/usr/share/psi4/plugin/dfmp2/plugin.cc.template is in psi4-data 1:1.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | /*
* @BEGIN LICENSE
*
* @plugin@ by Psi4 Developer, a plugin to:
*
* Psi4: an open-source quantum chemistry software package
*
* Copyright (c) 2007-2017 The Psi4 Developers.
*
* The copyrights for code used from other parties are included in
* the corresponding files.
*
* This file is part of Psi4.
*
* Psi4 is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, version 3.
*
* Psi4 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with Psi4; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* @END LICENSE
*/
#include "psi4/psi4-dec.h"
#include "psi4/libparallel/parallel.h"
#include "psi4/liboptions/liboptions.h"
#include "psi4/libmints/basisset.h"
#include "psi4/libmints/matrix.h"
#include "psi4/libmints/vector.h"
#include "psi4/libmints/wavefunction.h"
#include "psi4/libthce/lreri.h"
#include "psi4/libthce/thce.h"
#include "psi4/libciomr/libciomr.h"
#include "psi4/libqt/qt.h"
#include "psi4/libpsio/psio.hpp"
#ifdef _OPENMP
#include <omp.h>
#endif
namespace psi{ namespace @plugin@ {
extern "C"
int read_options(std::string name, Options& options)
{
if (name == "@PLUGIN@"|| options.read_globals()) {
/*- The amount of information printed to the output file -*/
options.add_int("PRINT", 1);
/*- Debug level -*/
options.add_int("DEBUG", 0);
/*- Bench level -*/
options.add_int("BENCH", 0);
/*- Basis set -*/
options.add_str("DF_BASIS_MP2", "");
}
return true;
}
extern "C"
SharedWavefunction @plugin@(SharedWavefunction ref_wfn, Options& options)
{
int print = options.get_int("PRINT");
std::shared_ptr<BasisSet> primary = ref_wfn->basisset();
std::shared_ptr<BasisSet> auxiliary = ref_wfn->get_basisset("DF_BASIS_MP2");
std::shared_ptr<Matrix> Caocc = ref_wfn->Ca_subset("AO", "ACTIVE_OCC");
std::shared_ptr<Matrix> Cavir = ref_wfn->Ca_subset("AO", "ACTIVE_VIR");
std::shared_ptr<Vector> eps_aocc = ref_wfn->epsilon_a_subset("AO", "ACTIVE_OCC");
std::shared_ptr<Vector> eps_avir = ref_wfn->epsilon_a_subset("AO", "ACTIVE_VIR");
int no = eps_aocc->dimpi()[0];
int nv = eps_avir->dimpi()[0];
int nn = primary->nbf();
int nQ = auxiliary->nbf();
long int memory = Process::environment.get_memory();
int nthreads = 1;
#ifdef _OPENMP
nthreads = Process::environment.get_n_threads();
#endif
outfile->Printf(" => Sizing <=\n\n");
outfile->Printf(" Memory = %11zu MB\n", memory / (1024L * 1024L));
outfile->Printf(" Threads = %11d\n", nthreads);
outfile->Printf(" no = %11d\n", no);
outfile->Printf(" nv = %11d\n", nv);
outfile->Printf(" nn = %11d\n", nn);
outfile->Printf(" nQ = %11d\n", nQ);
outfile->Printf("\n");
outfile->Printf(" => Molecule <=\n\n");
primary->molecule()->print();
outfile->Printf(" => Primary Basis <=\n\n");
primary->print();
outfile->Printf(" => Auxiliary Basis <=\n\n");
auxiliary->print();
// => Setup DF Integrals <= //
std::shared_ptr<DFERI> df = DFERI::build(primary, auxiliary, options, ref_wfn);
df->add_pair_space("B", "ACTIVE_OCC", "ACTIVE_VIR");
df->set_memory(memory / 8L);
df->print_header();
df->compute();
std::shared_ptr<Tensor> B = df->ints()["B"];
FILE* Bf = B->file_pointer();
df.reset();
// => DFMP2 Energy Evaluation <= //
// => Setup disk blocks and integral buffers <= //
long int doubles = memory / 8L;
long int nvQ = nv * (long int) nQ;
long int max_o = doubles / (2L * nvQ);
max_o = (max_o > no ? no : max_o);
std::shared_ptr<Matrix> Bia(new Matrix(max_o, nvQ));
std::shared_ptr<Matrix> Bjb(new Matrix(max_o, nvQ));
double** Biap = Bia->pointer();
double** Bjbp = Bjb->pointer();
std::vector<std::shared_ptr<Matrix> > Iab;
for (int t = 0; t < nthreads; t++) {
Iab.push_back(std::shared_ptr<Matrix>(new Matrix("Iab", nv, nv)));
}
double* eop = eps_aocc->pointer();
double* evp = eps_avir->pointer();
double E_MP2J = 0.0;
double E_MP2K = 0.0;
// => Form energy contributions <= //
for (int istart = 0; istart < no; istart += max_o) {
int ni = (istart + max_o >= no ? no - istart : max_o);
fseek(Bf,istart * nvQ * sizeof(double), SEEK_SET);
fread(Biap[0], sizeof(double), ni * nvQ, Bf);
for (int jstart = 0; jstart < no; jstart += max_o) {
int nj = (jstart + max_o >= no ? no - jstart : max_o);
if (jstart > istart) break;
if (istart == jstart) {
Bjb->copy(Bia);
} else {
fseek(Bf,jstart * nvQ * sizeof(double), SEEK_SET);
fread(Bjbp[0], sizeof(double), nj * nvQ, Bf);
}
#pragma omp parallel for reduction(+: E_MP2J, E_MP2K) num_threads(nthreads)
for (int ijrel = 0; ijrel < ni *nj; ijrel++) {
int irel = ijrel / nj;
int jrel = ijrel % nj;
int i = irel + istart;
int j = jrel + jstart;
if (j > i) continue;
int thread = 0;
#ifdef _OPENMP
thread = omp_get_thread_num();
#endif
double** Iabp = Iab[thread]->pointer();
double perm = (i == j ? 1.0 : 2.0);
C_DGEMM('N','T',nv,nv,nQ,1.0,Biap[irel],nQ,Bjbp[jrel],nQ,0.0,Iabp[0],nv);
for (int a = 0; a < nv; a++) {
for (int b = 0; b < nv; b++) {
double iajb = Iabp[a][b];
double ibja = Iabp[b][a];
double D = perm / (eop[i] + eop[j] - evp[a] - evp[b]);
E_MP2J += 2.0 * iajb * iajb * D;
E_MP2K -= 1.0 * iajb * ibja * D;
}
}
}
}
}
double E_MP2 = E_MP2J + E_MP2K;
outfile->Printf(" @DF-MP2 Correlation Energy: %24.16f\n", E_MP2);
// Typically you would build a new wavefunction and populate it with data
return ref_wfn;
}
}} // End namespaces
|