/usr/share/pcb/m4/misc.inc is in pcb-common 1:4.0.2-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 | #
# COPYRIGHT
#
# PCB, interactive printed circuit board design
# Copyright (C) 1994,1995,1996 Thomas Nau
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Contact addresses for paper mail and Email:
# Thomas Nau, Schlehenweg 15, 88471 Baustetten, Germany
# Thomas.Nau@rz.uni-ulm.de
#
#
# misc packages
#
# -------------------------------------------------------------------
# the definition of a SD (ZIP) package
# based on 'old style format' by Olaf Kaluza (olaf@criseis.ruhr.de)
#
# For example, see http://focus.ti.com/lit/ml/mczi002/mczi002.pdf
# for the Texas Instruments SDZ (R-PZIP-T16) Ceramic Zig Zag package
# That drawing shows the pin width varying from 0.45mm to 0.65mm
# (18 to 26 mils) and the width in the other dimension from .23mm
# to .35mm. The cross section is rectangular. This gives a diagonal
# from 0.505mm (19.9 mil) to 0.738mm (29 mil).
#
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: number of pins
#
define(`PKG_SD',
`define(`MAXY', `eval(`$4' / 2 * 100 + 50)')
Element(0x00 "$1" "`$2'" "$3" 275 50 3 100 0x00)
(
forloop(`i', 1, eval($4 / 2),
`PIN(50, eval(100*(i-1)+50), 60, 35, eval(2*i-1))
PIN(150, eval(100*(i-1)+100), 60, 35, eval(2*i))
')
ElementLine(0 0 0 MAXY 20)
ElementLine(0 MAXY 200 MAXY 20)
ElementLine(200 MAXY 200 0 20)
ElementLine(200 0 0 0 20)
ElementLine(100 0 100 100 10)
ElementLine(100 100 0 100 10)
Mark(50 50)
)')
# -------------------------------------------------------------------
# the definition of a plastic power package vertical
# for TO220 (2-7pins), TO251, TOP3, MULTIWATT(8-15pins)
# based on 'old style format' by Olaf Kaluza (olaf@criseis.ruhr.de)
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: pin count
# $5: pin spacing
# $6: body length (dimension parallel to rows of pins)
# $7: body width (dimension perpendicular to rows of pins)
# $8: pin/tab spacing
# $9: pad size
# $10: drill size
# $11: pin row spacing
define(`GENERIC_PL_POWER',
`define(`pin1X', `eval((`$6' - (`$4' - 1) * `$5')/2)')
Element(0x00 "$1" "`$2'" "$3" eval(`$6'+60) 50 3 100 0x00)
(
forloop(`i', 1, `$4',
`PIN(eval(pin1X + (i-1)*`$5'), ifelse(eval(i % 2 == 0), 0, eval(`$8'+`$11'), `$8'), `$9', `$10', i)
')
ElementLine(0 0 0 `$7' 20)
ElementLine(0 `$7' `$6' `$7' 20)
ElementLine(`$6' `$7' `$6' 0 20)
ElementLine(`$6' 0 0 0 20)
ElementLine(0 50 `$6' 50 10)
ElementLine(eval(`$6'/2 - 75) 0 eval(`$6'/2 - 75) 50 10)
ElementLine(eval(`$6'/2 + 75) 0 eval(`$6'/2 + 75) 50 10)
Mark(pin1X eval(`$7'+`$10'))
)')
# -------------------------------------------------------------------
# the definition of a resistor (0.25W) package
# $1: canonical name
# $2: name on PCB
# $3: value
define(`PKG_R025',
`Element(0x00 "$1" "`$2'" "$3" 120 30 0 100 0x00)
(
PIN(0, 50, 68, 38, 1)
PIN(400, 50, 68, 38, 2)
ElementLine(100 0 300 0 20)
ElementLine(300 0 300 100 20)
ElementLine(300 100 100 100 20)
ElementLine(100 100 100 0 20)
ElementLine(0 50 100 50 20)
ElementLine(300 50 400 50 20)
Mark(0 50)
)')
# -------------------------------------------------------------------
# the definition of a SIL package without a common pin
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: number of pins
define(`PKG_SIL',
`define(`MAXY', `eval(`$4' * 100 -50)')
Element(0x00 "$1" "`$2'" "$3" 160 10 3 100 0x00)
(
forloop(`i', 1, $4,
`PIN(50, eval(i * 100 -50), 60, 28, i)
')
ElementLine( 0 50 0 MAXY 20)
ElementLine(100 50 100 MAXY 20)
ElementArc(50 50 50 50 180 180 20)
ElementArc(50 MAXY 50 50 0 180 20)
forloop(`i', 1, eval($4 - 1),
`ElementLine(0 eval(i * 200) 100 eval(i * 200) 10)
')
Mark(50 50)
)')
# -------------------------------------------------------------------
# the definition of a SIL package with a common pin
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: number of pins
define(`PKG_CSIL',
`define(`MAXY', `eval(`$4' * 100 -50)')
Element(0x00 "$1" "`$2'" "$3" 160 10 3 100 0x00)
(
forloop(`i', 1, $4,
`PIN(50, eval(i * 100 -50), 60, 28, i)
')
ElementLine( 0 50 0 MAXY 20)
ElementLine(100 50 100 MAXY 20)
ElementLine( 0 100 100 100 10)
ElementArc(50 50 50 50 180 180 20)
ElementArc(50 MAXY 50 50 0 180 20)
Mark(50 50)
)')
# -------------------------------------------------------------------
# a QFP-132 pin flat pack
#
# $1: canonical name
# $2: name on PCB
# $3: value
#
# based on mail by Volker Bosch (bosch@iema.e-technik.uni-stuttgart.de)
define(`PKG_QFP132',
`Element(0x00 "$1" "`$2'" "$3" 250 200 0 150 0x00)
(
forloop(`i', 1, 17,
`define(`XPOS', eval(625 -i*25))'
`PAD(XPOS, 40, XPOS, 90, 15, i)
')
forloop(`i', 1, 16,
`define(`XPOS', eval(1025 -i*25))'
`PAD(XPOS, 40, XPOS, 90, 15, eval(i+116))
')
forloop(`i', 1, 33,
`define(`YPOS', eval(175 +i*25))'
`PAD(30, YPOS, 80, YPOS, 15, i)
')
forloop(`i', 1, 33,
`define(`XPOS', eval(175 +i*25))'
`PAD(XPOS, 1160, XPOS, 1110, 15, eval(i+50))
')
forloop(`i', 1, 33,
`define(`YPOS', eval(1025 -i*25))'
`PAD(1120, YPOS, 1170, YPOS, 15, i)
')
# Markierung pin 1
ElementArc(600 150 10 10 0 360 5)
# Nase links oben (PIN 17/18)
ElementLine( 125 175 75 150 20)
ElementLine( 75 150 75 125 20)
ElementLine( 75 125 125 75 20)
ElementLine( 125 75 150 75 20)
ElementLine( 150 75 175 125 20)
# Verbindungsline zur Ecke rechts oben
ElementLine( 175 125 1025 125 20)
# Nase rechts oben (PIN 116/117)
ElementLine(1025 125 1050 75 20)
ElementLine(1050 75 1075 75 20)
ElementLine(1075 75 1125 125 20)
ElementLine(1125 125 1125 150 20)
ElementLine(1125 150 1075 175 20)
# Verbindungsline zur Ecke rechts unten
ElementLine(1075 175 1075 1025 20)
# Nase rechts unten (PIN 83/84)
ElementLine(1075 1025 1125 1050 20)
ElementLine(1125 1050 1125 1075 20)
ElementLine(1125 1075 1075 1125 20)
ElementLine(1075 1125 1050 1125 20)
ElementLine(1050 1125 1025 1075 20)
# Verbindungsline zur Ecke links unten
ElementLine(1025 1075 175 1075 20)
# Nase links unten (PIN 50/51)
ElementLine( 175 1075 150 1125 20)
ElementLine( 150 1125 125 1125 20)
ElementLine( 125 1125 75 1075 20)
ElementLine( 75 1075 75 1050 20)
ElementLine( 75 1050 125 1025 20)
# Verbindungsline zur Ecke links oben
ElementLine( 125 1025 125 175 20)
# Markierung so anordnen, dass Pinanchse im 25-MIL-Raster zu liegen kommt
Mark(200 200)
)')
# -------------------------------------------------------------------
# LED
# Pin 1 is -, 2 is +
#
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: diameter
#
# based on mail by Volker Bosch (bosch@iema.e-technik.uni-stuttgart.de)
define(`PKG_LED',
`define(`RADIUS1', `eval(`$4' /2)')
define(`RADIUS2', `eval(`$4' /2 +20)')
Element(0x00 "$1" "`$2'" "$3" 100 70 0 100 0x00)
(
# typical LED is 0.5 mm or 0.020" square pin. See for example
# http://www.lumex.com and part number SSL-LX3054LGD.
# 0.020" square is 0.0288" diagonal. A number 57 drill is
# 0.043" which should be enough. a 65 mil pad gives 11 mils
# of annular ring.
PIN(-50, 0, 65, 43, 1)
PIN(50, 0, 65, 43, 2)
ifelse( eval(RADIUS1 - 10 > 85), 1,
ElementArc(0 0 RADIUS1 RADIUS1 0 360 10)
,
ElementArc(0 0 RADIUS1 RADIUS1 45 90 10)
ElementArc(0 0 RADIUS1 RADIUS1 225 90 10)
)
ifelse( eval(RADIUS2 - 10 > 85), 1,
ElementArc(0 0 RADIUS2 RADIUS2 0 360 10)
,
ElementArc(0 0 RADIUS2 RADIUS2 45 90 10)
ElementArc(0 0 RADIUS2 RADIUS2 225 90 10)
)
Mark(0 0)
)')
# -------------------------------------------------------------------
# diodes
# Pin 1 is K, 2 is A
#
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: distance in mil
#
define(`PKG_DIODE_LAY',
`define(`X1', `eval(`$4' /3)')
define(`X2', `eval(`$4' -X1)')
define(`Y', `eval(`$4' /2)')
define(`DELTA', `eval(X1 /2)')
define(`PINSIZE', `ifelse(eval($4 >= 500), 1, 80, 50)')
define(`DRILLSIZE', `ifelse(eval($4 >= 500), 1, 50, 30)')
Element(0x00 "$1" "`$2'" "$3" eval(X2+20) eval(Y-DELTA) 0 100 0x00)
(
PIN(0, Y, PINSIZE, DRILLSIZE, 1)
PIN($4, Y, PINSIZE, DRILLSIZE, 2)
ElementLine(0 Y X1 Y 10)
ElementLine(X2 Y $4 Y 10)
ElementLine(X1 Y X2 eval(Y-DELTA) 10)
ElementLine(X2 eval(Y-DELTA) X2 eval(Y+DELTA) 10)
ElementLine(X2 eval(Y+DELTA) X1 Y 10)
ElementLine(X1 eval(Y-DELTA) X1 eval(Y+DELTA) 10)
Mark(0 Y)
)')
# -------------------------------------------------------------------
# the definition of a general axial package
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: distance in mil
# $5: 1 for polarized, 0 for non polarized
define(`PKG_AXIAL_LAY',
`define(`X1', `eval(`$4' /4)')
define(`X2', `eval(`$4' -X1)')
define(`Y1', `eval(X1 /3)')
define(`Y2', `eval(Y1 *2)')
define(`PINSIZE', `ifelse(eval($4 >= 600), 1, 80, 55)')
define(`DRILLSIZE', `ifelse(eval($4 >= 600), 1, 50, 30)')
define(`YPT', `eval(Y1 - PINSIZE/2 - 10)')
define(`YPC', `eval(YPT - 20)')
define(`YPB', `eval(YPT - 40)')
Element(0x00 "$1" "`$2'" "$3" eval(X2+20) eval(Y2+20) 0 100 0x00)
(
PIN(0, Y1, PINSIZE, DRILLSIZE, 1)
PIN($4, Y1, PINSIZE, DRILLSIZE, 2)
ElementLine(0 Y1 X1 Y1 10)
ElementLine(X2 Y1 $4 Y1 10)
ElementLine(X1 0 X2 0 10)
ElementLine(X2 0 X2 Y2 10)
ElementLine(X2 Y2 X1 Y2 10)
ElementLine(X1 Y2 X1 0 10)
ifelse(1, $5,
ElementLine(0 YPB 0 YPT 10)
ElementLine(-20 YPC 20 YPC 10)
ElementLine(`eval($4 - 20)' YPC `eval($4 + 20)' YPC 10)
)
# ElementArc(X1 Y 50 50 270 180 10)
# ElementArc(X2 Y 50 50 90 180 10)
Mark(0 Y1)
)')
# -------------------------------------------------------------------
# the definition of a more general axial package
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: pad drill diameter [1/100 mm]
# $5: pad diameter [1/100 mm]
# $6: pad clearance diameter [1/100 mm]
# $7: pad center to center [1/100 mm]
# $8: courtyard in direction perpendicular to axis of part [1/100 mm]
# $9: courtyard in direction parallel to axis of part [1/100 mm]
# $10: 1 for polarized, 0 for non polarized
define(`PKG_AXIAL_H_MM100',
# grab the input values and convert to 1/100 mil
`define(`PX', `eval( ($7 * 10000) / 254 / 2)')
define(`DRILLSIZE', `eval( ($4 * 10000) / 254)')
define(`PINSIZE', `eval( ($5 * 10000) / 254)')
define(`PINANTI', `eval( ($6 * 10000) / 254)')
define(`PINCLEAR', `eval((PINANTI - PINSIZE)/2)')
define(`SILKW', `800')
define(`SILKX', `eval(($8 * 10000) / 254 / 2 )')
define(`SILKXC',`eval(-SILKX - 2*SILKW)')
define(`SILKY', `eval(($9 * 10000) / 254 / 2)')
# element_flags, description, pcb-name, value, mark_x, mark_y,
# text_x, text_y, text_direction, text_scale, text_flags
Element[0x00000000 "$1" "`$2'" "$3" 0 0 -SILKX -SILKY 0 100 ""]
(
# Pin[x, y, thickness, clearance, mask, drilling hole, name,
# number, flags
Pin[ -PX 0 PINSIZE PINCLEAR PINSIZE DRILLSIZE "1" "1" "square"]
Pin[ PX 0 PINSIZE PINCLEAR PINSIZE DRILLSIZE "2" "2" 0x0]
# Silk screen around package
ElementLine[ SILKX SILKY SILKX -SILKY SILKW]
ElementLine[ SILKX -SILKY -SILKX -SILKY SILKW]
ElementLine[-SILKX -SILKY -SILKX SILKY SILKW]
ElementLine[-SILKX SILKY SILKX SILKY SILKW]
ifelse( 1, $10,
ElementLine[ SILKXC SILKY SILKXC -SILKY SILKW]
)
)')
# -------------------------------------------------------------------
#
# general purpose crystal standing, 2 or 3 pins
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: pin spacing in mil
# $5: length of component in mil
# $6: width of component in mil
# $7: diametr of pad in mil
# $8: diametr of drill in mil
# $9: number of pins
#
define(`PKG_CRYSTAL_V',
`define(`spacing', `$4')
define(`sizX', `$5')
define(`sizY', `$6')
define(`pad', `$7')
define(`drill', `$8')
define(`centerY', `eval(sizY / 2)')
define(`pinX', `eval((sizX - spacing * (`$9'-1)) /2)')
Element(0x00 "$1" "$2" "$3" 0 eval(0 - 60) 0 100 0x00)
(
PIN(pinX, centerY, pad, drill, 1)
PIN(eval(pinX + spacing), centerY, pad, drill, 2)
ifelse(eval(`$9' == 3), 1,
PIN(eval(pinX + 2 * spacing), centerY, pad, drill, 3))
ElementLine(centerY 0 eval(sizX-centerY) 0 20)
ElementArc(eval(sizX-centerY) centerY centerY centerY 90 180 20)
ElementLine(eval(sizX-centerY) sizY centerY sizY 20)
ElementArc(centerY centerY centerY centerY 270 180 20)
Mark(pinX centerY)
)')
#
#
# general purpose crystal laying, 2 or 3 pins
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: pin spacing in mil
# $5: length of component in mil
# $6: height of component in mil
# $7: diametr of pad in mil
# $8: diametr of drill in mil
# $9: number of pins
#
define(`PKG_CRYSTAL_H',
`define(`base', `$4')
define(`sizX', `$5')
define(`sizY', `$6')
define(`pad', `$7')
define(`drill', `$8')
define(`pinX', `eval((sizX - base * (`$9'-1)) /2)')
define(`pinY', `ifelse(eval(sizX > 500),1,eval(sizY+200),eval(sizY+100))')
define(`maxY', `eval(sizY + offset)')
Element(0x00 "$1" "$2" "$3" 0 eval(0 - 60) 0 100 0x00)
(
PIN(pinX, pinY, pad, drill, 1)
PIN(eval(pinX + base), pinY, pad, drill, 2)
ifelse(eval(`$9' == 3), 1,
PIN(eval(pinX + 2 * base), pinY, pad, drill, 3))
ElementLine(0 0 sizX 0 20)
ElementLine(sizX 0 sizX sizY 20)
ElementLine(sizX sizY 0 sizY 20)
ElementLine(0 sizY 0 0 20)
Mark(pinX pinY)
)')
# a crystal package for backward compatibility
#
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: package width in MIL
#
define(`PKG_CRYSTAL',`PKG_CRYSTAL_V(`$1',`$2',`$3',`eval($4-100)',`$4',`100',`60',`28',`2')')
# -------------------------------------------------------------------
# a can oscillator package
#
# $1: canonical name
# $2: name on PCB
# $3: value
#
define(`PKG_OSC',
`Element(0x00 "$1" "`$2'" "$3" 270 300 3 100 0x00)
(
Pin(100 100 50 28 "NC" 0x01)
Pin(100 700 50 28 "GND" 0x01)
Pin(400 700 50 28 "CLK" 0x01)
Pin(400 100 50 28 "VCC" 0x01)
ElementLine(5 5 400 5 10)
ElementArc(400 100 95 95 180 90 10)
ElementLine(495 100 495 700 10)
ElementArc(400 700 95 95 90 90 10)
ElementLine(400 795 100 795 10)
ElementArc(100 700 95 95 0 90 10)
ElementLine(5 700 5 5 10)
ElementLine(100 60 400 60 10)
ElementArc(400 100 40 40 180 90 10)
ElementLine(440 100 440 700 10)
ElementArc(400 700 40 40 90 90 10)
ElementLine(400 740 100 740 10)
ElementArc(100 700 40 40 0 90 10)
ElementLine(60 700 60 100 10)
ElementArc(100 100 40 40 270 90 10)
Mark(100 100)
)')
# -------------------------------------------------------------------
# 8 bit ISA Slot card
#
# Volker Bosch (bosch@iema.e-technik.uni-stuttgart.de), 12/95
#
# $1: canonical name
# $2: name on PCB
# $3: value
#
define(`PKG_ISA8',
`Element(0x00 "$1" "`$2'" "$3" 4000 0 0 100 0x00)
(
# Pins, entspr. Anschl. auf Loetseite (b31..b1)
Pin( 200 3850 60 35 "Gnd (b31)" 0x01)
Pin( 300 3850 60 35 "Osc" 0x01)
Pin( 400 3850 60 35 "+5V" 0x01)
Pin( 500 3850 60 35 "BALE" 0x01)
Pin( 600 3850 60 35 "TC" 0x01)
Pin( 700 3850 60 35 "/DAck2" 0x01)
Pin( 800 3850 60 35 "IRq3" 0x01)
Pin( 900 3850 60 35 "IRq4" 0x01)
Pin(1000 3850 60 35 "IRq5" 0x01)
Pin(1100 3850 60 35 "IRq6" 0x01)
Pin(1200 3850 60 35 "IRq7" 0x01)
Pin(1300 3850 60 35 "Clock" 0x01)
Pin(1400 3850 60 35 "/Ref" 0x01)
Pin(1500 3850 60 35 "DRq1" 0x01)
Pin(1600 3850 60 35 "/DAck1" 0x01)
Pin(1700 3850 60 35 "DRq3" 0x01)
Pin(1800 3850 60 35 "/DAck3" 0x01)
Pin(1900 3850 60 35 "/IOR" 0x01)
Pin(2000 3850 60 35 "/IOW" 0x01)
Pin(2100 3850 60 35 "/SMEMR" 0x01)
Pin(2200 3850 60 35 "/SMEMW" 0x01)
Pin(2300 3850 60 35 "Gnd" 0x01)
Pin(2400 3850 60 35 "+12V" 0x01)
Pin(2500 3850 60 35 "/0WS" 0x01)
Pin(2600 3850 60 35 "-12V" 0x01)
Pin(2700 3850 60 35 "DRq2" 0x01)
Pin(2800 3850 60 35 "-5V" 0x01)
Pin(2900 3850 60 35 "IEQ2" 0x01)
Pin(3000 3850 60 35 "+5V" 0x01)
Pin(3100 3850 60 35 "ResDrv" 0x01)
Pin(3200 3850 60 35 "Gnd (b1)" 0x01)
# Pins, entspr. Anschl. auf Bestueckseite
Pin( 200 3950 60 35 "SA0 (a31)" 0x01)
Pin( 300 3950 60 35 "SA1" 0x01)
Pin( 400 3950 60 35 "SA2" 0x01)
Pin( 500 3950 60 35 "SA3" 0x01)
Pin( 600 3950 60 35 "SA4" 0x01)
Pin( 700 3950 60 35 "SA5" 0x01)
Pin( 800 3950 60 35 "SA6" 0x01)
Pin( 900 3950 60 35 "SA7" 0x01)
Pin(1000 3950 60 35 "SA8" 0x01)
Pin(1100 3950 60 35 "SA9" 0x01)
Pin(1200 3950 60 35 "SA10" 0x01)
Pin(1300 3950 60 35 "SA11" 0x01)
Pin(1400 3950 60 35 "SA12" 0x01)
Pin(1500 3950 60 35 "SA13" 0x01)
Pin(1600 3950 60 35 "SA14" 0x01)
Pin(1700 3950 60 35 "SA15" 0x01)
Pin(1800 3950 60 35 "SA16" 0x01)
Pin(1900 3950 60 35 "SA17" 0x01)
Pin(2000 3950 60 35 "SA18" 0x01)
Pin(2100 3950 60 35 "SA19" 0x01)
Pin(2200 3950 60 35 "AEN" 0x01)
Pin(2300 3950 60 35 "IOChRdy" 0x01)
Pin(2400 3950 60 35 "SD0" 0x01)
Pin(2500 3950 60 35 "SD1" 0x01)
Pin(2600 3950 60 35 "SD2" 0x01)
Pin(2700 3950 60 35 "SD3" 0x01)
Pin(2800 3950 60 35 "SD4" 0x01)
Pin(2900 3950 60 35 "SD5" 0x01)
Pin(3000 3950 60 35 "SD6" 0x01)
Pin(3100 3950 60 35 "SD7" 0x01)
Pin(3200 3950 60 35 "/IOChCk (a1)" 0x01)
# Umrahmung
ElementLine( 0 100 100 100 2)
ElementLine( 100 0 100 100 2)
ElementLine( 100 100 4250 100 5)
ElementLine(4250 100 4250 3810 5)
ElementLine(4250 3810 3620 3810 5)
ElementLine(3620 3810 3620 3510 5)
ElementLine(3620 3510 3300 3510 5)
ElementLine(3300 3510 3300 3810 5)
ElementLine(3300 3810 100 3810 5)
ElementLine( 100 3810 100 3510 5)
ElementLine( 100 3510 0 3510 2)
# Markierung == Pin B1
Mark(3200 3850)
)')
# -------------------------------------------------------------------
# an ovenized-oscillator package
#
# $1: canonical name
# $2: name on PCB
# $3: value
# Text(620 320 0 100 "GROUND" 0x0001)
# Text(620 520 0 100 "VECTRON LABORATORIES, INC." 0x0001)
# Text(620 720 0 100 "CO711 SERIES OSC" 0x0001)
# Text(620 920 0 100 "711-04-006" 0x0001)
# Text(620 1680 0 100 "+12 -> 15 VOLTS DC" 0x0001)
define(`PKG_OVEN_OSC',
`Element(0x00 "$1" "`$2'" "$3" 580 280 0 100 0x00)
(
Pin(320 320 150 35 "NC" 0x01)
Pin(320 1000 150 35 "VCC" 0x01)
Pin(320 1680 150 35 "CLK" 0x01)
Pin(1680 320 150 35 "+12V" 0x01)
Pin(1680 1680 150 35 "GND" 0x01)
ElementLine(2020 1125 2020 875 10)
ElementLine(2100 875 2020 875 10)
ElementLine(2100 975 2100 875 10)
ElementLine(2075 975 2100 975 10)
ElementLine(2075 1025 2075 975 10)
ElementLine(2100 1025 2075 1025 10)
ElementLine(2100 1125 2100 1025 10)
ElementLine(2100 1125 2020 1125 10)
ElementLine(2000 320 2000 1680 10)
ElementLine(320 0 1680 0 10)
ElementLine(0 1680 0 320 10)
ElementLine(1680 2000 320 2000 10)
ElementArc(320 320 320 320 270 90 10)
ElementArc(320 1680 320 320 0 90 10)
ElementArc(1680 320 320 320 180 90 10)
ElementArc(1680 1680 320 320 90 90 10)
Mark(320 320)
)')
# a radial capacitor package
#
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: package width in MIL
# $5: set to 1 if a polarized part
define(`PKG_RADIAL_CAN',
`define(`X1', `eval(`$4' /4)')
define(`X2', `eval(`$4' -X1)')
define(`X3', `eval(`$4' /2)')
define(`Y', `eval(`$4' /2)')
define(`R', `eval(`$4' /2)')
define(`PINSIZE', `ifelse(eval($4 >= 600), 1, 80, 55)')
define(`DRILLSIZE', `ifelse(eval($4 >= 600), 1, 50, 30)')
Element(0x00 "$1" "`$2'" "$3" eval(`$4') 0 0 100 0x00)
(
PIN(X1, Y, 60, DRILLSIZE, 1)
PIN(X2, Y, 60, DRILLSIZE, 2)
ElementArc(X3 Y R R 0 360 10)
ifelse( 1, $5,
ElementLine(-60 Y -20 Y 10)
ElementLine(-40 `eval(Y-20)' -40 `eval(Y+20)' 10)
ElementLine(`eval($4 + 20)' Y `eval($4 + 60)' Y 10)
)
Mark (X1 Y)
)')
# -------------------------------------------------------------------
# the definition of a more general radial package
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: pad drill diameter [1/100 mm]
# $5: pad diameter [1/100 mm]
# $6: pad clearance diameter [1/100 mm]
# $7: pad center to center [1/100 mm]
# $8: courtyard diameter [1/100 mm]
# $9: 1 for polarized, 0 for non polarized
define(`PKG_RADIAL_MM100',
# grab the input values and convert to 1/100 mil
`define(`PX', `eval( ($7 * 10000) / 254 / 2)')
define(`DRILLSIZE', `eval( ($4 * 10000) / 254)')
define(`PINSIZE', `eval( ($5 * 10000) / 254)')
define(`PINANTI', `eval( ($6 * 10000) / 254)')
define(`PINCLEAR', `eval((PINANTI - PINSIZE)/2)')
define(`SILKW', `800')
define(`SILKRAD', `eval(($8 * 10000) / 254 / 2 )')
define(`MARKL', `5000')
define(`MARKS', `1000')
define(`PX1', `eval(-SILKRAD - MARKL - MARKS)')
define(`PXM', `eval(-SILKRAD - MARKL/2 - MARKS)')
define(`PX2', `eval(-SILKRAD - MARKS)')
define(`PY1', `eval(-MARKL)')
define(`PY2', `eval(PY1 + MARKL)')
define(`PYM', `eval( (PY1 + PY2) / 2)')
# element_flags, description, pcb-name, value, mark_x, mark_y,
# text_x, text_y, text_direction, text_scale, text_flags
Element[0x00000000 "$1" "`$2'" "$3" 0 0 PX1 0 0 100 ""]
(
# Pin[x, y, thickness, clearance, mask, drilling hole, name,
# number, flags
Pin[ -PX 0 PINSIZE PINCLEAR PINSIZE DRILLSIZE "1" "1" "square"]
Pin[ PX 0 PINSIZE PINCLEAR PINSIZE DRILLSIZE "2" "2" 0x0]
# Silk screen around package
ElementArc[0 0 SILKRAD SILKRAD 0 360 SILKW]
ifelse( 1, $9,
ElementLine[ PX1 PYM PX2 PYM SILKW]
ElementLine[ PXM PY1 PXM PY2 SILKW]
)
)')
# a core surface mount package
# 12/99 Larry Doolittle <LRDoolittle@lbl.gov>
#
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: device length in MIL
# $5: device width in MIL
#
# Note that the pad width, length, and separation are derived from
# the given device dimensions. I <LRDoolittle@lbl.gov> don't
# claim to have followed any industry standards here, these sizes
# are based on someone else's measurements:
# 0603 is 30x40 mil pads on 60 mil pad ctr
# 0805 is 44x60 mil pads on 80 mil pad ctr
# on a PC motherboard. If you know the "real" values, please educate
# me and/or adjust this code.
#
define(`PKG_SMD_BASE',
`define(`T', `eval(`$4'/4+`$5'/2)')
define(`W', `eval(T/2+15)')
define(`X1', `0')
define(`X2', ``$4'')
define(`Y', `0')
define(`Y1', `eval(Y-(`$5'-T)/2-5)')
define(`Y2', `eval(Y+(`$5'-T)/2+5)')
# Silkscreen box coordinates
define(`X1L', `eval(X1-W)')
define(`X2L', `eval(X2+W)')
define(`Y1L', `eval(Y1-W)')
define(`Y2L', `eval(Y2+W)')
Element(0x00 "$1" "`$2'" "$3" eval(10+T/2) eval(Y2L+15) 0 100 0x00)
(
# PAD(X1, Y1, X1, Y2, T, 1)
# PAD(X2, Y1, X2, Y2, T, 2)
# Use Pad instead of PAD so both pads come out square
Pad(X1 Y1 X1 Y2 T "1" 0x100)
Pad(X2 Y1 X2 Y2 T "2" 0x100)
ElementLine(X1L Y1L X1L Y2L 8)
ElementLine(X1L Y2L X2L Y2L 8)
ElementLine(X2L Y2L X2L Y1L 8)
ElementLine(X2L Y1L X1L Y1L 8)
SMD_OUTLINE_EXTRA
)')
define(`PKG_SMD_SIMPLE',
`define(`SMD_OUTLINE_EXTRA', `')
PKG_SMD_BASE(`$1', `$2', `$3', `$4', `$5')
')
define(`PKG_SMD_DIODE',
`define(`SMD_OUTLINE_EXTRA',
`
define(`XBAR', `eval(X1L+10)')
ElementLine( XBAR Y1L XBAR Y2L 8 )
')
PKG_SMD_BASE(`$1', `$2', `$3', `$4', `$5')
')
define(`PKG_SMD_POLAR',
`define(`SMD_OUTLINE_EXTRA',
`
# crude plus sign
# ElementLine( X1 eval(Y2L+20) X1 eval(Y2L+70) 8)
# ElementLine( eval(X1-25) eval(Y2L+45) eval(X1+25) eval(Y2L+45) 8)
define(`XBAR', `eval(X1L+10)')
ElementLine( XBAR Y1L XBAR Y2L 8 )
')
PKG_SMD_BASE(`$1', `$2', `$3', `$4', `$5')
')
# a smd chip package, capacitor or resistor
#
# $1: canonical name
# $2: name on PCB
# $3: value
# $4: package designator length in MIL *100 + width in MIL /10
# ie 402 == 40 X 20; 603 == 60 X 30
#
define(`PKG_SMD_CHIP',
`define(`X1', `eval(eval(`$4' /100)*10)')
define(`Y1', `eval(eval(`$4'- X1 *10) *10)')
# line radius (LR) depicts offset to pads lines and pad "band width"
define(`LR', `ifelse(eval(Y1 < 40), 1, eval(Y1/4), 10)')
Element(0x00 "$1" "`$2'" "$3" 0 0 0 25 0x00)
(
PAD(LR LR LR eval(Y1-LR) eval(LR*2) )
PAD(eval(X1-LR) LR eval(X1-LR) eval(Y1-LR) eval(LR*2) )
ElementLine( 0 0 X1 0 5)
ElementLine(X1 0 X1 Y1 5)
ElementLine(X1 Y1 0 Y1 5)
ElementLine( 0 Y1 0 0 5)
Mark(eval(X1/2) eval(Y1/2))
)')
|