/usr/share/psi4/plugin/ambit/integrals.cc.template is in psi4-data 1:1.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 | /*
* @BEGIN LICENSE
*
* Psi4: an open-source quantum chemistry software package
*
* Copyright (c) 2007-2017 The Psi4 Developers.
*
* The copyrights for code used from other parties are included in
* the corresponding files.
*
* This file is part of Psi4.
*
* Psi4 is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, version 3.
*
* Psi4 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along
* with Psi4; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* @END LICENSE
*/
//
// Created by Justin Turney on 12/17/15.
//
#include <stdexcept>
#include "integrals.h"
#include <ambit/tensor.h>
//#include <tensor/core/core.h>
#include "psi4/libmints/basisset.h"
#include "psi4/libmints/matrix.h"
namespace ambit
{
namespace helpers
{
namespace psi4
{
void integrals(psi::OneBodyAOInt &integral, ambit::Tensor *target)
{
// One-electron integrals are generally small enough to compute
// on a single core and broadcast them out.
if (settings::rank == 0)
{
size_t row = static_cast<size_t>(integral.basis1()->nbf());
size_t col = static_cast<size_t>(integral.basis2()->nbf());
psi::SharedMatrix tmp(new psi::Matrix(row, col));
integral.compute(tmp);
Tensor local_tensor =
Tensor::build(CoreTensor, "Local Data", {row, col});
// copy data from SharedMatrix to local_tensor
std::copy(tmp->pointer()[0], tmp->pointer()[0] + (row * col),
local_tensor.data().begin());
// Splice data into the target tensor
(*target)() = local_tensor();
}
else
{
Dimension zero;
IndexRange zero_range;
for (size_t i = 0; i < target->rank(); ++i)
{
zero.push_back(0);
zero_range.push_back({0, 0});
}
Tensor local_data = Tensor::build(CoreTensor, "Local Data", zero);
(*target)(zero_range) = local_data(zero_range);
}
}
void integrals(psi::TwoBodyAOInt &integral, Tensor *target)
{
if (target->type() != CoreTensor)
throw std::runtime_error("integrals(TwoBodyAOInt, Tensor) is only "
"compatible with CoreTensor type");
Dimension max_quartet;
const psi::BasisSet &basis1 = *integral.basis1().get();
const psi::BasisSet &basis2 = *integral.basis2().get();
const psi::BasisSet &basis3 = *integral.basis3().get();
const psi::BasisSet &basis4 = *integral.basis4().get();
int centers_dim[4] = {-1, -1, -1, -1};
{
int count = 0;
if (basis1.nbf() > 1)
{
max_quartet.push_back(
static_cast<size_t>(basis1.max_function_per_shell()));
centers_dim[0] = count++;
}
if (basis2.nbf() > 1)
{
max_quartet.push_back(
static_cast<size_t>(basis2.max_function_per_shell()));
centers_dim[1] = count++;
}
if (basis3.nbf() > 1)
{
max_quartet.push_back(
static_cast<size_t>(basis3.max_function_per_shell()));
centers_dim[2] = count++;
}
if (basis4.nbf() > 1)
{
max_quartet.push_back(
static_cast<size_t>(basis4.max_function_per_shell()));
centers_dim[3] = count++;
}
}
if (max_quartet.size() != target->rank())
throw std::runtime_error(
"TwoBodyAOInt and Tensor do not have same rank.");
// Allocate local CoreTensor that can hold a quartets worth
// of integrals.
Tensor local_tensor = Tensor::build(CoreTensor, "Local Data", max_quartet);
IndexRange target_range(target->rank());
IndexRange local_range(target->rank());
for (int i = 0; i < target->rank(); i++)
{
target_range[i] = {0L, 0L};
local_range[i] = {0L, 0L};
}
const double *buffer = integral.buffer();
for (int P = 0; P < basis1.nshell(); P++)
{
int nP = basis1.shell(P).nfunction();
int startP = basis1.shell(P).function_index();
if (centers_dim[0] != -1)
{
max_quartet[centers_dim[0]] = static_cast<size_t>(nP);
target_range[centers_dim[0]][0] = static_cast<size_t>(startP);
target_range[centers_dim[0]][1] = static_cast<size_t>(startP + nP);
local_range[centers_dim[0]][1] = static_cast<size_t>(nP);
}
for (int Q = 0; Q < basis2.nshell(); Q++)
{
int nQ = basis2.shell(Q).nfunction();
int startQ = basis2.shell(Q).function_index();
if (centers_dim[1] != -1)
{
max_quartet[centers_dim[1]] = static_cast<size_t>(nQ);
target_range[centers_dim[1]][0] = static_cast<size_t>(startQ);
target_range[centers_dim[1]][1] =
static_cast<size_t>(startQ + nQ);
local_range[centers_dim[1]][1] = static_cast<size_t>(nQ);
}
for (int R = 0; R < basis3.nshell(); R++)
{
int nR = basis3.shell(R).nfunction();
int startR = basis3.shell(R).function_index();
if (centers_dim[2] != -1)
{
max_quartet[centers_dim[2]] = static_cast<size_t>(nR);
target_range[centers_dim[2]][0] =
static_cast<size_t>(startR);
target_range[centers_dim[2]][1] =
static_cast<size_t>(startR + nR);
local_range[centers_dim[2]][1] = static_cast<size_t>(nR);
}
for (int S = 0; S < basis4.nshell(); S++)
{
int nS = basis4.shell(S).nfunction();
int startS = basis4.shell(S).function_index();
if (centers_dim[3] != -1)
{
max_quartet[centers_dim[3]] = static_cast<size_t>(nS);
target_range[centers_dim[3]][0] =
static_cast<size_t>(startS);
target_range[centers_dim[3]][1] =
static_cast<size_t>(startS + nS);
local_range[centers_dim[3]][1] =
static_cast<size_t>(nS);
}
// Have Psi4 compute the integral
integral.compute_shell(P, Q, R, S);
// Unfortunately we have to perform a memcpy :(
// from Psi4 integral buffer to local_tensor
std::copy(buffer, buffer + (nP * nQ * nR * nS),
local_tensor.data().begin());
// "reshape" the local tensor
local_tensor.reshape(max_quartet);
// Slice the data from local_tensor into the target.
// For CoreTensor this isn't the optimal procedure to
// follow.
// However, this is similar to the parallel scheme that will
// follow.
(*target)(target_range) = local_tensor(local_range);
}
}
}
}
}
} // namespace psi4
} // namespace helpers
} // namespace ambit
|