also takes a
% timestamp and then computes the ratio of differences. The longer you'll
% wait after CedrusResponseBox('Open') before calling this function, the
% more accurate the clock-drift estimate will be.
%
%
% roundtrip = CedrusResponseBox('RoundTripTest', handle);
% - Initiate 100 trials of the roundtrip test of the box. Data is echoed
% forth and back 100 times between PTB and the box, and the latency is
% measured (in seconds, with msecs resolution). The vector of all samples
% is returned in 'roundtrip' for evaluation and debugging. The measured
% latency is also used for delay correction for the 'GetBaseTimer'
% subfunction. However, a roundtrip test is performed automatically when
% opening the response box connection, so this is rarely needed.
%
% Note that this automatically discards all pending
% events in the queue before performing the query!
%
%
% [currentMode] = CedrusResponseBox('SetConnectorMode', handle [, mode]);
% - Set or get mode of operation of external accessory connector: 'mode' can be
% any of the following text strings:
%
% 'GeneralPurpose': Input/Output assignment of pins can be freely
% programmed via the 'DefineInputLinesAndLevels' subcommand (see below),
% and the output lines only change if the 'SetOutputLineLevels' command
% (see below) is used. The connector doesn't change state by itself.
%
% 'ReflectiveContinuous': Line levels reflect button state: Line is active
% if button is pressed and goes inactive when the button is released again.
%
% 'ReflectiveSinglePulse': A single pulse is sent to an output line if a
% button is pressed on the box. Nothing is sent on release.
%
% 'ReflectiveDoublePulse': A single pulse is sent to an output line if a
% button is pressed on the box. Another pulse is sent on button release.
%
% If 'mode' is left out, the function queries and returns the current mode
% as return argument 'currentMode'. If mode is given, nothing is returned.
%
%
% CedrusResponseBox('SetOutputLineLevels', handle, outlevels);
% - Set accessory connector output lines to state specified in 'outlevels'.
% outlevels is an 8 element vector of zeros and ones. Each element
% corresponds to an output pin, and its values sets the output level of
% that pin. Example: outlevel = [1,1,1,1,0,0,0,0] would set the 4 lines
% with the lowest numbers (lines 0,1,2,3) to '1' aka active and the 4 lines
% with the highest numbers (lines 4,5,6,7) to '0' aka inactive.
% This corresponds to XiD command 'ah'.
%
% The command is only effective if connector is set to 'GeneralPurpose'.
%
%
% CedrusResponseBox('DefineInputLinesAndLevels', handle, inputlines, logiclevel, debouncetime);
% - Define which lines on the connector are inputs: 'inputlines' is a
% vector with the line numbers of the input lines. All other lines are
% designated as output lines, e.g., inputlines = [0, 2, 4] would set lines
% 0, 2 and 4 as inputs, remaining lines 1,3,5,6,7 as outputs. 'logiclevel'
% tells if the default TTL level of the input lines is low (logiclevel=1)
% or high (logiclevel=0). Example: logiclevel = 1 means that the lines are
% pulled low by default, so they will detect an active high state -- if
% their level is raised to TTL high state. The argument 'debouncetime' must
% be the debounce time for the input lines in milliseconds. After an event
% on a input line, the box will ignore all further events on than input
% line for 'debouncetime' milliseconds.
%
% This corresponds to XiD commands 'a4', 'a50' and 'a51', as well as 'a6'.
%
% The command is only effective if connector is set to 'GeneralPurpose'.
%
%
% inputLines = CedrusResponseBox('ReadInputLines', handle);
% - Read current state of the connectors input lines: Returns an 8 element
% vector where each element corresponds to one input line and a 1 means
% active, 0 means inactive. This corresponds to XiD command 'ar'.
%
% Note that this automatically discards all pending
% events in the queue before performing the query!
%
% The command is only effective if connector is set to 'GeneralPurpose'.
%
%

% Technical notes:
% USB VendorID of Cedrus:   0x0403
% USB ProductID:            0xf228
%
% Command for manual insertion of serial-over-USB module on Linux, if
% module doesn't recognize Cedrus device id's. Also edit rules files of
% usbdev, so ftdi_sio module gets auto-loaded on Cedrus insertion.
%
% sudo modprobe ftdi_sio product=0xf228

% Disabled help text snippets:
% [,doCalibrate=0]
% If you don't specify the optional 'doCalibrate' flag, or
% leave it at its default setting of 1, a couple of lengthy (multiple
% seconds) timing calibrations and tests are performed. These allow to
% assess the delays in communication between box and Matlab. They will also
% allow to return all times of events (as detected by the box) in PTB's
% standard GetSecs() time reference system -- Timestamps of button press
% events and TTL input events can be directly compared with timestamps
% delivered by other PTB functions like GetSecs, KbCheck, KbWait,
% Screen('Flip') etc.
%
% If you set the 'doCalibrate' flag to zero, all timing calibrations will
% be skipped: Startup time is drastically reduced. However there isn't any
% simple and straightforward way of comparing timestamps or timer readings
% delivered by the box with other timestamps of PTB functions. This only
% makes sense if you use some external triggering mechanism to reset the
% built-in reaction time timer via some external TTL input trigger signals
% and want to use raw timer measurements.

% evt.ptbtime = Time of the event in secs, measured in PTBs "GetSecs"
%               timebase. This is easier to correlate with other
%               timestamps, e.g., Screen('Flip') timestamps, but its
%               reliability hasn't been tested yet for the current
%               software release. When opening a connection to a response
%               box, we perform timing calibrations to establish the
%               mapping of time values as measured by the hardware timers
%               of your response pad to time values in PTB's reference
%               system. If you skipped that calibrations by setting the
%               optional 'doCalibrate' flag to zero at device open time,
%               then the evt.ptbtime field will not be available and you
%               have to cope with evt.rawtime values only.
%


% History:
%
% 03/21/08 Written. Based on example code donated by Cambridge Research Systems. (MK)
% 03/28/08 Altered by Jenny Read.
% 04/03/08 Refined and added MacOS/X support via SerialComm driver. (MK)
% 04/06/08 Improved timing code for mapping of box timers --> GetSecs time. (MK)
% 04/17/08 Disable Boxtime->Ptbtime mapping for now, use old drivers. (MK)
% 04/23/08 Add additional setup and query commands for external port. (MK)
% 05/09/10 Add additional button label definitions for RB830, contributed
%          by Jochen Laubrock. (MK)

% Hard-Coded drivertype to use: Defaults to our IOPort driver.
global ptb_cedrus_drivertype;

ptb_cedrus_drivertype = 2;

% Cell array of device structs. Globally available for main function and
% all subfunctions in this file, persistent across invocation:
global ptb_cedrus_devices;

% Subcommand dispatch:
if nargin < 1 || ~ischar(cmd)
    error('Must at least specify subcommand as textstring!')
end

% Following if-end blocks are roughly sorted by frequency of use. The most
% frequently used calls come first to achieve minimum dispatch
% latency in the trial loop.

if strcmpi(cmd, 'FlushEvents')
    % Flush all pending events/data:

    if nargin < 2
        error('You must provide the device "handle" for the box to flush!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % Perform flush:
    CedrusStatus = FlushEvents(handle);

    if nargout>0
        varargout{1} = CedrusStatus;
    end
    return
end

if strcmpi(cmd, 'ClearQueues')
    % Clear all pending events/data:

    if nargin < 2
        error('You must provide the device "handle" for the box to clear!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % Perform clear:
    ClearQueues(handle);

    return
end

% Wait until a key-pressed signal is detected:
if strcmpi(cmd, 'WaitButtonPress')
    if nargin < 2
        error('You must provide the device "handle" for the box to wait for!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % Wait until the box reports that a key has been pressed (NOT released)
    keypress = 0;
    while ~keypress
        % Need at least 6 bytes. Only wait if not available:
        if BytesAvailable(handle) < 6
            % Poll at 4 msecs intervals as long as input buffer is totally empty,
            % to allow the CPU to execute other tasks.
            while BytesAvailable(handle) == 0
                % Choose 4 msecs, as PTB would not release the cpu for wait
                % times below 3 msecs (to account for MS-Windows miserable
                % process scheduler).
                if IsWin
                    WaitSecs(0.004);
                else
                    WaitSecs(0.001);
                end
            end

            % At least 1 byte available -- soon we'll have our required minimimum 6
            % bytes :-) -- Spin-Wait for the remaining few microseconds:
            while BytesAvailable(handle) < 6; end
        end

        % At least 6 bytes for one event available: Try to read them from box:
        response = ReadDev(handle, 6);
        
        % Timestamp receive completion in PTB's timeframe. Allows to get a
        % feeling on how much time elapses between keypress and data receive:
        ptbfetchtime = GetSecs;

        % Unpack this binary data into a more readable form:
        evt = ExtractKeyPressData(handle,response);        
        evt.ptbfetchtime = ptbfetchtime;
        
        keypress = evt.action;
        % This is 0 if the key was released, 1 if it was pressed down,
        % which is what we are waiting for.
    end
    % Assign evt as output argument:
    varargout{1} = evt;

    return % JCAR added
end

% Wait for at least one button event available:
if strcmpi(cmd, 'WaitButtons')
    if nargin < 2
        error('You must provide the device "handle" for the box to wait for!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % Need at least 6 bytes. Only wait if not available:
    if BytesAvailable(handle) < 6
        % Poll at 4 msecs intervals as long as input buffer is totally empty,
        % to allow the CPU to execute other tasks.
        while BytesAvailable(handle) == 0
            % Choose 4 msecs, as PTB would not release the cpu for wait
            % times below 3 msecs (to account for MS-Windows miserable
            % process scheduler).
            if IsWin
                WaitSecs(0.004);
            else
                WaitSecs(0.001);
            end
        end

        % At least 1 byte available -- soon we'll have our required minimimum 6
        % bytes :-) -- Spin-Wait for the remaining few microseconds:
        while BytesAvailable(handle) < 6; end
    end

    % At least 6 bytes for one event available: Try to read them from box:
    response = ReadDev(handle, 6);

    % Timestamp receive completion in PTB's timeframe. Allows to get a
    % feeling on how much time elapses between keypress and data receive:
    ptbfetchtime = GetSecs;

    % Unpack this binary data into a more readable form:
    evt = ExtractKeyPressData(handle,response);
    evt.ptbfetchtime = ptbfetchtime;

    % Assign evt as output argument:
    varargout{1} = evt;

    return % JCAR added
end

% Polling Button state query: Returns immediately if no events available.
if strcmpi(cmd, 'GetButtons')
    % Button state change event query:

    if nargin < 2
        error('You must provide the device "handle" for the box to query!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % XID devices send six bytes of information.
    % Check if at least 6 bytes for a full event report are available:
    if BytesAvailable(handle) < 6
        % Did not receive at least 6 bytes - No new event happened. Return an
        % empty evt result.
        evt = [];
        varargout{1} = evt;
        return;
    end

    % At least 6 bytes for one event available: Try to read them from box:
    response = ReadDev(handle, 6);

    % Timestamp receive completion in PTB's timeframe. Allows to get a
    % feeling on how much time elapses between keypress and data receive:
    ptbfetchtime = GetSecs;
    
    % Unpack this binary data into a more readable form:
    evt = ExtractKeyPressData(handle,response);
    evt.ptbfetchtime = ptbfetchtime;

    % Assign evt as output argument:
    varargout{1} = evt;

    return;
end

if strcmpi(cmd, 'RoundTripTest')
    % Initiate roundtrip-test procedure: Will receive data from device,
    % echo it back, then receive a roundtrip timestamp:

    if nargin < 2
        error('You must provide the device "handle" for the box to query!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});
        
    % Start roundtrip test and return results: They are also stored in the
    % device struct of 'handle':
    varargout{1} = RoundTripTestDev(handle);
    return;
end

if strcmpi(cmd, 'ResetRTTimer')
    % RT timer reset request:
    if nargin < 2
        error('You must provide the device "handle" for the box!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % Reset reaction time timer of device and assign estimated time of reset
    % as basetime for all timing calculations:
    varargout{1} = ResetRTT(handle);

    return;
end

if strcmpi(cmd, 'Test')
    % Flush all pending events/data:

    if nargin < 2
        error('You must provide the device "handle" for the box!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    TestThis(handle);
    
    return
end

if strcmpi(cmd, 'GetBaseTimer')
    % Base Timer query:

    if nargin < 2
        error('You must provide the device "handle" for the box to query!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    if nargin >=3
        nQueries = varargin{2};
    else
        nQueries = 1;
    end
    
    % Preallocate output cell array:
    evts = cell(nQueries, 1);
    
    % Flush input buffer:
    FlushEvents(handle);

    for i=1:nQueries
        % Send basetimer query code:
        evt.roundtriptime = GetSecs;
        WriteDev(handle, 'e3');

        % Spin-Wait for first byte:
        while BytesAvailable(handle) < 1; end;

        % Timestamp receive completion of first byte. This is closest to the
        % real time when the transmitted timer values was actually generated on
        % the device:
        evt.ptbreceivetime = GetSecs;

        % Receive packet, then parse into raw timer value (in seconds):
        evt.basetimer = receiveAndParseTimePacket(handle);

        % Store roundtrip-time of query:
        evt.roundtriptime = evt.ptbreceivetime - evt.roundtriptime;
        
        % Correct reported time value of basetimer by half roundtrip delay
        % of serial link: We assume that transmission took half the total
        % measured roundtrip time, so we need to add that delay to the
        % basetimer value to get an estimate of the "real" basetimer time
        % at time of response packet receive "ptbtime":
        evt.basetimer = evt.basetimer + ptb_cedrus_devices{handle}.roundtriptime/2;

        % Assign mapped PTB GetSecs time if mapping possible:
        if ptb_cedrus_devices{handle}.baseToPtbSlope ~= 0
            % Simple linear equation mapping:
            evt.ptbtime = ptb_cedrus_devices{handle}.baseToPtbOffset + ptb_cedrus_devices{handle}.baseToPtbSlope * evt.basetimer;
        end
        
        % Assign i'th measurement event:
        evts{i} = evt;
    end
    
    % Assign evts as output argument:
    if nQueries > 1
        varargout{1} = evts;
    else
        varargout{1} = evt;
    end
    
    return;
end

if strcmpi(cmd, 'SetConnectorMode')
    % Change mode of external accessory connector:
    if nargin < 2
        error('You must provide the device "handle" for the box!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    if nargin < 3
        % Query instead of set:

        % Send query code:
        WriteDev(handle, '_a1');
        
        % Retrieve response:
        cc = ReadDev(handle, 4);
        WaitSecs(0.25);

        switch char(cc)
            case {'_a10'}
                rc = 'generalpurpose';
            case {'_a11'}
                rc = 'reflectivecontinuous';
            case {'_a12'}
                rc = 'reflectivesinglepulse';
            case {'_a13'}
                rc = 'reflectivedoublepulse';
            otherwise
                rc = cc;
                warning('SetConnectorMode received unknown old mode response!');
        end
        
        varargout{1} = rc;
        return;
    end

    switch lower(char(varargin{2}))
        case {'generalpurpose'}
            cc = 'a10';
        case {'reflectivecontinuous'}
            cc = 'a11';
        case {'reflectivesinglepulse'}
            cc = 'a12';
        case {'reflectivedoublepulse'}
            cc = 'a13';
        otherwise
            error('Unknown connector mode specified to SetConnectorMode.');
    end

    % Send command code:
    WriteDev(handle, cc);
    WaitSecs(0.25);
    
    return;
end

if strcmpi(cmd, 'DefineInputLinesAndLevels')
    % Change I/O assignment and default logic level of pins:
    if nargin < 2
        error('DefineInputLinesAndLevels: You must provide the device "handle" for the box!');
    end

    if nargin < 3
        error('DefineInputLinesAndLevels: You must provide the new list of integer input pin numbers!');
    end

    if nargin < 4
        error('DefineInputLinesAndLevels: You must provide the new logic detection level for the inputs: 1 for "Detect Low->High transition", 0 for "Detect High->Low" !');
    end

    if nargin < 5
        error('DefineInputLinesAndLevels: You must provide the new debounce time for TTL inputs in milliseconds !');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    ClearQueues(handle);
    
    inpins = varargin{2};
    if ~isnumeric(inpins)
        error('DefineInputLinesAndLevels: You must provide the new list of integer input pin numbers!');
    end

    if ~isempty(inpins)
        if min(inpins) < 0 || max(inpins) > 5
            error('DefineInputLinesAndLevels: Only input pin numbers between 0 and 5 are valid!');
        end
    end
    
    ipin = 0;
    for i=1:length(inpins)
        ipin = ipin + 2^(inpins(i));
    end
    
    % Send command code and mask:
    WriteDev(handle, ['a4' char(ipin)]);
    
    % Wait a bit:
    WaitSecs(1);    
    ClearQueues(handle);
    WaitSecs(1);    
    
    % Retrieve new mask:
    WriteDev(handle, '_a4');
    WaitSecs(1);
    resp = ReadDev(handle, 4);
    if length(resp)<4 || ~strcmp(char(resp(1:3)), '_a4')
        warning('DefineInputLinesAndLevels: Invalid response received from device!');
        char(resp) %#ok<NOPRT>
        varargout{1} = 0;
        return;
    else
        if resp(4)~=ipin
            warning('DefineInputLinesAndLevels: Real I/O bitmask not equal to requested one!');
            resp(4) %#ok<NOPRT>
            varargout{1} = 0;
            return;
        end
    end
    WaitSecs(1);
    
    % Send new TTL pull-level:
    if varargin{3} > 0
        % Pull lines low --> Detect lines high:
        cc = 'a50';
    else
        % Pull lines high --> Detect lines low:
        cc = 'a51';
    end
    WriteDev(handle, cc);
    WaitSecs(1);
    ClearQueues(handle);    
    WriteDev(handle, '_a5');
    WaitSecs(1);
    
    % Query pull level:
    resp = ReadDev(handle, 4);
    if length(resp) < 4
        warning('DefineInputLinesAndLevels: No response received from device!');
        varargout{1} = 0;
        return;        
    end
    
    if ~strcmp(char(resp(1:3)), '_a5')
        warning('DefineInputLinesAndLevels: Invalid response received from device!');
        char(resp) %#ok<NOPRT>
        varargout{1} = 0;
        return;        
    else
        if ~strcmp(char(resp(2:4)), cc)
            warning('DefineInputLinesAndLevels: Real TTL default not equal to requested one!');
            resp(2:4) %#ok<NOPRT>
            varargout{1} = 0;
            return;
        end
    end
    WaitSecs(1);
    
    % Send new debounce time:
    WriteDev(handle, ['a6' char(double(varargin{4}))]);
    WaitSecs(1);
    ClearQueues(handle);
    % Read it back:
    WriteDev(handle, '_a6');
    WaitSecs(1);

    % Query debounce time:
    resp = ReadDev(handle, 4);
    if length(resp) < 4
        warning('DefineInputLinesAndLevels: No response received from device!');
        varargout{1} = 0;
        return;        
    end
    
    if ~strcmp(char(resp(1:3)), '_a6')
        warning('DefineInputLinesAndLevels: Invalid response received from device!');
        char(resp);
        varargout{1} = 0;
        return;        
    else
        if resp(4) ~= double(varargin{4})
            warning('DefineInputLinesAndLevels: Real TTL debounce time not equal to requested one!');
            double(resp(4));
            varargout{1} = 0;
            return;
        end
    end
    WaitSecs(1);
    
    varargout{1} = 1;

    return;
end

if strcmpi(cmd, 'ReadInputLines')
    % Retrieve state of all input lines:
    if nargin < 2
        error('You must provide the device "handle" for the box!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % Flush event queue:
    FlushEvents(handle);
    
    % Send command code:
    WriteDev(handle, 'ar');
    
    % Read one byte back:
    inplines = ReadDev(handle, 1);
    outv=zeros(1,8);
     
    for i=0:7
        if bitand(inplines, 2^i)
            outv(i+1)=1;
        end
    end
    
    varargout{1} = outv;
    
    return;
end

if strcmpi(cmd, 'SetOutputLineLevels')
    % Change signal level of output pins:
    if nargin < 2
        error('You must provide the device "handle" for the box!');
    end

    if nargin < 3
        error('You must provide the 8 element vector of output line levels!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    opins = varargin{2};
    if length(opins)~=8 || ~isnumeric(opins)
        error('You must provide an 8 element vector of output line levels!');
    end

    outval = 0;
    for i=1:8
        if opins(i)>0
            outval = outval + 2^(i-1);
        end
    end
    
    % Send command code and mask:
    WriteDev(handle, ['ah' char(outval)]);
    
    % Wait a bit:
    WaitSecs(0.1);
    
    return;
end



if strcmpi(cmd, 'GetDeviceInfo')
    % Query info about device:

    if nargin < 2
        error('You must provide the device "handle" for the box to query!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    dev = ptb_cedrus_devices{handle};
    
    varargout{1} = dev;

    return; % JCAR added
end

if strcmpi(cmd, 'Open')

    % Open a new connection to response box:

    if nargin < 2
        error('You must provide the "port" parameter for the serial port to which the box is connected!')
    end

    % Create serial object for provided port, configure connection
    % properly:
    port = varargin{1};
    % port = '/dev/cu.usbserial-FT3Z95V5'

    if nargin < 3
        % Assume user doesn't want time calibration:
        lowbaudrate = 0;
    else
        lowbaudrate = varargin{2};
    end
  
    if nargin < 4
        % Assume user doesn't want time calibration:
        doCalibrate = 0;
    else
        doCalibrate = varargin{3};
    end
    
    % Open device link at default baudrate of 115 kBaud, return 'dev' struct:
    dev = OpenDev(port, 115200);
    
    % Create new entry in our struct array:
    if isempty(ptb_cedrus_devices)
        ptb_cedrus_devices = cell(1,1);
    else
        ptb_cedrus_devices(end+1) = cell(1,1);
    end

    % Get a handle to it:
    handle = length(ptb_cedrus_devices);

    % Assign device struct to array:
    ptb_cedrus_devices{handle} = dev;
    clear dev;

    if lowbaudrate
        % Set the device protocol to XID mode
        WriteDev(handle, 'c10'); %JCAR removed cr

        % Give device time to settle:
        WaitSecs(0.5);

        % Initiate a device reset:
        WriteDev(handle, 'f7');

        % Give device time to settle:
        WaitSecs(0.5);

        % Change baudrate of device to 57600 Baud:
        WriteDev(handle, ['f1' char(3)])

        % Give device time to settle:
        WaitSecs(0.5);

        % Close connection:
        CloseDev(handle);

        % Give device time to settle:
        WaitSecs(0.5);

        % Reinit connection at new baud rate:
        % Open device link at new baudrate of 57600 Baud, return 'dev' struct:
        dev = OpenDev(port, 57600);

        % Reassign device struct to array:
        ptb_cedrus_devices{handle} = dev;
        clear dev;
    else
        % Set the device protocol to XID mode
        WriteDev(handle, 'c10'); %JCAR removed cr

        % Give device time to settle:
        WaitSecs(0.5);
        
        % Initiate a device reset:
        WriteDev(handle, 'f7');

        % Give device time to settle:
        WaitSecs(0.5);
    end
    
    % This is for keeping track of what buttons are currently up or
    % down. I assume that all buttons are up when the device is opened.
    ptb_cedrus_devices{handle}.CedrusStatus = zeros(3,8);
    
    % Put this in a try-catch loop so that if it doesn't work for any
    % reason, I can then close the link and you can try again. Otherwise,
    % the COM port is permanently busy and I have to restart Matlab.
%    try
        
        
        % % Debug information from http://www.cedrus.com/xid/properties.htm
        % %
        % % Note: 0 is ASCII value 48, 1 is ASCII value 49, and so forth.
        %
        % fprintf(s1,['_d3',char(13)]);
        % fread(s1,1)
        % fprintf(s1,['_d1',char(13)]);
        % fscanf(s1)

        % Query a few device properties:

        % Get product ID: 0 = Lumina, 1 = VoiceKey, 2 = RB response pad:

        % I have to put this in a while loop, because sometimes '_d2' fails to
        % evoke a response:
        bytes = 0;
        while bytes==0
            WriteDev(handle, '_d2');
            WaitSecs(0.25); % I also have to wait, because even when it does evoke a response,
            % there can be a long delay - tens of milliseconds. Jon Peirce confirms
            % this.
            bytes = BytesAvailable(handle);
        end

        response=ReadDev(handle, bytes);
        response=response(1);

        switch response(1)
            case 48
                ptb_cedrus_devices{handle}.productID = 'Lumina';
            case 49
                ptb_cedrus_devices{handle}.productID = 'VoiceKey';
            case 50
                ptb_cedrus_devices{handle}.productID = 'RB response pad';
            otherwise
                ptb_cedrus_devices{handle}.productID = 'Unknown';
        end

        % Get model ID: 0 = Unknown, 1 = RB-530, 2 = RB-730, 3 = RB-830, 4 = RB-834
        % I have to put this in a while loop, because sometimes '_d3' fails to
        % evoke a response:

        % Give device time to settle:
        WaitSecs(0.5);

        % Remove junk - if any:
        while BytesAvailable(handle)
            ReadDev(handle, 1);
        end
        
        bytes = 0;
        while bytes==0
            WriteDev(handle, '_d3');
            WaitSecs(0.25); % I also have to wait, because even when it does evoke a response,
            % there can be a long delay - tens of milliseconds. Jon Peirce confirms
            % same behaviour on his system.
            bytes = BytesAvailable(handle);
        end
        
        response=ReadDev(handle, bytes);
        response=response(1);

        if response==48
            ptb_cedrus_devices{handle}.modelID = 'Unknown';
            ptb_cedrus_devices{handle}.modelNo = 0;

        else if strcmp(ptb_cedrus_devices{handle}.productID,'RB response pad')
                switch response
                    case 49
                        ptb_cedrus_devices{handle}.modelID = 'RB-530';
                        ptb_cedrus_devices{handle}.modelNo = 530;
                    case 50
                        ptb_cedrus_devices{handle}.modelID = 'RB-730';
                        ptb_cedrus_devices{handle}.modelNo = 730;
                    case 51
                        ptb_cedrus_devices{handle}.modelID = 'RB-830';
                        ptb_cedrus_devices{handle}.modelNo = 830;
                    case 52
                        ptb_cedrus_devices{handle}.modelID = 'RB-834';
                        ptb_cedrus_devices{handle}.modelNo = 834;
                    otherwise
                        ptb_cedrus_devices{handle}.modelID = sprintf('Unknown id %i', response);
                        ptb_cedrus_devices{handle}.modelNo = 0;
                end
            else
                ptb_cedrus_devices{handle}.modelID = 'Unknown';
                ptb_cedrus_devices{handle}.modelNo = 0;
            end
        end

        % Firmware revision:
        bytes = 0;
        while bytes==0
            WriteDev(handle, '_d4');
            WaitSecs(0.1);
            bytes = BytesAvailable(handle);
        end
        ptb_cedrus_devices{handle}.VersionMajor = ReadDev(handle, bytes) - 48;

        bytes = 0;
        while bytes==0
            WriteDev(handle, '_d5');
            WaitSecs(0.1);
            bytes = BytesAvailable(handle);
        end
        ptb_cedrus_devices{handle}.VersionMinor = ReadDev(handle, bytes) - 48;

        % Product name string:
        bytes = 0;
        while bytes==0
            WriteDev(handle, '_d1');
            WaitSecs(0.1);
            bytes = BytesAvailable(handle);
        end
        % Weird casting procedure with replacement of char(13) by char(10),
        % so Octave can handle it:
        ptb_cedrus_devices{handle}.Name = double(ReadDev(handle, bytes));
        ptb_cedrus_devices{handle}.Name(find(ptb_cedrus_devices{handle}.Name == 13)) = 10; %#ok<FNDSB>
        ptb_cedrus_devices{handle}.Name = char(ptb_cedrus_devices{handle}.Name);
        
        % Try our best to totally drain the receive queue:
        WaitSecs(0.25);
        while 1
            bytes = BytesAvailable(handle);
            if bytes == 0
                break;
            end
            ReadDev(handle, bytes)
            WaitSecs(0.1);
        end
        
        % Reset base timer:
        WriteDev(handle, 'e1');
      
        % Calibration of PTB's timebase vs. Boxes timebase wanted?
        if doCalibrate

            % Set slope of 1 as a flag that ResetRTT should do a
            % calibrated, timestamped reset:
            ptb_cedrus_devices{handle}.baseToPtbSlope = 1;
            
            % Perform calibrated basetimer query:
            [hosttime, devicetime, minwin] = queryBaseTimer(handle);

            % And store its results:
            ptb_cedrus_devices{handle}.lastBaseTimeQuery = [hosttime, devicetime, minwin];
            
        else
            % Uncalibrated mode requested. Saves a few seconds of startup
            % time, but doesn't allow mapping of boxes time measurements
            % into GetSecs() timebase of PTB:
            
            % No link roundtrip time estimates available:
            ptb_cedrus_devices{handle}.roundtriptime = 0;
            ptb_cedrus_devices{handle}.roundtripstddev = 0;

            % No mapping of box time to PTB time available:
            ptb_cedrus_devices{handle}.baseToPtbSlope  = 0;
            ptb_cedrus_devices{handle}.baseToPtbOffset = 0;
            
            ptb_cedrus_devices{handle}.lastBaseTimeQuery = [];
        end
        
        % Reset reaction time timer of device: If calibration was
        % requested, this will also estimate the offset between RTT values
        % and basetimer values, which is needed for later mapping of RTT to
        % GetSecs time. In uncalibrated mode, this will just send out the
        % reset code.
        ResetRTT(handle);

        % Return handle:
        varargout{1} = handle;
%    catch
        % Close serial control link:
%        CloseDev(handle);
%    end
    return;
end

if strcmpi(cmd, 'GetBoxTimerSlope')
    % Close device:
    if nargin < 2
        error('You must provide the device "handle" for the box to compute slope for!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    % Perform calibrated basetimer query:
    [hosttime, devicetime] = queryBaseTimer(handle);
    
    lastBaseTimeQuery = ptb_cedrus_devices{handle}.lastBaseTimeQuery;
    
    baseToPtbSlope = (hosttime - lastBaseTimeQuery(1)) / (devicetime - lastBaseTimeQuery(2));
    
    % Store measured slope internally:
    ptb_cedrus_devices{handle}.baseToPtbSlope = baseToPtbSlope;

    % Return measured slope:
    varargout{1} = baseToPtbSlope;
    
    return;
end


if strcmpi(cmd, 'Close')
    % Close device:
    if nargin < 2
        error('You must provide the device "handle" for the box to close!');
    end

    % Retrieve handle and check if valid:
    handle = checkHandle(varargin{1});

    CloseDev(handle);
    
    return;
end

if strcmpi(cmd, 'CloseAll')
    % Close all open devices:

    if exist('ptb_cedrus_devices', 'var') 
        for handle = 1:length(ptb_cedrus_devices)
            if ~isempty(ptb_cedrus_devices{handle})
                CloseDev(handle);
            end
        end
        
        % All handles closed: Release the device array itself:
        clear ptb_cedrus_devices;
    end
    
    return;
end

error('Invalid subcommand given. Read the help.');
% ---- End of main routine ----


% ---- Start of internal helper functions ----

function TestThis(handle)
% Generic test blurb...
global ptb_cedrus_devices; %#ok<NUSED>

persistent testbyte;
if isempty(testbyte)
    testbyte = 0;
end

% Flush input buffer:
WaitSecs(0.2);
FlushEvents(handle);
WaitSecs(0.2);

% Set general mode for lines: "General purpose"
WriteDev(handle, 'a10');
WaitSecs(0.4);

% Set direction for lines: All output.
WriteDev(handle, ['a4' 0]);
WaitSecs(0.4);


% Query current state of outputs and inputs:
WriteDev(handle, 'ar');

% Wait for response:
inputLines = dec2bin(ReadDev(handle, 1)); %#ok<NASGU>

basetime = WaitSecs(0.5); %#ok<NASGU>

% Set all output lines low:
testbyte = mod(testbyte + 1, 256);
WriteDev(handle, ['ah' testbyte]);
%WriteDev(handle, ['ah' 255]);
WaitSecs(0.4);
WriteDev(handle, '_ah');

% Any activity, e.g., events???
%while BytesAvailable(handle) == 0
%    fprintf('Nothing yet at %f secs...\n', GetSecs - basetime);
%end

WaitSecs(0.1);
response = ReadDev(handle, 4); %#ok<NASGU>
%response2 = ReadDev(handle, 6)

% if length(response) == 6
%     [evt,CedrusStatus] = ExtractKeyPressData(handle,response)
% end

return;

function tReset = ResetRTT(handle)
% Try to reset the reaction time timer to zero within a small time
% window, so we can associate "time zero" of the RT timer with the
% current GetSecs() time. This way, the RT timer will encode elapsed
% time since that GetSecs basetime. We can then later on compute the
% time of a keypress simply as sum of the GetSecs baseline time and the
% reported event time (== value of RT timer at time of button press).
% Retry up to 100 times if reset doesn't occur within 10ms.
global ptb_cedrus_devices;

% Calibrated reset?
if ptb_cedrus_devices{handle}.baseToPtbSlope ~= 0
    % Calibrated reset:

    % Flush input buffer:
    WaitSecs(1);
    ClearQueues(handle);
    WaitSecs(1);

    % Switch to realtime priority if not already there:
    oldPriority=Priority;
    if oldPriority < MaxPriority('GetSecs')
        Priority(MaxPriority('GetSecs'));
    end
    
    % Get porthandle:
    blocking = 1;
    ntrials = 5;
    s = ptb_cedrus_devices{handle}.link;
    t = zeros(2,ntrials);
    
    % Perform up to ntrials trials:
    for ic=1:ntrials
        
        % Wait some random fraction of a millisecond. This will desync us
        % from the USB duty cycle and increase the chance of getting a very
        % small time window between scheduling, execution and acknowledge
        % of the send operation:
        WaitSecs(rand / 1000 + 1);
        
        % Take pre-Write timestamp: Sync command not emitted before that time:
        % Write sync command, wait 'blocking' for write completion, store
        % completion time in t(2,ic). Send RTT reset command code 'e5':
        [nw t(2,ic), errmsg, t(1,ic)] = IOPort('Write', s, 'e5', blocking);

        % We know that sync command emission has happened at some time
        % after t(1,ic) and before t(2,ic). This by design of the USB
        % standard, host controllers and operating system USB stack. This
        % is the only thing we can take for granted wrt. timing, so the
        % "time window" between those two timestamps is our window of
        % uncertainty about the real host time when sync started. However,
        % on a well working system without massive system overload one can
        % be reasonably confident that the real emission of the sync
        % command happened no more than 1 msec before t(2,ic). That is a
        % soft constraint however - useful for computing the final estimate
        % for hosttime, but nothing to be taken 100% for granted.
        
        if nw~=2
            % Send op failed!
            fprintf('CedrusResponseBox: RTTReset: Warning! Sync token send operation to box failed!\n');
            t(1,ic) = 0;
            t(2,ic) = inf;
            continue;
        end

        confidencewindow = t(2,ic) - t(1,ic);
        if confidencewindow < 0.001
            break;
        end

        % Next trial...
    end

    % Restore priority
    if Priority ~= oldPriority
        Priority(oldPriority);
    end
    
    % For each measurement, the time window t(2,ic)-t(1,ic) defines kind of
    % a confidence interval for the "real" host system time when the sync
    % command was emitted. The measurement with the smallest time window is
    % the most accurate one. Find it and use it:
    minwin = t(2,ic) - t(1,ic);
    
    % On OS/X or Linux we could easily do with 2 msecs, as a 1.2 msecs
    % minwin is basically never exceeded. On MS-Windows however, 2.x
    % durations are not uncommon, so we need to slack this to 3.
    if minwin > 0.002
        fprintf('CedrusResponseBox: RTTReset: Warning! Confidence interval for clock sync is %f msecs - More than 2 msecs!\n', minwin);
    end
    
    % If the 'minwin' window is smaller than 1 msec, we subtract 0.5 the
    % length of it from the t(2,idx) timestamp as best estimate for
    % hosttime -- reasonable assuming a uniform distribution in the
    % 'minwin' interval. If 'minwin' is more than 1 msecs, we assume it
    % happened 0.5 msecs before t(2,idx) -- taking advantage of the
    % soft-constraint that the real write usually happens within 1 msec of
    % t(2,idx) on a normally loaded and well working system:
    hosttime = t(2,ic) - (min(minwin, 0.001)/2);
    
    WaitSecs(0.2);
    FlushEvents(handle);
    WaitSecs(0.2);
    
    ptb_cedrus_devices{handle}.baseToPtbOffset = hosttime;
    ptb_cedrus_devices{handle}.rttresetdelay = minwin;
    tReset = minwin;
    
else
    % Only uncalibrated fast reset requested:

    % Reset offset fields to invalid values:
    ptb_cedrus_devices{handle}.baseToPtbOffset = 0;
    ptb_cedrus_devices{handle}.rttresetdelay = -1;

    % Send reaction time timer reset code:
    dx1 = GetSecs;
    WriteDev(handle, 'e5');
    dx2 = GetSecs;

    % Return estimated time of when reset probably roughly happened:
    tReset = (dx1+dx2)/2;
end

return;

function ClearQueues(handle)
    while BytesAvailable(handle)>0
        % Read and discard all bytes:
        ReadDev(handle, BytesAvailable(handle));
        WaitSecs(0.5);
    end
return;

function CedrusStatus=FlushEvents(handle)
% JCAR: I modified this because I don't want to just throw away information
% about key-presses. If I do, I lose track of what the current button
% status is. So, I will read the information and check whether any of it
% is key-presses. If so, I will use this information to update the current
% status.
global ptb_cedrus_devices;

CedrusStatus = ptb_cedrus_devices{handle}.CedrusStatus;

while BytesAvailable(handle)>0
    % Read 1 byte
    response=ReadDev(handle, 1);

    % See if this is "k", indicating that a key press is following
    if char(response)=='k'
        % Seems to be an event packet: Read remaining 5 more bytes
        last5=ReadDev(handle, 5);
        response(1:6) = [response(1) last5];
        [evt,CedrusStatus] = ExtractKeyPressData(handle,response);
    else
        fprintf('CedrusResponseBox:FlushEvents: Warning invalid value %s [%i] instead of "k" received!\n', char(response), response);
    end
end

return;

function label = findbuttonlabel(numbr, handle)
% The response box labels buttons by rather arbitrary numbers.
% I thought it might be helpful to have something more descriptive.
% THese descriptions assume the box is postioned with its cables/ports
% on the back edge furthest from the user.
global ptb_cedrus_devices;

switch (ptb_cedrus_devices{handle}.modelNo)
    case 530
        switch (numbr - 1)
            case 1
                label = 'top';
            case 6
                label = 'bottom';
            case 3
                label = 'left';
            case 5
                label = 'right';
            case 4
                label = 'middle';
            otherwise
                label = 'unknown';
        end
    case 730
        switch (numbr)
            case 2
                label = '1.Left';
            case 3
                label = '2.Left';
            case 4
                label = '3.Left';
            case 5
                label = '4.Left';
            case 6
                label = '5.Left';
            case 7
                label = '6.Left';
            case 8
                label = '7.Left';
            otherwise
                label = 'unknown';
        end
    % arrangement of key codes for Cedrus 830
    %   left    right   hand
    %   4  5    6  7
    % 8              1
    %       2  3
    case 830
        switch (numbr)
            case 1
                label = 'right.outer';
            case 2
                label = 'left.lower';
            case 3
                label = 'right.lower';
            case 4
                label = 'left.center';
            case 5
                label = 'left.inner';
            case 6
                label = 'right.inner';
            case 7
                label = 'right.center';
            case 8
                label = 'left.outer';
            otherwise
                label = 'unknown';
        end
    otherwise
        label = 'unknown';
end

return;

function [evt,CedrusStatus] = ExtractKeyPressData(handle,response)
%The XID device sends six bytes of information in the following format:
%<�k�><key info><RT>:
%
% The first parameter is simply the letter "k", lower case.
%
% The second parameter consists of one byte, divided into the following
% bits
%
% Bits 0-3 store the port number. For Lumina LP-400, the push buttons and
% scanner trigger are on port 0; the RJ45 I/O lines are on port 1.
% For SV?1, voice key is on port 2 and the RJ45 is on port 1 ? there is
% no port 0. For the RB-x30 response pads, the push buttons are on port 0
% and the RJ45 port is on port 1.
%
% Bit 4 stores an action flag. If set, the button has been pressed. If
% cleared, the button has been released.
%
% Bits 5-7 indicate which push button was pressed.
%
% The reaction time consists of four bytes and is the time elapsed since
% the Reaction Time timer was last reset. See description of command "e5".
%
% Information taken from http://www.cedrus.com/xid/protocols.htm

global ptb_cedrus_devices;

if length(response)~=6
    % Did not receive 6 bytes - This should not happen!
    error('In GetButtons: Received too short (or no) response packet from box!');
end

% According to cedrus, http://www.cedrus.com/xid/protocols.htm,
% The XID device sends six bytes of information in the following
% format: <�k�><key info><RT>:
% So the first byte is 107, ie the letter �k�, lower case

% Check byte 1 for correct value 'k':
if char(response(1))~='k'
    % Failed!
    error('Received invalid event packet [Not starting with a k] from box!');
end

% Extracts byte 2 to determine which button was pushed:
evt.raw = (response(2));

% Extract different bits into meaningful fields:
% According to Cedrus, the second parameter consists of one byte, divided into the following bits:
% Bits 0-3 store the port number.
% For Lumina LP-400, the push buttons and scanner trigger are on port 0;
% the RJ45 I/O lines are on port 1. For SV?1, voice key is on port 2 and
% the RJ45 is on port 1 � there is no port 0.
% For the RB-x30 response pads, the push buttons are on port 0 and the
% RJ45 port is on port 1.

% Port id: Bits 0-3
evt.port = bitand(evt.raw, 15);
% 15 is 1111, so this extracts the rightmost 4 bits from evt.raw, ie bits 0-3

% Button state: 1 = pressed, 0 = released. Bit 4
evt.action = bitand(bitshift(evt.raw, -4), 1);

% Button id: Which button? Bits 5-7
evt.button = bitshift(evt.raw, -5) + 1;
% This chops off the rightmost 5 bits, i.e. bits 0-4, leaving only bits
% 5-7

% Map to a more descriptive label: 
evt.buttonID = findbuttonlabel(evt.button, handle);

% Extracts bytes 3-6 and is the time elapsed in milliseconds since the
% Reaction Time timer was last reset.
%
% For more information about the use of XID timers refer to
% http://www.cedrus.com/xid/timing.htm
response = double(response);
evt.rawtime = 0.001 * (response(3)+(response(4)*256)+(response(5)*65536) +(response(6)*(65536*256)));

% Map rawtime to ptbtime if possible:
ptbTime = mapRTTimerToPTBTime(evt.rawtime, handle);

% Valid mapping? Assign if so. If mapping is impossible due to skipped
% timecalibration, we don't return the 'ptbtime' field. This way, usercode
% that relies on it without performing the mandatory calibration will die
% with a nice error message.
if ~isnan(ptbTime)
    evt.ptbtime = ptbTime;
end

% Try and keep track of which buttons are currently down and up, based on
% what bytes have been read in.
ptb_cedrus_devices{handle}.CedrusStatus(evt.port + 1, evt.button) = evt.action;

% CedrusStatus will tell you what buttons are currently up or down,
% based on the last time the device was read.
CedrusStatus = ptb_cedrus_devices{handle}.CedrusStatus;

return;

% Check if 'handle' is a valid handle into our struct array of devices,
% return it if it is valid, abort with error otherwise.
function retHandle = checkHandle(handle)
    global ptb_cedrus_devices;
    
    if handle > length(ptb_cedrus_devices) || isempty(ptb_cedrus_devices{handle})
        error('Invalid response box handle %i passed: No such response box device open!', handle);
    end
    retHandle = handle;
return;

% Helper function: Open serial connection:
function dev = OpenDev(port, baudrate)
global ptb_cedrus_drivertype;

% Test our default of type 2 -- Our own IOPort() driver:
if ptb_cedrus_drivertype == 2
    % Use IOPort:

    % Temporarily shut up the driver, so errors can be reasonably
    % handled:
    oldverb = IOPort('Verbosity', 0);

    % Open link:
    [dev.link, errmsg] = IOPort('OpenSerialPort', port, sprintf('BaudRate=%i Parity=None DataBits=8 StopBits=1 FlowControl=Hardware ReceiveTimeout=1 ReceiveLatency=0.0001 ', baudrate));

    IOPort('Verbosity', oldverb);

    % Success?
    if dev.link < 0
        % Nope. Do we know the cause?
        error(sprintf('Failed to open port %s for Cedrus response box via IOPort()! Reason: %s', port, errmsg)); %#ok<SPERR>
    end

    % Link is online.
    try
        
        % Clear all send and receive buffers and queues:
        IOPort('Purge', dev.link);

        % Assign output port, driverid and empty recvQueue:
        dev.driver = 2;
        dev.recvQueue = [];
        dev.port = port;

    catch
        error('Failed to open port %s for Cedrus response box via IOPort() driver.', port);
    end
    
    % Ready.
    return;
end

% Some non-standard driver: We support serial() on Windows and Linux,
% SerialComm on OS/X:
% Which OS?
if IsOSX
    % SerialComm:
    try
        % Open 'port' with 'baudrate' baud, no parity, 8 data bits, 1
        % stopbit.
        SerialComm('open', port, sprintf('%i,n,8,1', baudrate));

        % Disable handshaking 'n' == none:
        SerialComm('hshake', port, 'n');

        % Wait a bit...
        WaitSecs(0.5);

        % And flush all send- and receivebuffers:
        purgedata = SerialComm('read', port);

        if ~isempty(purgedata)
            fprintf('CedrusResponseBox: Open: Purged some trash data...\n');
        end

        % Assign and init stuff:
        dev.port = port;
        dev.link = port;
        dev.driver = 1;
        dev.recvQueue = [];
    catch
        error('Failed to open port %i on OS/X for Cedrus response box via SerialComm() driver.', port);
    end
else
    % Windows or Linux: Matlab supports serial() object in JVM mode:
    if ~psychusejava('desktop')
        error('You must run Matlab in JVM mode (JAVA enabled) for Cedrus response box to work!');
    end

    try
        % Ok, Matlab with JVM on Windows or Linux: Let's do it!
        dev.link = serial(port, 'BaudRate', baudrate, 'DataBits', 8, 'StopBits', 1,...
            'FlowControl', 'none', 'Parity', 'none', 'Terminator', 'CR', 'Timeout', 400,...
            'InputBufferSize', 16000);

        fopen(dev.link);
        dev.driver = 0;
        dev.port = port;
        dev.recvQueue = [];
    catch
        error('Failed to open port %s on Windows or Linux for Cedrus response box via Matlab serial() driver.', port);
    end
end

% Ready.
return;

function CloseDev(handle)
    global ptb_cedrus_devices;

    % Give device time to settle:
    WaitSecs(0.5);

    % Initiate a device reset:
    % WriteDev(handle, 'f7');

    % Give device time to settle after reset:
    WaitSecs(0.5);

    if ptb_cedrus_devices{handle}.driver == 0
        % Matlabs serial() driver:

        % Close serial control link:
        dev = ptb_cedrus_devices{handle};

        % Close data link:
        fclose(dev.link);

        % Delete serial control link object:
        delete(dev.link);
        clear dev.link;
    else
        if ptb_cedrus_devices{handle}.driver == 1
            % OS/X + Matlab + SerialComm driver:
            SerialComm('purge', ptb_cedrus_devices{handle}.link);
            SerialComm('close', ptb_cedrus_devices{handle}.link);
        end

        if ptb_cedrus_devices{handle}.driver == 2
            % IOPort driver:
            IOPort('Purge', ptb_cedrus_devices{handle}.link);
            IOPort('Close', ptb_cedrus_devices{handle}.link);
        end
    end
    
    % Clear out device struct:
    ptb_cedrus_devices{handle} = [];

return;

function nrAvail = BytesAvailable(handle)
    global ptb_cedrus_devices;

    if ptb_cedrus_devices{handle}.driver == 0
        % Matlabs serial() driver:
        
        % Readout BytesAvailable subfield of device link object:
        nrAvail = ptb_cedrus_devices{handle}.link.BytesAvailable;
    else
        if ptb_cedrus_devices{handle}.driver == 1
            % OS/X + Matlab + SerialComm driver:
            
            % All reads are non-blocking and there isn't any BytesAvailable
            % command. We fetch all data that's currently available via
            % non-blocking read and attach it to our own queue, then return
            % the total number of bytes in the queue:
            data = transpose(SerialComm('read', ptb_cedrus_devices{handle}.link));
            ptb_cedrus_devices{handle}.recvQueue = [ptb_cedrus_devices{handle}.recvQueue data];
            nrAvail = length(ptb_cedrus_devices{handle}.recvQueue);
        end

        if ptb_cedrus_devices{handle}.driver == 2
            % IOPort driver:            
            nrAvail = IOPort('BytesAvailable', ptb_cedrus_devices{handle}.link);
        end
    end
    
    if nrAvail > 0
        % Store timestamp when queue was not empty:
        ptb_cedrus_devices{handle}.lastTimeQueueNonEmpty = GetSecs;
    end
    
return;

function data = ReadDev(handle, nwanted)
    global ptb_cedrus_devices;

    if ptb_cedrus_devices{handle}.driver == 0
        % Matlabs serial() driver:
        
        % Read via fread 'nwanted' bytes from link. Block until we get the
        % wanted 'nwanted' bytes or until timeout / error:
        data = transpose(fread(ptb_cedrus_devices{handle}.link, nwanted));
    else
        if ptb_cedrus_devices{handle}.driver == 1
            % OS/X + Matlab + SerialComm driver:
            
            % Call BytesAvailable to trigger read-in of data from serial
            % port to our internal queue and to update the available stats,
            % until at least the 'nwanted' bytes are available, or until
            % the read operation times out after 2 seconds:
            currtime = GetSecs;
            timeout = currtime + 2;
            while (BytesAvailable(handle) < nwanted) && (currtime < timeout)
                % We are on OS/X, so waiting for 1 msec should suffice, no
                % need to wait 4 msecs as on that other deficient OS:
                currtime = WaitSecs(0.001);
            end;
            
            if currtime >= timeout
                fprintf('Timed out: nwanted = %i, got %i bytes: %s\n', nwanted, BytesAvailable(handle), char(ptb_cedrus_devices{handle}.recvQueue));
                fprintf('Read operation on response box timed out after 2 secs!\n');
                data = [];
                return;
            end
            
            % Have at least the nwanted bytes, so fetch the first nwanted
            % bytes from queue:
            data = ptb_cedrus_devices{handle}.recvQueue(1:nwanted);
            
            % Dequeue them from queue:
            if length(ptb_cedrus_devices{handle}.recvQueue) > nwanted
                % Keep tail of queue:
                ptb_cedrus_devices{handle}.recvQueue = ptb_cedrus_devices{handle}.recvQueue(nwanted+1:end);
            else
                % Nothing more in queue: Delete it.
                ptb_cedrus_devices{handle}.recvQueue = [];
            end            
        end

        if ptb_cedrus_devices{handle}.driver == 2
            % IOPort driver: Returns all data as data type double:
            % fprintf('In read....\n');
            [data, when, errmsg] = IOPort('Read', ptb_cedrus_devices{handle}.link, 1, nwanted);
            if length(data) < nwanted
                fprintf('Timed out: nwanted = %i, got %i bytes: %s\n', nwanted, length(data), char(data));
                fprintf('Read operation on response box timed out after 1 secs! errmsg = %s\n', errmsg);
                data = [];
                return;
            end
        end
    end
return;

function WriteDev(handle, data)
    global ptb_cedrus_devices;

    if ptb_cedrus_devices{handle}.driver == 0
        % Matlabs serial() driver:
        
        % Write data via fwrite: We provide our own '%s' formatting string
        % to make sure that data is passed as-is, without any terminators
        % (CR or LF or CR+LF) attached. This will block until send
        % completion:
        fwrite(ptb_cedrus_devices{handle}.link, char(data));
    else
        if ptb_cedrus_devices{handle}.driver == 1
            % OS/X + Matlab + SerialComm driver:
            
            % Write data - without terminator - via SerialComm:
            SerialComm('write', ptb_cedrus_devices{handle}.link, double(data));
        end

        if ptb_cedrus_devices{handle}.driver == 2
            % IOPort driver:
            
            % Write data - without terminator:
            % fprintf('In write....\n');
            IOPort('Write', ptb_cedrus_devices{handle}.link, char(data), 1);
        end
    end
return;

function roundtrip = RoundTripTestDev(handle)
    global ptb_cedrus_devices;

    % Flush the queue:
    FlushEvents(handle);

    % Perform 100 measurement trials:
    roundtrip = zeros(1,100);
    for i=0:100
        % Wait a bit between each trial:
        WaitSecs(0.100);

        % Send 'e4' code to initiate procedure:
        WriteDev(handle, 'e4');

        % Wait for receive completion:
        while BytesAvailable(handle) < 1
        end;

        % Send echo, optimistically assuming we received a 'X':
        WriteDev(handle, 'X');

        % Get the really received byte and check:
        if char(ReadDev(handle, 1))~='X'
            error('Roundtrip test did not receive "X" char as expected!');
        end

        % Wait for receipt of timestamp:
        while BytesAvailable(handle) < 4
        end;

        response = ReadDev(handle, 4);

        if response(1)~='P' || response(2)~='T'
            error('Roundtrip test did not receive "PT" marker as expected!');
        end

        response = double(response);
        
        % We throw away the first trial:
        if i > 0
            roundtrip(i) = 0.001 * (response(3) + 256 * response(4));
        end
    end

    % Store median and stddev of roundtrip time in device struct:
    ptb_cedrus_devices{handle}.roundtriptime = median(roundtrip);
    ptb_cedrus_devices{handle}.roundtripstddev = std(roundtrip);

return;

function [hosttime, devicetime, minwin] = queryBaseTimer(handle)
    global ptb_cedrus_devices;

    % Flush input buffer:
    WaitSecs(1);
    ClearQueues(handle);
    WaitSecs(1);

    % Switch to realtime priority if not already there:
    oldPriority=Priority;
    if oldPriority < MaxPriority('GetSecs')
        Priority(MaxPriority('GetSecs'));
    end
    
    % Get porthandle:
    blocking = 1;
    ntrials = 5;
    s = ptb_cedrus_devices{handle}.link;
    t = zeros(2,ntrials);
    
    % Perform up to ntrials trials:
    for ic=1:ntrials
        
        % Wait some random fraction of a millisecond. This will desync us
        % from the USB duty cycle and increase the chance of getting a very
        % small time window between scheduling, execution and acknowledge
        % of the send operation:
        WaitSecs(rand / 1000 + 1);
        
        % Take pre-Write timestamp: Sync command not emitted before that time:
        % Write sync command, wait 'blocking' for write completion, store
        % completion time in t(2,ic). Send basetimer query command code 'e3':
        [nw t(2,ic), errmsg, t(1,ic)] = IOPort('Write', s, 'e3', blocking);

        % Wait for response from box, receive packet, 
        % then parse into raw timer value (in seconds):
        devicetime = receiveAndParseTimePacket(handle);
        
        % We know that query command emission has happened at some time
        % after t(1,ic) and before t(2,ic). This by design of the USB
        % standard, host controllers and operating system USB stack. This
        % is the only thing we can take for granted wrt. timing, so the
        % "time window" between those two timestamps is our window of
        % uncertainty about the real host time when sync started. However,
        % on a well working system without massive system overload one can
        % be reasonably confident that the real emission of the sync
        % command happened no more than 1 msec before t(2,ic). That is a
        % soft constraint however - useful for computing the final estimate
        % for hosttime, but nothing to be taken 100% for granted.
        if nw~=2
            % Send op failed!
            fprintf('CedrusResponseBox: queryBaseTimer: Warning! Query token send operation to box failed!\n');
            t(1,ic) = 0;
            t(2,ic) = inf;
            continue;
        end

        confidencewindow = t(2,ic) - t(1,ic);
        if confidencewindow < 0.001
            break;
        end

        % Next trial...
    end

    % Restore priority
    if Priority ~= oldPriority
        Priority(oldPriority);
    end
    
    % For each measurement, the time window t(2,ic)-t(1,ic) defines kind of
    % a confidence interval for the "real" host system time when the sync
    % command was emitted. The measurement with the smallest time window is
    % the most accurate one. Find it and use it:
    minwin = t(2,ic) - t(1,ic);
    
    % On OS/X or Linux we could easily do with 2 msecs, as a 1.2 msecs
    % minwin is basically never exceeded. On MS-Windows however, 2.x
    % durations are not uncommon, so we need to slack this to 3.
    if minwin > 0.002
        fprintf('CedrusResponseBox: queryBaseTimer: Warning! Confidence interval for clock sync is %f msecs - More than 2 msecs!\n', minwin);
    end
    
    % If the 'minwin' window is smaller than 1 msec, we subtract 0.5 the
    % length of it from the t(2,idx) timestamp as best estimate for
    % hosttime -- reasonable assuming a uniform distribution in the
    % 'minwin' interval. If 'minwin' is more than 1 msecs, we assume it
    % happened 0.5 msecs before t(2,idx) -- taking advantage of the
    % soft-constraint that the real write usually happens within 1 msec of
    % t(2,idx) on a normally loaded and well working system:
    hosttime = t(2,ic) - (min(minwin, 0.001)/2);
    
    WaitSecs(0.2);
    FlushEvents(handle);
    WaitSecs(0.2);
    
return;

% Reads raw basetimer response packet from box, converted to seconds, but
% not corrected for receive latency etc. Query command must have been sent
% by calling code!
function rawBaseTime = receiveAndParseTimePacket(handle)

    % Read all 6 bytes of basetimer response packet from box:
    response = ReadDev(handle, 6);

    if length(response)~=6
        % Did not receive 6 bytes - This should not happen!
        error('In receiveAndParseTimePacket: Received too short (or no) response packet from box!');
    end

    % Check bytes 1:2 for correct values 'e3':
    if char(response(1))~='e' || char(response(2))~='3'
        % Failed!
        error('In receiveAndParseTimePacket: Received invalid response packet [Not starting with "e3"] from box!');
    end

    % Extracts bytes 3-6 and is the time elapsed in milliseconds since the
    % base timer was last reset.
    %
    % For more information about the use of XID timers refer to
    % http://www.cedrus.com/xid/timing.htm
    % Conver to seconds:
    response = double(response);
    rawBaseTime = 0.001 * (response(3)+(response(4)*256)+(response(5)*65536) +(response(6)*(65536*256)));

return;

function ptbTime = mapRTTimerToPTBTime(rtt, handle)
    global ptb_cedrus_devices;

    if ptb_cedrus_devices{handle}.baseToPtbOffset ~= 0
        % rtt is the parsed timevalue (already mapped from msecs to seconds),
        % as received in a event packet from the box. We map it to ptbTime by
        % adding the offset between GetSecs time and device RTT time, as
        % estimated by last calibrated RTTReset():
        ptbTime = ptb_cedrus_devices{handle}.baseToPtbOffset + rtt;
    else
        % Missing clock sync. Return "invalid" result:
        ptbTime = nan;
    end
    
return;