This file is indexed.

/usr/share/psi4/databases/HSG.py is in psi4-data 1:1.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
#
# @BEGIN LICENSE
#
# Psi4: an open-source quantum chemistry software package
#
# Copyright (c) 2007-2017 The Psi4 Developers.
#
# The copyrights for code used from other parties are included in
# the corresponding files.
#
# This file is part of Psi4.
#
# Psi4 is free software; you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, version 3.
#
# Psi4 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License along
# with Psi4; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# @END LICENSE
#

"""
| Database (Merz) of interaction energies for bimolecular complexes from protein-indinavir reaction site.
| Geometries from and original reference energies from Faver et al. JCTC 7 790 (2011).
| Revised reference interaction energies (HSGA) from Marshall et al. JCP 135 194102 (2011).

- **cp**  ``'off'`` || ``'on'``

- **rlxd** ``'off'``

- **benchmark**

  - ``'HSG0'`` Faver et al. JCTC 7 790 (2011).
  - |dl| ``'HSGA'`` |dr| Marshall et al. JCP 135 194102 (2011).

- **subset**

  - ``'small'``
  - ``'large'``

"""
import qcdb

# <<< HSG Database Module >>>
dbse = 'HSG'

# <<< Database Memobers >>>
HRXN = range(1, 22)
HRXN_SM = [6, 15]
HRXN_LG = [14]

# <<< Chemical Systems Involved >>>
RXNM = {}     # reaction matrix of reagent contributions per reaction
ACTV = {}     # order of active reagents per reaction
ACTV_CP = {}  # order of active reagents per counterpoise-corrected reaction
ACTV_SA = {}  # order of active reagents for non-supramolecular calculations
for rxn in HRXN:

    RXNM[   '%s-%s' % (dbse, rxn)] = {'%s-%s-dimer'      % (dbse, rxn) : +1,
                                      '%s-%s-monoA-CP'   % (dbse, rxn) : -1,
                                      '%s-%s-monoB-CP'   % (dbse, rxn) : -1,
                                      '%s-%s-monoA-unCP' % (dbse, rxn) : -1,
                                      '%s-%s-monoB-unCP' % (dbse, rxn) : -1 }

    ACTV_SA['%s-%s' % (dbse, rxn)] = ['%s-%s-dimer'      % (dbse, rxn) ]

    ACTV_CP['%s-%s' % (dbse, rxn)] = ['%s-%s-dimer'      % (dbse, rxn),
                                      '%s-%s-monoA-CP'   % (dbse, rxn),
                                      '%s-%s-monoB-CP'   % (dbse, rxn) ]

    ACTV[   '%s-%s' % (dbse, rxn)] = ['%s-%s-dimer'      % (dbse, rxn),
                                      '%s-%s-monoA-unCP' % (dbse, rxn),
                                      '%s-%s-monoB-unCP' % (dbse, rxn) ]

# <<< Reference Values >>>
BIND = {}
# Original publication
BIND_HSG0 = {}
BIND_HSG0['%s-%s' % (dbse,  1)] =   -0.519
BIND_HSG0['%s-%s' % (dbse,  2)] =   -2.181
BIND_HSG0['%s-%s' % (dbse,  3)] =   -2.451
BIND_HSG0['%s-%s' % (dbse,  4)] =  -16.445
BIND_HSG0['%s-%s' % (dbse,  5)] =  -18.984
BIND_HSG0['%s-%s' % (dbse,  6)] =   -6.009
BIND_HSG0['%s-%s' % (dbse,  7)] =   -3.301
BIND_HSG0['%s-%s' % (dbse,  8)] =   -0.554
BIND_HSG0['%s-%s' % (dbse,  9)] =   -5.038
BIND_HSG0['%s-%s' % (dbse, 10)] =   -7.532
BIND_HSG0['%s-%s' % (dbse, 11)] =   -6.279
BIND_HSG0['%s-%s' % (dbse, 12)] =    0.305
BIND_HSG0['%s-%s' % (dbse, 13)] =   -2.087
BIND_HSG0['%s-%s' % (dbse, 14)] =   -1.376
BIND_HSG0['%s-%s' % (dbse, 15)] =   -0.853
BIND_HSG0['%s-%s' % (dbse, 16)] =   -1.097
BIND_HSG0['%s-%s' % (dbse, 17)] =   -1.504
BIND_HSG0['%s-%s' % (dbse, 18)] =   -0.473
BIND_HSG0['%s-%s' % (dbse, 19)] =   -1.569
BIND_HSG0['%s-%s' % (dbse, 20)] =    0.391
BIND_HSG0['%s-%s' % (dbse, 21)] =   -9.486
# Current revision
BIND_HSGA = {}
BIND_HSGA['%s-%s' % (dbse,  1)] =   -0.518
BIND_HSGA['%s-%s' % (dbse,  2)] =   -2.283
BIND_HSGA['%s-%s' % (dbse,  3)] =   -2.478
BIND_HSGA['%s-%s' % (dbse,  4)] =  -16.526
BIND_HSGA['%s-%s' % (dbse,  5)] =  -19.076
BIND_HSGA['%s-%s' % (dbse,  6)] =   -5.998
BIND_HSGA['%s-%s' % (dbse,  7)] =   -3.308
BIND_HSGA['%s-%s' % (dbse,  8)] =   -0.581
BIND_HSGA['%s-%s' % (dbse,  9)] =   -5.066
BIND_HSGA['%s-%s' % (dbse, 10)] =   -7.509
BIND_HSGA['%s-%s' % (dbse, 11)] =   -6.274
BIND_HSGA['%s-%s' % (dbse, 12)] =    0.302
BIND_HSGA['%s-%s' % (dbse, 13)] =   -2.103
BIND_HSGA['%s-%s' % (dbse, 14)] =   -1.378
BIND_HSGA['%s-%s' % (dbse, 15)] =   -0.856
BIND_HSGA['%s-%s' % (dbse, 16)] =   -1.100
BIND_HSGA['%s-%s' % (dbse, 17)] =   -1.534
BIND_HSGA['%s-%s' % (dbse, 18)] =   -0.472
BIND_HSGA['%s-%s' % (dbse, 19)] =   -1.598
BIND_HSGA['%s-%s' % (dbse, 20)] =    0.378
BIND_HSGA['%s-%s' % (dbse, 21)] =   -9.538
# Set default
BIND = BIND_HSGA

# <<< Coment Lines >>>
TAGL = {}
TAGL['%s-%s'            % (dbse,  1)] = 'ala29-big'
TAGL['%s-%s-dimer'      % (dbse,  1)] = 'ala29-big'
TAGL['%s-%s-monoA-CP'   % (dbse,  1)] = 'indinavir from ala29-big'
TAGL['%s-%s-monoB-CP'   % (dbse,  1)] = 'alanine from ala29-big'
TAGL['%s-%s-monoA-unCP' % (dbse,  1)] = 'indinavir from ala29-big'
TAGL['%s-%s-monoB-unCP' % (dbse,  1)] = 'alanine from ala29-big'
TAGL['%s-%s'            % (dbse,  2)] = 'ala128-small'
TAGL['%s-%s-dimer'      % (dbse,  2)] = 'ala128-small'
TAGL['%s-%s-monoA-CP'   % (dbse,  2)] = 'alanine from ala128-small'
TAGL['%s-%s-monoB-CP'   % (dbse,  2)] = 'indinavir from ala128-small'
TAGL['%s-%s-monoA-unCP' % (dbse,  2)] = 'alanine from ala128-small'
TAGL['%s-%s-monoB-unCP' % (dbse,  2)] = 'indinavir from ala128-small'
TAGL['%s-%s'            % (dbse,  3)] = 'arg8'
TAGL['%s-%s-dimer'      % (dbse,  3)] = 'arg8'
TAGL['%s-%s-monoA-CP'   % (dbse,  3)] = 'arginine from arg8'
TAGL['%s-%s-monoB-CP'   % (dbse,  3)] = 'indinavir from arg8'
TAGL['%s-%s-monoA-unCP' % (dbse,  3)] = 'arginine from arg8'
TAGL['%s-%s-monoB-unCP' % (dbse,  3)] = 'indinavir from arg8'
TAGL['%s-%s'            % (dbse,  4)] = 'ash26-asp125'
TAGL['%s-%s-dimer'      % (dbse,  4)] = 'ash26-asp125'
TAGL['%s-%s-monoA-CP'   % (dbse,  4)] = 'aspartic acid from ash26-asp125'
TAGL['%s-%s-monoB-CP'   % (dbse,  4)] = 'indinavir from ash26-asp125'
TAGL['%s-%s-monoA-unCP' % (dbse,  4)] = 'aspartic acid from ash26-asp125'
TAGL['%s-%s-monoB-unCP' % (dbse,  4)] = 'indinavir from ash26-asp125'
TAGL['%s-%s'            % (dbse,  5)] = 'asp129-big'
TAGL['%s-%s-dimer'      % (dbse,  5)] = 'asp129-big'
TAGL['%s-%s-monoA-CP'   % (dbse,  5)] = 'aspartic acid from asp129-big'
TAGL['%s-%s-monoB-CP'   % (dbse,  5)] = 'indinavir from asp129-big'
TAGL['%s-%s-monoA-unCP' % (dbse,  5)] = 'aspartic acid from asp129-big'
TAGL['%s-%s-monoB-unCP' % (dbse,  5)] = 'indinavir from asp129-big'
TAGL['%s-%s'            % (dbse,  6)] = 'asp130'
TAGL['%s-%s-dimer'      % (dbse,  6)] = 'asp130'
TAGL['%s-%s-monoA-CP'   % (dbse,  6)] = 'aspartic acid from asp130'
TAGL['%s-%s-monoB-CP'   % (dbse,  6)] = 'indinavir from asp130'
TAGL['%s-%s-monoA-unCP' % (dbse,  6)] = 'aspartic acid from asp130'
TAGL['%s-%s-monoB-unCP' % (dbse,  6)] = 'indinavir from asp130'
TAGL['%s-%s'            % (dbse,  7)] = 'gly28-big'
TAGL['%s-%s-dimer'      % (dbse,  7)] = 'gly28-big'
TAGL['%s-%s-monoA-CP'   % (dbse,  7)] = 'glycine from gly28-big'
TAGL['%s-%s-monoB-CP'   % (dbse,  7)] = 'indinavir from gly28-big'
TAGL['%s-%s-monoA-unCP' % (dbse,  7)] = 'glycine from gly28-big'
TAGL['%s-%s-monoB-unCP' % (dbse,  7)] = 'indinavir from gly28-big'
TAGL['%s-%s'            % (dbse,  8)] = 'gly50-ring-big'
TAGL['%s-%s-dimer'      % (dbse,  8)] = 'gly50-ring-big'
TAGL['%s-%s-monoA-CP'   % (dbse,  8)] = 'glycine from gly50-ring-big'
TAGL['%s-%s-monoB-CP'   % (dbse,  8)] = 'indinavir from gly50-ring-big'
TAGL['%s-%s-monoA-unCP' % (dbse,  8)] = 'glycine from gly50-ring-big'
TAGL['%s-%s-monoB-unCP' % (dbse,  8)] = 'indinavir from gly50-ring-big'
TAGL['%s-%s'            % (dbse,  9)] = 'gly50-v1'
TAGL['%s-%s-dimer'      % (dbse,  9)] = 'gly50-v1'
TAGL['%s-%s-monoA-CP'   % (dbse,  9)] = 'glycine from gly50-v1'
TAGL['%s-%s-monoB-CP'   % (dbse,  9)] = 'indinavir from gly50-v1'
TAGL['%s-%s-monoA-unCP' % (dbse,  9)] = 'glycine from gly50-v1'
TAGL['%s-%s-monoB-unCP' % (dbse,  9)] = 'indinavir from gly50-v1'
TAGL['%s-%s'            % (dbse, 10)] = 'gly127'
TAGL['%s-%s-dimer'      % (dbse, 10)] = 'gly127'
TAGL['%s-%s-monoA-CP'   % (dbse, 10)] = 'indinavir from gly127'
TAGL['%s-%s-monoB-CP'   % (dbse, 10)] = 'glycine from gly127'
TAGL['%s-%s-monoA-unCP' % (dbse, 10)] = 'indinavir from gly127'
TAGL['%s-%s-monoB-unCP' % (dbse, 10)] = 'glycine from gly127'
TAGL['%s-%s'            % (dbse, 11)] = 'gly148'
TAGL['%s-%s-dimer'      % (dbse, 11)] = 'gly148'
TAGL['%s-%s-monoA-CP'   % (dbse, 11)] = 'glycine from gly148'
TAGL['%s-%s-monoB-CP'   % (dbse, 11)] = 'indinavir from gly148'
TAGL['%s-%s-monoA-unCP' % (dbse, 11)] = 'glycine from gly148'
TAGL['%s-%s-monoB-unCP' % (dbse, 11)] = 'indinavir from gly148'
TAGL['%s-%s'            % (dbse, 12)] = 'ile48-big'
TAGL['%s-%s-dimer'      % (dbse, 12)] = 'ile48-big'
TAGL['%s-%s-monoA-CP'   % (dbse, 12)] = 'isoleucine from ile48-big'
TAGL['%s-%s-monoB-CP'   % (dbse, 12)] = 'indinavir from ile48-big'
TAGL['%s-%s-monoA-unCP' % (dbse, 12)] = 'isoleucine from ile48-big'
TAGL['%s-%s-monoB-unCP' % (dbse, 12)] = 'indinavir from ile48-big'
TAGL['%s-%s'            % (dbse, 13)] = 'ile147'
TAGL['%s-%s-dimer'      % (dbse, 13)] = 'ile147'
TAGL['%s-%s-monoA-CP'   % (dbse, 13)] = 'isoleucine from ile147'
TAGL['%s-%s-monoB-CP'   % (dbse, 13)] = 'indinavir from ile147'
TAGL['%s-%s-monoA-unCP' % (dbse, 13)] = 'isoleucine from ile147'
TAGL['%s-%s-monoB-unCP' % (dbse, 13)] = 'indinavir from ile147'
TAGL['%s-%s'            % (dbse, 14)] = 'ile150-big'
TAGL['%s-%s-dimer'      % (dbse, 14)] = 'ile150-big'
TAGL['%s-%s-monoA-CP'   % (dbse, 14)] = 'isoleucine from ile150-big'
TAGL['%s-%s-monoB-CP'   % (dbse, 14)] = 'indinavir from ile150-big'
TAGL['%s-%s-monoA-unCP' % (dbse, 14)] = 'isoleucine from ile150-big'
TAGL['%s-%s-monoB-unCP' % (dbse, 14)] = 'indinavir from ile150-big'
TAGL['%s-%s'            % (dbse, 15)] = 'ile184'
TAGL['%s-%s-dimer'      % (dbse, 15)] = 'ile184'
TAGL['%s-%s-monoA-CP'   % (dbse, 15)] = 'isoleucine from ile184'
TAGL['%s-%s-monoB-CP'   % (dbse, 15)] = 'indinavir from ile184'
TAGL['%s-%s-monoA-unCP' % (dbse, 15)] = 'isoleucine from ile184'
TAGL['%s-%s-monoB-unCP' % (dbse, 15)] = 'indinavir from ile184'
TAGL['%s-%s'            % (dbse, 16)] = 'leu23-big'
TAGL['%s-%s-dimer'      % (dbse, 16)] = 'leu23-big'
TAGL['%s-%s-monoA-CP'   % (dbse, 16)] = 'leucine from leu23-big'
TAGL['%s-%s-monoB-CP'   % (dbse, 16)] = 'indinavir from leu23-big'
TAGL['%s-%s-monoA-unCP' % (dbse, 16)] = 'leucine from leu23-big'
TAGL['%s-%s-monoB-unCP' % (dbse, 16)] = 'indinavir from leu23-big'
TAGL['%s-%s'            % (dbse, 17)] = 'pro181'
TAGL['%s-%s-dimer'      % (dbse, 17)] = 'pro181'
TAGL['%s-%s-monoA-CP'   % (dbse, 17)] = 'proline from pro181'
TAGL['%s-%s-monoB-CP'   % (dbse, 17)] = 'indinavir from pro181'
TAGL['%s-%s-monoA-unCP' % (dbse, 17)] = 'proline from pro181'
TAGL['%s-%s-monoB-unCP' % (dbse, 17)] = 'indinavir from pro181'
TAGL['%s-%s'            % (dbse, 18)] = 'val33-big'
TAGL['%s-%s-dimer'      % (dbse, 18)] = 'val33-big'
TAGL['%s-%s-monoA-CP'   % (dbse, 18)] = 'valine from val33-big'
TAGL['%s-%s-monoB-CP'   % (dbse, 18)] = 'indinavir from val33-big'
TAGL['%s-%s-monoA-unCP' % (dbse, 18)] = 'valine from val33-big'
TAGL['%s-%s-monoB-unCP' % (dbse, 18)] = 'indinavir from val33-big'
TAGL['%s-%s'            % (dbse, 19)] = 'val83'
TAGL['%s-%s-dimer'      % (dbse, 19)] = 'val83'
TAGL['%s-%s-monoA-CP'   % (dbse, 19)] = 'valine from val83'
TAGL['%s-%s-monoB-CP'   % (dbse, 19)] = 'indinavir from val83'
TAGL['%s-%s-monoA-unCP' % (dbse, 19)] = 'valine from val83'
TAGL['%s-%s-monoB-unCP' % (dbse, 19)] = 'indinavir from val83'
TAGL['%s-%s'            % (dbse, 20)] = 'val132'
TAGL['%s-%s-dimer'      % (dbse, 20)] = 'val132'
TAGL['%s-%s-monoA-CP'   % (dbse, 20)] = 'valine from val132'
TAGL['%s-%s-monoB-CP'   % (dbse, 20)] = 'indinavir from val132'
TAGL['%s-%s-monoA-unCP' % (dbse, 20)] = 'valine from val132'
TAGL['%s-%s-monoB-unCP' % (dbse, 20)] = 'indinavir from val132'
TAGL['%s-%s'            % (dbse, 21)] = 'wat200'
TAGL['%s-%s-dimer'      % (dbse, 21)] = 'wat200'
TAGL['%s-%s-monoA-CP'   % (dbse, 21)] = 'water from wat200'
TAGL['%s-%s-monoB-CP'   % (dbse, 21)] = 'indinavir from wat200'
TAGL['%s-%s-monoA-unCP' % (dbse, 21)] = 'water from wat200'
TAGL['%s-%s-monoB-unCP' % (dbse, 21)] = 'indinavir from wat200'

# <<< Geometry Specification Strings >>>
GEOS = {}

GEOS['%s-%s-dimer' % (dbse, '1')] = qcdb.Molecule("""
0 1
C   13.03200       29.07900       6.986000
H   12.30800       29.25100       7.790000
H   13.47200       28.08100       7.080000
H   13.82700       29.84100       7.035000
H   12.50772       29.16746       6.023030
--
0 1
C   10.60200       24.81800       6.466000
O   10.95600       23.84000       7.103000
N   10.17800       25.94300       7.070000
C   10.09100       26.25600       8.476000
C   9.372000       27.59000       8.640000
C   11.44600       26.35600       9.091000
C   9.333000       25.25000       9.282000
H   9.874000       26.68900       6.497000
H   9.908000       28.37100       8.093000
H   8.364000       27.46400       8.233000
H   9.317000       27.84600       9.706000
H   9.807000       24.28200       9.160000
H   9.371000       25.57400       10.32900
H   8.328000       25.26700       8.900000
H   11.28800       26.57600       10.14400
H   11.97000       27.14900       8.585000
H   11.93200       25.39300       8.957000
H   10.61998       24.85900       5.366911
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '2')] = qcdb.Molecule("""
0 1
C   18.71400       22.19500       2.742000
H   18.37900       21.58700       3.577000
C   17.68800       22.11500       1.586000
H   17.61600       21.07600       1.227000
H   16.69600       22.44400       1.940000
H   18.00000       22.76400       0.747000
H   18.77673       23.23495       3.094948
H   19.70954       21.82087       2.461043
--
0 1
C   16.65000       19.51600       5.550000
C   18.05900       18.95300       5.945000
O   19.08300       19.90900       5.610000
C   18.24000       17.70600       5.049000
C   17.41000       17.97200       3.810000
C   17.48600       17.37200       2.527000
C   16.60600       17.86100       1.547000
C   15.70300       18.89200       1.854000
C   15.65400       19.47000       3.123000
C   16.51300       18.99700       4.107000
H   15.85600       19.11800       6.209000
H   18.17800       18.65700       6.992000
H   17.85200       16.83600       5.584000
H   19.29200       17.55300       4.850000
H   18.19800       16.55200       2.242000
H   16.61400       17.45600       0.523000
H   15.03200       19.27500       1.092000
H   14.96900       20.29200       3.327000
H   19.96600       19.54000       5.876000
H   16.54908       20.59917       5.712962
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '3')] = qcdb.Molecule("""
1 1
C   23.73500       21.90400       8.645000
H   24.33900       21.64000       9.515000
H   23.04400       22.70000       8.945000
N   22.96900       20.71700       8.247000
H   22.85100       20.56200       7.249000
C   22.40300       19.85100       9.070000
N   22.40300       20.05000       10.36600
H   22.82700       20.88300       10.74700
H   21.93200       19.41900       10.98100
N   21.82000       18.77600       8.615000
H   21.76800       18.61500       7.604000
H   21.33700       18.14400       9.214000
H   24.38340       22.25566       7.828969
--
0 1
C   16.73700       21.75300       8.985000
C   18.06300       21.93100       8.570000
C   19.04400       21.01900       8.966000
C   18.68400       19.93600       9.775000
C   17.35900       19.76800       10.19300
C   16.38200       20.67900       9.796000
H   15.33000       20.56400       10.09500
H   17.07400       18.92500       10.82100
H   19.43700       19.21300       10.07200
H   20.08100       21.14800       8.627000
H   18.32800       22.76900       7.913000
H   15.93631       22.42849       8.649437
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '4')] = qcdb.Molecule("""
-1 1
C   17.05600       28.65300       6.834000
H   17.72900       28.22900       7.569000
H   16.32100       29.27500       7.342000
C   16.35100       27.45400       6.256000
O   16.17800       26.43900       6.902000
O   15.98200       27.55700       4.965000
H   15.73800       26.67800       4.650000
C   16.27300       25.57900       0.088000
H   16.75700       24.66100      -0.278000
H   15.39700       25.75100      -0.577000
C   15.87600       25.38300       1.569000
O   16.42900       26.07300       2.466000
O   14.98200       24.56700       1.861000
H   17.61665       29.26091       6.108662
H   16.97158       26.42544       0.013713047
--
0 1
C   14.25800       24.02900       5.093000
O   15.51000       24.53800       4.641000
H   15.42000       24.70300       3.667000
H   14.02700       23.02800       4.754000
H   13.45976       24.69373       4.731124
H   14.36576       23.85731       6.174161
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '5')] = qcdb.Molecule("""
-1 1
C   18.71400       22.19500       2.742000
H   18.37900       21.58700       3.577000
C   20.10300       21.67300       2.350000
O   20.78600       22.26500       1.513000
N   20.55800       20.55500       2.927000
H   20.07200       20.11800       3.686000
C   21.79700       19.92300       2.527000
H   22.55800       20.68900       2.504000
C   22.17900       18.80900       3.507000
H   21.42700       18.01600       3.405000
H   23.13400       18.39700       3.140000
C   22.26300       19.27700       4.986000
O   23.05600       20.18800       5.322000
O   21.52500       18.75500       5.855000
H   21.73715       19.49687       1.514662
H   18.77673       23.23495       3.094948
H   17.98479       22.13814       1.920400
--
0 1
C   18.05900       18.95300       5.945000
H   18.17800       18.65700       6.992000
O   19.08300       19.90900       5.610000
H   19.96600       19.54000       5.876000
H   17.07047       19.34799       5.667876
H   18.18777       18.06583       5.307547
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '6')] = qcdb.Molecule("""
-1 1
C   20.08800       16.66100      -0.398000
H   19.04500       16.60200      -0.082000
H   20.18300       16.24400      -1.387000
C   20.90200       15.70700       0.505000
O   21.91000       15.13700       0.031000
O   20.37700       15.22700       1.542000
H   20.29988       17.73389      -0.5163442
--
0 1
C   17.41000       17.97200       3.810000
C   17.48600       17.37200       2.527000
C   16.60600       17.86100       1.547000
C   15.70300       18.89200       1.854000
C   15.65400       19.47000       3.123000
C   16.51300       18.99700       4.107000
H   18.19800       16.55200       2.242000
H   16.61400       17.45600       0.523000
H   15.03200       19.27500       1.092000
H   14.96900       20.29200       3.327000
H   16.61088       19.36781       5.137980
H   18.01270       17.77884       4.709692
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '7')] = qcdb.Molecule("""
0 1
C   15.27800       30.38900       2.305000
O   14.37900       30.99200       1.712000
N   15.20400       29.08900       2.640000
H   15.90100       28.63400       3.249000
C   14.02400       28.31500       2.332000
H   13.65700       28.66700       1.375000
H   14.32500       27.27400       2.236000
C   12.93200       28.48000       3.398000
O   11.76000       28.20200       3.138000
N   13.27200       28.98600       4.593000
H   14.23600       29.23200       4.806000
H   12.53585       29.15009       5.393723
H   16.18758       30.94244       2.581356
--
0 1
C   14.25800       24.02900       5.093000
O   15.51000       24.53800       4.641000
C   13.12200       24.97500       4.578000
N   11.86200       24.24500       4.359000
C   11.78200       23.78100       2.948000
C   10.62700       24.87500       4.938000
H   15.42000       24.70300       3.667000
H   14.02700       23.02800       4.754000
H   12.93300       25.79400       5.257000
H   13.40100       25.40500       3.596000
H   10.49500       25.96800       4.694000
H   12.00900       24.60600       2.286000
H   12.53400       23.01100       2.841000
H   10.60902       24.83400       6.037089
H   9.792144       24.23767       4.611163
H   10.82891       23.34622       2.612456
H   14.36576       23.85731       6.174161
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '8')] = qcdb.Molecule("""
0 1
C   4.290000       24.10300       10.08600
O   4.354000       23.13400       10.84900
N   4.507000       24.01000       8.777000
H   4.471000       24.81400       8.166000
C   4.858000       22.75500       8.154000
H   4.799000       21.96700       8.885000
H   4.136000       22.58200       7.364000
C   6.276000       22.76600       7.611000
O   6.647000       23.71300       6.921000
N   7.066000       21.74000       7.938000
H   6.754000       21.01200       8.573000
H   4.054781       25.09671       10.49492
H   8.028304       21.54906       7.440493
--
0 1
C   6.218000       24.82200       2.171000
C   6.715000       23.76400       2.930000
C   5.918000       23.22600       3.934000
C   4.663000       23.78000       4.166000
C   4.226000       24.84700       3.389000
N   4.990000       25.38300       2.391000
H   6.798000       25.19700       1.318000
H   3.211000       25.24700       3.575000
H   4.018000       23.38100       4.943000
H   6.274000       22.37100       4.504000
H   7.673767       23.27955       2.693205
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '9')] = qcdb.Molecule("""
0 1
N   9.334000       19.62700       6.121000
H   10.08000       19.74000       6.781000
C   8.252000       20.39100       6.228000
O   7.244000       20.21700       5.545000
C   8.331000       21.48900       7.284000
H   8.671000       22.40300       6.814000
H   9.046000       21.19200       8.047000
N   7.066000       21.74000       7.938000
H   6.754000       21.01200       8.573000
O   6.647000       23.71300       6.921000
C   6.276000       22.76600       7.611000
H   9.495216       18.80266       5.410733
H   5.248769       22.75803       8.004361
--
0 1
C   10.62700       24.87500       4.938000
C   10.60200       24.81800       6.466000
O   10.95600       23.84000       7.103000
N   10.17800       25.94300       7.070000
C   10.09100       26.25600       8.476000
H   9.874000       26.68900       6.497000
H   10.49500       25.96800       4.694000
H   11.53119       24.41376       4.514093
H   9.792144       24.23767       4.611163
H   9.533425       25.51600       9.068883
H   9.572130       27.21869       8.594352
H   11.09040       26.32976       8.929603
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '10')] = qcdb.Molecule("""
0 1
C   18.71400       22.19500       2.742000
H   18.37900       21.58700       3.577000
N   18.79700       23.57100       3.209000
H   18.86300       24.28300       2.488000
C   18.84100       23.91000       4.508000
O   18.83700       23.07300       5.410000
C   18.95700       25.38900       4.894000
H   18.06200       25.68500       5.433000
H   19.81900       25.52500       5.542000
H   19.09001       26.05938       4.032084
H   19.70954       21.82087       2.461043
H   17.98479       22.13814       1.920400
--
0 1
C   16.65000       19.51600       5.550000
H   15.85600       19.11800       6.209000
H   17.38100       21.50400       5.804000
N   16.51500       20.96500       5.768000
C   15.41800       21.48800       6.353000
O   14.37000       20.87200       6.467000
C   15.57100       22.84700       6.986000
H   16.50000       23.29500       6.652000
H   14.74390       23.51764       6.710063
H   15.61789       22.72907       8.078654
H   17.63853       19.12101       5.827124
H   16.55212       19.14519       4.519021
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '11')] = qcdb.Molecule("""
0 1
C   14.75600       16.28200       8.071000
O   15.85100       16.84300       8.024000
N   13.59000       16.92100       8.167000
H   12.70700       16.41600       8.193000
C   13.49400       18.33500       8.443000
H   14.48600       18.75400       8.594000
H   13.03600       18.80900       7.582000
C   12.63300       18.57700       9.678000
O   12.60000       17.78900       10.62400
N   11.87400       19.66100       9.642000
H   11.86900       20.24000       8.807000
H   14.71385       15.18329       8.038301
H   11.09386       19.92029       10.37286
--
0 1
C   16.65000       19.51600       5.550000
N   16.51500       20.96500       5.768000
H   17.38100       21.50400       5.804000
H   15.85600       19.11800       6.209000
C   15.41800       21.48800       6.353000
O   14.37000       20.87200       6.467000
C   15.57100       22.84700       6.986000
H   16.50000       23.29500       6.652000
H   14.74390       23.51764       6.710063
H   15.61789       22.72907       8.078654
H   17.63853       19.12101       5.827124
H   16.55212       19.14519       4.519021
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '12')] = qcdb.Molecule("""
0 1
C   5.250000       26.25800       10.94600
H   5.928000       26.22800       10.10000
C   5.965000       25.62100       12.14400
H   5.388000       25.81100       13.04900
H   6.001000       24.53800       11.98600
C   7.381000       26.17300       12.29600
H   7.851000       25.68400       13.15200
H   7.950000       25.96300       11.38000
H   7.328000       27.25600       12.46000
H   4.327890       25.69684       10.73431
H   4.991234       27.31620       11.09851
--
0 1
C   10.60200       24.81800       6.466000
O   10.95600       23.84000       7.103000
N   10.17800       25.94300       7.070000
C   10.09100       26.25600       8.476000
C   9.372000       27.59000       8.640000
C   11.44600       26.35600       9.091000
C   9.333000       25.25000       9.282000
H   9.874000       26.68900       6.497000
H   9.908000       28.37100       8.093000
H   8.364000       27.46400       8.233000
H   9.317000       27.84600       9.706000
H   9.807000       24.28200       9.160000
H   9.371000       25.57400       10.32900
H   8.328000       25.26700       8.900000
H   11.28800       26.57600       10.14400
H   11.97000       27.14900       8.585000
H   11.93200       25.39300       8.957000
H   10.61998       24.85900       5.366911
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '13')] = qcdb.Molecule("""
0 1
C   16.05600       13.91300       3.701000
H   16.15900       14.95600       4.033000
C   17.23700       13.52900       2.786000
H   17.24200       14.19600       1.903000
H   18.17200       13.64500       3.338000
H   17.11900       12.49000       2.453000
C   14.73500       13.74900       2.932000
H   14.59700       12.70200       2.661000
H   13.89800       14.05900       3.553000
C   14.73600       14.57900       1.670000
H   13.78900       14.41800       1.168000
H   14.86200       15.62400       1.955000
H   15.57300       14.24500       1.050000
H   16.03595       13.25839       4.584791
--
0 1
C   16.51300       18.99700       4.107000
C   17.41000       17.97200       3.810000
C   17.48600       17.37200       2.527000
C   16.60600       17.86100       1.547000
C   15.70300       18.89200       1.854000
C   15.65400       19.47000       3.123000
H   14.96900       20.29200       3.327000
H   15.03200       19.27500       1.092000
H   16.61400       17.45600       0.523000
H   18.19800       16.55200       2.242000
H   18.01270       17.77884       4.709692
H   16.61088       19.36781       5.137980
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '14')] = qcdb.Molecule("""
0 1
C   10.37400       21.44300       10.31100
H   9.934000       21.48700       9.305000
C   9.280000       21.86400       11.28300
H   8.982000       22.89200       11.04700
H   8.438000       21.18400       11.17100
H   9.688000       21.81300       12.29800
C   11.56200       22.42400       10.37400
H   12.42800       21.94400       9.922000
H   11.32000       23.31700       9.801000
C   11.94400       22.85500       11.78700
H   12.79300       23.53700       11.72100
H   11.08500       23.36200       12.24600
H   12.21000       21.96700       12.37000
H   10.70966       20.41678       10.52123
--
0 1
C   10.60200       24.81800       6.466000
O   10.95600       23.84000       7.103000
N   10.17800       25.94300       7.070000
C   10.09100       26.25600       8.476000
C   9.372000       27.59000       8.640000
C   11.44600       26.35600       9.091000
C   9.333000       25.25000       9.282000
H   9.874000       26.68900       6.497000
H   9.908000       28.37100       8.093000
H   8.364000       27.46400       8.233000
H   9.317000       27.84600       9.706000
H   9.807000       24.28200       9.160000
H   9.371000       25.57400       10.32900
H   8.328000       25.26700       8.900000
H   11.28800       26.57600       10.14400
H   11.97000       27.14900       8.585000
H   11.93200       25.39300       8.957000
H   10.61998       24.85900       5.366911
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '15')] = qcdb.Molecule("""
0 1
C   12.74600       22.16800      -1.090000
H   12.81800       23.17800      -0.699000
H   11.91700       22.12800      -1.801000
C   12.43800       21.21300       0.067000
H   11.49600       21.52600       0.536000
H   12.33700       20.19000      -0.320000
H   13.25200       21.25600       0.799000
H   13.67406       21.92095      -1.626354
--
0 1
N   9.254000       23.85400       3.012000
C   11.78200       23.78100       2.948000
C   10.44700       23.17200       2.478000
N   11.86200       24.24500       4.359000
H   10.43300       22.11300       2.752000
H   10.40400       23.24700       1.396000
H   12.53400       23.01100       2.841000
H   12.00900       24.60600       2.286000
H   8.356916       23.29360       2.710019
H   9.400716       23.94588       4.098293
H   10.95781       24.70625       4.782907
H   12.80321       24.79031       4.522592
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '16')] = qcdb.Molecule("""
0 1
C   20.37500       27.13100       10.18700
H   20.77800       26.39300       10.88300
H   19.30700       27.23700       10.38300
C   20.54000       26.57700       8.773000
H   20.37800       27.33600       8.009000
C   21.95300       26.03000       8.616000
H   22.05800       25.62600       7.609000
H   22.66100       26.85500       8.771000
H   22.12100       25.24800       9.363000
C   19.49000       25.48000       8.621000
H   19.56600       25.05200       7.621000
H   19.65600       24.70700       9.381000
H   18.48800       25.92200       8.763000
H   20.85217       28.10683       10.36039
--
0 1
C   16.73700       21.75300       8.985000
C   18.06300       21.93100       8.570000
C   19.04400       21.01900       8.966000
C   18.68400       19.93600       9.775000
C   17.35900       19.76800       10.19300
C   16.38200       20.67900       9.796000
H   15.33000       20.56400       10.09500
H   17.07400       18.92500       10.82100
H   19.43700       19.21300       10.07200
H   20.08100       21.14800       8.627000
H   18.32800       22.76900       7.913000
C   15.63700       22.68100       8.524000
H   15.79700       23.65100       8.994000
H   14.68200       22.28100       8.905000
H   15.59011       22.79893       7.431346
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '17')] = qcdb.Molecule("""
0 1
C   5.679000       20.88000       0.749000
H   6.221000       21.83800       0.688000
H   4.631000       21.09600       0.905000
C   6.254000       19.97400       1.854000
H   6.621000       20.53900       2.695000
H   5.514000       19.25100       2.203000
H   7.080433       19.44257       1.359442
H   5.830258       20.31081      -0.1800558
--
0 1
C   6.715000       23.76400       2.930000
C   6.218000       24.82200       2.171000
N   4.990000       25.38300       2.391000
C   4.226000       24.84700       3.389000
C   4.663000       23.78000       4.166000
C   5.918000       23.22600       3.934000
C   8.039000       23.09500       2.603000
H   8.026000       22.11200       3.087000
H   8.096000       22.92700       1.519000
H   6.274000       22.37100       4.504000
H   4.018000       23.38100       4.943000
H   3.211000       25.24700       3.575000
H   6.798000       25.19700       1.318000
H   8.936083       23.65540       2.904981
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '18')] = qcdb.Molecule("""
0 1
C   11.54100       27.68600       13.69600
H   12.45900       27.15000       13.44600
C   10.79000       27.96500       12.40600
H   10.55700       27.01400       11.92400
H   9.879000       28.51400       12.64300
H   11.44300       28.56800       11.76200
H   10.90337       27.06487       14.34224
H   11.78789       28.62476       14.21347
--
0 1
C   10.60200       24.81800       6.466000
O   10.95600       23.84000       7.103000
N   10.17800       25.94300       7.070000
C   10.09100       26.25600       8.476000
C   9.372000       27.59000       8.640000
C   11.44600       26.35600       9.091000
C   9.333000       25.25000       9.282000
H   9.874000       26.68900       6.497000
H   9.908000       28.37100       8.093000
H   8.364000       27.46400       8.233000
H   9.317000       27.84600       9.706000
H   9.807000       24.28200       9.160000
H   9.371000       25.57400       10.32900
H   8.328000       25.26700       8.900000
H   11.28800       26.57600       10.14400
H   11.97000       27.14900       8.585000
H   11.93200       25.39300       8.957000
H   10.61998       24.85900       5.366911
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '19')] = qcdb.Molecule("""
0 1
C   18.95600       23.00600       13.42400
H   19.58200       22.11000       13.49500
C   17.99700       22.76900       12.25600
H   18.56900       22.61800       11.32900
H   17.41200       21.87100       12.48100
H   17.34100       23.63600       12.15300
C   19.86100       24.16500       13.07400
H   20.34500       23.96700       12.11700
H   19.24600       25.06600       13.01700
H   20.59800       24.25000       13.87300
H   18.44867       23.19359       14.38182
--
0 1
C   16.73700       21.75300       8.985000
C   18.06300       21.93100       8.570000
C   19.04400       21.01900       8.966000
C   18.68400       19.93600       9.775000
C   17.35900       19.76800       10.19300
C   16.38200       20.67900       9.796000
H   15.33000       20.56400       10.09500
H   17.07400       18.92500       10.82100
H   19.43700       19.21300       10.07200
H   20.08100       21.14800       8.627000
H   18.32800       22.76900       7.913000
H   15.93631       22.42849       8.649437
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '20')] = qcdb.Molecule("""
0 1
C   13.79100       17.02500      -2.243000
H   12.90600       17.67000      -2.286000
C   13.29600       15.57900      -2.178000
H   12.68500       15.45200      -1.281000
H   12.69000       15.37300      -3.075000
H   14.15900       14.91000      -2.152000
C   14.52700       17.45100      -0.990000
H   13.87200       17.32300      -0.127000
H   15.43100       16.85400      -0.884000
H   14.78900       18.51600      -1.107000
H   14.41225       17.12759      -3.144954
--
0 1
C   16.51300       18.99700       4.107000
C   17.41000       17.97200       3.810000
C   17.48600       17.37200       2.527000
C   16.60600       17.86100       1.547000
C   15.70300       18.89200       1.854000
C   15.65400       19.47000       3.123000
H   14.96900       20.29200       3.327000
H   15.03200       19.27500       1.092000
H   16.61400       17.45600       0.523000
H   18.19800       16.55200       2.242000
H   18.01270       17.77884       4.709692
H   16.61088       19.36781       5.137980
units angstrom
""")

GEOS['%s-%s-dimer' % (dbse, '21')] = qcdb.Molecule("""
-1 1
O   8.976000       28.18400       5.336000
H   9.797000       28.02600       4.860000
H   8.600000       28.95300       4.860000
C   7.707000       31.02100       3.964000
O   8.101000       31.66300       2.963000
O   7.068000       29.95800       3.828000
C   8.014000       31.53300       5.387000
H   7.465000       32.46700       5.552000
H   7.660000       30.81200       6.145000
H   9.081843       31.72975       5.563073
--
0 1
C   10.62700       24.87500       4.938000
C   10.60200       24.81800       6.466000
O   10.95600       23.84000       7.103000
N   10.17800       25.94300       7.070000
C   10.09100       26.25600       8.476000
H   9.874000       26.68900       6.497000
H   10.49500       25.96800       4.694000
H   9.572130       27.21869       8.594352
H   9.533425       25.51600       9.068883
H   11.09040       26.32976       8.929603
H   11.53119       24.41376       4.514093
H   9.792144       24.23767       4.611163
units angstrom
""")

# <<< Derived Geometry Strings >>>
for rxn in HRXN:
    GEOS['%s-%s-monoA-unCP' % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(1)
    GEOS['%s-%s-monoB-unCP' % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(2)
    GEOS['%s-%s-monoA-CP'   % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(1, 2)
    GEOS['%s-%s-monoB-CP'   % (dbse, rxn)] = GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(2, 1)

#########################################################################

# <<< Supplementary Quantum Chemical Results >>>
DATA = {}

DATA['NUCLEAR REPULSION ENERGY'] = {}
DATA['NUCLEAR REPULSION ENERGY']['HSG-1-dimer'                    ] =     409.61526850
DATA['NUCLEAR REPULSION ENERGY']['HSG-1-monoA-unCP'               ] =      13.33595232
DATA['NUCLEAR REPULSION ENERGY']['HSG-1-monoB-unCP'               ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-2-dimer'                    ] =     693.84322132
DATA['NUCLEAR REPULSION ENERGY']['HSG-2-monoA-unCP'               ] =      41.89071165
DATA['NUCLEAR REPULSION ENERGY']['HSG-2-monoB-unCP'               ] =     501.75349414
DATA['NUCLEAR REPULSION ENERGY']['HSG-3-dimer'                    ] =     578.08454963
DATA['NUCLEAR REPULSION ENERGY']['HSG-3-monoA-unCP'               ] =     194.80446994
DATA['NUCLEAR REPULSION ENERGY']['HSG-3-monoB-unCP'               ] =     202.93507303
DATA['NUCLEAR REPULSION ENERGY']['HSG-4-dimer'                    ] =     536.02111700
DATA['NUCLEAR REPULSION ENERGY']['HSG-4-monoA-unCP'               ] =     336.06029689
DATA['NUCLEAR REPULSION ENERGY']['HSG-4-monoB-unCP'               ] =      40.09418196
DATA['NUCLEAR REPULSION ENERGY']['HSG-5-dimer'                    ] =     641.07583890
DATA['NUCLEAR REPULSION ENERGY']['HSG-5-monoA-unCP'               ] =     440.48402439
DATA['NUCLEAR REPULSION ENERGY']['HSG-5-monoB-unCP'               ] =      39.79355972
DATA['NUCLEAR REPULSION ENERGY']['HSG-6-dimer'                    ] =     440.32913479
DATA['NUCLEAR REPULSION ENERGY']['HSG-6-monoA-unCP'               ] =     112.25425669
DATA['NUCLEAR REPULSION ENERGY']['HSG-6-monoB-unCP'               ] =     202.38032057
DATA['NUCLEAR REPULSION ENERGY']['HSG-7-dimer'                    ] =     825.37483209
DATA['NUCLEAR REPULSION ENERGY']['HSG-7-monoA-unCP'               ] =     302.68630925
DATA['NUCLEAR REPULSION ENERGY']['HSG-7-monoB-unCP'               ] =     256.12378323
DATA['NUCLEAR REPULSION ENERGY']['HSG-8-dimer'                    ] =     721.36437027
DATA['NUCLEAR REPULSION ENERGY']['HSG-8-monoA-unCP'               ] =     298.54657988
DATA['NUCLEAR REPULSION ENERGY']['HSG-8-monoB-unCP'               ] =     204.68604075
DATA['NUCLEAR REPULSION ENERGY']['HSG-9-dimer'                    ] =     699.77856295
DATA['NUCLEAR REPULSION ENERGY']['HSG-9-monoA-unCP'               ] =     298.58992071
DATA['NUCLEAR REPULSION ENERGY']['HSG-9-monoB-unCP'               ] =     179.49546339
DATA['NUCLEAR REPULSION ENERGY']['HSG-10-dimer'                   ] =     538.20524151
DATA['NUCLEAR REPULSION ENERGY']['HSG-10-monoA-unCP'              ] =     179.66798724
DATA['NUCLEAR REPULSION ENERGY']['HSG-10-monoB-unCP'              ] =     180.34079666
DATA['NUCLEAR REPULSION ENERGY']['HSG-11-dimer'                   ] =     697.51311416
DATA['NUCLEAR REPULSION ENERGY']['HSG-11-monoA-unCP'              ] =     296.89990217
DATA['NUCLEAR REPULSION ENERGY']['HSG-11-monoB-unCP'              ] =     180.34079666
DATA['NUCLEAR REPULSION ENERGY']['HSG-12-dimer'                   ] =     553.87245309
DATA['NUCLEAR REPULSION ENERGY']['HSG-12-monoA-unCP'              ] =      82.71734142
DATA['NUCLEAR REPULSION ENERGY']['HSG-12-monoB-unCP'              ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-13-dimer'                   ] =     492.23285254
DATA['NUCLEAR REPULSION ENERGY']['HSG-13-monoA-unCP'              ] =     134.28280330
DATA['NUCLEAR REPULSION ENERGY']['HSG-13-monoB-unCP'              ] =     202.38032057
DATA['NUCLEAR REPULSION ENERGY']['HSG-14-dimer'                   ] =     670.02074299
DATA['NUCLEAR REPULSION ENERGY']['HSG-14-monoA-unCP'              ] =     134.10189365
DATA['NUCLEAR REPULSION ENERGY']['HSG-14-monoB-unCP'              ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-15-dimer'                   ] =     242.88545739
DATA['NUCLEAR REPULSION ENERGY']['HSG-15-monoA-unCP'              ] =      42.22202660
DATA['NUCLEAR REPULSION ENERGY']['HSG-15-monoB-unCP'              ] =     131.69625678
DATA['NUCLEAR REPULSION ENERGY']['HSG-16-dimer'                   ] =     551.59382982
DATA['NUCLEAR REPULSION ENERGY']['HSG-16-monoA-unCP'              ] =     135.70381177
DATA['NUCLEAR REPULSION ENERGY']['HSG-16-monoB-unCP'              ] =     269.04078448
DATA['NUCLEAR REPULSION ENERGY']['HSG-17-dimer'                   ] =     421.73710621
DATA['NUCLEAR REPULSION ENERGY']['HSG-17-monoA-unCP'              ] =      42.20972067
DATA['NUCLEAR REPULSION ENERGY']['HSG-17-monoB-unCP'              ] =     270.70970086
DATA['NUCLEAR REPULSION ENERGY']['HSG-18-dimer'                   ] =     474.74808030
DATA['NUCLEAR REPULSION ENERGY']['HSG-18-monoA-unCP'              ] =      42.43370398
DATA['NUCLEAR REPULSION ENERGY']['HSG-18-monoB-unCP'              ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-19-dimer'                   ] =     410.08888873
DATA['NUCLEAR REPULSION ENERGY']['HSG-19-monoA-unCP'              ] =      83.35857717
DATA['NUCLEAR REPULSION ENERGY']['HSG-19-monoB-unCP'              ] =     202.93507303
DATA['NUCLEAR REPULSION ENERGY']['HSG-20-dimer'                   ] =     392.20505391
DATA['NUCLEAR REPULSION ENERGY']['HSG-20-monoA-unCP'              ] =      82.90559609
DATA['NUCLEAR REPULSION ENERGY']['HSG-20-monoB-unCP'              ] =     202.38032057
DATA['NUCLEAR REPULSION ENERGY']['HSG-21-dimer'                   ] =     495.71409832
DATA['NUCLEAR REPULSION ENERGY']['HSG-21-monoA-unCP'              ] =     169.11593456
DATA['NUCLEAR REPULSION ENERGY']['HSG-21-monoB-unCP'              ] =     179.49546339
DATA['NUCLEAR REPULSION ENERGY']['HSG-1-monoA-CP'                 ] =      13.33595232
DATA['NUCLEAR REPULSION ENERGY']['HSG-1-monoB-CP'                 ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-2-monoA-CP'                 ] =      41.89071165
DATA['NUCLEAR REPULSION ENERGY']['HSG-2-monoB-CP'                 ] =     501.75349414
DATA['NUCLEAR REPULSION ENERGY']['HSG-3-monoA-CP'                 ] =     194.80446994
DATA['NUCLEAR REPULSION ENERGY']['HSG-3-monoB-CP'                 ] =     202.93507303
DATA['NUCLEAR REPULSION ENERGY']['HSG-4-monoA-CP'                 ] =     336.06029689
DATA['NUCLEAR REPULSION ENERGY']['HSG-4-monoB-CP'                 ] =      40.09418196
DATA['NUCLEAR REPULSION ENERGY']['HSG-5-monoA-CP'                 ] =     440.48402439
DATA['NUCLEAR REPULSION ENERGY']['HSG-5-monoB-CP'                 ] =      39.79355972
DATA['NUCLEAR REPULSION ENERGY']['HSG-6-monoA-CP'                 ] =     112.25425669
DATA['NUCLEAR REPULSION ENERGY']['HSG-6-monoB-CP'                 ] =     202.38032057
DATA['NUCLEAR REPULSION ENERGY']['HSG-7-monoA-CP'                 ] =     302.68630925
DATA['NUCLEAR REPULSION ENERGY']['HSG-7-monoB-CP'                 ] =     256.12378323
DATA['NUCLEAR REPULSION ENERGY']['HSG-8-monoA-CP'                 ] =     298.54657988
DATA['NUCLEAR REPULSION ENERGY']['HSG-8-monoB-CP'                 ] =     204.68604075
DATA['NUCLEAR REPULSION ENERGY']['HSG-9-monoA-CP'                 ] =     298.58992071
DATA['NUCLEAR REPULSION ENERGY']['HSG-9-monoB-CP'                 ] =     179.49546339
DATA['NUCLEAR REPULSION ENERGY']['HSG-10-monoA-CP'                ] =     179.66798724
DATA['NUCLEAR REPULSION ENERGY']['HSG-10-monoB-CP'                ] =     180.34079666
DATA['NUCLEAR REPULSION ENERGY']['HSG-11-monoA-CP'                ] =     296.89990217
DATA['NUCLEAR REPULSION ENERGY']['HSG-11-monoB-CP'                ] =     180.34079666
DATA['NUCLEAR REPULSION ENERGY']['HSG-12-monoA-CP'                ] =      82.71734142
DATA['NUCLEAR REPULSION ENERGY']['HSG-12-monoB-CP'                ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-13-monoA-CP'                ] =     134.28280330
DATA['NUCLEAR REPULSION ENERGY']['HSG-13-monoB-CP'                ] =     202.38032057
DATA['NUCLEAR REPULSION ENERGY']['HSG-14-monoA-CP'                ] =     134.10189365
DATA['NUCLEAR REPULSION ENERGY']['HSG-14-monoB-CP'                ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-15-monoA-CP'                ] =      42.22202660
DATA['NUCLEAR REPULSION ENERGY']['HSG-15-monoB-CP'                ] =     131.69625678
DATA['NUCLEAR REPULSION ENERGY']['HSG-16-monoA-CP'                ] =     135.70381177
DATA['NUCLEAR REPULSION ENERGY']['HSG-16-monoB-CP'                ] =     269.04078448
DATA['NUCLEAR REPULSION ENERGY']['HSG-17-monoA-CP'                ] =      42.20972067
DATA['NUCLEAR REPULSION ENERGY']['HSG-17-monoB-CP'                ] =     270.70970086
DATA['NUCLEAR REPULSION ENERGY']['HSG-18-monoA-CP'                ] =      42.43370398
DATA['NUCLEAR REPULSION ENERGY']['HSG-18-monoB-CP'                ] =     332.12261009
DATA['NUCLEAR REPULSION ENERGY']['HSG-19-monoA-CP'                ] =      83.35857717
DATA['NUCLEAR REPULSION ENERGY']['HSG-19-monoB-CP'                ] =     202.93507303
DATA['NUCLEAR REPULSION ENERGY']['HSG-20-monoA-CP'                ] =      82.90559609
DATA['NUCLEAR REPULSION ENERGY']['HSG-20-monoB-CP'                ] =     202.38032057
DATA['NUCLEAR REPULSION ENERGY']['HSG-21-monoA-CP'                ] =     169.11593456
DATA['NUCLEAR REPULSION ENERGY']['HSG-21-monoB-CP'                ] =     179.49546339