/usr/share/polymake/demo/apps_polytope.ipynb is in polymake-common 3.2r2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | {
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Tutorial on Polytopes\n",
"\n",
"**This tutorial is also available as a {{ :tutorial:apps_polytope.ipynb |jupyter notebook}} for polymake 3.1.**\n",
"\n",
"A *polytope* is the convex hull of finitely many points in some Euclidean space. Equivalently, a polytope is the bounded intersection of finitely many affine halfspaces. `polymake` can deal with polytopes in both representations and provides numerous tools for analysis.\n",
"\n",
"\n",
"\n",
"This tutorial first shows basic ways of defining a polytope from scratch. For larger input (e.g. from a file generated by some other program) have a look at our HowTo on [loading data](data) in `polymake`.\n",
"\n",
"\n",
"\n",
"The second part demonstrates some of the tool `polymake` provides for handling polytopes by examining a small example. For a complete list of properties of polytopes and functions that `polymake` provides, see the [polytope documentation](reldocs>3.0/polytope.html).\n",
"\n",
"## Constructing a polytope from scratch\n",
"\n",
"### V-Description\n",
"\n",
"To define a polytope as the convex hull of finitely many points, you can pass a matrix of coordinates to the constructor. Since `polymake` uses [homogeneous coordinates](tutorial/coordinates), you need to set the additional coordinate x<sub>0</sub> to 1.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$p = new Polytope(POINTS=>[[1,-1,-1],[1,1,-1],[1,-1,1],[1,1,1],[1,0,0]]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"The `POINTS` can be any set of coordinates, they are not required to be irredundant nor vertices of their convex hull. To compute the actual vertices of our polytope, we do this:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 -1 -1\n",
"1 1 -1\n",
"1 -1 1\n",
"1 1 1\n",
"\n"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $p->VERTICES;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"You can also add a lineality space via the input property `INPUT_LINEALITY`.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$p2 = new Polytope(POINTS=>[[1,-1,-1],[1,1,-1],[1,-1,1],[1,1,1],[1,0,0]],INPUT_LINEALITY=>[[0,1,0]]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"To take a look at what that thing looks like, you can use the `VISUAL` method:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$p2->VISUAL;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"See [here](visual_tutorial#application polytope) for details on visualizing polytopes.\n",
"\n",
" If you are sure that all the points really are *extreme points* (vertices) and your description of the lineality space is complete, you can define the polytope via the properties `VERTICES` and `LINEALITY_SPACE` instead of `POINTS` and `INPUT_LINEALITY`. This way, you can avoid unnecessary redundancy checks.\n",
"\n",
"\n",
"\n",
" The input properties `POINTS` / `INPUT_LINEALITY` may not be mixed with the properties `VERTICES` / `LINEALITY_SPACE`. Furthermore, the `LINEALITY_SPACE` **must be specified** as soon as the property `VERTICES` is used:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$p3 = new Polytope<Rational>(VERTICES=>[[1,-1,-1],[1,1,-1],[1,-1,1],[1,1,1]], LINEALITY_SPACE=>[]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"### H-Description\n",
"\n",
"It is also possible to define a polytope as an intersection of finitely many halfspaces, i.e., a matrix of inequalities.\n",
"\n",
"\n",
"\n",
"An inequality a<sub>0</sub> + a<sub>1</sub> x<sub>1</sub> + ... + a<sub>d</sub> x<sub>d</sub> >= 0 is encoded as a row vector (a<sub>0</sub>,a<sub>1</sub>,...,a<sub>d</sub>), see also [Coordinates for Polyhedra](tutorial/coordinates). Here is an example:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$p4 = new Polytope(INEQUALITIES=>[[1,1,0],[1,0,1],[1,-1,0],[1,0,-1],[17,1,1]]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"To display the inequalities in a nice way, use the `print_constraints` method.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0: x1 >= -1\n",
"1: x2 >= -1\n",
"2: -x1 >= -1\n",
"3: -x2 >= -1\n",
"4: x1 + x2 >= -17\n",
"\n"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print_constraints($p4->INEQUALITIES);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"The last inequality means 17+x<sub>1</sub>+x<sub>2</sub> <html>≥</html> 0, hence it does not represent a facet of the polytope. If you want to take a look at the acutal facets, do this:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 1 0\n",
"1 0 1\n",
"1 -1 0\n",
"1 0 -1\n",
"\n"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $p4->FACETS;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"If your polytope lies in an affine subspace then you can specify its equations via the input property `EQUATIONS`.\n",
"\n",
"\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$p5 = new Polytope(INEQUALITIES=>[[1,1,0,0],[1,0,1,0],[1,-1,0,0],[1,0,-1,0]],EQUATIONS=>[[0,0,0,1],[0,0,0,2]]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Again, if you are sure that all your inequalities are facets, you can use the properties `FACETS` and `AFFINE_HULL` instead. Note that this pair of properties is dual to the pair `VERTICES` / `LINEALITY_SPACE` described above.\n",
"\n",
"\n",
"\n",
"\n",
"## Convex Hulls\n",
"\n",
"Of course, `polymake` can convert the V-description of a polytope to its H-description and vice versa. Depending on the individual configuration polymake chooses one of the several convex hull computing algorithms that have a `polymake` interface. Available algorithms are double description ([cdd](http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html) of [ppl](http://bugseng.com/products/ppl)), reverse search ([lrs](http://cgm.cs.mcgill.ca/~avis/C/lrs.html)), and beneath beyond (internal). It is also possible to specify explicitly which method to use by using the `prefer` command:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prefer \"lrs\"; # use lrs until revoked by another 'prefer' or 'reset_preference \"lrs\"'\n",
"$p = new Polytope(POINTS=>[[1,1],[1,0]]);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"polymake: used package lrs\n",
" Implementation of the reverse search algorithm of Avis and Fukuda.\n",
" Copyright by David Avis.\n",
" http://cgm.cs.mcgill.ca/~avis/lrs.html\n",
" \n"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $p->FACETS;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
" 1 -1\n",
" 0 1\n",
"\n",
"\n",
"\n",
"## A Neighborly Cubical Polytope\n",
"\n",
"`polymake` provides a variety of standard polytope constructions and transformations. This example construction introduces some of them. Check out the [documentation](/release_docs/3.0/polytope) for a comprehensive list.\n",
"\n",
"The goal is to construct a 4-dimensional cubical polytope which has the same graph as the 5-dimensional cube. It is an example of a *neighborly cubical* polytope as constructed in\n",
"\n",
"\n",
"* Joswig & Ziegler: Neighborly cubical polytopes. Discrete Comput. Geom. 24 (2000), no. 2-3, 325--344, [DOI 10.1007/s004540010039](http://www.springerlink.com/content/m73pqv6kr80rw4b1/)\n",
"\n",
"This is the entire construction in a few lines of `polymake` code:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"$c1 = cube(2);\n",
"$c2 = cube(2,2);\n",
"$p1x2 = product($c1,$c2);\n",
"$p2x1 = product($c2,$c1);\n",
"$nc = conv($p1x2,$p2x1);"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"Let us examine more closely what this is about. First we constructed a square `$c1` via calling the function `cube`. The only parameter `2` is the dimension of the cube to be constructed. It is not obvious how the coordinates are chosen; so let us check.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 -1 -1\n",
"1 1 -1\n",
"1 -1 1\n",
"1 1 1\n",
"\n"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $c1->VERTICES;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"The four vertices are listed line by line in homogeneous coordinates, where the homogenizing coordinate is the leading one. As shown the vertices correspond to the four choices of `+/-1` in two positions. So the area of this square equals four, which is verified as follows:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"4\n",
"\n"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $c1->VOLUME;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Here the volume is the Euclidean volume of the ambient space. Hence the volume of a polytope which is not full-dimensional is always zero.\n",
"\n",
"\n",
"\n",
"The second polytope `$c2` constructed is also a square. However, the optional second parameter says that `+/-2`-coordinates are to be used rather than `+/-1` as in the default case. The optional parameter is also allowed to be `0`. In this case a cube with `0/1`-coordinates is returned. You can access the documentation of functions by typing their name in the `polymake` shell and then hitting F1.\n",
"\n",
"\n",
"\n",
"The third command constructs the polytope `$p1x2` as the cartesian product of the two squares. Clearly, this is a four-dimensional polytope which is combinatorially (even affinely) equivalent to a cube, but not congruent. This is easy to verify:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1\n"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print isomorphic($p1x2,cube(4));"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0\n",
"\n"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print congruent($p1x2,cube(4));"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Both return values are boolean, represented by the numbers `1` and `0`, respectively. This questions are decided via a reduction to a graph isomorphism problem which in turn is solved via `polymake`'s interface to `nauty`.\n",
"\n",
"\n",
"\n",
"The polytope `$p2x1` does not differ that much from the previous. In fact, the construction is twice the same, except for the ordering of the factors in the call of the function `product`. Let us compare the first vertices of the two products. One can see how the coordinates are induced by the ordering of the factors.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 -1 -1 -2 -2\n"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $p1x2->VERTICES->[0];"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1 -2 -2 -1 -1\n",
"\n"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $p2x1->VERTICES->[0];"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"In fact, one of these two products is obtained from the other by exchanging coordinate directions. Thats is to say, they are congruent but distinct as subsets of Euclidean 4-space. This is why taking their joint convex hull yields something interesting. Let us explore what kind of polytope we got.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 0\n",
"\n"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $nc->SIMPLE, \" \", $nc->SIMPLICIAL;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"This says the polytope is neither simple nor simplicial. A good idea then is to look at the f-vector. Beware, however, this usually requires to build the entire face lattice of the polytope, which is extremely costly. Therefore this is computationally infeasible for most high-dimensional polytopes.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"32 80 72 24\n",
"\n"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $nc->F_VECTOR;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"This is a first hint that our initial claim is indeed valid. The polytope constructed has 32 vertices and 80 = 32*5/2 edges, as many as the 5-dimensional cube:\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"32 80 80 40 10\n",
"\n"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print cube(5)->F_VECTOR;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"What is left is to check whether the vertex-edge graphs of the two polytopes actually are the same, and if all proper faces are combinatorially equivalent to cubes.\n",
"\n",
" \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1\n"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print isomorphic($nc->GRAPH->ADJACENCY,cube(5)->GRAPH->ADJACENCY);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"1\n",
"\n"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"print $nc->CUBICAL;"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"See the [tutorial on graphs](apps_graph) for more on that subject.\n",
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "polymake",
"language": "polymake",
"name": "polymake"
},
"language_info": {
"codemirror_mode": "perl",
"file_extension": ".pm",
"mimetype": "text/x-polymake",
"name": "polymake"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|