/usr/share/pari/doc/usersch5.tex is in pari-doc 2.9.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 | % Copyright (c) 2000 The PARI Group
%
% This file is part of the PARI/GP documentation
%
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
\chapter{Technical Reference Guide: the basics}
In the following chapters, we describe all public low-level functions of the
PARI library. These include specialized functions for handling all the PARI
types. Simple higher level functions, such as arithmetic or transcendental
functions, are described in Chapter~3 of the GP user's manual; we will
eventually see more general or flexible versions in the chapters to come. A
general introduction to the major concepts of PARI programming can be found
in Chapter~4, which you should really read first.
We shall now study specialized functions, more efficient than the library
wrappers, but sloppier on argument checking and damage control; besides
speed, their main advantage is to give finer control about the inner
workings of generic routines, offering more options to the programmer.
\misctitle{Important advice} Generic routines eventually call lower level
functions. Optimize your algorithms first, not overhead and conversion costs
between PARI routines. For generic operations, use generic routines first;
do not waste time looking for the most specialized one available unless you
identify a genuine bottleneck, or you need some special behavior the generic
routine does not offer. The PARI source code is part of the documentation;
look for inspiration there.\smallskip
The type \kbd{long} denotes a \tet{BITS_IN_LONG}-bit signed long integer (32
or 64 bits). The type \tet{ulong} is defined as \kbd{unsigned long}. The word
\emph{stack} always refer to the PARI stack, allocated through an initial
\kbd{pari\_init} call. Refer to Chapters 1--2 and~4 for general background.
\kbdsidx{BIL}
We shall often refer to the notion of \tev{shallow} function, which means that
some components of the result may point to components of the input, which is
more efficient than a \emph{deep} copy (full recursive copy of the object
tree). Such outputs are not suitable for \kbd{gerepileupto} and particular
care must be taken when garbage collecting objects which have been input to
shallow functions: corresponding outputs also become invalid and should no
longer be accessed.
A function is \emph{not stack clean} if it leaves intermediate data on the
stack besides its output, for efficiency reasons.
\section{Initializing the library}
The following functions enable you to start using the PARI functions
in a program, and cleanup without exiting the whole program.
\subsec{General purpose}
\fun{void}{pari_init}{size_t size, ulong maxprime} initialize the
library, with a stack of \kbd{size} bytes and a prime table
up to the maximum of \kbd{maxprime} and $2^{16}$. Unless otherwise
mentioned, no PARI function will function properly before such an
initialization.
\fun{void}{pari_close}{void} stop using the library (assuming it was
initialized with \kbd{pari\_init}) and frees all allocated objects.
\subsec{Technical functions}\label{se:pari_init_tech}
\fun{void}{pari_init_opts}{size_t size, ulong maxprime, ulong opts} as
\kbd{pari\_init}, more flexible. \kbd{opts} is a mask of flags
among the following:
\kbd{INIT\_JMPm}: install PARI error handler. When an exception is
raised, the program is terminated with \kbd{exit(1)}.
\kbd{INIT\_SIGm}: install PARI signal handler.
\kbd{INIT\_DFTm}: initialize the \kbd{GP\_DATA} environment structure.
This one \emph{must} be enabled once. If you close pari, then restart it,
you need not reinitialize \kbd{GP\_DATA}; if you do not, then old values are
restored.
\kbd{INIT\_noPRIMEm}: do not compute the prime table (ignore the
\kbd{maxprime} argument). The user \emph{must} call
\tet{pari_init_primes} later.
\kbd{INIT\_noIMTm}: (technical, see \kbd{pari\_mt\_init} in the Developer's
Guide for detail). Do not call \tet{pari_mt_init} to initialize the
multi-thread engine. If this flag is set, \kbd{pari\_mt\_init()} will need to
be called manually. See \kbd{examples/pari-mt.c} for an example.
\kbd{INIT\_noINTGMPm}: do not install PARI-specific GMP memory functions.
This option is ignored when the GMP library is not in use. You may
install PARI-specific GMP memory functions later by calling
\fun{void}{pari_kernel_init}{void}
\noindent and restore the previous values using
\fun{void}{pari_kernel_close}{void}
This option should not be used without a thorough understanding of the
problem you are trying to solve. The GMP memory functions are global
variables used by the GMP library. If your program is linked with two
libraries that require these variables to be set to different values,
conflict ensues. To avoid a conflict, the proper solution is to record
their values with \kbd{mp\_get\_memory\_functions} and to call
\kbd{mp\_set\_memory\_functions} to restore the expected values each time the
code switches from using one library to the other. Here is an example:
\bprog
void *(*pari_alloc_ptr) (size_t);
void *(*pari_realloc_ptr) (void *, size_t, size_t);
void (*pari_free_ptr) (void *, size_t);
void *(*otherlib_alloc_ptr) (size_t);
void *(*otherlib_realloc_ptr) (void *, size_t, size_t);
void (*otherlib_free_ptr) (void *, size_t);
void init(void)
{
pari_init(8000000, 500000);
mp_get_memory_functions(&pari_alloc_ptr,&pari_realloc_ptr,
&pari_free_ptr);
otherlib_init();
mp_get_memory_functions(&otherlib_alloc_ptr,&otherlib_realloc_ptr,
&otherlib_free_ptr);
}
void function_that_use_pari(void)
{
mp_set_memory_functions(pari_alloc_ptr,pari_realloc_ptr,
pari_free_ptr);
/*use PARI functions*/
}
void function_that_use_otherlib(void)
{
mp_set_memory_functions(otherlib_alloc_ptr,otherlib_realloc_ptr,
otherlib_free_ptr);
/*use OTHERLIB functions*/
}
@eprog
\fun{void}{pari_close_opts}{ulong init_opts} as \kbd{pari\_close},
for a library initialized with a mask of options using
\kbd{pari\_init\_opts}. \kbd{opts} is a mask of flags among
\kbd{INIT\_SIGm}: restore \kbd{SIG\_DFL} default action for signals
tampered with by PARI signal handler.
\kbd{INIT\_DFTm}: frees the \kbd{GP\_DATA} environment structure.
\kbd{INIT\_noIMTm}: (technical, see \kbd{pari\_mt\_init} in the Developer's
Guide for detail). Do not call \tet{pari_mt_close} to close the multi-thread
engine.
\kbd{INIT\_noINTGMPm}: do not restore GMP memory functions.
\fun{void}{pari_sig_init}{void (*f)(int)} install the signal handler \kbd{f}
(see \kbd{signal(2)}): the signals \kbd{SIGBUS}, \kbd{SIGFPE}, \kbd{SIGINT},
\kbd{SIGBREAK}, \kbd{SIGPIPE} and \kbd{SIGSEGV} are concerned.
\fun{void}{pari_init_primes}{ulong maxprime} Initialize the PARI
primes. This function is called by \kbd{pari\_init(\dots,maxprime)}.
It is provided for users calling \kbd{pari\_init\_opts} with the
flag \kbd{INIT\_noPRIMEm}.
\fun{void}{pari_sighandler}{int signum} the actual signal handler that
PARI uses. This can be used as argument to \kbd{pari\_sig\_init} or
\kbd{signal(2)}.
\fun{void}{pari_stackcheck_init}{void *stackbase} controls the system stack
exhaustion checking code in the GP interpreter. This should be used when the
system stack base address change or when the address seen by \kbd{pari\_init}
is too far from the base address. If \kbd{stackbase} is \kbd{NULL}, disable the
check, else set the base address to \kbd{stackbase}. It is normally used this
way
\bprog
int thread_start (...)
{
long first_item_on_the_stack;
...
pari_stackcheck_init(&first_item_on_the_stack);
}
@eprog
\fun{int}{pari_daemon}{void} forks a PARI daemon, detaching from the main
process group. The function returns 1 in the parent, and 0 in the
forked son.
\fun{void}{paristack_setsize}{size_t rsize, size_t vsize}
sets the default \kbd{parisize} to \kbd{rsize} and the
default \kbd{parisizemax} to \kbd{vsize}, and reallocate the
stack to match these value, destroying its content.
Generally used just after \kbd{pari\_init}.
\fun{void}{paristack_resize}{ulong newsize}
changes the current stack size to \kbd{newsize}
(double it if \kbd{newsize} is 0).
The new size is clipped to be at least the current stack size and
at most \kbd{parisizemax}. The stack content is not affected
by this operation.
\fun{void}{parivstack_reset}{void}
resets the current stack to its default size \kbd{parisize},
destroying its content. Used to recover memory after a
computation that enlarged the stack.
\fun{void}{paristack_newrsize}{ulong newsize}
\emph{(does not return)}. Library version of
\bprog
default(parisize, "newsize")
@eprog\noindent Set the default \kbd{parisize} to \kbd{newsize}, or double
\kbd{parisize} if \kbd{newsize} is equal to 0, then call
\kbd{cb\_pari\_err\_recover(-1)}.
\fun{void}{parivstack_resize}{ulong newsize}
\emph{(does not return)}. Library version of
\bprog
default(parisizemax, "newsize")
@eprog\noindent Set the default \kbd{parisizemax} to \kbd{newsize} and call
\kbd{cb\_pari\_err\_recover(-1)}.
\subsec{Notions specific to the GP interpreter}
An \kbd{entree} is the generic object attached to an identifier (a name)
in GP's interpreter, be it a built-in or user function, or a variable. For
a function, it has at least the following fields:
\kbd{char *name}: the name under which the interpreter knows us.
\kbd{void *value}: a pointer to the C function to call.
\kbd{long menu}: a small integer $\geq 1$ (to which group of function
help do we belong, for the \kbd{?$n$} help menu).
\kbd{char *code}: the prototype code.
\kbd{char *help}: the help text for the function.
A routine in GP is described to the analyzer by an \kbd{entree}
structure. Built-in PARI routines are grouped in \emph{modules}, which
are arrays of \kbd{entree} structs, the last of which satisfy
\kbd{name = NULL} (sentinel). There are currently five modules in PARI/GP:
\item general functions (\tet{functions_basic}, known to \kbd{libpari}),
\item gp-specific functions (\tet{functions_gp}),
\item gp-specific highlevel functions (\tet{functions_highlevel}),
\noindent and two modules of obsolete functions. The function
\kbd{pari\_init} initializes the interpreter and declares all symbols in
\kbd{functions\_basic}. You may declare further functions on a case by case
basis or as a whole module using
\fun{void}{pari_add_function}{entree *ep} adds a single routine to the
table of symbols in the interpreter. It assumes \kbd{pari\_init} has been
called.
\fun{void}{pari_add_module}{entree *mod} adds all the routines in module
\kbd{mod} to the table of symbols in the interpreter. It assumes
\kbd{pari\_init} has been called.
\noindent For instance, gp implements a number of private routines, which
it adds to the default set via the calls
\bprog
pari_add_module(functions_gp);
pari_add_module(functions_highlevel);
@eprog
A GP \kbd{default} is likewise attached to a helper routine, that is run
when the value is consulted, or changed by \tet{default0} or \tet{setdefault}.
Such routines are grouped in the module \tet{functions_default}.
\fun{void}{pari_add_defaults_module}{entree *mod} adds all the defaults in
module \kbd{mod} to the interpreter. It assumes that \kbd{pari\_init} has
been called. From this point on, all defaults in module \kbd{mod} are known
to \tet{setdefault} and friends.
\subsec{Public callbacks}
The \kbd{gp} calculator associates elaborate functions (for instance the
break loop handler) to the following callbacks, and so can you:
\doc{cb_pari_ask_confirm}{void (*cb_pari_ask_confirm)(const char *s)}
initialized to \kbd{NULL}. Called with argument $s$ whenever PARI wants
confirmation for action $s$, for instance in \tet{secure} mode.
\doc{cb_pari_init_histfile}{void (*cb_pari_init_histfile)(void)}
initialized to \kbd{NULL}. Called when the \kbd{histfile} default
is changed. The intent is for that callback to read the file content, append
it to history in memory, then dump the expanded history to the new
\kbd{histfile}.
\doc{cb_pari_is_interactive}{int (*cb_pari_is_interactive)(void)};
initialized to \kbd{NULL}.
\doc{cb_pari_quit}{void (*cb_pari_quit)(long)}
initialized to a no-op. Called when \kbd{gp} must evaluate the \kbd{quit}
command.
\doc{cb_pari_start_output}{void (*cb_pari_start_output)(void)}
initialized to \kbd{NULL}.
\doc{cb_pari_handle_exception}{int (*cb_pari_handle_exception)(long)}
initialized to \kbd{NULL}. If not \kbd{NULL}, this routine is called with
argument $-1$ on \kbd{SIGINT}, and argument \kbd{err} on error \kbd{err}. If
it returns a non-zero value, the error or signal handler returns, in effect
further ignoring the error or signal, otherwise it raises a fatal error.
A possible simple-minded handler, used by the \kbd{gp} interpreter, is
\fun{int}{gp_handle_exception}{long err} if the \kbd{breakloop}
default is enabled (set to $1$) and \tet{cb_pari_break_loop} is not
\kbd{NULL}, we call this routine with \kbd{err} argument and return the
result.
\doc{cb_pari_err_handle}{int (*cb_pari_err_handle)(GEN)}
If not \kbd{NULL}, this routine is called with a \typ{ERROR} argument
from \kbd{pari\_err}. If it returns a non-zero value, the error returns, in
effect further ignoring the error, otherwise it raises a fatal error.
The default behaviour is to print a descriptive error
message (display the error), then return 0, thereby raising a fatal error.
This differs from \tet{cb_pari_handle_exception} in that the
function is not called on \kbd{SIGINT} (which do not generate a \typ{ERROR}),
only from \kbd{pari\_err}. Use \tet{cb_pari_sigint} if you need to handle
\kbd{SIGINT} as well.
\doc{cb_pari_break_loop}{int (*cb_pari_break_loop)(int)}
initialized to \kbd{NULL}.
\doc{cb_pari_sigint}{void (*cb_pari_sigint)(void)}.
Function called when we receive \kbd{SIGINT}. By default, raises
\bprog
pari_err(e_MISC, "user interrupt");
@eprog\noindent A possible simple-minded variant, used by the
\kbd{gp} interpreter, is
\fun{void}{gp_sigint_fun}{void}
\doc{cb_pari_pre_recover}{void (*cb_pari_err_recover)(long)}
initialized to \kbd{NULL}. If not \kbd{NULL}, this routine is called just
before PARI cleans up from an error. It is not required to return. The error
number is passed as argument, unless the PARI stack has been destroyed
(\kbd{allocatemem}), in which case $-1$ is passed.
\doc{cb_pari_err_recover}{void (*cb_pari_err_recover)(long)}
initialized to \kbd{pari\_exit()}. This callback must not return.
It is called after PARI has cleaned-up from an error. The error number is
passed as argument, unless the PARI stack has been destroyed, in which case
it is called with argument $-1$.
\doc{cb_pari_whatnow}{int (*cb_pari_whatnow)(PariOUT *out, const char *s, int
flag)} initialized to \kbd{NULL}. If not \kbd{NULL}, must check whether $s$
existed in older versions of \kbd{pari} (the \kbd{gp} callback checks against
\kbd{pari-1.39.15}). All output must be done via \kbd{out} methods.
\item $\fl = 0$: should print verbosely the answer, including help text if
available.
\item $\fl = 1$: must return $0$ if the function did not change, and a
non-$0$ result otherwise. May print a help message.
\subsec{Configuration variables}
\tet{pari_library_path}: If set, It should be a path to the libpari library.
It is used by the function \tet{gpinstall} to locate the PARI library when
searching for symbols. This should only be useful on Windows.
\subsec{Utility functions}
\fun{void}{pari_ask_confirm}{const char *s} raise an error if the
callback \tet{cb_pari_ask_confirm} is \kbd{NULL}. Otherwise
calls
\bprog
cb_pari_ask_confirm(s);
@eprog
\fun{char*}{gp_filter}{const char *s} pre-processor for the GP
parser: filter out whitespace and GP comments from $s$.
\fun{GEN}{pari_compile_str}{const char *s} low-level form of
\tet{compile_str}: assumes that $s$ does not contain spaces or GP comments and
returns the closure attached to the GP expression $s$. Note
that GP metacommands are not recognized.
\fun{int}{gp_meta}{const char *s, int ismain} low-level component of
\tet{gp_read_str}: assumes that $s$ does not contain spaces or GP comments and
try to interpret $s$ as a GP metacommand (e.g. starting by \kbd{\bs} or
\kbd{?}). If successful, execute the metacommand and return $1$; otherwise
return $0$. The \kbd{ismain} parameter modifies the way \kbd{\bs r} commands
are handled: if non-zero, act as if the file contents were entered via
standard input (i.e. call \tet{switchin} and divert \tet{pari_infile});
otherwise, simply call \tet{gp_read_file}.
\fun{void}{pari_hit_return}{void} wait for the use to enter \kbd{\bs n}
via standard input.
\fun{void}{gp_load_gprc}{void} read and execute the user's \kbd{GPRC} file.
\fun{void}{pari_center}{const char *s} print $s$, centered.
\fun{void}{pari_print_version}{void} print verbose version information.
\fun{const char*}{gp_format_time}{long t} format a delay of $t$ ms
suitable for \kbd{gp} output, with \kbd{timer} set.
\fun{const char*}{gp_format_prompt}{const char *p} format a prompt $p$
suitable for \kbd{gp} prompting (includes colors and protecting ANSI escape
sequences for readline).
\fun{void}{pari_alarm}{long s} set an alarm after $s$ seconds (raise an
\tet{e_ALARM} exception).
\fun{void}{gp_help}{const char *s, long flag} print help for $s$, depending
on the value of \fl:
\item \tet{h_REGULAR}, basic help (\kbd{?});
\item \tet{h_LONG}, extended help (\kbd{??});
\item \tet{h_APROPOS}, a propos help (\kbd{??}).
\fun{const char **}{gphelp_keyword_list}{void} return a
\kbd{NULL}-terminated array a strings, containing keywords known to
\kbd{gphelp} besides GP functions (e.g. \kbd{modulus} or \kbd{operator}).
Used by the online help system and the contextual completion engine.
\fun{void}{gp_echo_and_log}{const char *p, const char *s} given a prompt
$p$ and attached input command $s$, update logfile and possibly
print on standard output if \tet{echo} is set and we are not in interactive
mode. The callback \tet{cb_pari_is_interactive} must be set to a sensible
value.
\fun{void}{gp_alarm_handler}{int sig} the \kbd{SIGALRM} handler
set by the \kbd{gp} interpreter.
\fun{void}{print_fun_list}{char **list, long n}
print all elements of \kbd{list} in columns, pausing (hit return)
every $n$ lines. \kbd{list} is \kbd{NULL} terminated.
\subsec{Saving and restoring the GP context}
\fun{void}{gp_context_save}{struct gp_context* rec} save the current GP
context.
\fun{void}{gp_context_restore}{struct gp_context* rec} restore a GP context.
The new context must be an ancestor of the current context.
\subsec{GP history}
These functions allow to control the GP history (the \kbd{\%} operator).
\fun{void}{pari_add_hist}{GEN x, long t} adds \kbd{x} as the last history
entry; $t$ is the time we used to compute it.
\fun{GEN}{pari_get_hist}{long p}, if $p>0$ returns entry of index $p$
(i.e. \kbd{\%p}), else returns entry of index $n+p$ where $n$ is the
index of the last entry (used for \kbd{\%}, \kbd{\%`}, \kbd{\%``}, etc.).
\fun{long}{pari_get_histtime}{long p} as \tet{pari_get_hist},
returning the time used to compute the history entry, instead of the entry
itself.
\fun{ulong}{pari_nb_hist}{void} return the index of the last entry.
\section{Handling \kbd{GEN}s}
\noindent Almost all these functions are either macros or inlined. Unless
mentioned otherwise, they do not evaluate their arguments twice. Most of them
are specific to a set of types, although no consistency checks are made:
e.g.~one may access the \kbd{sign} of a \typ{PADIC}, but the result is
meaningless.
\subsec{Allocation}
\fun{GEN}{cgetg}{long l, long t} allocates (the root of) a \kbd{GEN}
of type $t$ and length $l$. Sets $z[0]$.
\fun{GEN}{cgeti}{long l} allocates a \typ{INT} of length $l$ (including the
2 codewords). Sets $z[0]$ only.
\fun{GEN}{cgetr}{long l} allocates a \typ{REAL} of length $l$ (including the
2 codewords). Sets $z[0]$ only.
\fun{GEN}{cgetc}{long prec} allocates a \typ{COMPLEX} whose real and
imaginary parts are \typ{REAL}s of length \kbd{prec}.
\fun{GEN}{cgetg_copy}{GEN x, long *lx} fast version of \kbd{cgetg}:
allocate a \kbd{GEN} with the same type and length as $x$, setting \kbd{*lx}
to \kbd{lg(x)} as a side-effect. (Only sets the first codeword.) This is
a little faster than \kbd{cgetg} since we may reuse the bitmask in
$x[0]$ instead of recomputing it, and we do not need to check that the
length does not overflow the possibilities of the
implementation (since an object with that length already exists). Note that
\kbd{cgetg} with arguments known at compile time, as in
\bprog
cgetg(3, t_INTMOD)
@eprog\noindent will be even faster since the compiler will directly perform
all computations and checks.
\fun{GEN}{vectrunc_init}{long l} perform \kbd{cgetg(l,t\_VEC)}, then
set the length to $1$ and return the result. This is used to implement
vectors whose final length is easily bounded at creation time, that we intend
to fill gradually using:
\fun{void}{vectrunc_append}{GEN x, GEN y} assuming $x$ was allocated using
\tet{vectrunc_init}, appends $y$ as the last element of $x$, which
grows in the process. The function is shallow: we append $y$, not a copy;
it is equivalent to
\bprog
long lx = lg(x); gel(x,lx) = y; setlg(x, lx+1);
@eprog\noindent
Beware that the maximal size of $x$ (the $l$ argument to \tet{vectrunc_init})
is unknown, hence unchecked, and stack corruption will occur if we append
more than $l-1$ elements to $x$. Use the safer (but slower)
\kbd{shallowconcat} when $l$ is not easy to bound in advance.
An other possibility is simply to allocate using \kbd{cgetg(l, t)} then fill
the components as they become available: this time the downside is that we do
not obtain a correct \kbd{GEN} until the vector is complete. Almost no PARI
function will be able to operate on it.
\fun{void}{vectrunc_append_batch}{GEN x, GEN y} successively apply
\bprog
vectrunc_append(x, gel(y, i))
@eprog
for all elements of the vector $y$.
\fun{GEN}{vecsmalltrunc_init}{long l}
\fun{void}{vecsmalltrunc_append}{GEN x, long t} analog to the above for a
\typ{VECSMALL} container.
\subsec{Length conversions}
These routines convert a non-negative length to different units. Their
behavior is undefined at negative integers.
\fun{long}{ndec2nlong}{long x} converts a number of decimal digits to a number
of words. Returns $ 1 + \kbd{floor}(x \times \B \log_2 10)$.
\fun{long}{ndec2prec}{long x} converts a number of decimal digits to a number
of codewords. This is equal to 2 + \kbd{ndec2nlong(x)}.
\fun{long}{ndec2nbits}{long x} convers a number of decimal digits to a
number of bits.
\fun{long}{prec2ndec}{long x} converts a number of codewords to a
number of decimal digits.
\fun{long}{nbits2nlong}{long x} converts a number of bits to a number of
words. Returns the smallest word count containing $x$ bits, i.e $
\kbd{ceil}(x / \B)$.
\fun{long}{nbits2ndec}{long x} converts a number of bits to a number of
decimal digits.
\fun{long}{nbits2lg}{long x} converts a number of bits to a length
in code words. Currently an alias for \kbd{nbits2nlong}.
\fun{long}{nbits2prec}{long x} converts a number of bits to a number of
codewords. This is equal to 2 + \kbd{nbits2nlong(x)}.
\fun{long}{nbits2extraprec}{long x} converts a number of bits to the mantissa
length of a \typ{REAL} in codewords. This is currently an alias to
\kbd{nbits2nlong(x)}.
\fun{long}{nchar2nlong}{long x} converts a number of bytes to number of
words. Returns the smallest word count containing $x$ bytes, i.e
$\kbd{ceil}(x / \kbd{sizeof(long)})$.
\fun{long}{prec2nbits}{long x} converts a \typ{REAL} length into a number
of significant bits; returns $(x - 2)\B$.
\fun{double}{prec2nbits_mul}{long x, double y} returns
\kbd{prec2nbits}$(x)\times y$.
\fun{long}{bit_accuracy}{long x} converts a length into a number
of significant bits; currently an alias for \kbd{prec2nbits}.
\fun{double}{bit_accuracy_mul}{long x, double y} returns
\kbd{bit\_accuracy}$(x)\times y$.
\fun{long}{realprec}{GEN x} length of a \typ{REAL} in words; currently an alias
for \kbd{lg}.
\fun{long}{bit_prec}{GEN x} length of a \typ{REAL} in bits.
\fun{long}{precdbl}{long prec} given a length in words corresponding to a
\typ{REAL} precision, return the length corresponding to doubling the
precision. Due to the presence of 2 code words, this is
$2(\kbd{prec} - 2) + 2$.
\subsec{Read type-dependent information}
\fun{long}{typ}{GEN x} returns the type number of~\kbd{x}. The header files
included through \kbd{pari.h} define symbolic constants for the \kbd{GEN}
types: \typ{INT} etc. Never use their actual numerical values. E.g to determine
whether \kbd{x} is a \typ{INT}, simply check
\bprog
if (typ(x) == t_INT) { }
@eprog\noindent
The types are internally ordered and this simplifies the implementation of
commutative binary operations (e.g addition, gcd). Avoid using the ordering
directly, as it may change in the future; use type grouping functions
instead (\secref{se:typegroup}).
\fun{const char*}{type_name}{long t} given a type number \kbd{t} this routine
returns a string containing its symbolic name. E.g \kbd{type\_name(\typ{INT})}
returns \kbd{"\typ{INT}"}. The return value is read-only.
\fun{long}{lg}{GEN x} returns the length of~\kbd{x} in \B-bit words.
\fun{long}{lgefint}{GEN x} returns the effective length of the \typ{INT}
\kbd{x} in \B-bit words.
\fun{long}{signe}{GEN x} returns the sign ($-1$, 0 or 1) of~\kbd{x}. Can be
used for \typ{INT}, \typ{REAL}, \typ{POL} and \typ{SER} (for the last two
types, only 0 or 1 are possible).
\fun{long}{gsigne}{GEN x} returns the sign of a real number $x$,
valid for \typ{INT}, \typ{REAL} as \kbd{signe}, but also for \typ{FRAC}
and \typ{QUAD} of positive discriminants. Raise a type error if \kbd{typ(x)}
is not among those.
\fun{long}{expi}{GEN x} returns the binary exponent of the real number equal
to the \typ{INT}~\kbd{x}. This is a special case of \kbd{gexpo}.
\fun{long}{expo}{GEN x} returns the binary exponent of the
\typ{REAL}~\kbd{x}.
\fun{long}{mpexpo}{GEN x} returns the binary exponent of the \typ{INT}
or \typ{REAL}~\kbd{x}.
\fun{long}{gexpo}{GEN x} same as \kbd{expo}, but also valid when \kbd{x}
is not a \typ{REAL} (returns the largest exponent found among the components
of \kbd{x}). When \kbd{x} is an exact~0, this returns
\hbox{\kbd{-HIGHEXPOBIT}}, which is lower than any valid exponent.
\fun{long}{valp}{GEN x} returns the $p$-adic valuation (for
a \typ{PADIC}) or $X$-adic valuation (for a \typ{SER}, taken with respect to
the main variable) of~\kbd{x}.
\fun{long}{precp}{GEN x} returns the precision of the \typ{PADIC}~\kbd{x}.
\fun{long}{varn}{GEN x} returns the variable number of the
\typ{POL} or \typ{SER}~\kbd{x} (between 0 and \kbd{MAXVARN}).
\fun{long}{gvar}{GEN x} returns the main variable number when any variable
at all occurs in the composite object~\kbd{x} (the smallest variable number
which occurs), and \tet{NO_VARIABLE} otherwise.
\fun{long}{gvar2}{GEN x} returns the variable number for the ring over which
$x$ is defined, e.g. if $x\in \Z[a][b]$ return (the variable number for)
$a$. Return \tet{NO_VARIABLE} if $x$ has no variable or is not defined over a
polynomial ring.
\fun{long}{degpol}{GEN x} is a simple macro returning \kbd{lg(x) - 3}.
This is the degree of the \typ{POL}~\kbd{x} with respect to its main
variable, \emph{if} its leading coefficient is non-zero (a rational $0$ is
impossible, but an inexact $0$ is allowed, as well as an exact modular $0$,
e.g. \kbd{Mod(0,2)}). If $x$ has no coefficients (rational $0$ polynomial),
its length is $2$ and we return the expected $-1$.
\fun{long}{lgpol}{GEN x} is equal to \kbd{degpol(x) + 1}. Used to loop over
the coefficients of a \typ{POL} in the following situation:
\bprog
GEN xd = x + 2;
long i, l = lgpol(x);
for (i = 0; i < l; i++) foo( xd[i] ).
@eprog
\fun{long}{precision}{GEN x} If \kbd{x} is of type \typ{REAL}, returns the
precision of~\kbd{x}, namely the length of \kbd{x} in \B-bit words if \kbd{x}
is not zero, and a reasonable quantity obtained from the exponent of \kbd{x}
if \kbd{x} is numerically equal to zero. If \kbd{x} is of type
\typ{COMPLEX}, returns the minimum of the precisions of the real and
imaginary part. Otherwise, returns~0 (which stands for infinite precision).
\fun{long}{lgcols}{GEN x} is equal to \kbd{lg(gel(x,1))}. This is the length
of the columns of a \typ{MAT} with at least one column.
\fun{long}{nbrows}{GEN x} is equal to \kbd{lg(gel(x,1))-1}. This is the number
of rows of a \typ{MAT} with at least one column.
\fun{long}{gprecision}{GEN x} as \kbd{precision} for scalars. Returns the
lowest precision encountered among the components otherwise.
\fun{long}{sizedigit}{GEN x} returns 0 if \kbd{x} is exactly~0. Otherwise,
returns \kbd{\key{gexpo}(x)} multiplied by $\log_{10}(2)$. This gives a crude
estimate for the maximal number of decimal digits of the components
of~\kbd{x}.
\subsec{Eval type-dependent information}
These routines convert type-dependent information to bitmask to fill the
codewords of \kbd{GEN} objects (see \secref{se:impl}). E.g for a
\typ{REAL}~\kbd{z}:
\bprog
z[1] = evalsigne(-1) | evalexpo(2)
@eprog
Compatible components of a codeword for a given type can be OR-ed as above.
\fun{ulong}{evaltyp}{long x} convert type~\kbd{x} to bitmask (first
codeword of all \kbd{GEN}s)
\fun{long}{evallg}{long x} convert length~\kbd{x} to bitmask (first
codeword of all \kbd{GEN}s). Raise overflow error if \kbd{x} is so large that
the corresponding length cannot be represented
\fun{long}{_evallg}{long x} as \kbd{evallg} \emph{without} the overflow
check.
\fun{ulong}{evalvarn}{long x} convert variable number~\kbd{x} to bitmask
(second codeword of \typ{POL} and \typ{SER})
\fun{long}{evalsigne}{long x} convert sign~\kbd{x} (in $-1,0,1$) to bitmask
(second codeword of \typ{INT}, \typ{REAL}, \typ{POL}, \typ{SER})
\fun{long}{evalprecp}{long x} convert $p$-adic ($X$-adic) precision~\kbd{x}
to bitmask (second codeword of \typ{PADIC}, \typ{SER}). Raise overflow error
if \kbd{x} is so large that the corresponding precision cannot be
represented.
\fun{long}{_evalprecp}{long x} same as \kbd{evalprecp} \emph{without} the
overflow check.
\fun{long}{evalvalp}{long x} convert $p$-adic ($X$-adic) valuation~\kbd{x} to
bitmask (second codeword of \typ{PADIC}, \typ{SER}). Raise overflow error if
\kbd{x} is so large that the corresponding valuation cannot be represented.
\fun{long}{_evalvalp}{long x} same as \kbd{evalvalp} \emph{without} the
overflow check.
\fun{long}{evalexpo}{long x} convert exponent~\kbd{x} to bitmask (second
codeword of \typ{REAL}). Raise overflow error if \kbd{x} is so
large that the corresponding exponent cannot be represented
\fun{long}{_evalexpo}{long x} same as \kbd{evalexpo} \emph{without} the
overflow check.
\fun{long}{evallgefint}{long x} convert effective length~\kbd{x} to bitmask
(second codeword \typ{INT}). This should be less or equal than the length
of the \typ{INT}, hence there is no overflow check for the effective length.
\subsec{Set type-dependent information}
Use these functions and macros with extreme care since usually the
corresponding information is set otherwise, and the components and further
codeword fields (which are left unchanged) may not be compatible with the new
information.
\fun{void}{settyp}{GEN x, long s} sets the type number of~\kbd{x} to~\kbd{s}.
\fun{void}{setlg}{GEN x, long s} sets the length of~\kbd{x} to~\kbd{s}. This
is an efficient way of truncating vectors, matrices or polynomials.
\fun{void}{setlgefint}{GEN x, long s} sets the effective length
of the \typ{INT} \kbd{x} to~\kbd{s}. The number \kbd{s} must be less than or
equal to the length of~\kbd{x}.
\fun{void}{setsigne}{GEN x, long s} sets the sign of~\kbd{x} to~\kbd{s}.
If \kbd{x} is a \typ{INT} or \typ{REAL}, \kbd{s} must be equal to $-1$, 0
or~1, and if \kbd{x} is a \typ{POL} or \typ{SER}, \kbd{s} must be equal to 0
or~1. No sanity check is made; in particular, setting the sign of a
$0$ \typ{INT} to $\pm1$ creates an invalid object.
\fun{void}{togglesign}{GEN x} sets the sign $s$ of~\kbd{x} to $-s$, in place.
\fun{void}{togglesign_safe}{GEN *x} sets the $s$ sign of~\kbd{*x} to $-s$, in
place, unless \kbd{*x} is one of the integer universal constants in which case
replace \kbd{*x} by its negation (e.g.~replace \kbd{gen\_1} by \kbd{gen\_m1}).
\fun{void}{setabssign}{GEN x} sets the sign $s$ of~\kbd{x} to $|s|$, in place.
\fun{void}{affectsign}{GEN x, GEN y} shortcut for \kbd{setsigne(y, signe(x))}.
No sanity check is made; in particular, setting the sign of a
$0$ \typ{INT} to $\pm1$ creates an invalid object.
\fun{void}{affectsign_safe}{GEN x, GEN *y} sets the sign of~\kbd{*y} to that
of~\kbd{x}, in place, unless \kbd{*y} is one of the integer universal
constants in which case replace \kbd{*y} by its negation if needed
(e.g.~replace \kbd{gen\_1} by \kbd{gen\_m1} if \kbd{x} is negative). No other
sanity check is made; in particular, setting the sign of a $0$
\typ{INT} to $\pm1$ creates an invalid object.
\fun{void}{normalize_frac}{GEN z} assuming $z$ is of the form \kbd{mkfrac(a,b)}
with $b\neq 0$, make sure that $b > 0$ by changing the sign of $a$ in place if
needed (use \kbd{togglesign}).
\fun{void}{setexpo}{GEN x, long s} sets the binary exponent of the
\typ{REAL}~\kbd{x} to \kbd{s}. The value \kbd{s} must be a 24-bit signed
number.
\fun{void}{setvalp}{GEN x, long s} sets the $p$-adic or $X$-adic valuation
of~\kbd{x} to~\kbd{s}, if \kbd{x} is a \typ{PADIC} or a \typ{SER},
respectively.
\fun{void}{setprecp}{GEN x, long s} sets the $p$-adic precision of the
\typ{PADIC}~\kbd{x} to~\kbd{s}.
\fun{void}{setvarn}{GEN x, long s} sets the variable number of the \typ{POL}
or \typ{SER}~\kbd{x} to~\kbd{s} (where $0\le \kbd{s}\le\kbd{MAXVARN}$).
\subsec{Type groups}\label{se:typegroup}
In the following functions, \kbd{t} denotes the type of a \kbd{GEN}.
They used to be implemented as macros, which could evaluate their argument
twice; \emph{no longer}: it is not inefficient to write
\bprog
is_intreal_t(typ(x))
@eprog
\fun{int}{is_recursive_t}{long t} \kbd{true} iff \kbd{t} is a recursive
type (the non-recursive types are \typ{INT}, \typ{REAL},
\typ{STR}, \typ{VECSMALL}). Somewhat contrary to intuition, \typ{LIST} is
also non-recursive, ; see the Developer's guide for details.
\fun{int}{is_intreal_t}{long t} \kbd{true} iff \kbd{t} is \typ{INT}
or \typ{REAL}.
\fun{int}{is_rational_t}{long t} \kbd{true} iff \kbd{t} is \typ{INT}
or \typ{FRAC}.
\fun{int}{is_real_t}{long t} \kbd{true} iff \kbd{t} is \typ{INT}
or \typ{REAL} or \typ{FRAC}.
\fun{int}{is_vec_t}{long t} \kbd{true} iff \kbd{t} is \typ{VEC}
or \typ{COL}.
\fun{int}{is_matvec_t}{long t} \kbd{true} iff \kbd{t} is \typ{MAT}, \typ{VEC}
or \typ{COL}.
\fun{int}{is_scalar_t}{long t} \kbd{true} iff \kbd{t} is a scalar, i.e
a \typ{INT},
a \typ{REAL},
a \typ{INTMOD},
a \typ{FRAC},
a \typ{COMPLEX},
a \typ{PADIC},
a \typ{QUAD},
or
a \typ{POLMOD}.
\fun{int}{is_extscalar_t}{long t} \kbd{true} iff \kbd{t} is a scalar (see
\kbd{is\_scalar\_t}) or \kbd{t} is \typ{POL}.
\fun{int}{is_const_t}{long t} \kbd{true} iff \kbd{t} is a scalar which is not
\typ{POLMOD}.
\fun{int}{is_noncalc_t}{long t} true if generic operations (\kbd{gadd},
\kbd{gmul}) do not make sense for $t$: corresponds to types
\typ{LIST}, \typ{STR}, \typ{VECSMALL}, \typ{CLOSURE}
\subsec{Accessors and components}\label{se:accessors}
The first two functions return \kbd{GEN} components as copies on the stack:
\fun{GEN}{compo}{GEN x, long n} creates a copy of the \kbd{n}-th true
component (i.e.\ not counting the codewords) of the object~\kbd{x}.
\fun{GEN}{truecoeff}{GEN x, long n} creates a copy of the coefficient of
degree~\kbd{n} of~\kbd{x} if \kbd{x} is a scalar, \typ{POL} or \typ{SER},
and otherwise of the \kbd{n}-th component of~\kbd{x}.
\smallskip
\noindent On the contrary, the following routines return the address of a
\kbd{GEN} component. No copy is made on the stack:
\fun{GEN}{constant_coeff}{GEN x} returns the address of the constant
coefficient of \typ{POL}~\kbd{x}. By convention, a $0$ polynomial (whose
\kbd{sign} is $0$) has \kbd{gen\_0} constant term.
\fun{GEN}{leading_coeff}{GEN x} returns the address of the leading coefficient
of \typ{POL}~\kbd{x}, i.e. the coefficient of largest index stored in the
array representing $x$. This may be an inexact $0$. By convention, return
\kbd{gen\_0} if the coefficient array is empty.
\fun{GEN}{gel}{GEN x, long i} returns the address of the
\kbd{x[i]} entry of~\kbd{x}. (\kbd{el} stands for element.)
\fun{GEN}{gcoeff}{GEN x, long i, long j} returns the address of the
\kbd{x[i,j]} entry of \typ{MAT}~\kbd{x}, i.e.~the coefficient at row~\kbd{i}
and column~\kbd{j}.
\fun{GEN}{gmael}{GEN x, long i, long j} returns the address of the
\kbd{x[i][j]} entry of~\kbd{x}. (\kbd{mael} stands for multidimensional array
element.)
\fun{GEN}{gmael2}{GEN A, long x1, long x2} is an alias for \kbd{gmael}.
Similar macros \tet{gmael3}, \tet{gmael4}, \tet{gmael5} are available.
\section{Global numerical constants}
These are defined in the various public PARI headers.
\subsec{Constants related to word size}
\noindent \kbd{long} $\tet{BITS_IN_LONG} = 2^{\tet{TWOPOTBITS_IN_LONG}}$:
number of bits in a \kbd{long} (32 or 64).
\noindent \kbd{long} \tet{BITS_IN_HALFULONG}: \kbd{BITS\_IN\_LONG} divided by
$2$.
\noindent \kbd{long} \tet{LONG_MAX}: the largest positive \kbd{long}.
\noindent \kbd{ulong} \tet{ULONG_MAX}: the largest \kbd{ulong}.
\noindent \kbd{long} \tet{DEFAULTPREC}: the length (\kbd{lg}) of a
\typ{REAL} with 64 bits of accuracy
\noindent \kbd{long} \tet{MEDDEFAULTPREC}: the length (\kbd{lg}) of a
\typ{REAL} with 128 bits of accuracy
\noindent \kbd{long} \tet{BIGDEFAULTPREC}: the length (\kbd{lg}) of a
\typ{REAL} with 192 bits of accuracy
\noindent \kbd{ulong} \tet{HIGHBIT}: the largest power of $2$ fitting in an
\kbd{ulong}.
\noindent \kbd{ulong} \tet{LOWMASK}: bitmask yielding the least significant
bits.
\noindent \kbd{ulong} \tet{HIGHMASK}: bitmask yielding the most significant
bits.
\noindent The last two are used to implement the following convenience macros,
returning half the bits of their operand:
\fun{ulong}{LOWWORD}{ulong a} returns least significant bits.
\fun{ulong}{HIGHWORD}{ulong a} returns most significant bits.
\noindent Finally
\fun{long}{divsBIL}{long n} returns the Euclidean quotient of $n$ by
\kbd{BITS\_IN\_LONG} (with non-negative remainder).
\fun{long}{remsBIL}{n} returns the (non-negative) Euclidean remainder of $n$
by \kbd{BITS\_IN\_LONG}
\fun{long}{dvmdsBIL}{long n, long *r}
\fun{ulong}{dvmduBIL}{ulong n, ulong *r} sets $r$ to \kbd{remsBIL(n)}
and returns \kbd{divsBIL(n)}.
\subsec{Masks used to implement the \kbd{GEN} type}
These constants are used by higher level macros, like \kbd{typ} or \kbd{lg}:
\noindent \tet{EXPOnumBITS},
\tet{LGnumBITS},
\tet{SIGNnumBITS},
\tet{TYPnumBITS},
\tet{VALPnumBITS},
\tet{VARNnumBITS}:
number of bits used to encode \kbd{expo}, \kbd{lg}, \kbd{signe},
\kbd{typ}, \kbd{valp}, \kbd{varn}.
\noindent \tet{PRECPSHIFT},
\tet{SIGNSHIFT},
\tet{TYPSHIFT},
\tet{VARNSHIFT}: shifts used to recover or encode \kbd{precp}, \kbd{varn},
\kbd{typ}, \kbd{signe}
\noindent \tet{CLONEBIT},
\tet{EXPOBITS},
\tet{LGBITS},
\tet{PRECPBITS},
\tet{SIGNBITS},
\tet{TYPBITS},
\tet{VALPBITS},
\tet{VARNBITS}: bitmasks used to extract \kbd{isclone}, \kbd{expo}, \kbd{lg},
\kbd{precp}, \kbd{signe}, \kbd{typ}, \kbd{valp}, \kbd{varn} from \kbd{GEN}
codewords.
\noindent \tet{MAXVARN}: the largest possible variable number.
\noindent \tet{NO_VARIABLE}: sentinel returned by \kbd{gvar(x)} when \kbd{x}
does not contain any polynomial; has a lower priority than any valid variable
number.
\noindent \tet{HIGHEXPOBIT}: a power of $2$, one more that the largest possible
exponent for a \typ{REAL}.
\noindent \tet{HIGHVALPBIT}: a power of $2$, one more that the largest possible
valuation for a \typ{PADIC} or a \typ{SER}.
\subsec{$\log 2$, $\pi$}
These are \kbd{double} approximations to useful constants:
\noindent \tet{LOG2}: $\log 2$.
\noindent \tet{LOG10_2}: $\log 2 / \log 10$.
\noindent \tet{LOG2_10}: $\log 10 / \log 2$.
\noindent \tet{M_PI}: $\pi$.
\section{Iterating over small primes, low-level interface}
\label{se:primetable}
One of the methods used by the high-level prime iterator (see
\secref{se:primeiter}), is a precomputed table. Its direct use is deprecated,
but documented here.
After \kbd{pari\_init(size, maxprime)}, a ``prime table'' is
initialized with the successive \emph{differences} of primes up to (possibly
just a little beyond) \kbd{maxprime}. The prime table occupies roughly
$\kbd{maxprime}/\log(\kbd{maxprime})$ bytes in memory, so be sensible when
choosing \kbd{maxprime}; it is $500000$ by default under \kbd{gp} and there
is no real benefit in choosing a much larger value: the high-level
iterator provide \emph{fast} access to primes up to the \emph{square}
of \kbd{maxprime}. In any case, the implementation requires that
$\tet{maxprime} < 2^{\B} - 2048$, whatever memory is available.
PARI currently guarantees that the first 6547 primes, up to and including
65557, are present in the table, even if you set \kbd{maxprime} to zero.
in the \kbd{pari\_init} call.
\noindent Some convenience functions:
\fun{ulong}{maxprime}{} the largest prime computable using our prime table.
\fun{void}{maxprime_check}{ulong B} raise an error if \kbd{maxprime()} is $< B$.
After the following initializations (the names $p$ and \var{ptr} are
arbitrary of course)
\bprog
byteptr ptr = diffptr;
ulong p = 0;
@eprog
\noindent calling the macro \tet{NEXT_PRIME_VIADIFF_CHECK}$(p, \var{ptr})$
repeatedly will assign the successive prime numbers to $p$. Overrunning the
prime table boundary will raise the error \tet{e_MAXPRIME}, which just
prints the error message:
\kbd{*** not enough precomputed primes, need primelimit \til $c$}
\noindent (for some numerical value $c$), then the macro aborts the
computation. The alternative macro \tet{NEXT_PRIME_VIADIFF} operates in the
same way, but will omit that check, and is slightly faster. It should be used
in the following way:
%
\bprog
byteptr ptr = diffptr;
ulong p = 0;
if (maxprime() < goal) pari_err_MAXPRIME(goal); /*@Ccom not enough primes */
while (p <= goal) /*@Ccom run through all primes up to \kbd{goal} */
{
NEXT_PRIME_VIADIFF(p, ptr);
...
}
@eprog\noindent
Here, we use the general error handling function \kbd{pari\_err} (see
\secref{se:err}), with the codeword \kbd{e\_MAXPRIME}, raising the ``not enough
primes'' error. This could be rewritten as
\bprog
maxprime_check(goal);
while (p <= goal) /*@Ccom run through all primes up to \kbd{goal} */
{
NEXT_PRIME_VIADIFF(p, ptr);
...
}
@eprog
\fun{bytepr}{initprimes}{ulong maxprime, long *L, ulong *lastp}
computes a (malloc'ed) ``prime table'', in fact a table of all prime
differences for $p < \kbd{maxprime}$ (and possibly a little beyond). Set $L$
to the table length (argument to \kbd{malloc}), and \var{lastp} to the last
prime in the table.
\fun{void}{initprimetable}{ulong maxprime} computes a prime table (of all prime
differences for $p < \kbd{maxprime}$) and assign it to the global variable
\kbd{diffptr}. Don't change \kbd{diffptr} directly, call this function
instead. This calls \kbd{initprimes} and updates internal data recording the
table size.
\fun{ulong}{init_primepointer_geq}{ulong a, byteptr *pd}
returns the smallest prime $p \geq a$, and sets \kbd{*pd} to the proper offset
of \kbd{diffptr} so that \kbd{NEXT\_PRIME\_VIADIFF(p, *pd)} correctly
returns \kbd{unextprime(p + 1)}.
\fun{ulong}{init_primepointer_gt}{ulong a, byteptr *pd} returns the smallest
prime $p > a$.
\fun{ulong}{init_primepointer_leq}{ulong a, byteptr *pd} returns the largest
prime $p \leq a$.
\fun{ulong}{init_primepointer_lt}{ulong a, byteptr *pd} returns the largest
prime $p < a$.
\section{Handling the PARI stack}
\subsec{Allocating memory on the stack}
\fun{GEN}{cgetg}{long n, long t} allocates memory on the stack for
an object of length \kbd{n} and type~\kbd{t}, and initializes its first
codeword.
\fun{GEN}{cgeti}{long n} allocates memory on the stack for a \typ{INT}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{INT})}.
\fun{GEN}{cgetr}{long n} allocates memory on the stack for a \typ{REAL}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{REAL})}.
\fun{GEN}{cgetc}{long n} allocates memory on the stack for a
\typ{COMPLEX}, whose real and imaginary parts are \typ{REAL}s
of length~\kbd{n}.
\fun{GEN}{cgetp}{GEN x} creates space sufficient to hold the
\typ{PADIC}~\kbd{x}, and sets the prime $p$ and the $p$-adic precision to
those of~\kbd{x}, but does not copy (the $p$-adic unit or zero representative
and the modulus of)~\kbd{x}.
\fun{GEN}{new_chunk}{size_t n} allocates a \kbd{GEN} with $n$ components,
\emph{without} filling the required code words. This is the low-level
constructor underlying \kbd{cgetg}, which calls \kbd{new\_chunk} then sets
the first code word. It works by simply returning the address
\kbd{((GEN)avma) - n}, after checking that it is larger than \kbd{(GEN)bot}.
\fun{void}{new_chunk_resize}{size_t x} this function is called by
\kbd{new\_chunk} when the PARI stack overflows. There is no need to call it
manually. It will either extend the stack or report an \kbd{e\_STACK} error.
\fun{char*}{stack_malloc}{size_t n} allocates memory on the stack for $n$
chars (\emph{not} $n$ \kbd{GEN}s). This is faster than using \kbd{malloc},
and easier to use in most situations when temporary storage is needed. In
particular there is no need to \kbd{free} individually all variables thus
allocated: a simple \kbd{avma = oldavma} might be enough. On the other hand,
beware that this is not permanent independent storage, but part of the stack.
\fun{char*}{stack_calloc}{size_t n} as \kbd{stack\_malloc}, setting the memory
to zero.
\noindent Objects allocated through these last three functions cannot be
\kbd{gerepile}'d, since they are not yet valid \kbd{GEN}s: their codewords
must be filled first.
\fun{GEN}{cgetalloc}{long t, size_t l}, same as \kbd{cgetg(t, l)}, except
that the result is allocated using \tet{pari_malloc} instead of the PARI
stack. The resulting \kbd{GEN} is now impervious to garbage collecting
routines, but should be freed using \tet{pari_free}.
\subsec{Stack-independent binary objects}
\fun{GENbin*}{copy_bin}{GEN x} copies $x$ into a malloc'ed structure suitable
for stack-independent binary transmission or storage. The object obtained
is architecture independent provided, \kbd{sizeof(long)} remains the same
on all PARI instances involved, as well as the multiprecision kernel (either
native or GMP).
\fun{GENbin*}{copy_bin_canon}{GEN x} as \kbd{copy\_bin}, ensuring furthermore
that the binary object is independent of the multiprecision kernel. Slower
than \kbd{copy\_bin}.
\fun{GEN}{bin_copy}{GENbin *p} assuming $p$ was created by \kbd{copy\_bin(x)}
(not necessarily by the same PARI instance: transmission or external storage
may be involved), restores $x$ on the PARI stack.
\noindent The routine \kbd{bin\_copy} transparently encapsulate the following
functions:
\fun{GEN}{GENbinbase}{GENbin *p} the \kbd{GEN} data actually stored in $p$.
All addresses are stored as offsets with respect to a common reference point,
so the resulting \kbd{GEN} is unusable unless it is a non-recursive type;
private low-level routines must be called first to restore absolute addresses.
\fun{void}{shiftaddress}{GEN x, long dec} converts relative addresses to
absolute ones.
\fun{void}{shiftaddress_canon}{GEN x, long dec} converts relative addresses to
absolute ones, and converts leaves from a canonical form to the one
specific to the multiprecision kernel in use. The \kbd{GENbin} type stores
whether leaves are stored in canonical form, so \kbd{bin\_copy} can call
the right variant.
\noindent Objects containing closures are harder to e.g. copy and save to disk,
since closures contain pointers to libpari functions that will not be valid in
another gp instance: there is little chance for them to be loaded at the exact
same address in memory. Such objects must be saved along with a linking table.
\fun{GEN}{copybin_unlink}{GEN C} returns a linking table allowing to safely
store and transmit \typ{CLOSURE} objects in $C$. If $C = \kbd{NULL}$ return a
linking table corresponding to the content of all gp variables. $C$ may then be
dumped to disk in binary form, for instance.
\fun{void}{bincopy_relink}{GEN C, GEN V} given a binary object $C$, as dumped
by writebin and read back into a session, and a linking table $V$, restore all
closures contained in $C$ (function pointers are translated to their current
value).
\subsec{Garbage collection}
See \secref{se:garbage} for a detailed explanation and many examples.
\fun{void}{cgiv}{GEN x} frees object \kbd{x}, assuming it is the last created
on the stack.
\fun{GEN}{gerepile}{pari_sp p, pari_sp q, GEN x} general garbage collector
for the stack.
\fun{void}{gerepileall}{pari_sp av, int n, ...} cleans up the stack from
\kbd{av} on (i.e from \kbd{avma} to \kbd{av}), preserving the \kbd{n} objects
which follow in the argument list (of type \kbd{GEN*}). For instance,
\kbd{gerepileall(av, 2, \&x, \&y)} preserves \kbd{x} and \kbd{y}.
\fun{void}{gerepileallsp}{pari_sp av, pari_sp ltop, int n, ...}
cleans up the stack between \kbd{av} and \kbd{ltop}, updating
the \kbd{n} elements which follow \kbd{n} in the argument list (of type
\kbd{GEN*}). Check that the elements of \kbd{g} have no component between
\kbd{av} and \kbd{ltop}, and assumes that no garbage is present between
\kbd{avma} and \kbd{ltop}. Analogous to (but faster than) \kbd{gerepileall}
otherwise.
\fun{GEN}{gerepilecopy}{pari_sp av, GEN x} cleans up the stack from
\kbd{av} on, preserving the object \kbd{x}. Special case of \kbd{gerepileall}
(case $\kbd{n} = 1$), except that the routine returns the preserved \kbd{GEN}
instead of updating its address through a pointer.
\fun{void}{gerepilemany}{pari_sp av, GEN* g[], int n} alternative interface
to \kbd{gerepileall}. The preserved \kbd{GEN}s are the elements of the array
\kbd{g} of length $n$: \kbd{g[0]}, \kbd{g[1]}, \dots,
\kbd{g[$n$-1]}. Obsolete: no more efficient than \kbd{gerepileall},
error-prone, and clumsy (need to declare an extra \kbd{GEN *g}).
\fun{void}{gerepilemanysp}{pari_sp av, pari_sp ltop, GEN* g[], int n}
alternative interface to \kbd{gerepileallsp}. Obsolete.
\fun{void}{gerepilecoeffs}{pari_sp av, GEN x, int n} cleans up the stack
from \kbd{av} on, preserving \kbd{x[0]}, \dots, \kbd{x[n-1]} (which are
\kbd{GEN}s).
\fun{void}{gerepilecoeffssp}{pari_sp av, pari_sp ltop, GEN x, int n}
cleans up the stack from \kbd{av} to \kbd{ltop}, preserving \kbd{x[0]},
\dots, \kbd{x[n-1]} (which are \kbd{GEN}s). Same assumptions as in
\kbd{gerepilemanysp}, of which this is a variant. For instance
\bprog
z = cgetg(3, t_COMPLEX);
av = avma; garbage(); ltop = avma;
z[1] = fun1();
z[2] = fun2();
gerepilecoeffssp(av, ltop, z + 1, 2);
return z;
@eprog\noindent
cleans up the garbage between \kbd{av} and \kbd{ltop}, and connects \kbd{z}
and its two components. This is marginally more efficient than the standard
\bprog
av = avma; garbage(); ltop = avma;
z = cgetg(3, t_COMPLEX);
z[1] = fun1();
z[2] = fun2(); return gerepile(av, ltop, z);
@eprog\noindent
\fun{GEN}{gerepileupto}{pari_sp av, GEN q} analogous to (but faster than)
\kbd{gerepilecopy}. Assumes that \kbd{q} is connected and that its root was
created before any component. If \kbd{q} is not on the stack, this is
equivalent to \kbd{avma = av}; in particular, sentinels which are not even
proper \kbd{GEN}s such as \kbd{q = NULL} are allowed.
\fun{GEN}{gerepileuptoint}{pari_sp av, GEN q} analogous to (but faster than)
\kbd{gerepileupto}. Assumes further that \kbd{q} is a \typ{INT}. The
length and effective length of the resulting \typ{INT} are equal.
\fun{GEN}{gerepileuptoleaf}{pari_sp av, GEN q} analogous to (but faster than)
\kbd{gerepileupto}. Assumes further that \kbd{q} is a leaf, i.e a
non-recursive type (\kbd{is\_recursive\_t(typ(q))} is non-zero). Contrary to
\kbd{gerepileuptoint} and \kbd{gerepileupto}, \kbd{gerepileuptoleaf} leaves
length and effective length of a \typ{INT} unchanged.
\subsec{Garbage collection: advanced use}
\fun{void}{stackdummy}{pari_sp av, pari_sp ltop} inhibits the memory area
between \kbd{av} \emph{included} and \kbd{ltop} \emph{excluded} with respect to
\kbd{gerepile}, in order to avoid a call to \kbd{gerepile(av, ltop,...)}.
The stack space is not reclaimed though.
More precisely, this routine assumes that \kbd{av} is recorded earlier
than \kbd{ltop}, then marks the specified stack segment as a
non-recursive type of the correct length. Thus gerepile will not inspect
the zone, at most copy it. To be used in the following situation:
\bprog
av0 = avma; z = cgetg(t_VEC, 3);
gel(z,1) = HUGE(); av = avma; garbage(); ltop = avma;
gel(z,2) = HUGE(); stackdummy(av, ltop);
@eprog\noindent
Compared to the orthodox
\bprog
gel(z,2) = gerepile(av, ltop, gel(z,2));
@eprog\noindent
or even more wasteful
\bprog
z = gerepilecopy(av0, z);
@eprog\noindent
we temporarily lose $(\kbd{av} - \kbd{ltop})$ words but save a costly
\kbd{gerepile}. In principle, a garbage collection higher up the call
chain should reclaim this later anyway.
Without the \kbd{stackdummy}, if the $[\kbd{av}, \kbd{ltop}]$ zone is
arbitrary (not even valid \kbd{GEN}s as could happen after direct
truncation via \kbd{setlg}), we would leave dangerous data in the middle
of~\kbd{z}, which would be a problem for a later
\bprog
gerepile(..., ... , z);
@eprog\noindent
And even if it were made of valid \kbd{GEN}s, inhibiting the area makes sure
\kbd{gerepile} will not inspect their components, saving time.
Another natural use in low-level routines is to ``shorten'' an existing
\kbd{GEN} \kbd{z} to its first $\kbd{n}-1$ components:
\bprog
setlg(z, n);
stackdummy((pari_sp)(z + lg(z)), (pari_sp)(z + n));
@eprog\noindent
or to its last \kbd{n} components:
\bprog
long L = lg(z) - n, tz = typ(z);
stackdummy((pari_sp)(z + L), (pari_sp)z);
z += L; z[0] = evaltyp(tz) | evallg(L);
@eprog
The first scenario (safe shortening an existing \kbd{GEN}) is in fact so
common, that we provide a function for this:
\fun{void}{fixlg}{GEN z, long ly} a safe variant of \kbd{setlg(z, ly)}. If
\kbd{ly} is larger than \kbd{lg(z)} do nothing. Otherwise, shorten $z$ in
place, using \kbd{stackdummy} to avoid later \kbd{gerepile} problems.
\fun{GEN}{gcopy_avma}{GEN x, pari_sp *AVMA} return a copy of $x$ as from
\kbd{gcopy}, except that we pretend that initially \kbd{avma} is \kbd{*AVMA},
and that \kbd{*AVMA} is updated accordingly (so that the total size of $x$ is
the difference between the two successive values of \kbd{*AVMA}). It is not
necessary for \kbd{*AVMA} to initially point on the stack: \tet{gclone} is
implemented using this mechanism.
\fun{GEN}{icopy_avma}{GEN x, pari_sp av} analogous to \kbd{gcopy\_avma} but
simpler: assume $x$ is a \typ{INT} and return a copy allocated as if
initially we had \kbd{avma} equal to \kbd{av}. There is no need to pass a
pointer and update the value of the second argument: the new (fictitious)
\kbd{avma} is just the return value (typecast to \kbd{pari\_sp}).
\subsec{Debugging the PARI stack}
\fun{int}{chk_gerepileupto}{GEN x} returns 1 if \kbd{x} is suitable for
\kbd{gerepileupto}, and 0 otherwise. In the latter case, print a warning
explaining the problem.
\fun{void}{dbg_gerepile}{pari_sp ltop} outputs the list of all objects on the
stack between \kbd{avma} and \kbd{ltop}, i.e. the ones that would be inspected
in a call to \kbd{gerepile(...,ltop,...)}.
\fun{void}{dbg_gerepileupto}{GEN q} outputs the list of all objects on the
stack that would be inspected in a call to \kbd{gerepileupto(...,q)}.
\subsec{Copies}
\fun{GEN}{gcopy}{GEN x} creates a new copy of $x$ on the stack.
\fun{GEN}{gcopy_lg}{GEN x, long l} creates a new copy of $x$
on the stack, pretending that \kbd{lg(x)} is $l$, which must be less than or
equal to \kbd{lg(x)}. If equal, the function is equivalent to \kbd{gcopy(x)}.
\fun{int}{isonstack}{GEN x} \kbd{true} iff $x$ belongs to the stack.
\fun{void}{copyifstack}{GEN x, GEN y} sets \kbd{y = gcopy(x)} if
$x$ belongs to the stack, and \kbd{y = x} otherwise. This macro evaluates
its arguments once, contrary to
\bprog
y = isonstack(x)? gcopy(x): x;
@eprog
\fun{void}{icopyifstack}{GEN x, GEN y} as \kbd{copyifstack} assuming \kbd{x}
is a \typ{INT}.
\subsec{Simplify}
\fun{GEN}{simplify}{GEN x} you should not need that function in library mode.
One rather uses:
\fun{GEN}{simplify_shallow}{GEN x} shallow, faster, version of \tet{simplify}.
\section{The PARI heap}
\subsec{Introduction}
It is implemented as a doubly-linked list of \kbd{malloc}'ed blocks of
memory, equipped with reference counts. Each block has type \kbd{GEN} but need
not be a valid \kbd{GEN}: it is a chunk of data preceded by a hidden header
(meaning that we allocate $x$ and return $x + \kbd{header size}$). A
\tev{clone}, created by \tet{gclone}, is a block which is a valid \kbd{GEN}
and whose \emph{clone bit} is set.
\subsec{Public interface}
\fun{GEN}{newblock}{size_t n} allocates a block of $n$ \emph{words} (not bytes).
\fun{void}{killblock}{GEN x} deletes the block~$x$ created by \kbd{newblock}.
Fatal error if $x$ not a block.
\fun{GEN}{gclone}{GEN x} creates a new permanent copy of $x$ on the heap
(allocated using \kbd{newblock}). The \emph{clone bit} of the result is set.
\fun{GEN}{gcloneref}{GEN x} if $x$ is not a clone, clone it and return the
result; otherwise, increase the clone reference count and return $x$.
\fun{void}{gunclone}{GEN x} deletes a clone. Deletion at first only decreases
the reference count by $1$. If the count remains positive, no further action is
taken; if the count becomes zero, then the clone is actually deleted. In the
current implementation, this is an alias for \kbd{killblock}, but it is cleaner
to kill clones (valid \kbd{GEN}s) using this function, and other blocks using
\kbd{killblock}.
\fun{void}{gunclone_deep}{GEN x} is only useful in the context of the GP
interpreter which may replace arbitrary components of container types
(\typ{VEC}, \typ{COL}, \typ{MAT}, \typ{LIST}) by clones. If $x$ is such
a container, the function recursively deletes all clones among the components
of $x$, then unclones $x$. Useless in library mode: simply use
\kbd{gunclone}.
\fun{void}{traverseheap}{void(*f)(GEN, void *), void *data} this applies
\kbd{f($x$, data)} to each object $x$ on the PARI heap, most recent
first. Mostly for debugging purposes.
\fun{GEN}{getheap}{} a simple wrapper around \kbd{traverseheap}. Returns a
two-component row vector giving the number of objects on the heap and the
amount of memory they occupy in long words.
\fun{GEN}{cgetg_block}{long x, long y} as \kbd{cgetg(x,y)}, creating the return
value as a \kbd{block}, not on the PARI stack.
\fun{GEN}{cgetr_block}{long prec} as \kbd{cgetr(prec)}, creating the return
value as a \kbd{block}, not on the PARI stack.
\subsec{Implementation note} The hidden block header is manipulated using the
following private functions:
\fun{void*}{bl_base}{GEN x} returns the pointer that was actually allocated
by \kbd{malloc} (can be freed).
\fun{long}{bl_refc}{GEN x} the reference count of $x$: the number of pointers
to this block. Decremented in \kbd{killblock}, incremented by the private
function \fun{void}{gclone_refc}{GEN x}; block is freed when the reference
count reaches $0$.
\fun{long}{bl_num}{GEN x} the index of this block in the list of all blocks
allocated so far (including freed blocks). Uniquely identifies a block until
$2^\B$ blocks have been allocated and this wraps around.
\fun{GEN}{bl_next}{GEN x} the block \emph{after} $x$ in the linked list of
blocks (\kbd{NULL} if $x$ is the last block allocated not yet killed).
\fun{GEN}{bl_prev}{GEN x} the block allocated \emph{before} $x$ (never
\kbd{NULL}).
We documented the last four routines as functions for clarity (and type
checking) but they are actually macros yielding valid lvalues. It is allowed
to write \kbd{bl\_refc(x)++} for instance.
\section{Handling user and temp variables}
Low-level implementation of user / temporary variables is liable to change. We
describe it nevertheless for completeness. Currently variables are
implemented by a single array of values divided in 3 zones: 0--\kbd{nvar}
(user variables), \kbd{max\_avail}--\kbd{MAXVARN} (temporary variables),
and \kbd{nvar+1}--\kbd{max\_avail-1} (pool of free variable numbers).
\subsec{Low-level}
\fun{void}{pari_var_init}{}: a small part of \kbd{pari\_init}. Resets
variable counters \kbd{nvar} and \kbd{max\_avail}, notwithstanding existing
variables! In effect, this even deletes \kbd{x}. Don't use it.
\fun{void}{pari_var_close}{void} attached destructor, called by
\kbd{pari\_close}.
\fun{long}{pari_var_next}{}: returns \kbd{nvar}, the number of the next user
variable we can create.
\fun{long}{pari_var_next_temp}{} returns \kbd{max\_avail}, the number of the
next temp variable we can create.
\fun{long}{pari_var_create}{entree *ep} low-level initialization of an
\kbd{EpVAR}. Return the attached (new) variable number.
\fun{GEN}{vars_sort_inplace}{GEN z} given a \typ{VECSMALL} $z$ of variable
numbers, sort $z$ in place according to variable priorities (highest priority
comes first).
\fun{GEN}{vars_to_RgXV}{GEN h} given a \typ{VECSMALL} $z$ of variable numbers,
return the \typ{VEC} of \kbd{pol\_x}$(z[i])$.
\subsec{User variables}
\fun{long}{fetch_user_var}{char *s} returns a user variable whose name
is \kbd{s}, creating it is needed (and using an existing variable otherwise).
Returns its variable number.
\fun{GEN}{fetch_var_value}{long v} returns a shallow copy of the
current value of the variable numbered $v$. Return \kbd{NULL} for a temporary
variable.
\fun{entree*}{is_entry}{const char *s} returns the \kbd{entree*} attached
to an identifier \kbd{s} (variable or function), from the interpreter
hashtables. Return \kbd{NULL} is the identifier is unknown.
\subsec{Temporary variables}
\fun{long}{fetch_var}{void} returns the number of a new temporary variable
(decreasing \kbd{max\_avail}).
\fun{long}{delete_var}{void} delete latest temp variable created and return
the number of previous one.
\fun{void}{name_var}{long n, char *s} rename temporary variable number
\kbd{n} to \kbd{s}; mostly useful for nicer printout. Error when trying to
rename a user variable.
\section{Adding functions to PARI}
\subsec{Nota Bene}
%
As mentioned in the \kbd{COPYING} file, modified versions of the PARI package
can be distributed under the conditions of the GNU General Public License. If
you do modify PARI, however, it is certainly for a good reason, and we
would like to know about it, so that everyone can benefit from your changes.
There is then a good chance that your improvements are incorporated into the
next release.
We classify changes to PARI into four rough classes, where changes of the
first three types are almost certain to be accepted. The first type includes
all improvements to the documentation, in a broad sense. This includes
correcting typos or inaccuracies of course, but also items which are not
really covered in this document, e.g.~if you happen to write a tutorial,
or pieces of code exemplifying fine points unduly omitted in the present
manual.
The second type is to expand or modify the configuration routines and skeleton
files (the \kbd{Configure} script and anything in the \kbd{config/}
subdirectory) so that compilation is possible (or easier, or more efficient)
on an operating system previously not catered for. This includes discovering
and removing idiosyncrasies in the code that would hinder its portability.
The third type is to modify existing (mathematical) code, either to correct
bugs, to add new functionality to existing functions, or to improve their
efficiency.
Finally the last type is to add new functions to PARI. We explain here how
to do this, so that in particular the new function can be called from \kbd{gp}.
\subsec{Coding guidelines}\label{se:coding_guidelines}
\noindent
Code your function in a file of its own, using as a guide other functions
in the PARI sources. One important thing to remember is to clean the stack
before exiting your main function, since otherwise successive calls to
the function clutters the stack with unnecessary garbage, and stack
overflow occurs sooner. Also, if it returns a \kbd{GEN} and you want it
to be accessible to \kbd{gp}, you have to make sure this \kbd{GEN} is
suitable for \kbd{gerepileupto} (see \secref{se:garbage}).
If error messages or warnings are to be generated in your function, use
\kbd{pari\_err} and \kbd{pari\_warn} respectively.
Recall that \kbd{pari\_err} does not return but ends with a \kbd{longjmp}
statement. As well, instead of explicit \kbd{printf}~/ \kbd{fprintf}
statements, use the following encapsulated variants:
\fun{void}{pari_putc}{char c}: write character \kbd{c} to the output stream.
\fun{void}{pari_puts}{char *s}: write \kbd{s} to the output stream.
\fun{void}{pari_printf}{const char *fmt, ...}: write following arguments to the
output stream, according to the conversion specifications in format \kbd{fmt}
(see \tet{printf}).
\fun{void}{err_printf}{const char *fmt, ...}: as \tet{pari_printf}, writing to
PARI's current error stream.
\fun{void}{err_flush}{void} flush error stream.
Declare all public functions in an appropriate header file, if you
want to access them from C. The other functions should be declared
\kbd{static} in your file.
Your function is now ready to be used in library mode after compilation and
creation of the library. If possible, compile it as a shared library (see
the \kbd{Makefile} coming with the \kbd{extgcd} example in the
distribution). It is however still inaccessible from \kbd{gp}.\smallskip
\subsec{GP prototypes, parser codes}
\label{se:gp.interface}
A \tev{GP prototype} is a character string describing all the GP parser needs
to know about the function prototype. It contains a sequence of the following
atoms:
\settabs\+\indent&\kbd{Dxxx}\quad&\cr
\noindent\item Return type: \kbd{GEN} by default (must be valid for
\kbd{gerepileupto}), otherwise the following can appear as the \emph{first}
char of the code string:
%
\+& \kbd{i} & return \kbd{int}\cr
\+& \kbd{l} & return \kbd{long}\cr
\+& \kbd{u} & return \kbd{ulong}\cr
\+& \kbd{v} & return \kbd{void}\cr
\+& \kbd{m} & return a \kbd{GEN} which is not \kbd{gerepile}-safe.\cr
The \kbd{m} code is used for member functions, to avoid unnecessary copies. A
copy opcode is generated by the compiler if the result needs to be kept safe
for later use.
\noindent\item Mandatory arguments, appearing in the same order as the
input arguments they describe:
%
\+& \kbd{G} & \kbd{GEN}\cr
\+& \kbd{\&}& \kbd{*GEN}\cr
\+& \kbd{L} & \kbd{long} (we implicitly typecast \kbd{int} to \kbd{long})\cr
\+& \kbd{U} & \kbd{ulong} \cr
\+& \kbd{V} & loop variable\cr
\+& \kbd{n} & variable, expects a \idx{variable number} (a \kbd{long}, not an
\kbd{*entree})\cr
\+& \kbd{W} & a \kbd{GEN} which is a lvalue to be modified in place
(for \typ{LIST})\cr
\+& \kbd{r} & raw input (treated as a string without quotes). Quoted
args are copied as strings\cr
\+&&\quad Stops at first unquoted \kbd{')'} or \kbd{','}. Special chars can
be quoted using \kbd{'\bs'}\cr
\+&&\quad Example: \kbd{aa"b\bs n)"c} yields the string \kbd{"aab\bs{n})c"}\cr
\+& \kbd{s} & expanded string. Example: \kbd{Pi"x"2} yields \kbd{"3.142x2"}\cr
\+&&\quad Unquoted components can be of any PARI type, converted to string
following\cr
\+&&\quad current output format\cr
\+& \kbd{I} & closure whose value is ignored, as in \kbd{for} loops,\cr
\+&&\quad to be processed by \fun{void}{closure_evalvoid}{GEN C}\cr
\+& \kbd{E} & closure whose value is used, as in \kbd{sum} loops,\cr
\+&&\quad to be processed by \fun{void}{closure_evalgen}{GEN C}\cr
\+& \kbd{J} & implicit function of arity $1$, as in \kbd{parsum} loops,\cr
\+&&\quad to be processed by \fun{void}{closure_callgen1}{GEN C}\cr
\noindent A \tev{closure} is a GP function in compiled (bytecode) form. It
can be efficiently evaluated using the \kbd{closure\_eval}$xxx$ functions.
\noindent\item Automatic arguments:
%
\+& \kbd{f} & Fake \kbd{*long}. C function requires a pointer but we
do not use the resulting \kbd{long}\cr
\+& \kbd{b} & current real precision in bits \cr
\+& \kbd{p} & current real precision in words \cr
\+& \kbd{P} & series precision (default \kbd{seriesprecision},
global variable \kbd{precdl} for the library)\cr
\+& \kbd{C} & lexical context (internal, for \kbd{eval},
see \kbd{localvars\_read\_str})\cr
\noindent\item Syntax requirements, used by functions like
\kbd{for}, \kbd{sum}, etc.:
%
\+& \kbd{=} & separator \kbd{=} required at this point (between two
arguments)\cr
\noindent\item Optional arguments and default values:
%
\+& \kbd{E*} & any number of expressions, possibly 0 (see \kbd{E})\cr
\+& \kbd{s*} & any number of strings, possibly 0 (see \kbd{s})\cr
\+& \kbd{D\var{xxx}} & argument can be omitted and has a default value\cr
The \kbd{E*} code reads all remaining arguments in closure context and passes
them as a single \typ{VEC}.
The \kbd{s*} code reads all remaining arguments in \tev{string context} and
passes the list of strings as a single \typ{VEC}. The automatic concatenation
rules in string context are implemented so that adjacent strings
are read as different arguments, as if they had been comma-separated. For
instance, if the remaining argument sequence is: \kbd{"xx" 1, "yy"}, the
\kbd{s*} atom sends \kbd{[a, b, c]}, where
$a$, $b$, $c$ are \kbd{GEN}s of type \typ{STR} (content \kbd{"xx"}),
\typ{INT} (equal to $1$) and \typ{STR} (content \kbd{"yy"}).
The format to indicate a default value (atom starts with a \kbd{D}) is
``\kbd{D\var{value},\var{type},}'', where \var{type} is the code for any
mandatory atom (previous group), \var{value} is any valid GP expression
which is converted according to \var{type}, and the ending comma is
mandatory. For instance \kbd{D0,L,} stands for ``this optional argument is
converted to a \kbd{long}, and is \kbd{0} by default''. So if the
user-given argument reads \kbd{1 + 3} at this point, \kbd{4L} is sent to
the function; and \kbd{0L} if the argument is omitted. The following
special notations are available:
\settabs\+\indent\indent&\kbd{Dxxx}\quad& optional \kbd{*GEN},&\cr
\+&\kbd{DG}& optional \kbd{GEN}, & send \kbd{NULL} if argument omitted.\cr
\+&\kbd{D\&}& optional \kbd{*GEN}, send \kbd{NULL} if argument omitted.\cr
\+&&\quad The argument must be prefixed by \kbd{\&}.\cr
\+&\kbd{DI}, \kbd{DE}& optional closure, send \kbd{NULL} if argument omitted.\cr
\+&\kbd{DP}& optional \kbd{long}, send \kbd{precdl} if argument omitted.\cr
\+&\kbd{DV}& optional \kbd{*entree}, send \kbd{NULL} if argument omitted.\cr
\+&\kbd{Dn}& optional variable number, $-1$ if omitted.\cr
\+&\kbd{Dr}& optional raw string, send \kbd{NULL} if argument omitted.\cr
\+&\kbd{Ds}& optional \kbd{char *}, send \kbd{NULL} if argument omitted.\cr
\misctitle{Hardcoded limit} C functions using more than 20 arguments are not
supported. Use vectors if you really need that many parameters.
When the function is called under \kbd{gp}, the prototype is scanned and each
time an atom corresponding to a mandatory argument is met, a user-given
argument is read (\kbd{gp} outputs an error message it the argument was
missing). Each time an optional atom is met, a default value is inserted if the
user omits the argument. The ``automatic'' atoms fill in the argument list
transparently, supplying the current value of the corresponding variable (or a
dummy pointer).
For instance, here is how you would code the following prototypes, which
do not involve default values:
\bprog
GEN f(GEN x, GEN y, long prec) ----> "GGp"
void f(GEN x, GEN y, long prec) ----> "vGGp"
void f(GEN x, long y, long prec) ----> "vGLp"
long f(GEN x) ----> "lG"
int f(long x) ----> "iL"
@eprog\noindent
If you want more examples, \kbd{gp} gives you easy access to the parser codes
attached to all GP functions: just type \kbd{\b{h} \var{function}}. You
can then compare with the C prototypes as they stand in \kbd{paridecl.h}.
\misctitle{Remark} If you need to implement complicated control statements
(probably for some improved summation functions), you need to know
how the parser implements closures and lexicals and how the evaluator lets
you deal with them, in particular the \tet{push_lex} and \tet{pop_lex}
functions. Check their descriptions and adapt the source code in
\kbd{language/sumiter.c} and \kbd{language/intnum.c}.
\subsec{Integration with \kbd{gp} as a shared module}
In this section we assume that your Operating System is supported by
\tet{install}. You have written a function in C following the guidelines is
\secref{se:coding_guidelines}; in case the function returns a \kbd{GEN}, it
must satisfy \kbd{gerepileupto} assumptions (see \secref{se:garbage}).
You then succeeded in building it as part of a shared library and want to
finally tell \kbd{gp} about your function. First, find a name for it. It does
not have to match the one used in library mode, but consistency is nice. It
has to be a valid GP identifier, i.e.~use only alphabetic characters, digits
and the underscore character (\kbd{\_}), the first character being
alphabetic.
Then figure out the correct \idx{parser code} corresponding to the function
prototype (as explained in~\secref{se:gp.interface}) and write a GP script
like the following:
\bprog
install(libname, code, gpname, library)
addhelp(gpname, "some help text")
@eprog
\noindent The \idx{addhelp} part is not mandatory, but very useful if you
want others to use your module. \kbd{libname} is how the function is named in
the library, usually the same name as one visible from C.
Read that file from your \kbd{gp} session, for instance from your
\idx{preferences file} (or \kbd{gprc}), and that's it. You
can now use the new function \var{gpname} under \kbd{gp}, and we would very
much like to hear about it!
\smallskip
\misctitle{Example}
A complete description could look like this:
\bprog
{
install(bnfinit0, "GD0,L,DGp", ClassGroupInit, "libpari.so");
addhelp(ClassGroupInit, "ClassGroupInit(P,{flag=0},{data=[]}):
compute the necessary data for ...");
}
@eprog\noindent which means we have a function \kbd{ClassGroupInit} under
\kbd{gp}, which calls the library function \kbd{bnfinit0} . The function has
one mandatory argument, and possibly two more (two \kbd{'D'} in the code),
plus the current real precision. More precisely, the first argument is a
\kbd{GEN}, the second one is converted to a \kbd{long} using \kbd{itos}
(\kbd{0} is passed if it is omitted), and the third one is also a \kbd{GEN},
but we pass \kbd{NULL} if no argument was supplied by the user. This matches
the C prototype (from \kbd{paridecl.h}):
%
\bprog
GEN bnfinit0(GEN P, long flag, GEN data, long prec)
@eprog\noindent
This function is in fact coded in \kbd{basemath/buch2.c}, and is in this case
completely identical to the GP function \kbd{bnfinit} but \kbd{gp} does not
need to know about this, only that it can be found somewhere in the shared
library \kbd{libpari.so}.
\misctitle{Important note} You see in this example that it is the
function's responsibility to correctly interpret its operands: \kbd{data =
NULL} is interpreted \emph{by the function} as an empty vector. Note that
since \kbd{NULL} is never a valid \kbd{GEN} pointer, this trick always
enables you to distinguish between a default value and actual input: the
user could explicitly supply an empty vector!
\subsec{Library interface for \kbd{install}}
There is a corresponding library interface for this \kbd{install}
functionality, letting you expand the GP parser/evaluator available in the
library with new functions from your C source code. Functions such as
\tet{gp_read_str} may then evaluate a GP expression sequence involving calls
to these new function!
\fun{entree *}{install}{void *f, const char *gpname, const char *code}
\noindent where \kbd{f} is the (address of the) function (cast to
\kbd{void*}), \kbd{gpname} is the name by which you want to access your
function from within your GP expressions, and \kbd{code} is as above.
\subsec{Integration by patching \kbd{gp}}
If \tet{install} is not available, and installing Linux or a BSD operating
system is not an option (why?), you have to hardcode your function in the
\kbd{gp} binary. Here is what needs to be done:
\item Fetch the complete sources of the PARI distribution.
\item Drop the function source code module in an appropriate directory
(a priori \kbd{src/modules}), and declare all public functions
in \kbd{src/headers/paridecl.h}.
\item Choose a help section and add a file
\kbd{src/functions/\var{section}/\var{gpname}}
containing the following, keeping the notation above:
\bprog
Function: @com\var{gpname}
Section: @com\var{section}
C-Name: @com\var{libname}
Prototype: @com\var{code}
Help: @com\var{some help text}
@eprog\noindent
(If the help text does not fit on a single line, continuation lines must
start by a whitespace character.) Two GP2C-related fields (\kbd{Description}
and \kbd{Wrapper}) are also available to improve the code GP2C generates when
compiling scripts involving your function. See the GP2C documentation for
details.
\item Launch \kbd{Configure}, which should pick up your C files and build an
appropriate \kbd{Makefile}. At this point you can recompile \kbd{gp}, which
will first rebuild the functions database.
\misctitle{Example} We reuse the \kbd{ClassGroupInit} / \kbd{bnfinit0}
from the preceding section. Since the C source code is already part
of PARI, we only need to add a file
\kbd{functions/number\_fields/ClassGroupInit}
\noindent containing the following:
\bprog
Function: ClassGroupInit
Section: number_fields
C-Name: bnfinit0
Prototype: GD0,L,DGp
Help: ClassGroupInit(P,{flag=0},{tech=[]}): this routine does @com\dots
@eprog\noindent
and recompile \kbd{gp}.
\section{Globals related to PARI configuration}
\subsec{PARI version numbers}
\noindent \tet{paricfg_version_code} encodes in a single \kbd{long}, the Major
and minor version numbers as well as the patchlevel.
\fun{long}{PARI_VERSION}{long M, long m, long p} produces the version code
attached to release $M.m.p$. Each code identifies a unique PARI release,
and corresponds to the natural total order on the set of releases (bigger
code number means more recent release).
\noindent \tet{PARI_VERSION_SHIFT} is the number of bits used to store each of
the integers $M$, $m$, $p$ in the version code.
\noindent \tet{paricfg_vcsversion} is a version string related to the
revision control system used to handle your sources, if any. For instance
\kbd{git-}\emph{commit hash} if compiled from a git repository.
The two character strings \tet{paricfg_version} and \tet{paricfg_buildinfo},
correspond to the first two lines printed by \kbd{gp} just before the
Copyright message. The character string \tet{paricfg_compiledate} is the
date of compilation which appears on the next line. The character string
\tet{paricfg_mt_engine} is the name of the threading engine on the next line.
\fun{GEN}{pari_version}{} returns the version number as a PARI object, a
\typ{VEC} with three \typ{INT} and one \typ{STR} components.
\subsec{Miscellaneous}
\tet{paricfg_datadir}: character string. The location of PARI's \tet{datadir}.
\newpage
\chapter{Arithmetic kernel: Level 0 and 1}
\section{Level 0 kernel (operations on ulongs)}
\subsec{Micro-kernel}
The Level 0 kernel simulates basic operations of the 68020 processor on which
PARI was originally implemented. They need ``global'' \kbd{ulong} variables
\kbd{overflow} (which will contain only 0 or 1) and \kbd{hiremainder} to
function properly. A routine using one of these lowest-level functions
where the description mentions either \kbd{hiremainder} or \kbd{overflow}
must declare the corresponding
\bprog
LOCAL_HIREMAINDER; /* provides 'hiremainder' */
LOCAL_OVERFLOW; /* provides 'overflow' */
@eprog\noindent
in a declaration block. Variables \kbd{hiremainder} and \kbd{overflow} then
become available in the enclosing block. For instance a loop over the powers
of an \kbd{ulong}~\kbd{p} protected from overflows could read
\bprog
while (pk < lim)
{
LOCAL_HIREMAINDER;
...
pk = mulll(pk, p); if (hiremainder) break;
}
@eprog\noindent
For most architectures, the functions mentioned below are really chunks of
inlined assembler code, and the above `global' variables are actually
local register values.
\fun{ulong}{addll}{ulong x, ulong y} adds \kbd{x} and \kbd{y}, returns the
lower \B\ bits and puts the carry bit into \kbd{overflow}.
\fun{ulong}{addllx}{ulong x, ulong y} adds \kbd{overflow} to the sum of the
\kbd{x} and \kbd{y}, returns the lower \B\ bits and puts the carry bit into
\kbd{overflow}.
\fun{ulong}{subll}{ulong x, ulong y} subtracts \kbd{x} and \kbd{y}, returns
the lower \B\ bits and put the carry (borrow) bit into \kbd{overflow}.
\fun{ulong}{subllx}{ulong x, ulong y} subtracts \kbd{overflow} from the
difference of \kbd{x} and \kbd{y}, returns the lower \B\ bits and puts the
carry (borrow) bit into \kbd{overflow}.
\fun{int}{bfffo}{ulong x} returns the number of leading zero bits in \kbd{x}.
That is, the number of bit positions by which it would have to be shifted
left until its leftmost bit first becomes equal to~1, which can be between 0
and $\B-1$ for nonzero \kbd{x}. When \kbd{x} is~0, the result is undefined.
\fun{ulong}{mulll}{ulong x, ulong y} multiplies \kbd{x} by \kbd{y}, returns
the lower \B\ bits and stores the high-order \B\ bits into \kbd{hiremainder}.
\fun{ulong}{addmul}{ulong x, ulong y} adds \kbd{hiremainder} to the product
of \kbd{x} and \kbd{y}, returns the lower \B\ bits and stores the high-order
\B\ bits into \kbd{hiremainder}.
\fun{ulong}{divll}{ulong x, ulong y} returns the quotient of
$ \left(\kbd{hiremainder} * 2^{\B}\right) + \kbd{x} $
by \kbd{y} and stores the remainder into \kbd{hiremainder}. An error occurs
if the quotient cannot be represented by an \kbd{ulong}, i.e.~if initially
$\kbd{hiremainder}\ge\kbd{y}$.
\misctitle{Obsolete routines} Those functions are awkward and no longer used;
they are only provided for backward compatibility:
\fun{ulong}{shiftl}{ulong x, ulong y} returns $x$ shifted left by $y$ bits,
i.e.~\kbd{$x$ << $y$}, where we assume that $0\leq y\leq\B$. The global variable
\kbd{hiremainder} receives the bits that were shifted out,
i.e.~\kbd{$x$ >> $(\B - y)$}.
\fun{ulong}{shiftlr}{ulong x, ulong y} returns $x$ shifted right by $y$ bits,
i.e.~\kbd{$x$ >> $y$}, where we assume that $0\leq y\leq\B$. The global variable
\kbd{hiremainder} receives the bits that were shifted out,
i.e.~\kbd{$x$ << $(\B - y)$}.
\subsec{Modular kernel}
The following routines are not part of the level 0 kernel per se, but
implement modular operations on words in terms of the above. They are written
so that no overflow may occur. Let $m \geq 1$ be the modulus; all operands
representing classes modulo $m$ are assumed to belong to $[0,m-1]$. The
result may be wrong for a number of reasons otherwise: it may not be reduced,
overflow can occur, etc.
\fun{int}{odd}{ulong x} returns 1 if $x$ is odd, and 0 otherwise.
\fun{int}{both_odd}{ulong x, ulong y} returns 1 if $x$ and $y$ are both odd,
and 0 otherwise.
\fun{ulong}{invmod2BIL}{ulong x} returns the smallest
positive representative of $x^{-1}$ mod $2^\B$, assuming $x$ is odd.
\fun{ulong}{Fl_add}{ulong x, ulong y, ulong m} returns the smallest
positive representative of $x + y$ modulo $m$.
\fun{ulong}{Fl_neg}{ulong x, ulong m} returns the smallest
positive representative of $-x$ modulo $m$.
\fun{ulong}{Fl_sub}{ulong x, ulong y, ulong m} returns the smallest
positive representative of $x - y$ modulo $m$.
\fun{long}{Fl_center}{ulong x, ulong m, ulong mo2} returns the representative
in $]-m/2,m/2]$ of $x$ modulo $m$. Assume $0 \leq x < m$ and
$\kbd{mo2} = m >> 1$.
\fun{ulong}{Fl_mul}{ulong x, ulong y, ulong m} returns the smallest positive
representative of $x y$ modulo $m$.
\fun{ulong}{Fl_double}{ulong x, ulong m} returns $2x$ modulo $m$.
\fun{ulong}{Fl_triple}{ulong x, ulong m} returns $3x$ modulo $m$.
\fun{ulong}{Fl_halve}{ulong x, ulong m} returns $z$ such that $2\*z = x$ modulo
$m$ assuming such $z$ exists.
\fun{ulong}{Fl_sqr}{ulong x, ulong m} returns the smallest positive
representative of $x^2$ modulo $m$.
\fun{ulong}{Fl_inv}{ulong x, ulong m} returns the smallest
positive representative of $x^{-1}$ modulo $m$. If $x$ is not invertible
mod~$m$, raise an exception.
\fun{ulong}{Fl_invsafe}{ulong x, ulong m} returns the smallest
positive representative of $x^{-1}$ modulo $m$. If $x$ is not invertible
mod~$m$, return $0$ (which is ambiguous if $m=1$).
\fun{ulong}{Fl_invgen}{ulong x, ulong m, ulong *pg} set \kbd{*pg} to
$g = \gcd(x,m)$ and return $u$ (invertible) such that $x u = g$ modulo $m$.
We have $g = 1$ if and only if $x$ is invertible, and in this case $u$
is its inverse.
\fun{ulong}{Fl_div}{ulong x, ulong y, ulong m} returns the smallest
positive representative of $x y^{-1}$ modulo $m$. If $y$ is not invertible
mod $m$, raise an exception.
\fun{ulong}{Fl_powu}{ulong x, ulong n, ulong m} returns the smallest
positive representative of $x^n$ modulo $m$.
\fun{GEN}{Fl_powers}{ulong x, long n, ulong p} returns
$[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ modulo $m$, as a \typ{VECSMALL}.
\fun{ulong}{Fl_sqrt}{ulong x, ulong p} returns the square root of \kbd{x}
modulo \kbd{p} (smallest positive representative). Assumes \kbd{p} to be
prime, and \kbd{x} to be a square modulo \kbd{p}.
\fun{ulong}{Fl_sqrtl}{ulong x, ulong l, ulong p} returns a $l$-the root of \kbd{x}
modulo \kbd{p}. Assumes \kbd{p} to be prime and $p \equiv 1 \pmod{l}$, and
\kbd{x} to be a $l$-th power modulo \kbd{p}.
\fun{ulong}{Fl_order}{ulong a, ulong o, ulong p} returns the order of the
\kbd{Fp} \kbd{a}. It is assumed that \kbd{o} is a multiple of the order of
\kbd{a}, $0$ being allowed (no non-trivial information).
\fun{ulong}{random_Fl}{ulong p} returns a pseudo-random integer uniformly
distributed in $0, 1, \dots p-1$.
\fun{ulong}{pgener_Fl}{ulong p} returns the smallest \idx{primitive root}
modulo \kbd{p}, assuming \kbd{p} is prime.
\fun{ulong}{pgener_Zl}{ulong p} returns the smallest primitive root modulo
$p^k$, $k > 1$, assuming $p$ is an odd prime.
\fun{ulong}{pgener_Fl_local}{ulong p, GEN L}, see \kbd{gener\_Fp\_local},
\kbd{L} is an \kbd{Flv}.
\subsec{Modular kernel with ``precomputed inverse''}
This is based on an algorithm by T. Grandlund and N. M\"{o}ller in
``Improved division by invariant integers''
\url{http://gmplib.org/~tege/division-paper.pdf}.
In the following, we set $B=\B$.
\fun{ulong}{get_Fl_red}{ulong p} returns a pseudo inverse \var{pi} for $p$
\fun{ulong}{divll_pre}{ulong x, ulong p, ulong yi}
as divll, where $yi$ is the pseudo inverse of $y$.
\fun{ulong}{remll_pre}{ulong u1, ulong u0, ulong p, ulong pi} returns
the Euclidean remainder of $u_1\*2^B+u_0$ modulo $p$, assuming $pi$ is the
pseudo inverse of $p$. This function is faster if $u_1 < p$.
\fun{ulong}{remlll_pre}{ulong u2, ulong u1, ulong u0, ulong p, ulong pi}
returns the Euclidean remainder of $u_2\*2^{2\*B}+u_1\*2^{B}+u_0$ modulo $p$,
assuming $pi$ is the pseudo inverse of $p$.
\fun{ulong}{Fl_sqr_pre}{ulong x, ulong p, ulong pi} returns $x^2$ modulo $p$,
assuming $pi$ is the pseudo inverse of $p$.
\fun{ulong}{Fl_mul_pre}{ulong x, ulong y, ulong p, ulong pi} returns $x\*y$
modulo $p$, assuming $pi$ is the pseudo inverse of $p$.
\fun{ulong}{Fl_addmul_pre}{ulong a, ulong b, ulong c, ulong p, ulong pi}
returns $a\*b+c$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.
\fun{ulong}{Fl_addmulmul_pre}{ulong a,ulong b, ulong c,ulong d, ulong p, ulong pi}
returns $a\*b+c\*d$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.
\fun{ulong}{Fl_powu_pre}{ulong x, ulong n, ulong p, ulong pi} returns
$x^n$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.
\fun{GEN}{Fl_powers_pre}{ulong x, long n, ulong p, ulong pi} returns
the vector (\typ{VECSMALL}) $(x^0, \dots, x^n)$, assuming $pi$ is
the pseudo inverse of $p$.
\fun{ulong}{Fl_sqrt_pre}{ulong x, ulong p, ulong pi} returns a square root
of $x$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.
See \kbd{Fl\_sqrt}.
\fun{ulong}{Fl_sqrtl_pre}{ulong x, ulong l, ulong p, ulong pi}
returns a $l$-the root of \kbd{x}
modulo \kbd{p}, assuming $pi$ is the pseudo inverse of $p$,
$p$ prime and $p \equiv 1 \pmod{l}$, and \kbd{x} to be a $l$-th power modulo
\kbd{p}.
\subsec{Switching between Fl\_xxx and standard operators}
Even though the \kbd{Fl\_xxx} routines are efficient, they are slower than
ordinary \kbd{long} operations, using the standard \kbd{+}, \kbd{\%}, etc.
operators.
The following macro is used to choose in a portable way the most efficient
functions for given operands:
\fun{int}{SMALL_ULONG}{ulong p} true if $2p^2 <2^\B$. In that case, it is
possible to use ordinary operators efficiently. If $p < 2^\B$, one
may still use the \kbd{Fl\_xxx} routines. Otherwise, one must use generic
routines. For instance, the scalar product of the \kbd{GEN}s $x$ and $y$ mod
$p$ could be computed as follows.
\bprog
long i, l = lg(x);
if (lgefint(p) > 3)
{ /* arbitrary */
GEN s = gen_0;
for (i = 1; i < l; i++) s = addii(s, mulii(gel(x,i), gel(y,i)));
return modii(s, p).
}
else
{
ulong s = 0, pp = itou(p);
x = ZV_to_Flv(x, pp);
y = ZV_to_Flv(y, pp);
if (SMALL_ULONG(pp))
{ /* very small */
for (i = 1; i < l; i++)
{
s += x[i] * y[i];
if (s & HIGHBIT) s %= pp;
}
s %= pp;
}
else
{ /* small */
for (i = 1; i < l; i++)
s = Fl_add(s, Fl_mul(x[i], y[i], pp), pp);
}
return utoi(s);
}
@eprog\noindent
In effect, we have three versions of the same code: very small, small, and
arbitrary inputs. The very small and arbitrary variants use lazy reduction
and reduce only when it becomes necessary: when overflow might occur (very
small), and at the very end (very small, arbitrary).
\section{Level 1 kernel (operations on longs, integers and reals)}
\misctitle{Note} Some functions consist of an elementary operation,
immediately followed by an assignment statement. They will be introduced as
in the following example:
\fun{GEN}{gadd[z]}{GEN x, GEN y[, GEN z]} followed by the explicit
description of the function
\fun{GEN}{gadd}{GEN x, GEN y}
\noindent which creates its result on the stack, returning a \kbd{GEN} pointer
to it, and the parts in brackets indicate that there exists also a function
\fun{void}{gaddz}{GEN x, GEN y, GEN z}
\noindent which assigns its result to the pre-existing object
\kbd{z}, leaving the stack unchanged. These assignment variants are kept for
backward compatibility but are inefficient: don't use them.
\subsec{Creation}
\fun{GEN}{cgeti}{long n} allocates memory on the PARI stack for a \typ{INT}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{INT})}.
\fun{GEN}{cgetipos}{long n} allocates memory on the PARI stack for a
\typ{INT} of length~\kbd{n}, and initializes its two codewords. The sign
of \kbd{n} is set to $1$.
\fun{GEN}{cgetineg}{long n} allocates memory on the PARI stack for a negative
\typ{INT} of length~\kbd{n}, and initializes its two codewords. The sign
of \kbd{n} is set to $-1$.
\fun{GEN}{cgetr}{long n} allocates memory on the PARI stack for a \typ{REAL}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{REAL})}.
\fun{GEN}{cgetc}{long n} allocates memory on the PARI stack for a
\typ{COMPLEX}, whose real and imaginary parts are \typ{REAL}s
of length~\kbd{n}.
\fun{GEN}{real_1}{long prec} create a \typ{REAL} equal to $1$ to \kbd{prec}
words of accuracy.
\fun{GEN}{real_1_bit}{long bitprec} create a \typ{REAL} equal to $1$ to
\kbd{bitprec} bits of accuracy.
\fun{GEN}{real_m1}{long prec} create a \typ{REAL} equal to $-1$ to \kbd{prec}
words of accuracy.
\fun{GEN}{real_0_bit}{long bit} create a \typ{REAL} equal to $0$ with
exponent $-\kbd{bit}$.
\fun{GEN}{real_0}{long prec} is a shorthand for
\bprog
real_0_bit( -prec2nbits(prec) )
@eprog
\fun{GEN}{int2n}{long n} creates a \typ{INT} equal to \kbd{1<<n} (i.e
$2^n$ if $n \geq 0$, and $0$ otherwise).
\fun{GEN}{int2u}{ulong n} creates a \typ{INT} equal to $2^n$.
\fun{GEN}{real2n}{long n, long prec} create a \typ{REAL} equal to $2^n$
to \kbd{prec} words of accuracy.
\fun{GEN}{real_m2n}{long n, long prec} create a \typ{REAL} equal to $-2^n$
to \kbd{prec} words of accuracy.
\fun{GEN}{strtoi}{char *s} convert the character string \kbd{s} to a
non-negative \typ{INT}.
Decimal numbers, hexadecimal numbers prefixed by \kbd{0x} and binary numbers prefixed
by \kbd{0b} are allowed. The string \kbd{s} consists exclusively of digits:
no leading sign, no whitespace. Leading zeroes are discarded.
\fun{GEN}{strtor}{char *s, long prec} convert the character string \kbd{s} to
a non-negative \typ{REAL} of precision \kbd{prec}. The string \kbd{s}
consists exclusively of digits and optional decimal point and exponent
(\kbd{e} or \kbd{E}): no leading sign, no whitespace. Leading zeroes are
discarded.
\subsec{Assignment}
In this section, the \kbd{z} argument in the \kbd{z}-functions must be of type
\typ{INT} or~\typ{REAL}.
\fun{void}{mpaff}{GEN x, GEN z} assigns \kbd{x} into~\kbd{z} (where \kbd{x}
and \kbd{z} are \typ{INT} or \typ{REAL}).
Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affii}{GEN x, GEN z} assigns the \typ{INT} \kbd{x} into the
\typ{INT}~\kbd{z}.
\fun{void}{affir}{GEN x, GEN z} assigns the \typ{INT} \kbd{x} into the
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affiz}{GEN x, GEN z} assigns \typ{INT}~\kbd{x} into \typ{INT} or
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affsi}{long s, GEN z} assigns the \kbd{long}~\kbd{s} into the
\typ{INT}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affsr}{long s, GEN z} assigns the \kbd{long}~\kbd{s} into the
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affsz}{long s, GEN z} assigns the \kbd{long}~\kbd{s} into the
\typ{INT} or \typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affui}{ulong u, GEN z} assigns the \kbd{ulong}~\kbd{u} into the
\typ{INT}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affur}{ulong u, GEN z} assigns the \kbd{ulong}~\kbd{u} into the
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.
\fun{void}{affrr}{GEN x, GEN z} assigns the \typ{REAL}~\kbd{x} into the
\typ{REAL}~\kbd{z}.
\fun{void}{affgr}{GEN x, GEN z} assigns the scalar \kbd{x} into the
\typ{REAL}~\kbd{z}, if possible.
\noindent The function \kbd{affrs} and \kbd{affri} do not exist. So don't use
them.
\fun{void}{affrr_fixlg}{GEN y, GEN z} a variant of \kbd{affrr}. First shorten
$z$ so that it is no longer than $y$, then assigns $y$ to $z$. This is used
in the following scenario: room is reserved for the result but, due to
cancellation, fewer words of accuracy are available than had been
anticipated; instead of appending meaningless $0$s to the mantissa, we store
what was actually computed.
Note that shortening $z$ is not quite straightforward, since \kbd{setlg(z, ly)}
would leave garbage on the stack, which \kbd{gerepile} might later inspect.
It is done using
\fun{void}{fixlg}{GEN z, long ly} see \tet{stackdummy} and the examples that
follow.
\subsec{Copy}
\fun{GEN}{icopy}{GEN x} copy relevant words of the \typ{INT}~\kbd{x} on the
stack: the length and effective length of the copy are equal.
\fun{GEN}{rcopy}{GEN x} copy the \typ{REAL}~\kbd{x} on the stack.
\fun{GEN}{leafcopy}{GEN x} copy the leaf~\kbd{x} on the
stack (works in particular for \typ{INT}s and \typ{REAL}s).
Contrary to \kbd{icopy}, \kbd{leafcopy} preserves the original
length of a \typ{INT}. The obsolete form \fun{GEN}{mpcopy}{GEN x}
is still provided for backward compatibility.
This function also works on recursive types, copying them as if they were
leaves, i.e.~making a shallow copy in that case: the components of the copy
point to the same data as the component of the source; see also
\kbd{shallowcopy}.
\fun{GEN}{leafcopy_avma}{GEN x, pari_sp av} analogous to \kbd{gcopy\_avma}
but simpler: assume $x$ is a leaf and return a copy allocated as if
initially we had \kbd{avma} equal to \kbd{av}. There is no need to pass a
pointer and update the value of the second argument: the new (fictitious)
\kbd{avma} is just the return value (typecast to \kbd{pari\_sp}).
\fun{GEN}{icopyspec}{GEN x, long nx} copy the \kbd{nx} words
\kbd{x[2]}, \dots, \kbd{x[nx+1]} to make up a new \typ{INT}. Set the sign
to $1$.
\subsec{Conversions}
\fun{GEN}{itor}{GEN x, long prec} converts the \typ{INT}~\kbd{x} to a
\typ{REAL} of length \kbd{prec} and return the latter.
Assumes that $\kbd{prec} > 2$.
\fun{long}{itos}{GEN x} converts the \typ{INT}~\kbd{x} to a \kbd{long} if
possible, otherwise raise an exception. We consider the conversion
to be possible if and only if $|x| \leq \kbd{LONG\_MAX}$, i.e. $|x| < 2^{63}$
on a 64-bit architecture. Since the range is symetric, the output of
\kbd{itos} can safely be negated.
\fun{long}{itos_or_0}{GEN x} converts the \typ{INT}~\kbd{x} to a \kbd{long} if
possible, otherwise return $0$.
\fun{int}{is_bigint}{GEN n} true if \kbd{itos(n)} would give an error.
\fun{ulong}{itou}{GEN x} converts the \typ{INT}~\kbd{|x|} to an \kbd{ulong} if
possible, otherwise raise an exception. The conversion is possible if
and only if $\kbd{lgefint}(x) \leq 3$.
\fun{long}{itou_or_0}{GEN x} converts the \typ{INT}~\kbd{|x|} to an
\kbd{ulong} if possible, otherwise return $0$.
\fun{GEN}{stoi}{long s} creates the \typ{INT} corresponding to the
\kbd{long}~\kbd{s}.
\fun{GEN}{stor}{long s, long prec} converts the \kbd{long}~\kbd{s} into a
\typ{REAL} of length \kbd{prec} and return the latter. Assumes that
$\kbd{prec} > 2$.
\fun{GEN}{utoi}{ulong s} converts the \kbd{ulong}~\kbd{s} into a \typ{INT}
and return the latter.
\fun{GEN}{utoipos}{ulong s} converts the \emph{non-zero} \kbd{ulong}~\kbd{s}
into a \typ{INT} and return the latter.
\fun{GEN}{utoineg}{ulong s} converts the \emph{non-zero} \kbd{ulong}~\kbd{s}
into the \typ{INT} $-s$ and return the latter.
\fun{GEN}{utor}{ulong s, long prec} converts the \kbd{ulong}~\kbd{s} into a
\typ{REAL} of length \kbd{prec} and return the latter. Assumes that
$\kbd{prec} > 2$.
\fun{GEN}{rtor}{GEN x, long prec} converts the \typ{REAL}~\kbd{x} to a
\typ{REAL} of length \kbd{prec} and return the latter. If
$\kbd{prec} < \kbd{lg(x)}$, round properly. If $\kbd{prec} > \kbd{lg(x)}$,
pad with zeroes. Assumes that $\kbd{prec} > 2$.
\noindent The following function is also available as a special case of
\tet{mkintn}:
\fun{GEN}{uu32toi}{ulong a, ulong b} returns the \kbd{GEN} equal to $2^{32} a +
b$, \emph{assuming} that $a,b < 2^{32}$. This does not depend on
\kbd{sizeof(long)}: the behavior is as above on both $32$ and $64$-bit
machines.
\fun{GEN}{uutoi}{ulong a, ulong b} returns the \kbd{GEN} equal to
$2^{\B} a + b$.
\fun{GEN}{uutoineg}{ulong a, ulong b} returns the \kbd{GEN} equal to
$-(2^{\B} a + b)$.
\subsec{Integer parts}
The following four functions implement the conversion from \typ{REAL} to
\typ{INT} using standard rounding modes. Contrary to usual semantics
(complement the mantissa with an infinite number of 0), they will raise an
error \emph{precision loss in truncation} if the \typ{REAL} represents a
range containing more than one integer.
\fun{GEN}{ceilr}{GEN x} smallest integer larger or equal
to the \typ{REAL}~\kbd{x} (i.e.~the \kbd{ceil} function).
\fun{GEN}{floorr}{GEN x} largest integer smaller or equal to the
\typ{REAL}~\kbd{x} (i.e.~the \kbd{floor} function).
\fun{GEN}{roundr}{GEN x} rounds the \typ{REAL} \kbd{x} to the nearest integer
(towards~$+\infty$ in case of tie).
\fun{GEN}{truncr}{GEN x} truncates the \typ{REAL}~\kbd{x} (not the same as
\kbd{floorr} if \kbd{x} is negative).
The following four function are analogous, but can also treat the trivial
case when the argument is a \typ{INT}:
\fun{GEN}{mpceil}{GEN x}
as \kbd{ceilr} except that \kbd{x} may be a \typ{INT}.
\fun{GEN}{mpfloor}{GEN x}
as \kbd{floorr} except that \kbd{x} may be a \typ{INT}.
\fun{GEN}{mpround}{GEN x}
as \kbd{roundr} except that \kbd{x} may be a \typ{INT}.
\fun{GEN}{mptrunc}{GEN x}
as \kbd{truncr} except that \kbd{x} may be a \typ{INT}.
\fun{GEN}{diviiround}{GEN x, GEN y} if \kbd{x} and \kbd{y} are \typ{INT}s,
returns the quotient $\kbd{x}/\kbd{y}$ of \kbd{x} and~\kbd{y}, rounded to
the nearest integer. If $\kbd{x}/\kbd{y}$ falls exactly halfway between
two consecutive integers, then it is rounded towards~$+\infty$ (as for
\tet{roundr}).
\fun{GEN}{ceil_safe}{GEN x}, \kbd{x} being a real number (not necessarily a
\typ{REAL}) returns the smallest integer which is larger than any possible
incarnation of \kbd{x}. (Recall that a \typ{REAL} represents an interval of
possible values.) Note that \kbd{gceil} raises an exception if the input
accuracy is too low compared to its magnitude.
\fun{GEN}{floor_safe}{GEN x}, \kbd{x} being a real number (not necessarily a
\typ{REAL}) returns the largest integer which is smaller than any possible
incarnation of \kbd{x}. (Recall that a \typ{REAL} represents an interval of
possible values.) Note that \kbd{gfloor} raises an exception if the input
accuracy is too low compared to its magnitude.
\fun{GEN}{trunc_safe}{GEN x}, \kbd{x} being a real number (not necessarily a
\typ{REAL}) returns the integer with the largest absolute value, which is closer
to $0$ than any possible incarnation of \kbd{x}. (Recall that a \typ{REAL}
represents an interval of possible values.)
\fun{GEN}{roundr_safe}{GEN x} rounds the \typ{REAL} \kbd{x} to the nearest
integer (towards~$+\infty$). Complement the mantissa with an infinite number
of $0$ before rounding, hence never raise an exception.
\subsec{$2$-adic valuations and shifts}
\fun{long}{vals}{long s} 2-adic valuation of the \kbd{long}~\kbd{s}. Returns
$-1$ if \kbd{s} is equal to 0.
\fun{long}{vali}{GEN x} 2-adic valuation of the \typ{INT}~\kbd{x}. Returns $-1$
if \kbd{x} is equal to 0.
\fun{GEN}{mpshift}{GEN x, long n} shifts the~\typ{INT} or
\typ{REAL} \kbd{x} by~\kbd{n}. If \kbd{n} is positive, this is a left shift,
i.e.~multiplication by $2^{\kbd{n}}$. If \kbd{n} is negative, it is a right
shift by~$-\kbd{n}$, which amounts to the truncation of the quotient of \kbd{x}
by~$2^{-\kbd{n}}$.
\fun{GEN}{shifti}{GEN x, long n} shifts the \typ{INT}~$x$ by~$n$.
\fun{GEN}{shiftr}{GEN x, long n} shifts the \typ{REAL}~$x$ by~$n$.
\fun{void}{shiftr_inplace}{GEN x, long n} shifts the \typ{REAL}~$x$ by~$n$,
in place.
\fun{GEN}{trunc2nr}{GEN x, long n} given a \typ{REAL} $x$, returns
\kbd{truncr(shiftr(x,n))}, but faster, without leaving garbage on the stack
and never raising a \emph{precision loss in truncation} error.
Called by \tet{gtrunc2n}.
\fun{GEN}{trunc2nr_lg}{GEN x, long lx, long n} given a \typ{REAL} $x$, returns
\kbd{trunc2nr(x,n)}, pretending that the length of $x$ is \kbd{lx}, which
must be $\leq \kbd{lg}(x)$.
\fun{GEN}{mantissa2nr}{GEN x, long n} given a \typ{REAL} $x$, returns
the mantissa of $x 2^n$ (disregards the exponent of $x$). Equivalent to
\bprog
trunc2nr(x, n-expo(x)+bit_prec(x)-1)
@eprog
\fun{GEN}{mantissa_real}{GEN z, long *e} returns the mantissa $m$ of $z$, and
sets \kbd{*e} to the exponent $\kbd{bit\_accuracy(lg(z))}-1-\kbd{expo}(z)$,
so that $z = m / 2^e$.
\misctitle{Low-level} In the following two functions, $s$(ource) and $t$(arget)
need not be valid \kbd{GEN}s (in practice, they usually point to some part of a
\typ{REAL} mantissa): they are considered as arrays of words representing some
mantissa, and we shift globally $s$ by $n > 0$ bits, storing the result in
$t$. We assume that $m\leq M$ and only access $s[m], s[m+1],\ldots s[M]$
(read) and likewise for $t$ (write); we may have $s = t$ but more general
overlaps are not allowed. The word $f$ is concatenated to $s$ to supply extra
bits.
\fun{void}{shift_left}{GEN t, GEN s, long m, long M, ulong f, ulong n}
shifts the mantissa
$$s[m], s[m+1],\ldots s[M], f$$
left by $n$ bits.
\fun{void}{shift_right}{GEN t, GEN s, long m, long M, ulong f, ulong n}
shifts the mantissa
$$f, s[m], s[m+1],\ldots s[M]$$
right by $n$ bits.
\subsec{From \typ{INT} to bits or digits in base $2^k$ and back}
\fun{GEN}{binary_zv}{GEN x} given a \typ{INT} $x$, return a \typ{VECSMALL} of
bits, from most significant to least significant.
\fun{GEN}{binary_2k}{GEN x, long k} given a \typ{INT} $x$, and
$k > 0$, return a \typ{VEC} of digits of $x$ in base $2^k$, as \typ{INT}s, from
most significant to least significant.
\fun{GEN}{binary_2k_nv}{GEN x, long k} given a \typ{INT} $x$, and $0 < k <
\tet{BITS_IN_LONG}$, return a \typ{VECSMALL} of digits of $x$ in base $2^k$, as
\kbd{ulong}s, from most significant to least significant.
\fun{GEN}{bits_to_int}{GEN x, long l} given a vector $x$ of $l$ bits (as a
\typ{VECSMALL} or even a pointer to a part of a larger vector, so not a
proper \kbd{GEN}), return the integer $\sum_{i = 1}^l x[i] 2^{l-i}$, as a
\typ{INT}.
\fun{ulong}{bits_to_u}{GEN v, long l} same as \tet{bits_to_int}, where
$l < \tet{BITS_IN_LONG}$, so we can return an \kbd{ulong}.
\fun{GEN}{fromdigitsu}{GEN x, GEN B}
given a \typ{VECSMALL} $x$ of length $l$ and a \typ{INT} $B$,
return the integer $\sum_{i = 1}^l x[i] B^{i-1}$, as a \typ{INT},
where the \kbd{x[i]} are seen as unsigned integers.
\fun{GEN}{fromdigits_2k}{GEN x, long k} converse of \tet{binary_2k};
given a \typ{VEC} $x$ of length $l$ and a positive \kbd{long} $k$,
where each $x[i]$ is a \typ{INT} with $0\leq x[i] < 2^k$, return the
integer $\sum_{i = 1}^l x[i] 2^{k(l-i)}$, as a \typ{INT}.
\fun{GEN}{nv_fromdigits_2k}{GEN x, long k} as \tet{fromdigits_2k}, but
with $x$ being a \typ{VECSMALL} and each $x[i]$ being a \kbd{ulong}
with $0\leq x[i] < 2^{\min\{k,\tet{BITS_IN_LONG}\}}$. Here $k$ may be
any positive \kbd{long}, and the $x[i]$ are regarded as $k$-bit
integers by truncating or extending with zeroes.
\subsec{Integer valuation}
For integers $x$ and $p$, such that $x\neq 0$ and $|p| > 1$, we define
$v_p(x)$ to be the largest integer exponent $e$ such that $p^e$ divides $x$.
If $p$ is prime, this is the ordinary valuation of $x$ at $p$.
\fun{long}{Z_pvalrem}{GEN x, GEN p, GEN *r} applied to \typ{INT}s
$\kbd{x}\neq 0$ and~\kbd{p}, $|\kbd{p}| > 1$, returns $e := v_p(x)$
The quotient $\kbd{x}/\kbd{p}^e$ is returned in~\kbd{*r}. If
$|\kbd{p}|$ is a prime, \kbd{*r} is the prime-to-\kbd{p} part of~\kbd{x}.
\fun{long}{Z_pval}{GEN x, GEN p} as \kbd{Z\_pvalrem} but only returns
$v_p(x)$.
\fun{long}{Z_lvalrem}{GEN x, ulong p, GEN *r} as \kbd{Z\_pvalrem},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).
\fun{long}{Z_lvalrem_stop}{GEN *x, ulong p, int *stop} returns $e := v_p(x)$
and replaces $x$ by $x / p^e$. Set \kbd{stop} to $1$ if the new value
of $x$ is $ < p^2$ (and $0$ otherwise). To be used when trial dividing $x$
by successive primes: the \kbd{stop} condition is cheaply tested while
testing whether $p$ divides $x$ (is the quotient less than $p$?), and allows
to decide that $n$ is prime if no prime $< p$ divides $n$. Not memory-clean.
\fun{long}{Z_lval}{GEN x, ulong p} as \kbd{Z\_pval},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).
\fun{long}{u_lvalrem}{ulong x, ulong p, ulong *r} as \kbd{Z\_pvalrem},
except the inputs/outputs are now \kbd{ulong}s.
\fun{long}{u_lvalrem_stop}{ulong *n, ulong p, int *stop} as
\kbd{Z\_pvalrem\_stop}.
\fun{long}{u_pvalrem}{ulong x, GEN p, ulong *r} as \kbd{Z\_pvalrem},
except \kbd{x} and \kbd{r} are now \kbd{ulong}s.
\fun{long}{u_lval}{ulong x, ulong p} as \kbd{Z\_pval},
except the inputs are now \kbd{ulong}s.
\fun{long}{u_pval}{ulong x, GEN p} as \kbd{Z\_pval},
except \kbd{x} is now an \kbd{ulong}.
\fun{long}{z_lval}{long x, ulong p} as \kbd{u\_lval}, for signed \kbd{x}.
\fun{long}{z_lvalrem}{long x, ulong p} as \kbd{u\_lvalrem}, for signed \kbd{x}.
\fun{long}{z_pval}{long x, GEN p} as \kbd{Z\_pval},
except \kbd{x} is now a \kbd{long}.
\fun{long}{z_pvalrem}{long x, GEN p} as \kbd{Z\_pvalrem},
except \kbd{x} is now a \kbd{long}.
\fun{long}{Q_pval}{GEN x, GEN p} valuation at the \typ{INT} \kbd{p}
of the \typ{INT} or \typ{FRAC}~\kbd{x}.
\fun{long}{factorial_lval}{ulong n, ulong p} returns $v_p(n!)$, assuming
$p$ is prime.
The following convenience functions generalize \kbd{Z\_pval} and its variants
to ``containers'' (\kbd{ZV} and \kbd{ZX}):
\fun{long}{ZV_pvalrem}{GEN x, GEN p, GEN *r} $x$ being a \kbd{ZV} (a vector
of \typ{INT}s), return the min $v$ of the valuations of its components and
set \kbd{*r} to $x/p^v$. Infinite loop if $x$ is the zero vector.
This function is not stack clean.
\fun{long}{ZV_pval}{GEN x, GEN p} as \kbd{ZV\_pvalrem} but only returns the
``valuation''.
\fun{int}{ZV_Z_dvd}{GEN x, GEN p} returns $1$ if $p$ divides all components
of $x$ and $0$ otherwise. Faster than testing \kbd{ZV\_pval(x,p) >= 1}.
\fun{long}{ZV_lvalrem}{GEN x, ulong p, GEN *px} as \kbd{ZV\_pvalrem},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).
This function is not stack-clean.
\fun{long}{ZV_lval}{GEN x, ulong p} as \kbd{ZV\_pval},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).
\fun{long}{ZX_pvalrem}{GEN x, GEN p, GEN *r} as \kbd{ZV\_pvalrem}, for
a \kbd{ZX} $x$ (a \typ{POL} with \typ{INT} coefficients).
This function is not stack-clean.
\fun{long}{ZX_pval}{GEN x, GEN p} as \kbd{ZV\_pval} for a \kbd{ZX} $x$.
\fun{long}{ZX_lvalrem}{GEN x, ulong p, GEN *px} as \kbd{ZV\_lvalrem},
a \kbd{ZX} $x$.
This function is not stack-clean.
\fun{long}{ZX_lval}{GEN x, ulong p} as \kbd{ZX\_pval},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).
\subsec{Generic unary operators} Let ``\op'' be a unary operation among
\item \key{neg}: negation ($-x$).
\item \key{abs}: absolute value ($|x|$).
\item \key{sqr}: square ($x^2$).
\noindent The names and prototypes of the low-level functions corresponding
to \op\ are as follows. The result is of the same type as~\kbd{x}.
\funno{GEN}{\op i}{GEN x} creates the result of \op\ applied to the
\typ{INT}~\kbd{x}.
\funno{GEN}{\op r}{GEN x} creates the result of \op\ applied to the
\typ{REAL}~\kbd{x}.
\funno{GEN}{mp\op}{GEN x} creates the result of \op\ applied to the
\typ{INT} or \typ{REAL}~\kbd{x}.
\noindent Complete list of available functions:
\fun{GEN}{absi}{GEN x}, \fun{GEN}{absr}{GEN x}, \fun{GEN}{mpabs}{GEN x}
\fun{GEN}{negi}{GEN x}, \fun{GEN}{negr}{GEN x}, \fun{GEN}{mpneg}{GEN x}
\fun{GEN}{sqri}{GEN x}, \fun{GEN}{sqrr}{GEN x}, \fun{GEN}{mpsqr}{GEN x}
\fun{GEN}{absi_shallow}{GEN x} $x$ being a \typ{INT}, returns a shallow copy of
$|x|$, in particular returns $x$ itself when $x \geq 0$, and \kbd{negi($x$)}
otherwise.
\fun{GEN}{mpabs_shallow}{GEN x} $x$ being a \typ{INT} or a \typ{REAL}, returns
a shallow copy of $|x|$, in particular returns $x$ itself when $x \geq 0$, and
\kbd{mpneg($x$)} otherwise.
\noindent Some miscellaneous routines:
\fun{GEN}{sqrs}{long x} returns $x^2$.
\fun{GEN}{sqru}{ulong x} returns $x^2$.
\subsec{Comparison operators}
\fun{long}{minss}{long x, long y}
\fun{ulong}{minuu}{ulong x, ulong y}
\fun{double}{mindd}{double x, double y} returns the \kbd{min} of $x$ and $y$.
\fun{long}{maxss}{long x, long y}
\fun{ulong}{maxuu}{ulong x, ulong y}
\fun{double}{maxdd}{double x, double y} returns the \kbd{max} of $x$ and $y$.
\smallskip
\fun{int}{mpcmp}{GEN x, GEN y} compares the \typ{INT} or \typ{REAL}~\kbd{x}
to the \typ{INT} or \typ{REAL}~\kbd{y}. The result is the sign of
$\kbd{x}-\kbd{y}$.
\fun{int}{cmpii}{GEN x, GEN y} compares the \typ{INT} \kbd{x} to the
\typ{INT}~\kbd{y}.
\fun{int}{cmpir}{GEN x, GEN y} compares the \typ{INT} \kbd{x} to the
\typ{REAL}~\kbd{y}.
\fun{int}{cmpis}{GEN x, long s} compares the \typ{INT}~\kbd{x} to the
\kbd{long}~\kbd{s}.
\fun{int}{cmpsi}{long s, GEN x} compares the \kbd{long}~\kbd{s} to the
\typ{INT}~\kbd{x}.
\fun{int}{cmpsr}{long s, GEN x} compares the \kbd{long}~\kbd{s} to the
\typ{REAL}~\kbd{x}.
\fun{int}{cmpri}{GEN x, GEN y} compares the \typ{REAL}~\kbd{x} to the
\typ{INT}~\kbd{y}.
\fun{int}{cmprr}{GEN x, GEN y} compares the \typ{REAL}~\kbd{x} to the
\typ{REAL}~\kbd{y}.
\fun{int}{cmprs}{GEN x, long s} compares the \typ{REAL}~\kbd{x} to the
\kbd{long}~\kbd{s}.
\fun{int}{equalii}{GEN x, GEN y} compares the \typ{INT}s \kbd{x} and~\kbd{y}.
The result is $1$ if $\kbd{x} = \kbd{y}$, $0$ otherwise.
\fun{int}{equalrr}{GEN x, GEN y} compares the \typ{REAL}s \kbd{x} and~\kbd{y}.
The result is $1$ if $\kbd{x} = \kbd{y}$, $0$ otherwise. Equality is decided
according to the following rules: all real zeroes are equal, and
different from a non-zero real; two non-zero reals are equal if all their
digits coincide up to the length of the shortest of the two, and the
remaining words in the mantissa of the longest are all $0$.
\fun{int}{equalsi}{long s, GEN x}
\fun{int}{equalis}{GEN x, long s} compare the \typ{INT} \kbd{x} and
the \kbd{long}~\kbd{s}. The result is $1$ if $\kbd{x} = \kbd{y}$, $0$ otherwise.
The remaining comparison operators disregard the sign of their operands
\fun{int}{absequaliu}{GEN x, ulong u} compare the absolute value of the
\typ{INT} \kbd{x} and the \kbd{ulong}~\kbd{s}. The result is $1$ if
$|\kbd{x}| = \kbd{y}$, $0$ otherwise. This is marginally more efficient
than \kbd{equalis} even when \kbd{x} is known to be non-negative.
\fun{int}{absequalui}{ulong u, GEN x}
\fun{int}{abscmpiu}{GEN x, ulong u} compare the absolute value of the
\typ{INT} \kbd{x} and the \kbd{ulong}~\kbd{u}.
\fun{int}{abscmpui}{ulong u, GEN x}
\fun{int}{abscmpii}{GEN x, GEN y} compares the \typ{INT}s \kbd{x} and~\kbd{y}.
The result is the sign of $|\kbd{x}| - |\kbd{y}|$.
\fun{int}{absequalii}{GEN x, GEN y} compares the \typ{INT}s \kbd{x}
and~\kbd{y}. The result is $1$ if $|\kbd{x}| = |\kbd{y}|$, $0$ otherwise.
\fun{int}{abscmprr}{GEN x, GEN y} compares the \typ{REAL}s \kbd{x} and~\kbd{y}.
The result is the sign of $|\kbd{x}| - |\kbd{y}|$.
\fun{int}{absrnz_equal2n}{GEN x} tests whether a non-zero \typ{REAL} \kbd{x}
is equal to $\pm 2^e$ for some integer $e$.
\fun{int}{absrnz_equal1}{GEN x} tests whether a non-zero \typ{REAL} \kbd{x}
is equal to $\pm 1$.
\subsec{Generic binary operators}\label{se:genbinop} The operators in this
section have arguments of C-type \kbd{GEN}, \kbd{long}, and \kbd{ulong}, and
only \typ{INT} and \typ{REAL} \kbd{GEN}s are allowed. We say an argument is a
real type if it is a \typ{REAL} \kbd{GEN}, and an integer type otherwise. The
result is always a \typ{REAL} unless both \kbd{x} and \kbd{y} are integer
types.
Let ``\op'' be a binary operation among
\item \key{add}: addition (\kbd{x + y}).
\item \key{sub}: subtraction (\kbd{x - y}).
\item \key{mul}: multiplication (\kbd{x * y}).
\item \key{div}: division (\kbd{x / y}). In the case where \kbd{x} and \kbd{y}
are both integer types, the result is the Euclidean quotient, where the
remainder has the same sign as the dividend~\kbd{x}. It is the ordinary
division otherwise. A division-by-$0$ error occurs if \kbd{y} is equal to
$0$.
The last two generic operations are defined only when arguments have integer
types; and the result is a \typ{INT}:
\item \key{rem}: remainder (``\kbd{x \% y}''). The result is the Euclidean
remainder corresponding to \kbd{div},~i.e. its sign is that of the
dividend~\kbd{x}.
\item \key{mod}: true remainder (\kbd{x \% y}). The result is the true
Euclidean remainder, i.e.~non-negative and less than the absolute value
of~\kbd{y}.
\misctitle{Important technical note} The rules given above fixing the output
type (to \typ{REAL} unless both inputs are integer types) are subtly
incompatible with the general rules obeyed by PARI's generic functions, such
as \kbd{gmul} or \kbd{gdiv} for instance: the latter return a result
containing as much information as could be deduced from the inputs, so it is
not true that if $x$ is a \typ{INT} and $y$ a \typ{REAL}, then
\kbd{gmul(x,y)} is always the same as \kbd{mulir(x,y)}. The exception
is $x = 0$, in that case we can deduce that the result is an exact $0$,
so \kbd{gmul} returns \kbd{gen\_0}, while \kbd{mulir} returns a
\typ{REAL} $0$. Specifically, the one resulting from the conversion of
\kbd{gen\_0} to a \typ{REAL} of precision \kbd{precision(y)}, multiplied by
$y$; this determines the exponent of the real $0$ we obtain.
The reason for the discrepancy between the two rules is that we use the two
sets of functions in different contexts: generic functions allow to write
high-level code forgetting about types, letting PARI return results which are
sensible and as simple as possible; type specific functions are used in
kernel programming, where we do care about types and need to maintain strict
consistency: it is much easier to compute the types of results when they are
determined from the types of the inputs only (without taking into account
further arithmetic properties, like being non-0).
\smallskip
The names and prototypes of the low-level functions corresponding
to \op\ are as follows. In this section, the \kbd{z} argument in the
\kbd{z}-functions must be of type \typ{INT} when no \kbd{r} or \kbd{mp}
appears in the argument code (no \typ{REAL} operand is involved, only integer
types), and of type \typ{REAL} otherwise.
\funno{GEN}{mp\op[z]}{GEN x, GEN y[, GEN z]} applies \op\ to
the \typ{INT} or \typ{REAL} \kbd{x} and~\kbd{y}. The function
\kbd{mpdivz} does not exist (its semantic would change drastically
depending on the type of the \kbd{z} argument), and neither do
\kbd{mprem[z]} nor \kbd{mpmod[z]} (specific to integers).
\funno{GEN}{\op si[z]}{long s, GEN x[, GEN z]} applies \op\ to the
\kbd{long}~\kbd{s} and the \typ{INT}~\kbd{x}.
These functions always return the global constant
\kbd{gen\_0} (not a copy) when the sign of the result is $0$.
\funno{GEN}{\op sr[z]}{long s, GEN x[, GEN z]} applies \op\ to the
\kbd{long}~\kbd{s} and the \typ{REAL}~\kbd{x}.
\funno{GEN}{\op ss[z]}{long s, long t[, GEN z]} applies \op\ to the longs
\kbd{s} and~\kbd{t}. These functions always return the global constant
\kbd{gen\_0} (not a copy) when the sign of the result is $0$.
\funno{GEN}{\op ii[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{INT}s \kbd{x} and~\kbd{y}. These functions always return the global
constant \kbd{gen\_0} (not a copy) when the sign of the result is $0$.
\funno{GEN}{\op ir[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{INT} \kbd{x} and the \typ{REAL}~\kbd{y}.
\funno{GEN}{\op is[z]}{GEN x, long s[, GEN z]} applies \op\ to the
\typ{INT}~\kbd{x} and the \kbd{long}~\kbd{s}. These functions always return
the global constant \kbd{gen\_0} (not a copy) when the sign of the result
is $0$.
\funno{GEN}{\op ri[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{REAL}~\kbd{x} and the \typ{INT}~\kbd{y}.
\funno{GEN}{\op rr[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{REAL}s~\kbd{x} and~\kbd{y}.
\funno{GEN}{\op rs[z]}{GEN x, long s[, GEN z]} applies \op\ to the
\typ{REAL}~\kbd{x} and the \kbd{long}~\kbd{s}.
\noindent Some miscellaneous routines:
\fun{long}{expu}{ulong x} assuming $x > 0$, returns the binary exponent of
the real number equal to $x$. This is a special case of \kbd{gexpo}.
\fun{GEN}{adduu}{ulong x, ulong y}
\fun{GEN}{addiu}{GEN x, ulong y}
\fun{GEN}{addui}{ulong x, GEN y} adds \kbd{x} and \kbd{y}.
\fun{GEN}{subuu}{ulong x, ulong y}
\fun{GEN}{subiu}{GEN x, ulong y}
\fun{GEN}{subui}{ulong x, GEN y} subtracts \kbd{x} by \kbd{y}.
\fun{GEN}{muluu}{ulong x, ulong y} multiplies \kbd{x} by \kbd{y}.
\fun{GEN}{mului}{ulong x, GEN y} multiplies \kbd{x} by \kbd{y}.
\fun{GEN}{muluui}{ulong x, ulong y, GEN z} return $xyz$.
\fun{GEN}{muliu}{GEN x, ulong y} multiplies \kbd{x} by \kbd{y}.
\fun{void}{addumului}{ulong a, ulong b, GEN x} return $a + b|X|$.
\fun{GEN}{addmuliu}{GEN x, GEN y, ulong u} returns $x +yu$.
\fun{GEN}{addmulii}{GEN x, GEN y, GEN z} returns $x + yz$.
\fun{GEN}{addmulii_inplace}{GEN x, GEN y, GEN z} returns $x + yz$, but
returns $x$ itself and not a copy if $yz = 0$. Not suitable for
\tet{gerepile} or \tet{gerepileupto}.
\fun{GEN}{addmuliu_inplace}{GEN x, GEN y, ulong u} returns $x +yu$, but
returns $x$ itself and not a copy if $yu = 0$. Not suitable for
\tet{gerepile} or \tet{gerepileupto}.
\fun{GEN}{submuliu_inplace}{GEN x, GEN y, ulong u} returns $x- yu$, but
returns $x$ itself and not a copy if $yu = 0$. Not suitable for
\tet{gerepile} or \tet{gerepileupto}.
\fun{GEN}{lincombii}{GEN u, GEN v, GEN x, GEN y} returns $ux + vy$.
\fun{GEN}{mulsubii}{GEN y, GEN z, GEN x} returns $yz - x$.
\fun{GEN}{submulii}{GEN x, GEN y, GEN z} returns $x - yz$.
\fun{GEN}{submuliu}{GEN x, GEN y, ulong u} returns $x -yu$.
\fun{GEN}{mulu_interval}{ulong a, ulong b} returns $a(a+1)\cdots b$, assuming
that $a \leq b$.
\fun{GEN}{muls_interval}{long a, long b} returns $a(a+1)\cdots b$, assuming
that $a \leq b$.
\fun{GEN}{invr}{GEN x} returns the inverse of the non-zero \typ{REAL}~$x$.
\fun{GEN}{truedivii}{GEN x, GEN y} returns the true Euclidean quotient
(with non-negative remainder less than $|y|$).
\fun{GEN}{truedivis}{GEN x, long y} returns the true Euclidean quotient
(with non-negative remainder less than $|y|$).
\fun{GEN}{truedivsi}{long x, GEN y} returns the true Euclidean quotient
(with non-negative remainder less than $|y|$).
\fun{GEN}{centermodii}{GEN x, GEN y, GEN y2}, given
\typ{INT}s \kbd{x}, \kbd{y}, returns $z$ congruent to \kbd{x} modulo \kbd{y},
such that $-\kbd{y}/2 \leq z < \kbd{y}/2$. The function requires an extra
argument \kbd{y2}, such that \kbd{y2 = shifti(y, -1)}. (In most cases, \kbd{y}
is constant for many reductions and \kbd{y2} need only be computed once.)
\fun{GEN}{remi2n}{GEN x, long n} returns \kbd{x} mod $2^n$.
\fun{GEN}{addii_sign}{GEN x, long sx, GEN y, long sy} add the \typ{INT}s
$x$ and $y$ as if their signs were \kbd{sx} and \kbd{sy}.
\fun{GEN}{addir_sign}{GEN x, long sx, GEN y, long sy}
add the \typ{INT} $x$ and the \typ{REAL} $y$ as if their signs were \kbd{sx}
and \kbd{sy}.
\fun{GEN}{addrr_sign}{GEN x, long sx, GEN y, long sy} add the \typ{REAL}s $x$
and $y$ as if their signs were \kbd{sx} and \kbd{sy}.
\fun{GEN}{addsi_sign}{long x, GEN y, long sy} add $x$ and the \typ{INT} $y$
as if its sign was \kbd{sy}.
\fun{GEN}{addui_sign}{ulong x, GEN y, long sy} add $x$ and the \typ{INT} $y$
as if its sign was \kbd{sy}.
\subsec{Exact division and divisibility}
\fun{GEN}{diviiexact}{GEN x, GEN y} returns the Euclidean quotient
$\kbd{x} / \kbd{y}$, assuming $\kbd{y}$ divides $\kbd{x}$. Uses Jebelean
algorithm (Jebelean-Krandick bidirectional exact division is not
implemented).
\fun{GEN}{diviuexact}{GEN x, ulong y} returns the Euclidean quotient
$\kbd{x} / \kbd{y}$, assuming $\kbd{y}$ divides
$\kbd{x}$ and $\kbd{y}$ is non-zero.
\fun{GEN}{diviuuexact}{GEN x, ulong y, ulong z} returns the Euclidean
quotient $x/(yz)$, assuming $yz$ divides $x$ and $yz \neq 0$.
The following routines return 1 (true) if \kbd{y} divides \kbd{x}, and
0 otherwise. (Error if $y$ is $0$, even if $x$ is $0$.) All \kbd{GEN} are
assumed to be \typ{INT}s:
\fun{int}{dvdii}{GEN x, GEN y},
\fun{int}{dvdis}{GEN x, long y},
\fun{int}{dvdiu}{GEN x, ulong y},
\fun{int}{dvdsi}{long x, GEN y},
\fun{int}{dvdui}{ulong x, GEN y}.
The following routines return 1 (true) if \kbd{y} divides \kbd{x}, and in
that case assign the quotient to \kbd{z}; otherwise they return 0. All
\kbd{GEN} are assumed to be \typ{INT}s:
\fun{int}{dvdiiz}{GEN x, GEN y, GEN z},
\fun{int}{dvdisz}{GEN x, long y, GEN z}.
\fun{int}{dvdiuz}{GEN x, ulong y, GEN z} if \kbd{y} divides \kbd{x}, assigns
the quotient $|\kbd{x}|/\kbd{y}$ to \kbd{z} and returns 1 (true), otherwise
returns 0 (false).
\subsec{Division with integral operands and \typ{REAL} result}
\fun{GEN}{rdivii}{GEN x, GEN y, long prec}, assuming $x$ and $y$
are both of type \typ{INT}, return the quotient $x/y$ as a \typ{REAL} of
precision \kbd{prec}.
\fun{GEN}{rdiviiz}{GEN x, GEN y, GEN z}, assuming $x$ and $y$
are both of type \typ{INT}, and $z$ is a \typ{REAL},
assign the quotient $x/y$ to $z$.
\fun{GEN}{rdivis}{GEN x, long y, long prec}, assuming \kbd{x}
is of type \typ{INT}, return the quotient x/y as a \typ{REAL} of
precision \kbd{prec}.
\fun{GEN}{rdivsi}{long x, GEN y, long prec}, assuming \kbd{y}
is of type \typ{INT}, return the quotient x/y as a \typ{REAL} of
precision \kbd{prec}.
\fun{GEN}{rdivss}{long x, long y, long prec}, return the quotient x/y as a
\typ{REAL} of precision \kbd{prec}.
\subsec{Division with remainder} The following functions return two objects,
unless specifically asked for only one of them~--- a quotient and a remainder.
The quotient is returned and the remainder is returned through the variable
whose address is passed as the \kbd{r} argument. The term \emph{true
Euclidean remainder} refers to the non-negative one (\kbd{mod}), and
\emph{Euclidean remainder} by itself to the one with the same sign as the
dividend (\kbd{rem}). All \kbd{GEN}s, whether returned directly or through a
pointer, are created on the stack.
\fun{GEN}{dvmdii}{GEN x, GEN y, GEN *r} returns the Euclidean quotient of the
\typ{INT}~\kbd{x} by a \typ{INT}~\kbd{y} and puts the remainder
into~\kbd{*r}. If \kbd{r} is equal to \kbd{NULL}, the remainder is not
created, and if \kbd{r} is equal to \kbd{ONLY\_REM}, only the remainder is
created and returned. In the generic case, the remainder is created after the
quotient and can be disposed of individually with a \kbd{cgiv(r)}. The
remainder is always of the sign of the dividend~\kbd{x}. If the remainder
is $0$ set \kbd{r = gen\_0}.
\fun{void}{dvmdiiz}{GEN x, GEN y, GEN z, GEN t} assigns the Euclidean
quotient of the \typ{INT}s \kbd{x} and \kbd{y} into the \typ{INT}~\kbd{z},
and the Euclidean remainder into the \typ{INT}~\kbd{t}.
\noindent Analogous routines \tet{dvmdis}\kbd{[z]}, \tet{dvmdsi}\kbd{[z]},
\tet{dvmdss}\kbd{[z]} are available, where \kbd{s} denotes a \kbd{long}
argument. But the following routines are in general more flexible:
\fun{long}{sdivss_rem}{long s, long t, long *r} computes the Euclidean
quotient and remainder of the longs \kbd{s} and~\kbd{t}. Puts the remainder
into \kbd{*r}, and returns the quotient. The remainder is of the sign of the
dividend~\kbd{s}, and has strictly smaller absolute value than~\kbd{t}.
\fun{long}{sdivsi_rem}{long s, GEN x, long *r} computes the Euclidean
quotient and remainder of the \kbd{long}~\kbd{s} by the \typ{INT}~\kbd{x}. As
\kbd{sdivss\_rem} otherwise.
\fun{long}{sdivsi}{long s, GEN x} as \kbd{sdivsi\_rem}, without
remainder.
\fun{GEN}{divis_rem}{GEN x, long s, long *r} computes the Euclidean quotient
and remainder of the \typ{INT}~\kbd{x} by the \kbd{long}~\kbd{s}. As
\kbd{sdivss\_rem} otherwise.
\fun{GEN}{diviu_rem}{GEN x, ulong s, ulong *r} computes the Euclidean quotient
and remainder of \emph{absolute value} of the \typ{INT}~\kbd{x} by the
\kbd{ulong}~\kbd{s}. As \kbd{sdivss\_rem} otherwise.
\fun{ulong}{udiviu_rem}{GEN n, ulong d, ulong *r} as \tet{diviu_rem}, assuming
that $|n|/d$ fits into an \kbd{ulong}.
\fun{ulong}{udivui_rem}{ulong x, GEN y, ulong *rem}
computes the Euclidean quotient and remainder of $x$ by $y$. As
\kbd{sdivss\_rem} otherwise.
\fun{ulong}{udivuu_rem}{ulong x, ulong y, ulong *rem}
computes the Euclidean quotient and remainder of $x$ by $y$. As
\kbd{sdivss\_rem} otherwise.
\fun{ulong}{ceildivuu}{ulong x, ulong y} return the ceiling of $x / y$.
\fun{GEN}{divsi_rem}{long s, GEN y, long *r} computes the Euclidean quotient
and remainder of the \kbd{long}~\kbd{s} by the \kbd{GEN}~\kbd{y}. As
\kbd{sdivss\_rem} otherwise.
\fun{GEN}{divss_rem}{long x, long y, long *r} computes the Euclidean quotient
and remainder of the \kbd{long}~\kbd{x} by the \kbd{long}~\kbd{y}. As
\kbd{sdivss\_rem} otherwise.
\smallskip
\fun{GEN}{truedvmdii}{GEN x, GEN y, GEN *r}, as \kbd{dvmdii} but with a
non-negative remainder.
\fun{GEN}{truedvmdis}{GEN x, long y, GEN *z}, as \kbd{dvmdis} but with a
non-negative remainder.
\fun{GEN}{truedvmdsi}{long x, GEN y, GEN *z}, as \kbd{dvmdsi} but with a
non-negative remainder.
\subsec{Modulo to longs} The following variants of \kbd{modii} do not
clutter the stack:
\fun{long}{smodis}{GEN x, long y} computes the true Euclidean
remainder of the \typ{INT}~\kbd{x} by the \kbd{long}~\kbd{y}. This is the
non-negative remainder, not the one whose sign is the sign of \kbd{x}
as in the \kbd{div} functions.
\fun{long}{smodss}{long x, long y} computes the true Euclidean
remainder of the \kbd{long}~\kbd{x} by a \kbd{long}~\kbd{y}.
\fun{ulong}{umodsu}{long x, ulong y} computes the true Euclidean
remainder of the \kbd{long}~\kbd{x} by a \kbd{ulong}~\kbd{y}.
\fun{ulong}{umodiu}{GEN x, ulong y} computes the true Euclidean
remainder of the \typ{INT}~\kbd{x} by the \kbd{ulong}~\kbd{y}.
\fun{ulong}{umodui}{ulong x, GEN y} computes the true Euclidean
remainder of the \kbd{ulong}~\kbd{x} by the \typ{INT}~\kbd{|y|}.
The routine \tet{smodsi} does not exist, since it would not always be
defined: for a \emph{negative} \kbd{x}, if the quotient is $\pm1$, the result
\kbd{x + |y|} would in general not fit into a \kbd{long}. Use either
\kbd{umodui} or \kbd{modsi}.
These functions directly access the binary data and are thus much faster than
the generic modulo functions:
\fun{int}{mpodd}{GEN x} which is 1 if \kbd{x} is odd, and 0 otherwise.
\fun{ulong}{Mod2}{GEN x}
\fun{ulong}{Mod4}{GEN x}
\fun{ulong}{Mod8}{GEN x}
\fun{ulong}{Mod16}{GEN x}
\fun{ulong}{Mod32}{GEN x}
\fun{ulong}{Mod64}{GEN x} give the residue class of $x$ modulo the
corresponding power of $2$.
\fun{ulong}{umodi2n}{GEN x, long n} give the residue class of $x$ modulo
$2^n$, $0 \leq n < BITS\_IN\_LONG$.
The following functions assume that $x\neq 0$ and in fact disregard the
sign of $x$. There are about $10\%$ faster than the safer variants above:
\fun{long}{mod2}{GEN x}
\fun{long}{mod4}{GEN x}
\fun{long}{mod8}{GEN x}
\fun{long}{mod16}{GEN x}
\fun{long}{mod32}{GEN x}
\fun{long}{mod64}{GEN x} give the residue class of $|x|$ modulo the
corresponding power of 2, for \emph{non-zero}~\kbd{x}. As well,
\fun{ulong}{mod2BIL}{GEN x} returns the least significant word of $|x|$, still
assuming that $x\neq 0$.
\subsec{Powering, Square root}
\fun{GEN}{powii}{GEN x, GEN n}, assumes $x$ and $n$ are \typ{INT}s and
returns $x^n$.
\fun{GEN}{powuu}{ulong x, ulong n}, returns $x^n$.
\fun{GEN}{powiu}{GEN x, ulong n}, assumes $x$ is a \typ{INT} and returns $x^n$.
\fun{GEN}{powis}{GEN x, long n}, assumes $x$ is a \typ{INT} and returns $x^n$
(possibly a \typ{FRAC} if $n < 0$).
\fun{GEN}{powrs}{GEN x, long n}, assumes $x$ is a \typ{REAL} and returns
$x^n$. This is considered as a sequence of \kbd{mulrr}, possibly empty:
as such the result has type \typ{REAL}, even if $n = 0$.
Note that the generic function \kbd{gpowgs(x,0)} would return \kbd{gen\_1},
see the technical note in \secref{se:genbinop}.
\fun{GEN}{powru}{GEN x, ulong n}, assumes $x$ is a \typ{REAL} and returns $x^n$
(always a \typ{REAL}, even if $n = 0$).
\fun{GEN}{powersr}{GEN e, long n}. Given a \typ{REAL} $e$, return the vector
$v$ of all $e^i$, $0 \leq i \leq n$, where $v[i] = e^{i-1}$.
\fun{GEN}{powrshalf}{GEN x, long n}, assumes $x$ is a \typ{REAL} and returns
$x^{n/2}$ (always a \typ{REAL}, even if $n = 0$).
\fun{GEN}{powruhalf}{GEN x, ulong n}, assumes $x$ is a \typ{REAL} and returns
$x^{n/2}$ (always a \typ{REAL}, even if $n = 0$).
\fun{GEN}{powrfrac}{GEN x, long n, long d}, assumes $x$ is a \typ{REAL} and
returns $x^{n/d}$ (always a \typ{REAL}, even if $n = 0$).
\fun{GEN}{powIs}{long n} returns $I^n\in\{1,I,-1,-I\}$ (\typ{INT} for even $n$,
\typ{COMPLEX} otherwise).
\fun{ulong}{upowuu}{ulong x, ulong n}, returns $x^n$ when $< 2^\B$, and $0$
otherwise (overflow).
\fun{GEN}{sqrtremi}{GEN N, GEN *r}, returns the integer square root $S$ of
the non-negative \typ{INT}~\kbd{N} (rounded towards 0) and puts the remainder
$R$ into~\kbd{*r}. Precisely, $N = S^2 + R$ with $0\leq R \leq 2S$. If
\kbd{r} is equal to \kbd{NULL}, the remainder is not created. In the generic
case, the remainder is created after the quotient and can be disposed of
individually with \kbd{cgiv(R)}. If the remainder is $0$ set \kbd{R = gen\_0}.
Uses a divide and conquer algorithm (discrete variant of Newton iteration)
due to Paul Zimmermann (``Karatsuba Square Root'', INRIA Research Report 3805
(1999)).
\fun{GEN}{sqrti}{GEN N}, returns the integer square root $S$ of
the non-negative \typ{INT}~\kbd{N} (rounded towards 0). This is identical
to \kbd{sqrtremi(N, NULL)}.
\fun{long}{logintall}{GEN B, GEN y, GEN *ptq}
returns the floor $e$ of $\log_y B$, where $B > 0$ and $y > 1$ are integers.
If \kbd{ptq} is not \kbd{NULL}, set it to $y^e$. (Analogous to \kbd{logint0},
whithout sanity checks.)
\fun{long}{logint}{GEN B, GEN y} returns the floor $e$ of $\log_y B$, where
$B > 0$ and $y > 1$ are integers.
\subsec{GCD, extended GCD and LCM}
\fun{long}{cgcd}{long x, long y} returns the GCD of \kbd{x} and \kbd{y}.
\fun{ulong}{ugcd}{ulong x, ulong y} returns the GCD of \kbd{x} and \kbd{y}.
\fun{long}{clcm}{long x, long y} returns the LCM of \kbd{x} and \kbd{y},
provided it fits into a \kbd{long}. Silently overflows otherwise.
\fun{GEN}{gcdii}{GEN x, GEN y}, returns the GCD of the \typ{INT}s \kbd{x} and
\kbd{y}.
\fun{GEN}{lcmii}{GEN x, GEN y}, returns the LCM of the \typ{INT}s \kbd{x} and
\kbd{y}.
\fun{GEN}{bezout}{GEN a,GEN b, GEN *u,GEN *v}, returns the GCD $d$ of
\typ{INT}s \kbd{a} and \kbd{b} and sets \kbd{u}, \kbd{v} to the Bezout
coefficients such that $\kbd{au} + \kbd{bv} = d$.
\fun{long}{cbezout}{long a,long b, long *u,long *v}, returns the GCD
$d$ of \kbd{a} and \kbd{b} and sets \kbd{u}, \kbd{v} to the Bezout coefficients
such that $\kbd{au} + \kbd{bv} = d$.
\fun{GEN}{ZV_extgcd}{GEN A} given a vector of $n$ integers $A$, returns $[d,
U]$, where $d$ is the GCD of the $A[i]$ and $U$ is a matrix
in $\text{GL}_n(\Z)$ such that $AU = [0,\dots,0,D]$.
\subsec{Continued fractions and convergents}
\fun{GEN}{ZV_allpnqn}{GEN x} given $x = [a_0, ..., a_n]$ a
continued fraction from \tet{gboundcf}, $n\geq0$, return all
convergents as $[P,Q]$, where $P = [p_0,\dots,p_n]$ and $Q =
[q_0,\dots,q_n]$.
\subsec{Pseudo-random integers}
These routine return pseudo-random integers uniformly distributed in some
interval. The all use the same underlying generator which can be seeded and
restarted using \tet{getrand} and \tet{setrand}.
\fun{void}{setrand}{GEN seed} reseeds the random number generator using the
seed $n$. The seed is either a technical array output by \kbd{getrand}
or a small positive integer, used to generate deterministically a suitable
state array. For instance, running a randomized computation starting by
\kbd{setrand(1)} twice will generate the exact same output.
\fun{GEN}{getrand}{void} returns the current value of the seed used by the
pseudo-random number generator \tet{random}. Useful mainly for debugging
purposes, to reproduce a specific chain of computations. The returned value
is technical (reproduces an internal state array of type \typ{VECSMALL}),
and can only be used as an argument to \tet{setrand}.
\fun{ulong}{pari_rand}{void} returns a random $0 \leq x < 2^\B$.
\fun{long}{random_bits}{long k} returns a random $0 \leq x < 2^k$. Assumes
that $0 \leq k \leq \B$.
\fun{ulong}{random_Fl}{ulong p} returns a pseudo-random integer
in $0, 1, \dots p-1$.
\fun{GEN}{randomi}{GEN n} returns a random \typ{INT} between $0$ and $\kbd{n}
- 1$.
\fun{GEN}{randomr}{long prec} returns a random \typ{REAL} in $[0,1[$, with
precision \kbd{prec}.
\subsec{Modular operations} In this subsection, all \kbd{GEN}s are
\typ{INT}.
\fun{GEN}{Fp_red}{GEN a, GEN m} returns \kbd{a} modulo \kbd{m} (smallest
non-negative residue). (This is identical to modii).
\fun{GEN}{Fp_neg}{GEN a, GEN m} returns $-$\kbd{a} modulo \kbd{m} (smallest
non-negative residue).
\fun{GEN}{Fp_add}{GEN a, GEN b, GEN m} returns the sum of \kbd{a} and
\kbd{b} modulo \kbd{m} (smallest non-negative residue).
\fun{GEN}{Fp_sub}{GEN a, GEN b, GEN m} returns the difference of \kbd{a} and
\kbd{b} modulo \kbd{m} (smallest non-negative residue).
\fun{GEN}{Fp_center}{GEN a, GEN p, GEN pov2} assuming that \kbd{pov2} is
\kbd{shifti(p,-1)} and that \kbd{a} is between $0$ and $\kbd{p} - 1$ and,
returns the representative of \kbd{a} in the symmetric residue system.
\fun{GEN}{Fp_mul}{GEN a, GEN b, GEN m} returns the product of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue).
\fun{GEN}{Fp_addmul}{GEN x, GEN y, GEN z, GEN p} returns $x + yz$.
\fun{GEN}{Fp_mulu}{GEN a, ulong b, GEN m} returns the product of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue).
\fun{GEN}{Fp_muls}{GEN a, long b, GEN m} returns the product of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue).
\fun{GEN}{Fp_halve}{GEN x, GEN m} returns $z$ such that $2\*z = x$ modulo
$m$ assuming such $z$ exists.
\fun{GEN}{Fp_sqr}{GEN a, GEN m} returns $\kbd{a}^2$ modulo \kbd{m} (smallest
non-negative residue).
\fun{ulong}{Fp_powu}{GEN x, ulong n, GEN m} raises \kbd{x} to the \kbd{n}-th
power modulo \kbd{m} (smallest non-negative residue). Not memory-clean, but
suitable for \kbd{gerepileupto}.
\fun{ulong}{Fp_pows}{GEN x, long n, GEN m} raises \kbd{x} to the \kbd{n}-th
power modulo \kbd{m} (smallest non-negative residue). A negative \kbd{n} is
allowed Not memory-clean, but suitable for \kbd{gerepileupto}.
\fun{GEN}{Fp_pow}{GEN x, GEN n, GEN m} returns $\kbd{x}^\kbd{n}$
modulo \kbd{m} (smallest non-negative residue).
\fun{GEN}{Fp_powers}{GEN x, long n, GEN m} returns
$[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ modulo \kbd{m} as a \typ{VEC}
(smallest non-negative residue).
\fun{GEN}{Fp_inv}{GEN a, GEN m} returns an inverse of \kbd{a} modulo \kbd{m}
(smallest non-negative residue). Raise an error if \kbd{a} is not invertible.
\fun{GEN}{Fp_invsafe}{GEN a, GEN m} as \kbd{Fp\_inv}, but return
\kbd{NULL} if \kbd{a} is not invertible.
\fun{GEN}{FpV_inv}{GEN x, GEN m} $x$ being a vector of \typ{INT}s, return
the vector of inverses of the $x[i]$ mod $m$. The routine uses Montgomery's
trick, and involves a single inversion mod $m$, plus $3(N-1)$ multiplications
for $N$ entries. The routine is not stack-clean: $2N$ integers mod $m$
are left on stack, besides the $N$ in the result.
\fun{GEN}{Fp_div}{GEN a, GEN b, GEN m} returns the quotient of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue). Raise an error if
\kbd{b} is not invertible.
\fun{int}{invmod}{GEN a, GEN m, GEN *g}, return $1$ if \kbd{a}
modulo \kbd{m} is invertible, else return $0$ and set
$\kbd{g} = \gcd(\kbd{a},\kbd{m})$.
In the following three functions the integer parameter \kbd{ord} can be given
either as a positive \typ{INT} $N$, or as its factorization matrix $\var{faN}$,
or as a pair $[N,\var{faN}]$. The parameter may be omitted by setting it to
\kbd{NULL} (the value is then $p-1$).
\fun{GEN}{Fp_log}{GEN a, GEN g, GEN ord, GEN p} Let $g$ such that
$g^{ord} \equiv 1 \pmod{p}$. Return an integer $e$ such that
$a^e \equiv g \pmod{p}$. If $e$ does not exist, the result is undefined.
\fun{GEN}{Fp_order}{GEN a, GEN ord, GEN p} returns the order of the
\kbd{Fp} \kbd{a}. Assume that \kbd{ord} is a multiple of the order of
\kbd{a}.
\fun{GEN}{Fp_factored_order}{GEN a, GEN ord, GEN p} returns $[o,F]$, where $o$
is the multiplicative order of the \kbd{Fp} $a$ in $\F_p^*$, and $F$ is the
factorization of $o$. Assume that \kbd{ord} is a multiple of the order of
\kbd{a}.
\fun{int}{Fp_issquare}{GEN x, GEN p} returns $1$ if \kbd{x} is a square
modulo \kbd{p}, and $0$ otherwise.
\fun{int}{Fp_ispower}{GEN x, GEN n, GEN p} returns $1$ if \kbd{x} is an
$n$-th power modulo \kbd{p}, and $0$ otherwise.
\fun{GEN}{Fp_sqrt}{GEN x, GEN p} returns a square root of \kbd{x} modulo
\kbd{p} (the smallest non-negative residue), where \kbd{x}, \kbd{p} are
\typ{INT}s, and \kbd{p} is assumed to be prime. Return \kbd{NULL}
if \kbd{x} is not a quadratic residue modulo \kbd{p}.
\fun{GEN}{Fp_sqrtn}{GEN a, GEN n, GEN p, GEN *zn}
returns \kbd{NULL} if $a$ is not an $n$-th power residue mod $p$.
Otherwise, returns an $n$-th root of $a$; if \kbd{zn} is non-\kbd{NULL}
set it to a primitive $m$-th root of 1, $m = \gcd(p-1,n)$ allowing to compute
all $m$ solutions in $\F_p$ of the equation $x^n = a$.
\fun{GEN}{Zn_sqrt}{GEN x, GEN n} returns one of the square roots of \kbd{x}
modulo \kbd{n} (possibly not prime), where \kbd{x} is a \typ{INT} and \kbd{n}
is either a \typ{INT} or is given by its factorisation matrix. Return
\kbd{NULL} if no such square root exist.
\fun{long}{kross}{long x, long y} returns the \idx{Kronecker symbol} $(x|y)$,
i.e.$-1$, $0$ or $1$. If \kbd{y} is an odd prime, this is the \idx{Legendre
symbol}. (Contrary to \kbd{krouu}, \kbd{kross} also supports $\kbd{y} = 0$)
\fun{long}{krouu}{ulong x, ulong y} returns the \idx{Kronecker symbol}
$(x|y)$, i.e.~$-1$, $0$ or $1$. Assumes \kbd{y} is non-zero. If \kbd{y} is an
odd prime, this is the \idx{Legendre symbol}.
\fun{long}{krois}{GEN x, long y} returns the \idx{Kronecker symbol} $(x|y)$
of \typ{INT}~x and \kbd{long}~\kbd{y}. As \kbd{kross} otherwise.
\fun{long}{kroiu}{GEN x, ulong y} returns the \idx{Kronecker symbol} $(x|y)$
of \typ{INT}~x and non-zero \kbd{ulong}~\kbd{y}. As \kbd{krouu} otherwise.
\fun{long}{krosi}{long x, GEN y} returns the \idx{Kronecker symbol} $(x|y)$
of \kbd{long}~x and \typ{INT}~\kbd{y}. As \kbd{kross} otherwise.
\fun{long}{kroui}{ulong x, GEN y} returns the \idx{Kronecker symbol} $(x|y)$
of \kbd{long}~x and \typ{INT}~\kbd{y}. As \kbd{kross} otherwise.
\fun{long}{kronecker}{GEN x, GEN y} returns the \idx{Kronecker symbol} $(x|y)$
of \typ{INT}s~x and~\kbd{y}. As \kbd{kross} otherwise.
\fun{GEN}{pgener_Fp}{GEN p} returns the smallest primitive root modulo
\kbd{p}, assuming \kbd{p} is prime.
\fun{GEN}{pgener_Zp}{GEN p} returns the smallest primitive root modulo $p^k$,
$k > 1$, assuming \kbd{p} is an odd prime.
\fun{long}{Zp_issquare}{GEN x, GEN p} returns 1 if the \typ{INT} $x$ is
a $p$-adic square, $0$ otherwise.
\fun{long}{Zn_issquare}{GEN x, GEN n} returns 1 if \typ{INT} $x$ is
a square modulo \kbd{n} (possibly not prime), where $n$ is either a \typ{INT}
or is given by its factorisation matrix. Return $0$ otherwise.
\fun{long}{Zn_ispower}{GEN x, GEN n, GEN K, GEN *py} returns 1 if \typ{INT}
$x$ is a $K$-th power modulo \kbd{n} (possibly not prime), where $n$ is
either a \typ{INT} or is given by its factorisation matrix. Return $0$
otherwise. If \kbd{py} is not \kbd{NULL}, set it to $y$ such that $y^K = x$
modulo $n$.
\fun{GEN}{pgener_Fp_local}{GEN p, GEN L}, \kbd{L} being a vector of
primes dividing $p - 1$, returns the smallest integer $x > 1$ which is a
generator of the $\ell$-Sylow of $\F_p^*$ for every $\ell$ in \kbd{L}. In
other words, $x^{(p-1)/\ell} \neq 1$ for all such $\ell$. In particular,
returns \kbd{pgener\_Fp(p)} if \kbd{L} contains all primes dividing $p - 1$.
It is not necessary, and in fact slightly inefficient, to include $\ell=2$,
since 2 is treated separately in any case, i.e. the generator obtained is
never a square.
\fun{GEN}{rootsof1_Fp}{GEN n, GEN p} returns a primitive $n$-th root modulo
the prime $p$.
\fun{GEN}{rootsof1u_Fp}{ulong n, GEN p} returns a primitive $n$-th root modulo
the prime $p$.
\fun{ulong}{rootsof1_Fl}{ulong n, ulong p} returns a primitive $n$-th root
modulo the prime $p$.
\subsec{Extending functions to vector inputs}
The following functions apply $f$ to the given arguments, recursively
if they are of vector / matrix type:
\fun{GEN}{map_proto_G}{GEN (*f)(GEN), GEN x} For instance, if $x$ is a
\typ{VEC}, return a \typ{VEC} whose components are the $f(x[i])$.
\fun{GEN}{map_proto_lG}{long (*f)(GEN), GEN x} As above, applying the
function \kbd{stoi( f() )}.
\fun{GEN}{map_proto_GL}{GEN (*f)(GEN,long), GEN x, long y}
\fun{GEN}{map_proto_lGL}{long (*f)(GEN,long), GEN x, long y}
In the last function, $f$ implements an associative binary operator, which we
extend naturally to an $n$-ary operator $f_n$ for any $n$: by convention,
$f_0() = 1$, $f_1(x) = x$, and
$$ f_n(x_1,\dots,x_n) = f( f_{n-1}(x_1,\dots,x_{n-1}), x_n)),$$
for $n \geq 2$.
\fun{GEN}{gassoc_proto}{GEN (*f)(GEN,GEN),GEN x, GEN y} If $y$ is not
\kbd{NULL}, return $f(x,y)$. Otherwise, $x$ must be of vector type, and we
return the result of $f$ applied to its components, computed using a
divide-and-conquer algorithm. More precisely, return
$$f( f(x_1,\kbd{NULL}), f(x_2,\kbd{NULL}) ),$$
where $x_1$, $x_2$ are the two halves of $x$.
\subsec{Miscellaneous arithmetic functions}
\fun{long}{bigomegau}{ulong n} returns the number of prime divisors of $n >
0$, counted with multiplicity.
\fun{ulong}{coreu}{ulong n}, unique squarefree integer $d$ dividing $n$ such
that $n/d$ is a square.
\fun{ulong}{corediscs}{long d, ulong *pt_f}, $d$ (possibly negative)
being congruent to $0$ or $1$ modulo $4$, return the fundamental
discriminant $D$ such that $d=D*f^2$ and set \kbd{*pt\_f} to $f$
(if \kbd{*pt\_f} not \kbd{NULL}).
\fun{ulong}{eulerphiu}{ulong n}, Euler's totient function of $n$.
\fun{ulong}{eulerphiu_fact}{GEN fa}, Euler's totient function of the
\kbd{ulong} $n$, where \kbd{fa} is \kbd{factoru(n)}.
\fun{long}{moebiusu}{ulong n}, Moebius $\mu$-function of $n$.
\fun{GEN}{divisorsu}{ulong n}, returns the divisors of $n$ in a
\typ{VECSMALL}, sorted by increasing order.
\fun{ulong}{divisorsu_fact}{GEN fa}, as \kbd{divisorsu(n)}
where \kbd{fa} is \kbd{factoru(n)}.
\fun{long}{omegau}{ulong n} returns the number of prime divisors of $n > 0$.
\fun{long}{uissquarefree}{ulong n} returns $1$ if \kbd{n}
is square-free, and $0$ otherwise.
\fun{ulong}{uissquarefree_fact}{GEN fa} returns \kbd{uissquarefree(n)}, where
\kbd{fa} is \kbd{factoru(n)}.
\fun{long}{uposisfundamental}{ulong x} return $1$ if $x$ is a fundamental
discriminant, and $0$ otherwise.
\fun{long}{unegisfundamental}{ulong x} return $1$ if $-x$ is a fundamental
discriminant, and $0$ otherwise.
\fun{long}{sisfundamental}{long x} return $1$ if $x$ is a fundamental
discriminant, and $0$ otherwise.
\fun{int}{uis_357_power}{ulong x, ulong *pt, ulong *mask} as \tet{is_357_power}
for \kbd{ulong} $x$.
\fun{int}{uis_357_powermod}{ulong x, ulong *mask} as \tet{uis_357_power}, but
only check for 3rd, 5th or 7th powers modulo
$211\times209\times61\times203\times117\times31\times43\times71$.
\fun{long}{uisprimepower}{ulong n, ulong *p} as \tet{isprimepower}, for
\kbd{ulong} $n$.
\fun{int}{uislucaspsp}{ulong n} returns $1$ if the \kbd{ulong} $n$ fails Lucas
compositeness test (it thus may be prime or composite), and $0$ otherwise
(proving that $n$ is composite).
\fun{ulong}{sumdigitsu}{ulong n} returns the sum of decimal digits of $u$.
\fun{GEN}{usumdivkvec}{ulong n, GEN K} $K$ being a \typ{VECSMALL} of
positive integers. Returns the vector of \kbd{sumdivk}$(n, K[i])$.
\fun{GEN}{usumdiv_fact}{GEN fa}, sum of divisors of \kbd{ulong} $n$, where
\kbd{fa} is \kbd{factoru(n)}.
\fun{GEN}{usumdivk_fact}{GEN fa, ulong k}, sum of $k$-th powers of divisors
of \kbd{ulong} $n$, where \kbd{fa} is \kbd{factoru(n)}.
\fun{GEN}{hilbertii}{GEN x, GEN y, GEN p}, returns the Hilbert symbol
$(x,y)$ at the prime $p$ (\kbd{NULL} for the place at infinity); $x$ and $y$
are \typ{INT}s.
\fun{GEN}{sumdedekind}{GEN h, GEN k} returns the Dedekind sum attached to
the \typ{INT} $h$ and $k$, $k > 0$.
\fun{GEN}{sumdedekind_coprime}{GEN h, GEN k} as \kbd{sumdedekind}, except
that $h$ and $k$ are assumed to be coprime \typ{INT}s.
\fun{GEN}{u_sumdedekind_coprime}{long h, long k}
Let $k > 0$, $0 \leq h < k$, $(h,k) = 1$. Returns $[s_1,s_2]$
in a \typ{VECSMALL}, such that $s(h,k) = (s_2 + k s_1) / (12k)$.
Requires $\max(h + k/2, k) < \kbd{LONG\_MAX}$
to avoid overflow, in particular $k \leq (2/3)\kbd{LONG\_MAX}$ is fine.
\newpage
\chapter{Level 2 kernel}
These functions deal with modular arithmetic, linear algebra and polynomials
where assumptions can be made about the types of the coefficients.
\section{Naming scheme}\label{se:level2names}
A function name is built in the following way:
$A_1\kbd{\_}\dots\kbd{\_}A_n\var{fun}$ for an operation \var{fun} with $n$
arguments of class $A_1$,\dots, $A_n$. A class name is given by a base ring
followed by a number of code letters. Base rings are among
\kbd{Fl}: $\Z/l\Z$ where $l < 2^{\B}$ is not necessarily prime. Implemented
using \kbd{ulong}s
\kbd{Fp}: $\Z/p\Z$ where $p$ is a \typ{INT}, not necessarily prime.
Implemented as \typ{INT}s $z$, preferably satisfying $0 \leq z < p$.
More precisely, any \typ{INT} can be used as an \kbd{Fp}, but reduced
inputs are treated more efficiently. Outputs from \kbd{Fp}xxx routines are
reduced.
\kbd{Fq}: $\Z[X]/(p,T(X))$, $p$ a \typ{INT}, $T$ a \typ{POL} with \kbd{Fp}
coefficients or \kbd{NULL} (in which case no reduction modulo \kbd{T} is
performed). Implemented as \typ{POL}s $z$ with \kbd{Fp} coefficients,
$\deg(z) < \deg \kbd{T}$, although $z$ a \typ{INT} is allowed for elements in
the prime field.
\kbd{Z}: the integers $\Z$, implemented as \typ{INT}s.
\kbd{Zp}: the $p$-adic integers $\Z_p$, implemented as \typ{INT}s, for arbitrary $p$
\kbd{Zl}: the $p$-adic integers $\Z_p$, implemented as \typ{INT}s, for $p< 2^{\B}$
\kbd{z}: the integers $\Z$, implemented using (signed) \kbd{long}s.
\kbd{Q}: the rational numbers $\Q$, implemented as \typ{INT}s and
\typ{FRAC}s.
\kbd{Rg}: a commutative ring, whose elements can be
\kbd{gadd}-ed, \kbd{gmul}-ed, etc.
\noindent Possible letters are:
\kbd{X}: polynomial in $X$ (\typ{POL} in a fixed variable), e.g. \kbd{FpX}
means $\Z/p\Z[X]$
\kbd{Y}: polynomial in $Y\neq X$. This is used to resolve ambiguities.
E.g. \kbd{FpXY} means $((\Z/p\Z)[X])[Y]$.
\kbd{V}: vector (\typ{VEC} or \typ{COL}), treated as a line vector
(independently of the actual type). E.g. \kbd{ZV} means $\Z^k$ for some $k$.
\kbd{C}: vector (\typ{VEC} or \typ{COL}), treated as a column vector
(independently of the actual type). The difference with \kbd{V} is purely
semantic: if the result is a vector, it will be of type \typ{COL} unless
mentioned otherwise. For instance the function \kbd{ZC\_add} receives two
integral vectors (\typ{COL} or \typ{VEC}, possibly different types) of the
same length and returns a \typ{COL} whose entries are the sums of the input
coefficients.
\kbd{M}: matrix (\typ{MAT}). E.g. \kbd{QM} means a matrix with rational
entries
\kbd{T}: Trees. Either a leaf or a \typ{VEC} of trees.
\kbd{E}: point over an elliptic curve, represented
as two-component vectors \kbd{[x,y]}, except for the represented by the
one-component vector \kbd{[0]}. Not all curve models are supported.
\kbd{Q}: representative (\typ{POL}) of a class in a polynomial quotient ring.
E.g.~an \kbd{FpXQ} belongs to $(\Z/p\Z)[X]/(T(X))$, \kbd{FpXQV} means a
vector of such elements, etc.
\kbd{n}: a polynomial representative (\typ{POL}) for a truncated power
series modulo $X^n$. E.g.~an \kbd{FpXn} belongs to $(\Z/p\Z)[X]/(X^n)$,
\kbd{FpXnV} means a vector of such elements, etc.
\kbd{x}, \kbd{y}, \kbd{m}, \kbd{v}, \kbd{c}, \kbd{q}: as their uppercase
counterpart, but coefficient arrays are implemented using \typ{VECSMALL}s,
which coefficient understood as \kbd{ulong}s.
\kbd{x} and \kbd{y} (and \kbd{q}) are implemented by a \typ{VECSMALL} whose
first coefficient is used as a code-word and the following are the
coefficients , similarly to a \typ{POL}. This is known as a 'POLSMALL'.
\kbd{m} are implemented by a \typ{MAT} whose components (columns) are
\typ{VECSMALL}s. This is known as a 'MATSMALL'.
\kbd{v} and \kbd{c} are regular \typ{VECSMALL}s. Difference between the
two is purely semantic.
\noindent Omitting the letter means the argument is a scalar in the base
ring. Standard functions \var{fun} are
\kbd{add}: add
\kbd{sub}: subtract
\kbd{mul}: multiply
\kbd{sqr}: square
\kbd{div}: divide (Euclidean quotient)
\kbd{rem}: Euclidean remainder
\kbd{divrem}: return Euclidean quotient, store remainder in a pointer
argument. Three special values of that pointer argument modify the default
behavior: \kbd{NULL} (do not store the remainder, used to implement
\kbd{div}), \tet{ONLY_REM} (return the remainder, used to implement
\kbd{rem}), \tet{ONLY_DIVIDES} (return the quotient if the division is exact,
and \kbd{NULL} otherwise).
\kbd{gcd}: GCD
\kbd{extgcd}: return GCD, store Bezout coefficients in pointer arguments
\kbd{pow}: exponentiate
\kbd{eval}: evaluation / composition
\section{Modular arithmetic}
\noindent These routines implement univariate polynomial arithmetic and
linear algebra over finite fields, in fact over finite rings of the form
$(\Z/p\Z)[X]/(T)$, where $p$ is not necessarily prime and $T\in(\Z/p\Z)[X]$ is
possibly reducible; and finite extensions thereof. All this can be emulated
with \typ{INTMOD} and \typ{POLMOD} coefficients and using generic routines,
at a considerable loss of efficiency. Also, specialized routines are
available that have no obvious generic equivalent.
\subsec{\kbd{FpC} / \kbd{FpV}, \kbd{FpM}} A \kbd{ZV}
(resp.~a~\kbd{ZM}) is a \typ{VEC} or \typ{COL} (resp.~\typ{MAT}) with
\typ{INT} coefficients. An \kbd{FpV} or \kbd{FpM}, with respect to a given
\typ{INT}~\kbd{p}, is the same with \kbd{Fp} coordinates; operations are
understood over $\Z/p\Z$.
\subsubsec{Conversions}
\fun{int}{Rg_is_Fp}{GEN z, GEN *p}, checks if \kbd{z} can be mapped to
$\Z/p\Z$: a \typ{INT} or a \typ{INTMOD} whose modulus is equal to \kbd{*p},
(if \kbd{*p} not \kbd{NULL}), in that case return $1$, else $0$. If a modulus
is found it is put in \kbd{*p}, else \kbd{*p} is left unchanged.
\fun{int}{RgV_is_FpV}{GEN z, GEN *p}, \kbd{z} a \typ{VEC} (resp. \typ{COL}),
checks if it can be mapped to a \kbd{FpV} (resp. \kbd{FpC}), by checking
\kbd{Rg\_is\_Fp} coefficientwise.
\fun{int}{RgM_is_FpM}{GEN z, GEN *p}, \kbd{z} a \typ{MAT},
checks if it can be mapped to a \kbd{FpM}, by checking \kbd{RgV\_is\_FpV}
columnwise.
\fun{GEN}{Rg_to_Fp}{GEN z, GEN p}, \kbd{z} a scalar which can be mapped to
$\Z/p\Z$: a \typ{INT}, a \typ{INTMOD} whose modulus is divisible by $p$,
a \typ{FRAC} whose denominator is coprime to $p$, or a \typ{PADIC} with
underlying prime $\ell$ satisfying $p = \ell^n$ for some $n$ (less than the
accuracy of the input). Returns \kbd{lift(z * Mod(1,p))}, normalized.
\fun{GEN}{padic_to_Fp}{GEN x, GEN p} special case of \tet{Rg_to_Fp},
for a $x$ a \typ{PADIC}.
\fun{GEN}{RgV_to_FpV}{GEN z, GEN p}, \kbd{z} a \typ{VEC} or \typ{COL},
returns the \kbd{FpV} (as a \typ{VEC}) obtained by applying \kbd{Rg\_to\_Fp}
coefficientwise.
\fun{GEN}{RgC_to_FpC}{GEN z, GEN p}, \kbd{z} a \typ{VEC} or \typ{COL},
returns the \kbd{FpC} (as a \typ{COL}) obtained by applying \kbd{Rg\_to\_Fp}
coefficientwise.
\fun{GEN}{RgM_to_FpM}{GEN z, GEN p}, \kbd{z} a \typ{MAT},
returns the \kbd{FpM} obtained by applying \kbd{RgC\_to\_FpC}
columnwise.
\fun{GEN}{RgM_Fp_init}{GEN z, GEN p, ulong *pp}, given an \kbd{RgM} $z$,
whose entries can be mapped to $\F_p$ (as per \tet{Rg_to_Fp}), and a prime
number $p$. This routine returns a normal form of $z$: either an
\kbd{F2m} ($p = 2$), an \kbd{Flm} ($p$ fits into an \kbd{ulong})
or an \kbd{FpM}. In the first two cases, \kbd{pp} is set to \kbd{itou}$(p)$,
and to $0$ in the last.
The functions above are generally used as follow:
\bprog
GEN add(GEN x, GEN y)
{
GEN p = NULL;
if (Rg_is_Fp(x, &p) && Rg_is_Fp(y, &p) && p)
{
x = Rg_to_Fp(x, p); y = Rg_to_Fp(y, p);
z = Fp_add(x, y, p);
return Fp_to_mod(z);
}
else return gadd(x, y);
}
@eprog
\fun{GEN}{FpC_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZC}. Returns \kbd{lift(Col(z) *
Mod(1,p))}, hence a \typ{COL}.
\fun{GEN}{FpV_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZV}. Returns \kbd{lift(Vec(z) *
Mod(1,p))}, hence a \typ{VEC}
\fun{GEN}{FpM_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZM}. Returns \kbd{lift(z *
Mod(1,p))}, which is an \kbd{FpM}.
\subsubsec{Basic operations}
\fun{GEN}{FpC_center}{GEN z, GEN p, GEN pov2} returns a \typ{COL} whose
entries are the \kbd{Fp\_center} of the \kbd{gel(z,i)}.
\fun{GEN}{FpM_center}{GEN z, GEN p, GEN pov2} returns a matrix whose
entries are the \kbd{Fp\_center} of the \kbd{gcoeff(z,i,j)}.
\fun{void}{FpC_center_inplace}{GEN z, GEN p, GEN pov2}
in-place version of \kbd{FpC\_center}, using \kbd{affii}.
\fun{void}{FpM_center_inplace}{GEN z, GEN p, GEN pov2}
in-place version of \kbd{FpM\_center}, using \kbd{affii}.
\fun{GEN}{FpC_add}{GEN x, GEN y, GEN p} adds the \kbd{ZC} $x$ and $y$
and reduce modulo $p$ to obtain an \kbd{FpC}.
\fun{GEN}{FpV_add}{GEN x, GEN y, GEN p} same as \kbd{FpC\_add}, returning and
\kbd{FpV}.
\fun{GEN}{FpM_add}{GEN x, GEN y, GEN p} adds the two \kbd{ZM}s~\kbd{x}
and \kbd{y} (assumed to have compatible dimensions), and reduce modulo
\kbd{p} to obtain an \kbd{FpM}.
\fun{GEN}{FpC_sub}{GEN x, GEN y, GEN p} subtracts the \kbd{ZC} $y$ to
the \kbd{ZC} $x$ and reduce modulo $p$ to obtain an \kbd{FpC}.
\fun{GEN}{FpV_sub}{GEN x, GEN y, GEN p} same as \kbd{FpC\_sub}, returning and
\kbd{FpV}.
\fun{GEN}{FpM_sub}{GEN x, GEN y, GEN p} subtracts the two \kbd{ZM}s~\kbd{x}
and \kbd{y} (assumed to have compatible dimensions), and reduce modulo
\kbd{p} to obtain an \kbd{FpM}.
\fun{GEN}{FpC_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZC}~\kbd{x}
(seen as a column vector) by the \typ{INT}~\kbd{y} and reduce modulo \kbd{p} to
obtain an \kbd{FpC}.
\fun{GEN}{FpM_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZM}~\kbd{x}
(seen as a column vector) by the \typ{INT}~\kbd{y} and reduce modulo \kbd{p} to
obtain an \kbd{FpM}.
\fun{GEN}{FpC_FpV_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZC}~\kbd{x}
(seen as a column vector) by the \kbd{ZV}~\kbd{y} (seen as a row vector,
assumed to have compatible dimensions), and reduce modulo \kbd{p} to obtain
an \kbd{FpM}.
\fun{GEN}{FpM_mul}{GEN x, GEN y, GEN p} multiplies the two \kbd{ZM}s~\kbd{x}
and \kbd{y} (assumed to have compatible dimensions), and reduce modulo
\kbd{p} to obtain an \kbd{FpM}.
\fun{GEN}{FpM_powu}{GEN x, ulong n, GEN p} computes $x^n$ where $x$ is a
square \kbd{FpM}.
\fun{GEN}{FpM_FpC_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZM}~\kbd{x}
by the \kbd{ZC}~\kbd{y} (seen as a column vector, assumed to have compatible
dimensions), and reduce modulo \kbd{p} to obtain an \kbd{FpC}.
\fun{GEN}{FpM_FpC_mul_FpX}{GEN x, GEN y, GEN p, long v} is a memory-clean
version of
\bprog
GEN tmp = FpM_FpC_mul(x,y,p);
return RgV_to_RgX(tmp, v);
@eprog
\fun{GEN}{FpV_FpC_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZV}~\kbd{x}
(seen as a row vector) by the \kbd{ZC}~\kbd{y} (seen as a column vector,
assumed to have compatible dimensions), and reduce modulo \kbd{p} to obtain
an \kbd{Fp}.
\fun{GEN}{FpV_dotproduct}{GEN x,GEN y,GEN p} scalar product of
$x$ and $y$ (assumed to have the same length).
\fun{GEN}{FpV_dotsquare}{GEN x, GEN p} scalar product of $x$ with itself.
has \typ{INT} entries.
\fun{GEN}{FpV_factorback}{GEN L, GEN e, GEN p} given an \kbd{FpV} $L$
and a \kbd{ZV} $e$ of the same length, return $\prod_i L_i^{e_i}$ modulo $p$.
\subsubsec{\kbd{Fp}-linear algebra} The implementations are not
asymptotically efficient ($O(n^3)$ standard algorithms).
\fun{GEN}{FpM_deplin}{GEN x, GEN p} returns a non-trivial kernel vector,
or \kbd{NULL} if none exist.
\fun{GEN}{FpM_det}{GEN x, GEN p} as \kbd{det}
\fun{GEN}{FpM_gauss}{GEN a, GEN b, GEN p} as \kbd{gauss}, where $b$ is a
\kbd{FpM}.
\fun{GEN}{FpM_FpC_gauss}{GEN a, GEN b, GEN p} as \kbd{gauss}, where $b$
is a \kbd{FpC}.
\fun{GEN}{FpM_image}{GEN x, GEN p} as \kbd{image}
\fun{GEN}{FpM_intersect}{GEN x, GEN y, GEN p} as \kbd{intersect}
\fun{GEN}{FpM_inv}{GEN x, GEN p} returns a left inverse of \kbd{x}
(the inverse if $x$ is square), or \kbd{NULL} if \kbd{x} is not invertible.
\fun{GEN}{FpM_FpC_invimage}{GEN A, GEN y, GEN p}
given an \kbd{FpM} $A$ and an \kbd{FpC} $y$, returns an $x$ such that $Ax =
y$, or \kbd{NULL} if no such vector exist.
\fun{GEN}{FpM_invimage}{GEN A, GEN y, GEN p}
given two \kbd{FpM} $A$ and $y$, returns $x$ such that $Ax = y$, or \kbd{NULL}
if no such matrix exist.
\fun{GEN}{FpM_ker}{GEN x, GEN p} as \kbd{ker}
\fun{long}{FpM_rank}{GEN x, GEN p} as \kbd{rank}
\fun{GEN}{FpM_indexrank}{GEN x, GEN p} as \kbd{indexrank}
\fun{GEN}{FpM_suppl}{GEN x, GEN p} as \kbd{suppl}
\fun{GEN}{FpM_hess}{GEN x, GEN p} upper Hessenberg form of $x$ over $\F_p$.
\fun{GEN}{FpM_charpoly}{GEN x, GEN p} characteristic polynomial of $x$.
\subsubsec{\kbd{FqC}, \kbd{FqM} and \kbd{Fq}-linear algebra}
An \kbd{FqM} (resp. \kbd{FqC}) is a matrix (resp a \typ{COL}) with
\kbd{Fq} coefficients (with respect to given \kbd{T}, \kbd{p}), not necessarily
reduced (i.e arbitrary \typ{INT}s and \kbd{ZX}s in the same variable as
\kbd{T}).
\fun{GEN}{FqC_add}{GEN a, GEN b, GEN T, GEN p}
\fun{GEN}{FqC_sub}{GEN a, GEN b, GEN T, GEN p}
\fun{GEN}{FqC_Fq_mul}{GEN a, GEN b, GEN T, GEN p}
\fun{GEN}{FqM_deplin}{GEN x, GEN T, GEN p} returns a non-trivial kernel vector,
or \kbd{NULL} if none exist.
\fun{GEN}{FqM_gauss}{GEN a, GEN b, GEN T, GEN p}
as \kbd{gauss}, where $b$ is a \kbd{FqM}.
\fun{GEN}{FqM_FqC_gauss}{GEN a, GEN b, GEN T, GEN p}
as \kbd{gauss}, where $b$ is a \kbd{FqC}.
\fun{GEN}{FqM_FqC_mul}{GEN a, GEN b, GEN T, GEN p}
\fun{GEN}{FqM_ker}{GEN x, GEN T, GEN p} as \kbd{ker}
\fun{GEN}{FqM_image}{GEN x, GEN T, GEN p} as \kbd{image}
\fun{GEN}{FqM_inv}{GEN x, GEN T, GEN p} returns the inverse of \kbd{x}, or
\kbd{NULL} if \kbd{x} is not invertible.
\fun{GEN}{FqM_mul}{GEN a, GEN b, GEN T, GEN p}
\fun{long}{FqM_rank}{GEN x, GEN T, GEN p} as \kbd{rank}
\fun{GEN}{FqM_suppl}{GEN x, GEN T, GEN p} as \kbd{suppl}
\fun{GEN}{FqM_det}{GEN x, GEN T, GEN p} as \kbd{det}
\subsec{\kbd{Flc} / \kbd{Flv}, \kbd{Flm}} See \kbd{FpV}, \kbd{FpM}
operations.
\fun{GEN}{Flv_copy}{GEN x} returns a copy of \kbd{x}.
\fun{GEN}{Flv_center}{GEN z, ulong p, ulong ps2}
\fun{GEN}{Flm_copy}{GEN x} returns a copy of \kbd{x}.
\fun{GEN}{matid_Flm}{long n} returns an \kbd{Flm} which is an $n \times n$
identity matrix.
\fun{GEN}{scalar_Flm}{long s, long n} returns an \kbd{Flm} which is $s$ times
the $n \times n$ identity matrix.
\fun{GEN}{Flm_center}{GEN z, ulong p, ulong ps2}
\fun{GEN}{Flm_Fl_add}{GEN x, ulong y, ulong p} returns $x + y*\text{Id}$
($x$ must be square).
\fun{GEN}{Flm_Flc_mul}{GEN x, GEN y, ulong p} multiplies \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).
\fun{GEN}{Flm_Flc_mul_pre}{GEN x, GEN y, ulong p, ulong pi} multiplies \kbd{x}
and \kbd{y} (assumed to have compatible dimensions), assuming $pi$ is the
pseudo inverse of $p$.
\fun{GEN}{Flm_Flc_mul_pre_Flx}{GEN x, GEN y, ulong p, ulong pi, long sv}
return \kbd{Flv\_to\_Flx(Flm\_Flc\_mul\_pre(x, y, p, pi), sv)}.
\fun{GEN}{Flm_Fl_mul}{GEN x, ulong y, ulong p} multiplies the \kbd{Flm}
\kbd{x} by \kbd{y}.
\fun{GEN}{Flm_neg}{GEN x, ulong p} negates the \kbd{Flm} \kbd{x}.
\fun{void}{Flm_Fl_mul_inplace}{GEN x, ulong y, ulong p} replaces
the \kbd{Flm} \kbd{x} by $\kbd{x}*\kbd{y}$.
\fun{GEN}{Flv_Fl_mul}{GEN x, ulong y, ulong p} multiplies the \kbd{Flv}
\kbd{x} by \kbd{y}.
\fun{void}{Flv_Fl_mul_inplace}{GEN x, ulong y, ulong p} replaces
the \kbd{Flc} \kbd{x} by $\kbd{x}*\kbd{y}$.
\fun{void}{Flv_Fl_mul_part_inplace}{GEN x, ulong y, ulong p, long l}
multiplies $x[1..l]$ by $y$ modulo $p$. In place.
\fun{GEN}{Flv_Fl_div}{GEN x, ulong y, ulong p} divides the \kbd{Flv}
\kbd{x} by \kbd{y}.
\fun{void}{Flv_Fl_div_inplace}{GEN x, ulong y, ulong p} replaces
the \kbd{Flv} \kbd{x} by $\kbd{x}/\kbd{y}$.
\fun{void}{Flc_lincomb1_inplace}{GEN X, GEN Y, ulong v, ulong q}
sets $X\leftarrow X + vY$, where $X,Y$ are \kbd{Flc}. Memory efficient (e.g.
no-op if $v = 0$), and gerepile-safe.
\fun{GEN}{Flv_add}{GEN x, GEN y, ulong p} adds two \kbd{Flv}.
\fun{void}{Flv_add_inplace}{GEN x, GEN y, ulong p} replaces
$x$ by $x+y$.
\fun{GEN}{Flv_neg}{GEN x, ulong p} returns $-x$.
\fun{void}{Flv_neg_inplace}{GEN x, ulong p} replaces $x$ by $-x$.
\fun{GEN}{Flv_sub}{GEN x, GEN y, ulong p} subtracts \kbd{y} to \kbd{x}.
\fun{void}{Flv_sub_inplace}{GEN x, GEN y, ulong p} replaces $x$ by $x-y$.
\fun{ulong}{Flv_dotproduct}{GEN x, GEN y, ulong p} returns the scalar product
of \kbd{x} and \kbd{y}
\fun{ulong}{Flv_dotproduct_pre}{GEN x, GEN y, ulong p, ulong pi} returns the
scalar product of \kbd{x} and \kbd{y} assuming $pi$ is the pseudo inverse of
$p$.
\fun{ulong}{Flv_sum}{GEN x, ulong p} returns the sum of the components of $x$.
\fun{ulong}{Flv_prod}{GEN x, ulong p} returns the product of the components of
$x$.
\fun{ulong}{Flv_prod_pre}{GEN x, ulong p, ulong pi} as \kbd{Flv\_prod}
assuming $pi$ is the pseudo inverse of $p$.
\fun{GEN}{Flv_inv}{GEN x, ulong p} returns the vector of inverses of the elements
of $x$ (as a \kbd{Flv}). Use Montgomery trick.
\fun{void}{Flv_inv_inplace}{GEN x, ulong p} in place variant of \kbd{Flv\_inv}.
\fun{GEN}{Flv_inv_pre}{GEN x, ulong p, ulong pi} as \kbd{Flv\_inv}
assuming $pi$ is the pseudo inverse of $p$.
\fun{void}{Flv_inv_pre_inplace}{GEN x, ulong p, ulong pi} in place variant of
\kbd{Flv\_inv}.
\fun{GEN}{zero_Flm}{long m, long n} creates a \kbd{Flm} with \kbd{m} x \kbd{n}
components set to $0$. Note that the result allocates a
\emph{single} column, so modifying an entry in one column modifies it in
all columns.
\fun{GEN}{zero_Flm_copy}{long m, long n} creates a \kbd{Flm} with \kbd{m} x
\kbd{n} components set to $0$.
\fun{GEN}{zero_Flv}{long n} creates a \kbd{Flv} with \kbd{n} components set to
$0$.
\fun{GEN}{Flm_row}{GEN A, long x0} return $A[i,]$, the $i$-th row of the
\kbd{Flm} $A$.
\fun{GEN}{Flm_add}{GEN x, GEN y, ulong p} adds \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).
\fun{GEN}{Flm_sub}{GEN x, GEN y, ulong p} subtracts \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).
\fun{GEN}{Flm_mul}{GEN x, GEN y, ulong p} multiplies \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).
\fun{GEN}{Flm_powu}{GEN x, ulong n, ulong p} computes $x^n$ where $x$ is a
square \kbd{Flm}.
\fun{GEN}{Flm_charpoly}{GEN x, ulong p} return the characteristic polynomial of
the square \kbd{Flm} $x$, as a \kbd{Flx}.
\fun{GEN}{Flm_deplin}{GEN x, ulong p}
\fun{ulong}{Flm_det}{GEN x, ulong p}
\fun{ulong}{Flm_det_sp}{GEN x, ulong p}, as \kbd{Flm\_det}, in place
(destroys~\kbd{x}).
\fun{GEN}{Flm_gauss}{GEN a, GEN b, ulong p} as \kbd{gauss}, where $b$ is a
\kbd{Flm}.
\fun{GEN}{Flm_Flc_gauss}{GEN a, GEN b, ulong p} as \kbd{gauss}, where $b$ is
a \kbd{Flc}.
\fun{GEN}{Flm_indexrank}{GEN x, ulong p}
\fun{GEN}{Flm_inv}{GEN x, ulong p}
\fun{GEN}{Flm_Flc_invimage}{GEN A, GEN y, ulong p} given an \kbd{Flm}
$A$ and an \kbd{Flc} $y$, returns an $x$ such that $Ax = y$, or \kbd{NULL}
if no such vector exist.
\fun{GEN}{Flm_invimage}{GEN A, GEN y, ulong p}
given two \kbd{Flm} $A$ and $y$, returns $x$ such that $Ax = y$, or \kbd{NULL}
if no such matrix exist.
\fun{GEN}{Flm_ker}{GEN x, ulong p}
\fun{GEN}{Flm_ker_sp}{GEN x, ulong p, long deplin}, as \kbd{Flm\_ker} (if
\kbd{deplin=0}) or \kbd{Flm\_deplin} (if \kbd{deplin=1}) , in place
(destroys~\kbd{x}).
\fun{long}{Flm_rank}{GEN x, ulong p}
\fun{long}{Flm_suppl}{GEN x, ulong p}
\fun{GEN}{Flm_image}{GEN x, ulong p}
\fun{GEN}{Flm_intersect}{GEN x, GEN y, ulong p}
\fun{GEN}{Flm_transpose}{GEN x}
\fun{GEN}{Flm_hess}{GEN x, ulong p} upper Hessenberg form of $x$ over $\F_p$.
\subsec{\kbd{F2c} / \kbd{F2v}, \kbd{F2m}} An \kbd{F2v}~\kbd{v} is a
\typ{VECSMALL} representing a vector over $\F_2$. Specifically \kbd{z[0]} is
the usual codeword, \kbd{z[1]} is the number of components of $v$ and the
coefficients are given by the bits of remaining words by increasing indices.
\fun{ulong}{F2v_coeff}{GEN x, long i} returns the coefficient $i\ge 1$ of $x$.
\fun{void}{F2v_clear}{GEN x, long i} sets the coefficient $i\ge 1$ of $x$ to
$0$.
\fun{void}{F2v_flip}{GEN x, long i} adds $1$ to the coefficient $i\ge 1$ of $x$.
\fun{void}{F2v_set}{GEN x, long i} sets the coefficient $i\ge 1$ of $x$ to $1$.
\fun{void}{F2v_copy}{GEN x} returns a copy of $x$.
\fun{GEN}{F2v_slice}{GEN x, long a, long b} returns the \kbd{F2v} with
entries $x[a]$, \dots, $x[b]$. Assumes $a \leq b$.
\fun{ulong}{F2m_coeff}{GEN x, long i, long j} returns the coefficient $(i,j)$
of $x$.
\fun{void}{F2m_clear}{GEN x, long i, long j} sets the coefficient $(i,j)$ of $x$
to $0$.
\fun{void}{F2m_flip}{GEN x, long i, long j} adds $1$ to the coefficient $(i,j)$
of $x$.
\fun{void}{F2m_set}{GEN x, long i, long j} sets the coefficient $(i,j)$ of $x$
to $1$.
\fun{void}{F2m_copy}{GEN x} returns a copy of $x$.
\fun{GEN}{F2m_rowslice}{GEN x, long a, long b} returns the \kbd{F2m} built
from the $a$-th to $b$-th rows of the \kbd{F2m} $x$. Assumes $a \leq b$.
\fun{GEN}{F2m_F2c_mul}{GEN x, GEN y} multiplies \kbd{x} and \kbd{y} (assumed
to have compatible dimensions).
\fun{GEN}{F2m_image}{GEN x} gives a subset of the columns of $x$ that generate
the image of $x$.
\fun{GEN}{F2m_invimage}{GEN A, GEN B}
\fun{GEN}{F2m_F2c_invimage}{GEN A, GEN y}
\fun{GEN}{F2m_gauss}{GEN a, GEN b}
as \kbd{gauss}, where $b$ is a \kbd{F2m}.
\fun{GEN}{F2m_F2c_gauss}{GEN a, GEN b}
as \kbd{gauss}, where $b$ is a \kbd{F2c}.
\fun{GEN}{F2m_indexrank}{GEN x} $x$ being a matrix of rank $r$, returns a
vector with two \typ{VECSMALL} components $y$ and $z$ of length $r$ giving a
list of rows and columns respectively (starting from 1) such that the extracted
matrix obtained from these two vectors using \kbd{vecextract}$(x,y,z)$ is
invertible.
\fun{GEN}{F2m_mul}{GEN x, GEN y} multiplies \kbd{x} and \kbd{y} (assumed to
have compatible dimensions).
\fun{GEN}{F2m_powu}{GEN x, ulong n} computes $x^n$ where $x$ is a square
\kbd{F2m}.
\fun{long}{F2m_rank}{GEN x} as \kbd{rank}.
\fun{long}{F2m_suppl}{GEN x} as \kbd{suppl}.
\fun{GEN}{matid_F2m}{long n} returns an \kbd{F2m} which is an $n \times n$
identity matrix.
\fun{GEN}{zero_F2v}{long n} creates a \kbd{F2v} with \kbd{n} components set to
$0$.
\fun{GEN}{const_F2v}{long n} creates a \kbd{F2v} with \kbd{n} components set to
$1$.
\fun{GEN}{F2v_ei}{long n, long i} creates a \kbd{F2v} with \kbd{n} components
set to $0$, but for the $i$-th one, which is set to $1$ ($i$-th vector in the
canonical basis).
\fun{GEN}{zero_F2m}{long m, long n} creates a \kbd{Flm} with \kbd{m} x \kbd{n}
components set to $0$. Note that the result allocates a
\emph{single} column, so modifying an entry in one column modifies it in
all columns.
\fun{GEN}{zero_F2m_copy}{long m, long n} creates a \kbd{F2m} with \kbd{m} x
\kbd{n} components set to $0$.
\fun{GEN}{F2v_to_Flv}{GEN x}
\fun{GEN}{F2c_to_ZC}{GEN x}
\fun{GEN}{ZV_to_F2v}{GEN x}
\fun{GEN}{RgV_to_F2v}{GEN x}
\fun{GEN}{F2m_to_Flm}{GEN x}
\fun{GEN}{F2m_to_ZM}{GEN x}
\fun{GEN}{Flv_to_F2v}{GEN x}
\fun{GEN}{Flm_to_F2m}{GEN x}
\fun{GEN}{ZM_to_F2m}{GEN x}
\fun{GEN}{RgM_to_F2m}{GEN x}
\fun{void}{F2v_add_inplace}{GEN x, GEN y} replaces $x$ by $x+y$. It is
allowed for $y$ to be shorter than $x$.
\fun{ulong}{F2m_det}{GEN x}
\fun{ulong}{F2m_det_sp}{GEN x}, as \kbd{F2m\_det}, in place (destroys~\kbd{x}).
\fun{GEN}{F2m_deplin}{GEN x}
\fun{ulong}{F2v_dotproduct}{GEN x, GEN y} returns the scalar product of \kbd{x}
and \kbd{y}
\fun{GEN}{F2m_inv}{GEN x}
\fun{GEN}{F2m_ker}{GEN x}
\fun{GEN}{F2m_ker_sp}{GEN x, long deplin}, as \kbd{F2m\_ker} (if
\kbd{deplin=0}) or \kbd{F2m\_deplin} (if \kbd{deplin=1}), in place
(destroys~\kbd{x}).
\subsec{\kbd{FlxqV}, \kbd{FlxqM}} See \kbd{FqV}, \kbd{FqM} operations.
\fun{GEN}{FlxqV_dotproduct}{GEN x, GEN y, GEN T, ulong p} as
\kbd{FpV\_dotproduct}.
\fun{GEN}{FlxM_Flx_add_shallow}{GEN x, GEN y, ulong p} as
\kbd{RgM\_Rg\_add\_shallow}.
\fun{GEN}{FlxqM_gauss}{GEN a, GEN b, GEN T, ulong p}
\fun{GEN}{FlxqM_FlxqC_gauss}{GEN a, GEN b, GEN T, ulong p}
\fun{GEN}{FlxqM_FlxqC_mul}{GEN a, GEN b, GEN T, ulong p}
\fun{GEN}{FlxqM_ker}{GEN x, GEN T, ulong p}
\fun{GEN}{FlxqM_image}{GEN x, GEN T, ulong p}
\fun{GEN}{FlxqM_det}{GEN a, GEN T, ulong p}
\fun{GEN}{FlxqM_inv}{GEN x, GEN T, ulong p}
\fun{GEN}{FlxqM_mul}{GEN a, GEN b, GEN T, ulong p}
\fun{long}{FlxqM_rank}{GEN x, GEN T, ulong p}
\fun{GEN}{matid_FlxqM}{long n, GEN T, ulong p}
\subsec{\kbd{FpX}} Let \kbd{p} an understood \typ{INT}, to be given in
the function arguments; in practice \kbd{p} is not assumed to be prime, but
be wary. Recall than an \kbd{Fp} object is a \typ{INT}, preferably belonging
to $[0, \kbd{p}-1]$; an \kbd{FpX} is a \typ{POL} in a fixed variable whose
coefficients are \kbd{Fp} objects. Unless mentioned otherwise, all outputs in
this section are \kbd{FpX}s. All operations are understood to take place in
$(\Z/\kbd{p}\Z)[X]$.
\subsubsec{Conversions} In what follows \kbd{p} is always a \typ{INT},
not necessarily prime.
\fun{int}{RgX_is_FpX}{GEN z, GEN *p}, \kbd{z} a \typ{POL},
checks if it can be mapped to a \kbd{FpX}, by checking \kbd{Rg\_is\_Fp}
coefficientwise.
\fun{GEN}{RgX_to_FpX}{GEN z, GEN p}, \kbd{z} a \typ{POL}, returns the
\kbd{FpX} obtained by applying \kbd{Rg\_to\_Fp} coefficientwise.
\fun{GEN}{FpX_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZX}, returns \kbd{lift(z *
Mod(1,p))}, normalized.
\fun{GEN}{FpXV_red}{GEN z, GEN p}, \kbd{z} a \typ{VEC} of \kbd{ZX}. Applies
\kbd{FpX\_red} componentwise and returns the result (and we obtain a vector
of \kbd{FpX}s).
\fun{GEN}{FpXT_red}{GEN z, GEN p}, \kbd{z} a tree of \kbd{ZX}. Applies
\kbd{FpX\_red} to each leaf and returns the result (and we obtain a tree
of \kbd{FpX}s).
\subsubsec{Basic operations} In what follows \kbd{p} is always a \typ{INT},
not necessarily prime.
\noindent Now, except for \kbd{p}, the operands and outputs are all \kbd{FpX}
objects. Results are undefined on other inputs.
\fun{GEN}{FpX_add}{GEN x,GEN y, GEN p} adds \kbd{x} and \kbd{y}.
\fun{GEN}{FpX_neg}{GEN x,GEN p} returns $-\kbd{x}$, the components are
between $0$ and $p$ if this is the case for the components of $x$.
\fun{GEN}{FpX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.
\fun{GEN}{FpX_sub}{GEN x,GEN y,GEN p} returns $x-y$.
\fun{GEN}{FpX_halve}{GEN x, GEN m} returns $z$ such that $2\*z = x$ modulo
$m$ assuming such $z$ exists.
\fun{GEN}{FpX_mul}{GEN x,GEN y,GEN p} returns $x\*y$.
\fun{GEN}{FpX_mulspec}{GEN a, GEN b, GEN p, long na, long nb}
see \kbd{ZX\_mulspec}
\fun{GEN}{FpX_sqr}{GEN x,GEN p} returns $\kbd{x}^2$.
\fun{GEN}{FpX_powu}{GEN x, ulong n, GEN p} returns $x^n$.
\fun{GEN}{FpX_divrem}{GEN x, GEN y, GEN p, GEN *pr} returns the quotient
of \kbd{x} by \kbd{y}, and sets \kbd{pr} to the remainder.
\fun{GEN}{FpX_div}{GEN x, GEN y, GEN p} returns the quotient of \kbd{x} by
\kbd{y}.
\fun{GEN}{FpX_div_by_X_x}{GEN A, GEN a, GEN p, GEN *r} returns the
quotient of the \kbd{FpX}~\kbd{A} by $(X - \kbd{a})$, and sets \kbd{r} to the
remainder $\kbd{A}(\kbd{a})$.
\fun{GEN}{FpX_rem}{GEN x, GEN y, GEN p} returns the remainder \kbd{x} mod
\kbd{y}.
\fun{long}{FpX_valrem}{GEN x, GEN t, GEN p, GEN *r} The arguments \kbd{x} and
\kbd{e} being non-zero \kbd{FpX} returns the highest exponent $e$ such that
$\kbd{t}^{e}$ divides~\kbd{x}. The quotient $\kbd{x}/\kbd{t}^{e}$ is returned
in~\kbd{*r}. In particular, if \kbd{t} is irreducible, this returns the
valuation at \kbd{t} of~\kbd{x}, and \kbd{*r} is the prime-to-\kbd{t} part
of~\kbd{x}.
\fun{GEN}{FpX_deriv}{GEN x, GEN p} returns the derivative of \kbd{x}.
This function is not memory-clean, but nevertheless suitable for
\kbd{gerepileupto}.
\fun{GEN}{FpX_digits}{GEN x, GEN B, GEN p} returns a vector of \kbd{FpX}
$[c_0,\ldots,c_n]$ of degree less than the degree of $B$ and such that
$x=\sum_{i=0}^{n}{c_i\*B^i}$.
\fun{GEN}{FpX_fromdigits}{GEN v, GEN B, GEN p} where $v=[c_0,\ldots,c_n]$
is a vector of \kbd{FpX}, returns $\sum_{i=0}^{n}{c_i\*B^i}$.
\fun{GEN}{FpX_translate}{GEN P, GEN c, GEN p} let $c$ be an \kbd{Fp} and let
$P$ be an \kbd{FpX}; returns the translated \kbd{FpX} of $P(X+c)$.
\fun{GEN}{FpX_gcd}{GEN x, GEN y, GEN p} returns a (not necessarily monic)
greatest common divisor of $x$ and $y$.
\fun{GEN}{FpX_halfgcd}{GEN x, GEN y, GEN p} returns a two-by-two \kbd{FpXM}
$M$ with determinant $\pm 1$ such that the image $(a,b)$ of $(x,y)$ by $M$
has the property that $\deg a \geq {\deg x \over 2} > \deg b$.
\fun{GEN}{FpX_extgcd}{GEN x, GEN y, GEN p, GEN *u, GEN *v} returns
$d = \text{GCD}(\kbd{x},\kbd{y})$ (not necessarily monic), and sets \kbd{*u},
\kbd{*v} to the Bezout coefficients such that $\kbd{*ux} + \kbd{*vy} = d$.
If \kbd{*u} is set to \kbd{NULL}, it is not computed which is a bit faster.
This is useful when computing the inverse of $y$ modulo $x$.
\fun{GEN}{FpX_center}{GEN z, GEN p, GEN pov2} returns the polynomial whose
coefficient belong to the symmetric residue system. Assumes the coefficients
already belong to $[0,\kbd{p}-1]$) and \kbd{pov2} is \kbd{shifti(p,-1)}.
\fun{GEN}{FpX_Frobenius}{GEN T, GEN p} returns $X^{p}\pmod{T(X)}$.
\fun{GEN}{FpX_matFrobenius}{GEN T, GEN p} returns the matrix of the
Frobenius automorphism $x\mapsto x^p$ over the power basis of $\F_p[X]/(T)$.
\subsubsec{Mixed operations}
The following functions implement arithmetic operations between \kbd{FpX}
and \kbd{Fp} operands, the result being of type \kbd{FpX}. The integer
\kbd{p} need not be prime.
\fun{GEN}{Z_to_FpX}{GEN x, GEN p, long v} converts a \typ{INT} to a scalar
polynomial in variable $v$, reduced modulo $p$.
\fun{GEN}{FpX_Fp_add}{GEN y, GEN x, GEN p} add the \kbd{Fp}~\kbd{x} to the
\kbd{FpX}~\kbd{y}.
\fun{GEN}{FpX_Fp_add_shallow}{GEN y, GEN x, GEN p} add the \kbd{Fp}~\kbd{x}
to the \kbd{FpX}~\kbd{y}, using a shallow copy (result not suitable for
\kbd{gerepileupto})
\fun{GEN}{FpX_Fp_sub}{GEN y, GEN x, GEN p} subtract the \kbd{Fp}~\kbd{x} from
the \kbd{FpX}~\kbd{y}.
\fun{GEN}{FpX_Fp_sub_shallow}{GEN y, GEN x, GEN p} subtract the
\kbd{Fp}~\kbd{x} from the \kbd{FpX}~\kbd{y}, using a shallow copy (result not
suitable for \kbd{gerepileupto})
\fun{GEN}{Fp_FpX_sub}{GEN x,GEN y,GEN p} returns $x - y$, where $x$ is
a \typ{INT} and $y$ an \kbd{FpX}.
\fun{GEN}{FpX_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{FpX}~\kbd{x}
by the \kbd{Fp}~\kbd{y}.
\fun{GEN}{FpX_Fp_mulspec}{GEN x, GEN y, GEN p, long lx} see \kbd{ZX\_mulspec}
\fun{GEN}{FpX_mulu}{GEN x, ulong y, GEN p} multiplies the \kbd{FpX}~\kbd{x}
by \kbd{y}.
\fun{GEN}{FpX_Fp_mul_to_monic}{GEN y,GEN x,GEN p} returns $y\*x$ assuming the
result is monic of the same degree as $y$ (in particular $x\neq 0$).
\subsubsec{Miscellaneous operations}
\fun{GEN}{FpX_normalize}{GEN z, GEN p} divides the \kbd{FpX}~\kbd{z} by its
leading coefficient. If the latter is~$1$, \kbd{z} itself is returned, not a
copy. If not, the inverse remains uncollected on the stack.
\fun{GEN}{FpX_invBarrett}{GEN T, GEN p}, returns the Barrett inverse
$M$ of $T$ defined by $M(x)\*x^n\*T(1/x)\equiv 1\pmod{x^{n-1}}$ where $n$ is
the degree of $T$.
\fun{GEN}{FpX_rescale}{GEN P, GEN h, GEN p} returns $h^{\deg(P)} P(x/h)$.
\kbd{P} is an \kbd{FpX} and \kbd{h} is a non-zero \kbd{Fp} (the routine would
work with any non-zero \typ{INT} but is not efficient in this case).
\fun{GEN}{FpX_eval}{GEN x, GEN y, GEN p} evaluates the \kbd{FpX}~\kbd{x}
at the \kbd{Fp}~\kbd{y}. The result is an~\kbd{Fp}.
\fun{GEN}{FpX_FpV_multieval}{GEN P, GEN v, GEN p} returns the vector
$[P(v[1]),\ldots,P(v[n])]$ as a \kbd{FpV}.
\fun{GEN}{FpX_dotproduct}{GEN x, GEN y, GEN p} return the scalar product
$\sum_{i\geq 0} x_i\*y_i$ of the coefficients of $x$ and $y$.
\fun{GEN}{FpXV_FpC_mul}{GEN V, GEN W, GEN p} multiplies a non-empty line
vector of\kbd{FpX} by a column vector of \kbd{Fp} of compatible dimensions.
The result is an~\kbd{FpX}.
\fun{GEN}{FpXV_prod}{GEN V, GEN p}, \kbd{V} being a vector of \kbd{FpX},
returns their product.
\fun{GEN}{FpV_roots_to_pol}{GEN V, GEN p, long v}, \kbd{V} being a vector
of \kbd{INT}s, returns the monic \kbd{FpX}
$\prod_i (\kbd{pol\_x[v]} - \kbd{V[i]})$.
\fun{GEN}{FpX_chinese_coprime}{GEN x,GEN y, GEN Tx,GEN Ty, GEN Tz, GEN p}:
returns an \kbd{FpX}, congruent to \kbd{x} mod \kbd{Tx} and to \kbd{y} mod
\kbd{Ty}. Assumes \kbd{Tx} and \kbd{Ty} are coprime, and \kbd{Tz = Tx * Ty}
or \kbd{NULL} (in which case it is computed within).
\fun{GEN}{FpV_polint}{GEN x, GEN y, GEN p, long v} returns the \kbd{FpX}
interpolation polynomial with value \kbd{y[i]} at \kbd{x[i]}. Assumes lengths
are the same, components are \typ{INT}s, and the \kbd{x[i]} are distinct
modulo \kbd{p}.
\fun{GEN}{FpV_FpM_polint}{GEN x, GEN V, GEN p, long v} equivalent (but
faster) to applying \kbd{FpV\_polint(x,$\ldots$)} to all the elements of the
vector $V$ (thus, returns a \kbd{FpXV}).
\fun{GEN}{FpV_invVandermonde}{GEN L, GEN d, GEN p} $L$ being a \kbd{FpV}
of length $n$, return the inverse $M$ of the Vandermonde matrix attached to
the elements of $L$, eventually multiplied by \kbd{d} if it is not
\kbd{NULL}. If $A$ is a \kbd{FpV} and $B=M\*A$, then the polynomial
$P=\sum_{i=1}^n B[i]\*X^{i-1}$ verifies $P(L[i])=d\*A[i]$ for
$1 \leq i \leq n$.
\fun{int}{FpX_is_squarefree}{GEN f, GEN p} returns $1$ if the
\kbd{FpX}~\kbd{f} is squarefree, $0$ otherwise.
\fun{int}{FpX_is_irred}{GEN f, GEN p} returns $1$ if the \kbd{FpX}~\kbd{f}
is irreducible, $0$ otherwise. Assumes that \kbd{p} is prime. If~\kbd{f} has
few factors, \kbd{FpX\_nbfact(f,p) == 1} is much faster.
\fun{int}{FpX_is_totally_split}{GEN f, GEN p} returns $1$ if the
\kbd{FpX}~\kbd{f} splits into a product of distinct linear factors, $0$
otherwise. Assumes that \kbd{p} is prime.
\fun{GEN}{FpX_factor}{GEN f, GEN p}, factors the \kbd{FpX}~\kbd{f}. Assumes
that \kbd{p} is prime. The returned value \kbd{v} is a \typ{VEC} with two
components: \kbd{v[1]} is a vector of distinct irreducible (\kbd{FpX})
factors, and \kbd{v[2]} is a \typ{VECSMALL} of corresponding exponents. The
order of the factors is deterministic (the computation is not).
\fun{GEN}{FpX_factor_squarefree}{GEN f, GEN p} returns the squarefree
factorization of $f$ modulo $p$. This is a vector $[u_1,\dots,u_k]$
of pairwise coprime \kbd{FpX} such that $u_k \neq 1$ and $f = \prod u_i^i$.
Shallow function.
\fun{long}{FpX_nbfact}{GEN f, GEN p}, assuming the \kbd{FpX}~f is squarefree,
returns the number of its irreducible factors. Assumes that \kbd{p} is prime.
\fun{long}{FpX_nbfact_Frobenius}{GEN f, GEN XP, GEN p}, as
\kbd{FpX\_nbfact(f, p)} but faster,
where \kbd{XP} is \kbd{FpX\_Frobenius(f, p)}.
\fun{long}{FpX_degfact}{GEN f, GEN p}, as \kbd{FpX\_factor}, but the
degrees of the irreducible factors are returned instead of the factors
themselves (as a \typ{VECSMALL}). Assumes that \kbd{p} is prime.
\fun{long}{FpX_nbroots}{GEN f, GEN p} returns the number of distinct
roots in \kbd{\Z/p\Z} of the \kbd{FpX}~\kbd{f}. Assumes that \kbd{p} is prime.
\fun{GEN}{FpX_oneroot}{GEN f, GEN p} returns one root in \kbd{\Z/p\Z} of
the \kbd{FpX}~\kbd{f}. Return \kbd{NULL} if no root exists.
Assumes that \kbd{p} is prime.
\fun{GEN}{FpX_roots}{GEN f, GEN p} returns the roots in \kbd{\Z/p\Z} of
the \kbd{FpX}~\kbd{f} (without multiplicity, as a vector of \kbd{Fp}s).
Assumes that \kbd{p} is prime.
\fun{GEN}{FpX_split_part}{GEN f, GEN p} returns the largest totally split
squarefree factor of $f$.
\fun{GEN}{random_FpX}{long d, long v, GEN p} returns a random \kbd{FpX}
in variable \kbd{v}, of degree less than~\kbd{d}.
\fun{GEN}{FpX_resultant}{GEN x, GEN y, GEN p} returns the resultant
of \kbd{x} and \kbd{y}, both \kbd{FpX}. The result is a \typ{INT}
belonging to $[0,p-1]$.
\fun{GEN}{FpX_disc}{GEN x, GEN p} returns the discriminant
of the \kbd{FpX} \kbd{x}. The result is a \typ{INT} belonging to $[0,p-1]$.
\fun{GEN}{FpX_FpXY_resultant}{GEN a, GEN b, GEN p}, \kbd{a} a \typ{POL} of
\typ{INT}s (say in variable $X$), \kbd{b} a \typ{POL} (say in variable $X$)
whose coefficients are either \typ{POL}s in $\Z[Y]$ or \typ{INT}s.
Returns $\text{Res}_X(a, b)$ in $\F_p[Y]$ as an \kbd{FpY}. The function
assumes that $X$ has lower priority than $Y$.
\subsec{\kbd{FpXQ}, \kbd{Fq}} Let \kbd{p} a \typ{INT} and \kbd{T} an
\kbd{FpX} for \kbd{p}, both to be given in the function arguments; an \kbd{FpXQ}
object is an \kbd{FpX} whose degree is strictly less than the degree of
\kbd{T}. An \kbd{Fq} is either an \kbd{FpXQ} or an \kbd{Fp}. Both represent
a class in $(\Z/\kbd{p}\Z)[X] / (T)$, in which all operations below take
place. In addition, \kbd{Fq} routines also allow $\kbd{T} = \kbd{NULL}$, in
which case no reduction mod \kbd{T} is performed on the result.
For efficiency, the routines in this section may leave small unused objects
behind on the stack (their output is still suitable for \kbd{gerepileupto}).
Besides \kbd{T} and \kbd{p}, arguments are either \kbd{FpXQ} or \kbd{Fq}
depending on the function name. (All \kbd{Fq} routines accept \kbd{FpXQ}s by
definition, not the other way round.)
\subsubsec{Preconditioned reduction}
For faster reduction, the modulus \kbd{T} can be replaced by an extended
modulus, which is an \kbd{FpXT}, in all \kbd{FpXQ}- and \kbd{Fq}-classes
functions, and in \kbd{FpX\_rem} and \kbd{FpX\_divrem}.
\fun{GEN}{FpX_get_red}{GEN T, GEN p} returns the extended modulus \kbd{eT}.
To write code that works both with plain and extended moduli, the following
accessors are defined:
\fun{GEN}{get_FpX_mod}{GEN eT} returns the underlying modulus \kbd{T}.
\fun{GEN}{get_FpX_var}{GEN eT} returns the variable number of the modulus.
\fun{GEN}{get_FpX_degree}{GEN eT} returns the degree of the modulus.
Furthermore, \kbd{ZXT\_to\_FlxT} allows to convert an extended modulus for
a \kbd{FpX} to an extended modulus for the corresponding \kbd{Flx}.
\subsubsec{Conversions}
\fun{GEN}{Rg_is_FpXQ}{GEN z, GEN *T, GEN *p}, checks if \kbd{z} is a \kbd{GEN}
which can be mapped to $\F_p[X]/(T)$: anything for which \kbd{Rg\_is\_Fp} return
$1$, a \typ{POL} for which \kbd{RgX\_to\_FpX} return $1$, a \typ{POLMOD}
whose modulus is equal to \kbd{*T} if \kbd{*T} is not \kbd{NULL} (once mapped
to a \kbd{FpX}), or a \typ{FFELT} $z$ such that $z^0$ is equal to \kbd{*T}
if \kbd{*T} is not \kbd{NULL}.
If an integer modulus is found it is put in \kbd{*p}, else \kbd{*p} is left
unchanged. If a polynomial modulus is found it is put in \kbd{*T},
if a \typ{FFELT} $z$ is found, $z^0$ is put in \kbd{*T}, else
\kbd{*T} is left unchanged.
\fun{int}{RgX_is_FpXQX}{GEN z, GEN *T, GEN *p}, \kbd{z} a \typ{POL},
checks if it can be mapped to a \kbd{FpXQX}, by checking \kbd{Rg\_is\_FpXQ}
coefficientwise.
\fun{GEN}{Rg_to_FpXQ}{GEN z, GEN T, GEN p}, \kbd{z} a \kbd{GEN} which can be
mapped to $\F_p[X]/(T)$: anything \kbd{Rg\_to\_Fp} can be applied to,
a \typ{POL} to which \kbd{RgX\_to\_FpX} can be applied to, a \typ{POLMOD}
whose modulus is divisible by $T$ (once mapped to a \kbd{FpX}), a suitable
\typ{RFRAC}. Returns \kbd{z} as an \kbd{FpXQ}, normalized.
\fun{GEN}{RgX_to_FpXQX}{GEN z, GEN T, GEN p}, \kbd{z} a \typ{POL}, returns the
\kbd{FpXQ} obtained by applying \kbd{Rg\_to\_FpXQ} coefficientwise.
\fun{GEN}{RgX_to_FqX}{GEN z, GEN T, GEN p}: let \kbd{z} be a \typ{POL};
returns the \kbd{FqX} obtained by applying \kbd{Rg\_to\_FpXQ}
coefficientwise and simplifying scalars to \typ{INT}s.
\fun{GEN}{Fq_to_FpXQ}{GEN z, GEN T, GEN p /*unused*/}
if $z$ is a \typ{INT}, convert it to a constant polynomial in the variable of
$T$, otherwise return $z$ (shallow function).
\fun{GEN}{Fq_red}{GEN x, GEN T, GEN p}, \kbd{x} a \kbd{ZX} or \typ{INT},
reduce it to an \kbd{Fq} ($\kbd{T} = \kbd{NULL}$ is allowed iff \kbd{x} is a
\typ{INT}).
\fun{GEN}{FqX_red}{GEN x, GEN T, GEN p}, \kbd{x} a \typ{POL}
whose coefficients are \kbd{ZX}s or \typ{INT}s, reduce them to \kbd{Fq}s. (If
$\kbd{T} = \kbd{NULL}$, as \kbd{FpXX\_red(x, p)}.)
\fun{GEN}{FqV_red}{GEN x, GEN T, GEN p}, \kbd{x} a vector of \kbd{ZX}s or
\typ{INT}s, reduce them to \kbd{Fq}s. (If $\kbd{T} = \kbd{NULL}$, only
reduce components mod \kbd{p} to \kbd{FpX}s or \kbd{Fp}s.)
\fun{GEN}{FpXQ_red}{GEN x, GEN T,GEN p} \kbd{x} a \typ{POL}
whose coefficients are \typ{INT}s, reduce them to \kbd{FpXQ}s.
\subsec{\kbd{FpXQ}}
\fun{GEN}{FpXQ_add}{GEN x, GEN y, GEN T,GEN p}
\fun{GEN}{FpXQ_sub}{GEN x, GEN y, GEN T,GEN p}
\fun{GEN}{FpXQ_mul}{GEN x, GEN y, GEN T,GEN p}
\fun{GEN}{FpXQ_sqr}{GEN x, GEN T, GEN p}
\fun{GEN}{FpXQ_div}{GEN x, GEN y, GEN T,GEN p}
\fun{GEN}{FpXQ_inv}{GEN x, GEN T, GEN p} computes the inverse of \kbd{x}
\fun{GEN}{FpXQ_invsafe}{GEN x,GEN T,GEN p}, as \kbd{FpXQ\_inv}, returning
\kbd{NULL} if \kbd{x} is not invertible.
\fun{GEN}{FpXQ_pow}{GEN x, GEN n, GEN T, GEN p} computes $\kbd{x}^\kbd{n}$.
\fun{GEN}{FpXQ_powu}{GEN x, ulong n, GEN T, GEN p} computes $\kbd{x}^\kbd{n}$
for small $n$.
In the following three functions the integer parameter \kbd{ord} can be given
either as a positive \typ{INT} $N$, or as its factorization matrix $\var{faN}$,
or as a pair $[N,\var{faN}]$. The parameter may be omitted by setting it to
\kbd{NULL} (the value is then $p^d-1$, $d = \deg T$).
\fun{GEN}{FpXQ_log}{GEN a, GEN g, GEN ord, GEN T, GEN p} Let \kbd{g} be of
order \kbd{ord} in the finite field $\F_p[X]/(T)$, return $e$ such that
$a^e=g$. If $e$ does not exists, the result is undefined. Assumes
that \kbd{T} is irreducible mod \kbd{p}.
\fun{GEN}{Fp_FpXQ_log}{GEN a, GEN g, GEN ord, GEN T, GEN p} As
\kbd{FpXQ\_log}, \kbd{a} being a \kbd{Fp}.
\fun{GEN}{FpXQ_order}{GEN a, GEN ord, GEN T, GEN p} returns the order of the
\kbd{FpXQ} \kbd{a}. Assume that \kbd{ord} is a multiple of the order of
\kbd{a}. Assume that \kbd{T} is irreducible mod \kbd{p}.
\fun{int}{FpXQ_issquare}{GEN x, GEN T, GEN p} returns $1$ if $x$ is a square
and $0$ otherwise. Assumes that \kbd{T} is irreducible mod \kbd{p}.
\fun{GEN}{FpXQ_sqrt}{GEN x, GEN T, GEN p} returns a square root of \kbd{x}.
Return \kbd{NULL} if \kbd{x} is not a square.
\fun{GEN}{FpXQ_sqrtn}{GEN x, GEN n, GEN T, GEN p, GEN *zn}
Let $T$be irreducible mod $p$ and $q = p^{\deg T}$; returns \kbd{NULL} if $a$
is not an $n$-th power residue mod $p$. Otherwise, returns an $n$-th root of
$a$; if \kbd{zn} is non-\kbd{NULL} set it to a primitive $m$-th root of $1$
in $\F_q$, $m = \gcd(q-1,n)$ allowing to compute all $m$ solutions in $\F_q$
of the equation $x^n = a$.
\subsec{\kbd{Fq}}
\fun{GEN}{Fq_add}{GEN x, GEN y, GEN T/*unused*/, GEN p}
\fun{GEN}{Fq_sub}{GEN x, GEN y, GEN T/*unused*/, GEN p}
\fun{GEN}{Fq_mul}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{Fq_Fp_mul}{GEN x, GEN y, GEN T, GEN p} multiplies the \kbd{Fq} $x$
by the \typ{INT} $y$.
\fun{GEN}{Fq_mulu}{GEN x, ulong y, GEN T, GEN p} multiplies the \kbd{Fq} $x$
by the scalar $y$.
\fun{GEN}{Fq_halve}{GEN x, GEN T, GEN p} returns $z$ such that $2\*z = x$
assuming such $z$ exists.
\fun{GEN}{Fq_sqr}{GEN x, GEN T, GEN p}
\fun{GEN}{Fq_neg}{GEN x, GEN T, GEN p}
\fun{GEN}{Fq_neg_inv}{GEN x, GEN T, GEN p} computes $-\kbd{x}^{-1}$
\fun{GEN}{Fq_inv}{GEN x, GEN pol, GEN p} computes $\kbd{x}^{-1}$, raising an
error if \kbd{x} is not invertible.
\fun{GEN}{Fq_invsafe}{GEN x, GEN pol, GEN p} as \kbd{Fq\_inv}, but returns
\kbd{NULL} if \kbd{x} is not invertible.
\fun{GEN}{Fq_div}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FqV_inv}{GEN x, GEN T, GEN p} $x$ being a vector of \kbd{Fq}s,
return the vector of inverses of the $x[i]$. The routine uses Montgomery's
trick, and involves a single inversion, plus $3(N-1)$ multiplications for
$N$ entries. The routine is not stack-clean: $2N$ \kbd{FpXQ} are left on
stack, besides the $N$ in the result.
\fun{GEN}{Fq_pow}{GEN x, GEN n, GEN pol, GEN p} returns $\kbd{x}^\kbd{n}$.
\fun{GEN}{Fq_powu}{GEN x, ulong n, GEN pol, GEN p} returns $\kbd{x}^\kbd{n}$
for small $n$.
\fun{GEN}{Fq_log}{GEN a, GEN g, GEN ord, GEN T, GEN p} as
\tet{Fp_log} or \tet{FpXQ_log}.
\fun{int}{Fq_issquare}{GEN x, GEN T, GEN p} returns $1$ if $x$ is a square
and $0$ otherwise. Assumes that \kbd{T} is irreducible mod \kbd{p} and that
$p$ is prime; $T = \kbd{NULL}$ is forbidden unless $x$ is an \kbd{Fp}.
\fun{long}{Fq_ispower}{GEN x, GEN n, GEN T, GEN p} returns $1$ if $x$
is a $n$-th power and $0$ otherwise. Assumes that \kbd{T} is irreducible mod
\kbd{p} and that $p$ is prime; $T = \kbd{NULL}$ is forbidden unless $x$ is an
\kbd{Fp}.
\fun{GEN}{Fq_sqrt}{GEN x, GEN T, GEN p} returns a square root of \kbd{x}.
Return \kbd{NULL} if \kbd{x} is not a square.
\fun{GEN}{Fq_sqrtn}{GEN a, GEN n, GEN T, GEN p, GEN *zn}
as \tet{FpXQ_sqrtn}.
\fun{GEN}{FpXQ_charpoly}{GEN x, GEN T, GEN p} returns the characteristic
polynomial of \kbd{x}
\fun{GEN}{FpXQ_minpoly}{GEN x, GEN T, GEN p} returns the minimal polynomial
of \kbd{x}
\fun{GEN}{FpXQ_norm}{GEN x, GEN T, GEN p} returns the norm of \kbd{x}
\fun{GEN}{FpXQ_trace}{GEN x, GEN T, GEN p} returns the trace of \kbd{x}
\fun{GEN}{FpXQ_conjvec}{GEN x, GEN T, GEN p} returns the vector of conjugates
$[x,x^p,x^{p^2},\ldots,x^{p^{n-1}}]$ where $n$ is the degree of $T$.
\fun{GEN}{gener_FpXQ}{GEN T, GEN p, GEN *po} returns a primitive root modulo
$(T,p)$. $T$ is an \kbd{FpX} assumed to be irreducible modulo the prime
$p$. If \kbd{po} is not \kbd{NULL} it is set to $[o,\var{fa}]$, where $o$ is
the order of the multiplicative group of the finite field, and \var{fa} is
its factorization.
\fun{GEN}{gener_FpXQ_local}{GEN T, GEN p, GEN L}, \kbd{L} being a vector of
primes dividing $p^{\deg T} - 1$, returns an element of $G:=\F_p[x]/(T)$
which is a generator of the $\ell$-Sylow of $G$ for every $\ell$ in
\kbd{L}. It is not necessary, and in fact slightly inefficient, to include
$\ell=2$, since 2 is treated separately in any case, i.e. the generator
obtained is never a square if $p$ is odd.
\fun{GEN}{gener_Fq_local}{GEN T, GEN p, GEN L} as
\kbd{pgener\_Fp\_local(p, L)} if $T$ is \kbd{NULL},
or \kbd{gener\_FpXQ\_local} (otherwise).
\fun{GEN}{FpXQ_powers}{GEN x, long n, GEN T, GEN p} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC} of \kbd{FpXQ}s.
\fun{GEN}{FpXQ_matrix_pow}{GEN x, long m, long n, GEN T, GEN p}, as
\kbd{FpXQ\_powers}$(x, n-1, T, p)$, but returns the powers as a an
$m\times n$ matrix. Usually, we have $m = n = \deg T$.
\fun{GEN}{FpXQ_autpow}{GEN a, ulong n, GEN T, GEN p} computes $\sigma^n(X)$
assuming $a=\sigma(X)$ where $\sigma$ is an automorphism of the algebra
$\F_p[X]/T(X)$.
\fun{GEN}{FpXQ_autsum}{GEN a, ulong n, GEN T, GEN p}
$a$ being a two-component vector,
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
returns the vector $[\sigma^n(X),b\sigma(b)\ldots\sigma^{n-1}(b)]$
where $b=a[2]$.
\fun{GEN}{FpXQ_auttrace}{GEN a, ulong n, GEN T, GEN p}
$a$ being a two-component vector,
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
returns the vector $[\sigma^n(X),b+\sigma(b)+\ldots+\sigma^{n-1}(b)]$
where $b=a[2]$.
\fun{GEN}{FpXQ_autpowers}{GEN S, long n, GEN T, GEN p} returns
$[x,S(x),S(S(x)),\dots,S^{(n)}(x)]$ as a \typ{VEC} of \kbd{FpXQ}s.
\fun{GEN}{FpXQM_autsum}{GEN a, long n, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
returns the vector $[\sigma^n(X),b\sigma(b)\ldots\sigma^{n-1}(b)]$
where $b=a[2]$ is a square matrix.
\fun{GEN}{FpX_FpXQ_eval}{GEN f, GEN x, GEN T, GEN p} returns
$\kbd{f}(\kbd{x})$.
\fun{GEN}{FpX_FpXQV_eval}{GEN f, GEN V, GEN T, GEN p} returns
$\kbd{f}(\kbd{x})$, assuming that \kbd{V} was computed by
$\kbd{FpXQ\_powers}(\kbd{x}, n, \kbd{T}, \kbd{p})$.
\fun{GEN}{FpXC_FpXQV_eval}{GEN C, GEN V,GEN T,GEN p} applies
\kbd{FpX\_FpXQV\_eval} to all elements of the vector $C$
and returns a \typ{COL}.
\fun{GEN}{FpXM_FpXQV_eval}{GEN M, GEN V,GEN T,GEN p} applies
\kbd{FpX\_FpXQV\_eval} to all elements of the matrix $M$.
\subsec{\kbd{FpXX}, \kbd{FpXY}}
Contrary to what the name implies, an \kbd{FpXX} is a \typ{POL} whose
coefficients are either \typ{INT}s or \kbd{FpX}s. This reduces memory
overhead at the expense of consistency. The prefix \kbd{FpXY} is an
alias for \kbd{FpXX} when variables matters.
\fun{GEN}{FpXX_red}{GEN z, GEN p}, \kbd{z} a \typ{POL} whose coefficients are
either \kbd{ZX}s or \typ{INT}s. Returns the \typ{POL} equal to \kbd{z} with
all components reduced modulo \kbd{p}.
\fun{GEN}{FpXX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.
\fun{GEN}{FpXX_add}{GEN x, GEN y, GEN p} adds \kbd{x} and \kbd{y}.
\fun{GEN}{FpXX_sub}{GEN x, GEN y, GEN p} returns $\kbd{x}-\kbd{y}$.
\fun{GEN}{FpXX_neg}{GEN x, GEN p} returns $-\kbd{x}$.
\fun{GEN}{FpXX_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{FpXX}~\kbd{x}
by the \kbd{Fp}~\kbd{y}.
\fun{GEN}{FpXX_FpX_mul}{GEN x, GEN y, GEN p} multiplies the coefficients of the
\kbd{FpXX}~\kbd{x} by the \kbd{FpX}~\kbd{y}.
\fun{GEN}{FpXX_mulu}{GEN x, GEN y, GEN p} multiplies the \kbd{FpXX}~\kbd{x}
by the scalar \kbd{y}.
\fun{GEN}{FpXX_deriv}{GEN P, GEN p} differentiates \kbd{P} with respect of
the main variable.
\fun{GEN}{FpXY_eval}{GEN Q, GEN y, GEN x, GEN p} $Q$ being an \kbd{FpXY},
i.e.~a \typ{POL} with \kbd{Fp} or \kbd{FpX} coefficients representing an
element of $\F_p[X][Y]$. Returns the \kbd{Fp} $Q(x,y)$.
\fun{GEN}{FpXY_evalx}{GEN Q, GEN x, GEN p} $Q$ being an \kbd{FpXY}, returns the
\kbd{FpX} $Q(x,Y)$, where $Y$ is the main variable of $Q$.
\fun{GEN}{FpXY_evaly}{GEN Q, GEN y, GEN p, long vx} $Q$ an \kbd{FpXY}, returns
the \kbd{FpX} $Q(X,y)$, where $X$ is the second variable of $Q$, and \kbd{vx}
is the variable number of $X$.
\fun{GEN}{FpXY_Fq_evaly}{GEN Q, GEN y, GEN T, GEN p, long vx} $Q$ an \kbd{FpXY}
and $y$ being an \kbd{Fq}, returns the \kbd{FqX} $Q(X,y)$, where $X$ is the
second variable of $Q$, and \kbd{vx} is the variable number of $X$.
\fun{GEN}{FpXY_FpXQ_evalx}{GEN Q, GEN x, ulong p} $Q$ an \kbd{FpXY} and
$x$ being an \kbd{FpXQ}, returns the \kbd{FpXQX} $Q(x,Y)$, where $Y$ is the
first variable of $Q$.
\fun{GEN}{FpXY_FpXQV_evalx}{GEN Q, GEN V, ulong p} $Q$ an \kbd{FpXY} and
$x$ being an \kbd{FpXQ}, returns the \kbd{FpXQX} $Q(x,Y)$, where $Y$ is the
first variable of $Q$, assuming that \kbd{V} was computed by
$\kbd{FpXQ\_powers}(\kbd{x}, n, \kbd{T}, \kbd{p})$.
\fun{GEN}{FpXYQQ_pow}{GEN x, GEN n, GEN S, GEN T, GEN p}, \kbd{x} being a
\kbd{FpXY}, \kbd{T} being a \kbd{FpX} and \kbd{S} being a \kbd{FpY},
return $x^n \pmod{S,T,p}$.
\subsec{\kbd{FpXQX}, \kbd{FqX}}
Contrary to what the name implies, an \kbd{FpXQX} is a \typ{POL} whose
coefficients are \kbd{Fq}s. So the only difference between \kbd{FqX} and
\kbd{FpXQX} routines is that $\kbd{T} = \kbd{NULL}$ is not allowed in the
latter. (It was thought more useful to allow \typ{INT} components than to
enforce strict consistency, which would not imply any efficiency gain.)
\subsubsec{Basic operations}
\fun{GEN}{FqX_add}{GEN x,GEN y,GEN T,GEN p}
\fun{GEN}{FqX_Fq_add}{GEN x, GEN y, GEN T, GEN p} adds the
\kbd{Fq}~\kbd{y} to the \kbd{FqX}~\kbd{x}.
\fun{GEN}{FqX_neg}{GEN x,GEN T,GEN p}
\fun{GEN}{FqX_sub}{GEN x,GEN y,GEN T,GEN p}
\fun{GEN}{FqX_mul}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FqX_Fq_mul}{GEN x, GEN y, GEN T, GEN p} multiplies the
\kbd{FqX}~\kbd{x} by the \kbd{Fq}~\kbd{y}.
\fun{GEN}{FqX_mulu}{GEN x, ulong y, GEN T, GEN p} multiplies the
\kbd{FqX}~\kbd{x} by the scalar~\kbd{y}.
\fun{GEN}{FqX_Fp_mul}{GEN x, GEN y, GEN T, GEN p} multiplies the
\kbd{FqX}~\kbd{x} by the \typ{INT}~\kbd{y}.
\fun{GEN}{FqX_Fq_mul_to_monic}{GEN x, GEN y, GEN T, GEN p}
returns $x\*y$ assuming the result is monic of the same degree as $x$ (in
particular $y\neq 0$).
\fun{GEN}{FpXQX_normalize}{GEN z, GEN T, GEN p}
\fun{GEN}{FqX_normalize}{GEN z, GEN T, GEN p} divides the \kbd{FqX}~\kbd{z}
by its leading term. The leading coefficient becomes $1$ as a \typ{INT}.
\fun{GEN}{FqX_sqr}{GEN x, GEN T, GEN p}
\fun{GEN}{FqX_powu}{GEN x, ulong n, GEN T, GEN p}
\fun{GEN}{FqX_divrem}{GEN x, GEN y, GEN T, GEN p, GEN *z}
\fun{GEN}{FqX_div}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FqX_div_by_X_x}{GEN a, GEN x, GEN T, GEN p, GEN *r}
\fun{GEN}{FqX_rem}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FqX_deriv}{GEN x, GEN T, GEN p} returns the derivative of \kbd{x}.
(This function is suitable for \kbd{gerepilupto} but not memory-clean.)
\fun{GEN}{FqX_translate}{GEN P, GEN c, GEN T, GEN p} let $c$ be an \kbd{Fq}
defined modulo $(p, T)$, and let $P$ be an \kbd{FqX}; returns the translated
\kbd{FqX} of $P(X+c)$.
\fun{GEN}{FqX_gcd}{GEN P, GEN Q, GEN T, GEN p} returns a (not necessarily
monic) greatest common divisor of $x$ and $y$.
\fun{GEN}{FqX_extgcd}{GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv}
returns $d = \text{GCD}(\kbd{x},\kbd{y})$ (not necessarily monic), and sets
\kbd{*u}, \kbd{*v} to the Bezout coefficients such that $\kbd{*ux} +
\kbd{*vy} = d$.
\fun{GEN}{FqX_halfgcd}{GEN x, GEN y, GEN T, GEN p} returns a two-by-two
\kbd{FqXM} $M$ with determinant $\pm 1$ such that the image $(a,b)$ of $(x,y)$
by $M$ has the property that $\deg a \geq {\deg x \over 2} > \deg b$.
\fun{GEN}{FqX_eval}{GEN x, GEN y, GEN T, GEN p} evaluates the \kbd{FqX}~\kbd{x}
at the \kbd{Fq}~\kbd{y}. The result is an~\kbd{Fq}.
\fun{GEN}{FqXY_eval}{GEN Q, GEN y, GEN x, GEN T, GEN p} $Q$ an \kbd{FqXY},
i.e.~a \typ{POL} with \kbd{Fq} or \kbd{FqX} coefficients representing an
element of $\F_q[X][Y]$. Returns the \kbd{Fq} $Q(x,y)$.
\fun{GEN}{FqXY_evalx}{GEN Q, GEN x, GEN T, GEN p} $Q$ being an \kbd{FqXY},
returns the \kbd{FqX} $Q(x,Y)$, where $Y$ is the main variable of $Q$.
\fun{GEN}{random_FpXQX}{long d, long v, GEN T, GEN p} returns a random
\kbd{FpXQX} in variable \kbd{v}, of degree less than~\kbd{d}.
\fun{GEN}{FpXQX_renormalize}{GEN x, long lx}
\fun{GEN}{FpXQX_red}{GEN z, GEN T, GEN p} \kbd{z} a \typ{POL} whose
coefficients are \kbd{ZX}s or \typ{INT}s, reduce them to \kbd{FpXQ}s.
\fun{GEN}{FpXQX_mul}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{Kronecker_to_FpXQX}{GEN z, GEN T, GEN p}. Let $n = \deg T$ and let
$P(X,Y)\in \Z[X,Y]$ lift a polynomial in $K[Y]$, where $K := \F_p[X]/(T)$ and
$\deg_X P < 2n-1$ --- such as would result from multiplying minimal degree
lifts of two polynomials in $K[Y]$. Let $z = P(t,t^{2*n-1})$ be a Kronecker
form of $P$, this function returns $Q\in \Z[X,t]$ such that $Q$ is congruent to
$P(X,t)$ mod $(p, T(X))$, $\deg_X Q < n$, and all coefficients are in $[0,p[$.
Not stack-clean. Note that $t$ need not be the same variable as $Y$!
\fun{GEN}{FpXQX_FpXQ_mul}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FpXQX_sqr}{GEN x, GEN T, GEN p}
\fun{GEN}{FpXQX_divrem}{GEN x, GEN y, GEN T, GEN p, GEN *pr}
\fun{GEN}{FpXQX_div}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FpXQX_div_by_X_x}{GEN a, GEN x, GEN T, GEN p, GEN *r}
\fun{GEN}{FpXQX_rem}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FpXQX_powu}{GEN x, ulong n, GEN T, GEN p} returns $x^n$.
\fun{GEN}{FpXQX_digits}{GEN x, GEN B, GEN T, GEN p}
\fun{GEN}{FpXQX_fromdigits}{GEN v, GEN B, GEN T, GEN p}
\fun{GEN}{FpXQX_invBarrett}{GEN y, GEN T, GEN p} returns the Barrett inverse of
the \kbd{FpXQX} $y$, namely a lift of $1/\kbd{polrecip}(y)+O(x^{\deg(y)-1})$.
\fun{GEN}{FpXQXV_prod}{GEN V, GEN T, GEN p}, \kbd{V} being a vector of
\kbd{FpXQX}, returns their product.
\fun{GEN}{FpXQX_gcd}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FpXQX_extgcd}{GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv}
\fun{GEN}{FpXQX_halfgcd}{GEN x, GEN y, GEN T, GEN p}
\fun{GEN}{FpXQX_FpXQXQ_eval}{GEN f,GEN x,GEN S, GEN T,GEN p} returns
$\kbd{f}(\kbd{x})$.
\subsec{\kbd{FpXQXQ}, \kbd{FqXQ}}
A \kbd{FpXQXQ} is a \typ{FpXQX} which represents an element of the ring
$(Fp[X]/T(X))[Y]/S(X,Y)$, where $T$ is a \kbd{FpX} and $S$ a \kbd{FpXQX}
modulo $T$. A \kbd{FqXQ} is identical except that $T$ is allowed to be
\kbd{NULL} in which case $S$ must be a \kbd{FpX}.
\subsubsec{Preconditioned reduction}
For faster reduction, the modulus \kbd{S} can be replaced by an extended
modulus, which is an \kbd{FpXQXT}, in all \kbd{FpXQXQ}- and \kbd{FqXQ}-classes
functions, and in \kbd{FpXQX\_rem} and \kbd{FpXQX\_divrem}.
\fun{GEN}{FpXQX_get_red}{GEN S, GEN T, GEN p} returns the extended modulus
\kbd{eS}.
\fun{GEN}{FqX_get_red}{GEN S, GEN T, GEN p} identical, but allow $T$ to
be \kbd{NULL}, in which case it returns \kbd{FpX\_get\_red(S,p)}.
To write code that works both with plain and extended moduli, the following
accessors are defined:
\fun{GEN}{get_FpXQX_mod}{GEN eS} returns the underlying modulus \kbd{S}.
\fun{GEN}{get_FpXQX_var}{GEN eS} returns the variable number of the modulus.
\fun{GEN}{get_FpXQX_degree}{GEN eS} returns the degree of the modulus.
Furthermore, \kbd{ZXXT\_to\_FlxXT} allows to convert an extended modulus for
a \kbd{FpXQX} to an extended modulus for the corresponding \kbd{FlxqX}.
\subsubsec{basic operations}
\fun{GEN}{FpXQX_FpXQXQV_eval}{GEN f,GEN V,GEN S,GEN T,GEN p} returns
$\kbd{f}(\kbd{x})$, assuming that \kbd{V} was computed by
$\kbd{FpXQXQ\_powers}(\kbd{x}, n, \kbd{S}, \kbd{T}, \kbd{p})$.
\fun{GEN}{FpXQXQ_div}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}*\kbd{y}^{-1}$ modulo \kbd{S}.
\fun{GEN}{FpXQXQ_inv}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}^{-1}$ modulo \kbd{S}.
\fun{GEN}{FpXQXQ_invsafe}{GEN x, GEN S, GEN T,GEN p}, as \kbd{FpXQXQ\_inv},
returning \kbd{NULL} if \kbd{x} is not invertible.
\fun{GEN}{FpXQXQ_mul}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}\*\kbd{y}$ modulo \kbd{S}.
\fun{GEN}{FpXQXQ_sqr}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}^2$ modulo \kbd{S}.
\fun{GEN}{FpXQXQ_pow}{GEN x, GEN n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}^\kbd{n}$ modulo \kbd{S}.
\fun{GEN}{FpXQXQ_powers}{GEN x, long n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ as a
\typ{VEC} of \kbd{FpXQXQ}s.
\fun{GEN}{FpXQXQ_matrix_pow}{GEN x, long m, long n, GEN S, GEN T, GEN p}
returns the same powers of \kbd{x} as \kbd{FpXQXQ\_powers}$(x, n-1,S, T, p)$,
but as an $m\times n$ matrix.
\fun{GEN}{FpXQXQV_autpow}{GEN a, long n, GEN S, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$, returns $[\sigma^n(X),\sigma^n(Y)]$.
\fun{GEN}{FpXQXQV_autsum}{GEN a, long n, GEN S, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$, returns the vector
$[\sigma^n(X),\sigma^n(Y),b\sigma(b)\ldots\sigma^{n-1}(b)]$
where $b=a[3]$.
\fun{GEN}{FpXQXQV_auttrace}{GEN a, long n, GEN S, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$, returns the vector
$[\sigma^n(X),\sigma^n(Y),b+\sigma(b)+\ldots+\sigma^{n-1}(b)]$
where $b=a[3]$.
% FqXQ
\fun{GEN}{FqXQ_add}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x} + \kbd{y}$ modulo \kbd{S}.
\fun{GEN}{FqXQ_sub}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x} - \kbd{y}$ modulo \kbd{S}.
\fun{GEN}{FqXQ_mul}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}\*\kbd{y}$ modulo \kbd{S}.
\fun{GEN}{FqXQ_div}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}/\kbd{y}$ modulo \kbd{S}.
\fun{GEN}{FqXQ_inv}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}^{-1}$ modulo \kbd{S}.
\fun{GEN}{FqXQ_invsafe}{GEN x, GEN S, GEN T, GEN p} , as \kbd{FqXQ\_inv},
returning \kbd{NULL} if \kbd{x} is not invertible.
\fun{GEN}{FqXQ_sqr}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}^2$ modulo \kbd{S}.
\fun{GEN}{FqXQ_pow}{GEN x, GEN n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}^\kbd{n}$ modulo \kbd{S}.
\fun{GEN}{FqXQ_powers}{GEN x, long n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ as a
\typ{VEC} of \kbd{FqXQ}s.
\fun{GEN}{FqXQ_matrix_pow}{GEN x, long m, long n, GEN S, GEN T, GEN p}
returns the same powers of \kbd{x} as \kbd{FqXQ\_powers}$(x, n-1,S, T, p)$,
but as an $m\times n$ matrix.
\fun{GEN}{FqV_roots_to_pol}{GEN V, GEN T, GEN p, long v},
\kbd{V} being a vector of \kbd{Fq}s, returns the monic \kbd{FqX}
$\prod_i (\kbd{pol\_x[v]} - \kbd{V[i]})$.
\subsubsec{Miscellaneous operations}
\fun{GEN}{init_Fq}{GEN p, long n, long v} returns an irreducible polynomial
of degree $\kbd{n} > 0$ over $\F_p$, in variable \kbd{v}.
\fun{int}{FqX_is_squarefree}{GEN P, GEN T, GEN p}
\fun{GEN}{FpXQX_roots}{GEN x, GEN T, GEN p} return the roots of \kbd{x} in
$\F_p[X]/(T)$. Assumes \kbd{p} is prime and \kbd{T} irreducible in $\F_p[X]$.
\fun{GEN}{FqX_roots}{GEN x, GEN T, GEN p} same but allow $\kbd{T} = \kbd{NULL}$.
\fun{GEN}{FpXQX_factor}{GEN x, GEN T, GEN p} same output convention as
\kbd{FpX\_factor}. Assumes \kbd{p} is prime and \kbd{T} irreducible
in $\F_p[X]$.
\fun{GEN}{FqX_factor}{GEN x, GEN T, GEN p} same but allow $\kbd{T} = \kbd{NULL}$.
\fun{GEN}{FpXQX_split_part}{GEN f, GEN T, GEN p} returns the largest totally
split squarefree factor of $f$.
\fun{long}{FqX_ispower}{GEN f, ulong k, GEN T, GEN p, GEN *pt} return
returns 1 if \kbd{FqX} $f$ is a $K$-th power Return $0$
otherwise. If \kbd{py} is not \kbd{NULL}, set it to $g$ such that $g^K = f$.
\fun{GEN}{FpX_factorff}{GEN P, GEN T, GEN p}. Assumes \kbd{p} prime
and \kbd{T} irreducible in $\F_p[X]$. Factor the \kbd{FpX} \kbd{P}
over the finite field $\F_p[Y]/(T(Y))$. See \kbd{FpX\_factorff\_irred}
if \kbd{P} is known to be irreducible of $\F_p$.
\fun{GEN}{FpX_rootsff}{GEN P, GEN T, GEN p}. Assumes \kbd{p} prime
and \kbd{T} irreducible in $\F_p[X]$. Returns the roots of the \kbd{FpX}
\kbd{P} belonging to the finite field $\F_p[Y]/(T(Y))$.
\fun{GEN}{FpX_factorff_irred}{GEN P, GEN T, GEN p}. Assumes \kbd{p} prime
and \kbd{T} irreducible in $\F_p[X]$. Factors the \emph{irreducible}
\kbd{FpX} \kbd{P} over the finite field $\F_p[Y]/(T(Y))$ and returns the
vector of irreducible \kbd{FqX}s factors (the exponents, being all equal to
$1$, are not included).
\fun{GEN}{FpX_ffisom}{GEN P, GEN Q, GEN p}. Assumes \kbd{p} prime,
\kbd{P}, \kbd{Q} are \kbd{ZX}s, both irreducible mod \kbd{p}, and
$\deg(P) \mid \deg Q$. Outputs a monomorphism between $\F_p[X]/(P)$ and
$\F_p[X]/(Q)$, as a polynomial $R$ such that $\kbd{Q} \mid \kbd{P}(R)$ in
$\F_p[X]$. If \kbd{P} and \kbd{Q} have the same degree, it is of course an
isomorphism.
\fun{void}{FpX_ffintersect}{GEN P, GEN Q, long n, GEN p, GEN *SP,GEN *SQ, GEN
MA,GEN MB}\hfil\break
Assumes \kbd{p} is prime, \kbd{P}, \kbd{Q} are \kbd{ZX}s, both
irreducible mod \kbd{p}, and \kbd{n} divides both the degree of \kbd{P} and
\kbd{Q}. Compute \kbd{SP} and \kbd{SQ} such that the subfield of
$\F_p[X]/(P)$ generated by \kbd{SP} and the subfield of $\F_p[X]/(Q)$
generated by \kbd{SQ} are isomorphic of degree \kbd{n}. The polynomials
\kbd{P} and \kbd{Q} do not need to be of the same variable. If \kbd{MA}
(resp. \kbd{MB}) is not \kbd{NULL}, it must be the matrix of the Frobenius
map in $\F_p[X]/(P)$ (resp.~$\F_p[X]/(Q)$).
\fun{GEN}{FpXQ_ffisom_inv}{GEN S, GEN T, GEN p}. Assumes \kbd{p} is prime,
\kbd{T} a \kbd{ZX}, which is irreducible modulo \kbd{p}, \kbd{S} a
\kbd{ZX} representing an automorphism of $\F_q := \F_p[X]/(\kbd{T})$.
($\kbd{S}(X)$ is the image of $X$ by the automorphism.) Returns the
inverse automorphism of \kbd{S}, in the same format, i.e.~an \kbd{FpX}~$H$
such that $H(\kbd{S}) \equiv X$ modulo $(\kbd{T}, \kbd{p})$.
\fun{long}{FpXQX_nbfact}{GEN S, GEN T, GEN p} returns the number of
irreducible factors of the polynomial $S$ over the finite field $\F_q$
defined by $T$ and $p$.
\fun{long}{FqX_nbfact}{GEN S, GEN T, GEN p} as above but accept \kbd{T=NULL}.
\fun{long}{FpXQX_nbroots}{GEN S, GEN T, GEN p} returns the number of roots of
the polynomial $S$ over the finite field $\F_q$ defined by $T$ and $p$.
\fun{long}{FqX_nbroots}{GEN S, GEN T, GEN p} as above but accept \kbd{T=NULL}.
\fun{GEN}{FpXQX_Frobenius}{GEN S, GEN T, GEN p} returns
$X^{q}\pmod{S(X)}$ over the finite field $\F_q$ defined by $T$ and $p$, thus
$q=p^n$ where $n$ is the degree of $T$.
\fun{GEN}{FpXQXQ_halfFrobenius}{GEN A, GEN S, GEN T, GEN p} returns
$A(X)^{(q-1)/2}\pmod{S(X)}$ over the finite field $\F_q$ defined by $T$
and $p$, thus $q=p^n$ where $n$ is the degree of $T$.
\subsec{\kbd{Flx}} Let \kbd{p} an understood \kbd{ulong}, assumed to be
prime, to be given the function arguments; an \kbd{Fl} is an \kbd{ulong}
belonging to $[0,\kbd{p}-1]$, an \kbd{Flx}~\kbd{z} is a \typ{VECSMALL}
representing a polynomial with small integer coefficients. Specifically
\kbd{z[0]} is the usual codeword, \kbd{z[1] = evalvarn($v$)} for some
variable $v$, then the coefficients by increasing degree. An \kbd{FlxX} is a
\typ{POL} whose coefficients are \kbd{Flx}s.
\noindent In the following, an argument called \kbd{sv} is of the form
\kbd{evalvarn}$(v)$ for some variable number~$v$.
\subsubsec{Preconditioned reduction}
For faster reduction, the modulus \kbd{T} can be replaced by an extended
modulus, which is an \kbd{FlxT}, in all \kbd{Flxq}-classes functions, and in
\kbd{Flx\_divrem}.
\fun{GEN}{Flx_get_red}{GEN T, ulong p} returns the extended modulus \kbd{eT}.
To write code that works both with plain and extended moduli, the following
accessors are defined:
\fun{GEN}{get_Flx_mod}{GEN eT} returns the underlying modulus \kbd{T}.
\fun{GEN}{get_Flx_var}{GEN eT} returns the variable number of the modulus.
\fun{GEN}{get_Flx_degree}{GEN eT} returns the degree of the modulus.
Furthermore, \kbd{ZXT\_to\_FlxT} allows to convert an extended modulus for
a \kbd{FpX} to an extended modulus for the corresponding \kbd{Flx}.
\subsubsec{Basic operations}
\fun{ulong}{Flx_lead}{GEN x} returns the leading coefficient of $x$ as a
\kbd{ulong} (return $0$ for the zero polynomial).
\fun{GEN}{Flx_red}{GEN z, ulong p} converts from \kbd{zx} with
non-negative coefficients to \kbd{Flx} (by reducing them mod \kbd{p}).
\fun{int}{Flx_equal1}{GEN x} returns 1 (true) if the \kbd{Flx} $x$ is equal
to~1, 0~(false) otherwise.
\fun{int}{Flx_equal}{GEN x, GEN y} returns 1 (true) if the \kbd{Flx} $x$
and $y$ are equal, and 0~(false) otherwise.
\fun{GEN}{Flx_copy}{GEN x} returns a copy of \kbd{x}.
\fun{GEN}{Flx_add}{GEN x, GEN y, ulong p}
\fun{GEN}{Flx_Fl_add}{GEN y, ulong x, ulong p}
\fun{GEN}{Flx_neg}{GEN x, ulong p}
\fun{GEN}{Flx_neg_inplace}{GEN x, ulong p}, same as \kbd{Flx\_neg}, in place
(\kbd{x} is destroyed).
\fun{GEN}{Flx_sub}{GEN x, GEN y, ulong p}
\fun{GEN}{Flx_halve}{GEN x, ulong p} returns $z$ such that $2\*z = x$ modulo
$p$ assuming such $z$ exists.
\fun{GEN}{Flx_mul}{GEN x, GEN y, ulong p}
\fun{GEN}{Flx_Fl_mul}{GEN y, ulong x, ulong p}
\fun{GEN}{Flx_double}{GEN y, ulong p} returns $2\*y$.
\fun{GEN}{Flx_triple}{GEN y, ulong p} returns $3\*y$.
\fun{GEN}{Flx_mulu}{GEN y, ulong x, ulong p} as \kbd{Flx\_Fl\_mul} but do not
assume that $x<p$.
\fun{GEN}{Flx_Fl_mul_to_monic}{GEN y, ulong x, ulong p} returns $y\*x$
assuming the result is monic of the same degree as $y$ (in particular $x\neq
0$).
\fun{GEN}{Flx_sqr}{GEN x, ulong p}
\fun{GEN}{Flx_powu}{GEN x, ulong n, ulong p} returns $x^n$.
\fun{GEN}{Flx_divrem}{GEN x, GEN y, ulong p, GEN *pr}
\fun{GEN}{Flx_div}{GEN x, GEN y, ulong p}
\fun{GEN}{Flx_rem}{GEN x, GEN y, ulong p}
\fun{GEN}{Flx_deriv}{GEN z, ulong p}
\fun{GEN}{Flx_Frobenius}{GEN T, ulong p}
\fun{GEN}{Flx_matFrobenius}{GEN T, ulong p}
\fun{GEN}{Flx_gcd}{GEN a, GEN b, ulong p} returns a (not necessarily monic)
greatest common divisor of $x$ and $y$.
\fun{GEN}{Flx_halfgcd}{GEN x, GEN y, GEN p} returns a two-by-two \kbd{FlxM}
$M$ with determinant $\pm 1$ such that the image $(a,b)$ of $(x,y)$ by $M$
has the property that $\deg a \geq {\deg x \over 2} > \deg b$.
\fun{GEN}{Flx_extgcd}{GEN a, GEN b, ulong p, GEN *ptu, GEN *ptv}
\fun{GEN}{Flx_roots}{GEN f, ulong p} returns the vector of roots
of $f$ (without multiplicity, as a \typ{VECSMALL}). Assumes that $p$ is
prime.
\fun{ulong}{Flx_oneroot}{GEN f, ulong p} returns one root $0 \leq r < p$ of
the \kbd{Flx}~\kbd{f} in \kbd{\Z/p\Z}. Return $p$ if no root exists. Assumes
that \kbd{p} is prime.
\fun{ulong}{Flx_oneroot_split}{GEN f, ulong p} as \kbd{Flx\_oneroot} but
assume $f$ is totally split.
\fun{GEN}{Flx_roots_naive}{GEN f, ulong p} returns the vector of roots
of $f$ as a \typ{VECSMALL} (multiple roots are not repeated), found
by an exhaustive search. Efficient for very small $p$ !
\fun{GEN}{Flx_factor}{GEN f, ulong p}
\fun{GEN}{Flx_factor_squarefree}{GEN f, ulong p} returns the squarefree
factorization of $f$ modulo $p$. This is a vector $[u_1,\dots,u_k]$
of pairwise coprime \kbd{Flx} such that $u_k \neq 1$ and $f = \prod u_i^i$.
Shallow function.
\fun{GEN}{Flx_mod_Xn1}{GEN T, ulong n, ulong p} return $T$ modulo
$(X^n + 1, p)$. Shallow function.
\fun{GEN}{Flx_mod_Xnm1}{GEN T, ulong n, ulong p} return $T$ modulo
$(X^n - 1, p)$. Shallow function.
\fun{GEN}{Flx_degfact}{GEN f, ulong p} as \tet{FpX_degfact}.
\fun{GEN}{Flx_factorff_irred}{GEN P, GEN Q, ulong p} as
\tet{FpX_factorff_irred}.
\fun{GEN}{Flx_rootsff}{GEN P, GEN T, ulong p} as \tet{FpX_rootsff}.
\fun{GEN}{Flx_ffisom}{GEN P,GEN Q,ulong l} as \tet{FpX_ffisom}.
\subsubsec{Miscellaneous operations}
\fun{GEN}{pol0_Flx}{long sv} returns a zero \kbd{Flx} in variable $v$.
\fun{GEN}{zero_Flx}{long sv} alias for \kbd{pol0\_Flx}
\fun{GEN}{pol1_Flx}{long sv} returns the unit \kbd{Flx} in variable $v$.
\fun{GEN}{polx_Flx}{long sv} returns the variable $v$ as degree~1~\kbd{Flx}.
\fun{GEN}{monomial_Flx}{ulong a, long d, long sv} returns the \kbd{Flx}
$a\*X^d$ in variable $v$.
\fun{GEN}{Flx_normalize}{GEN z, ulong p}, as \kbd{FpX\_normalize}.
\fun{GEN}{Flx_rescale}{GEN P, ulong h, ulong p} returns $h^{\deg(P)} P(x/h)$,
\kbd{P} is a \kbd{Flx} and \kbd{h} is a non-zero integer.
\fun{GEN}{random_Flx}{long d, long sv, ulong p} returns a random \kbd{Flx}
in variable \kbd{v}, of degree less than~\kbd{d}.
\fun{GEN}{Flx_recip}{GEN x}, returns the reciprocal polynomial
\fun{ulong}{Flx_resultant}{GEN a, GEN b, ulong p}, returns the resultant
of \kbd{a} and \kbd{b}
\fun{ulong}{Flx_extresultant}{GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV}
given two \kbd{Flx} \kbd{a} and \kbd{b},
returns their resultant and sets Bezout coefficients (if the resultant is 0,
the latter are not set).
\fun{GEN}{Flx_invBarrett}{GEN T, ulong p}, returns the Barrett inverse
$M$ of $T$ defined by $M(x)\*x^n\*T(1/x)\equiv 1\pmod{x^{n-1}}$ where $n$ is
the degree of $T$.
\fun{GEN}{Flx_renormalize}{GEN x, long l}, as \kbd{FpX\_renormalize}, where
$\kbd{l} = \kbd{lg(x)}$, in place.
\fun{GEN}{Flx_shift}{GEN T, long n} returns $\kbd{T} * x^n$ if $n\geq 0$,
and $\kbd{T} \bs x^{-n}$ otherwise.
\fun{long}{Flx_val}{GEN x} returns the valuation of \kbd{x}, i.e. the
multiplicity of the $0$ root.
\fun{long}{Flx_valrem}{GEN x, GEN *Z} as \kbd{RgX\_valrem}, returns the
valuation of \kbd{x}. In particular, if the valuation is $0$, set \kbd{*Z}
to $x$, not a copy.
\fun{GEN}{Flx_div_by_X_x}{GEN A, ulong a, ulong p, ulong *rem}, returns the
Euclidean quotient of the \kbd{Flx}~\kbd{A} by $X - \kbd{a}$, and sets
\kbd{rem} to the remainder $ \kbd{A}(\kbd{a})$.
\fun{ulong}{Flx_eval}{GEN x, ulong y, ulong p}, as \kbd{FpX\_eval}.
\fun{ulong}{Flx_eval_pre}{GEN x, ulong y, ulong p, ulong pi}, as \kbd{Flx\_eval},
assuming $pi$ is the pseudo inverse of $p$.
\fun{ulong}{Flx_eval_powers_pre}{GEN P, GEN y, ulong p, ulong pi}. Let $y$ be
the \typ{VECSMALL} $(1,a,\dots,a^n)$, where $n$ is the degree of the
\kbd{Flx} $P$, return $P(a)$, assuming $pi$ is the pseudo inverse of $p$.
\fun{GEN}{Flx_Flv_multieval}{GEN P, GEN v, ulong p} returns the vector
$[P(v[1]),\ldots,P(v[n])]$ as a \kbd{Flv}.
\fun{ulong}{Flx_dotproduct}{GEN x, GEN y, ulong p} returns the scalar product
of the coefficients of $x$ and $y$.
\fun{GEN}{Flx_deflate}{GEN P, long d} assuming $P$ is a polynomial of the
form $Q(X^d)$, return $Q$.
\fun{GEN}{Flx_splitting}{GEN p, long k}, as \tet{RgX_splitting}.
\fun{GEN}{Flx_inflate}{GEN P, long d} returns $P(X^d)$.
\fun{int}{Flx_is_squarefree}{GEN z, ulong p}
\fun{int}{Flx_is_irred}{GEN f, ulong p}, as \kbd{FpX\_is\_irred}.
\fun{int}{Flx_is_smooth}{GEN f, long r, ulong p} return $1$ if all
irreducible factors of $f$ are of degree at most $r$, $0$ otherwise.
\fun{long}{Flx_nbroots}{GEN f, ulong p}, as \kbd{FpX\_nbroots}.
\fun{long}{Flx_nbfact}{GEN z, ulong p}, as \kbd{FpX\_nbfact}.
\fun{long}{Flx_nbfact_Frobenius}{GEN f, GEN XP, ulong p},
as \kbd{FpX\_nbfact\_Frobenius}.
\fun{GEN}{Flx_degfact}{GEN f, ulong p}, as \kbd{FpX\_degfact}.
\fun{GEN}{Flx_nbfact_by_degree}{GEN z, long *nb, ulong p} Assume
that the \kbd{Flx} $z$ is squarefree mod the prime $p$. Returns a
\typ{VECSMALL} $D$ with $\deg z$ entries, such that $D[i]$ is the number of
irreducible factors of degree $i$. Set \kbd{nb} to the total number of
irreducible factors (the sum of the $D[i]$).
\fun{void}{Flx_ffintersect}{GEN P,GEN Q, long n, ulong p, GEN*SP, GEN*SQ, GEN
MA,GEN MB},\hfil\break
as \kbd{FpX\_ffintersect}
\fun{GEN}{Flv_polint}{GEN x, GEN y, ulong p, long sv} as \kbd{FpV\_polint},
returning an \kbd{Flx} in variable $v$.
\fun{GEN}{Flv_Flm_polint}{GEN x, GEN V, ulong p, long sv} equivalent (but
faster) to applying \kbd{Flv\_polint(x,$\ldots$)} to all the elements of the
vector $V$ (thus, returns a \kbd{FlxV}).
\fun{GEN}{Flv_invVandermonde}{GEN L, ulong d, ulong p} $L$ being a \kbd{Flv}
of length $n$, return the inverse $M$ of the Vandermonde matrix attached to
the elements of $L$, multiplied by \kbd{d}.
If $A$ is a \kbd{Flv} and $B=M\*A$, then the polynomial
$P=\sum_{i=1}^n B[i]\*X^{i-1}$ verifies $P(L[i])=d\*A[i]$ for
$1 \leq i \leq n$.
\fun{GEN}{Flv_roots_to_pol}{GEN a, ulong p, long sv} as
\kbd{FpV\_roots\_to\_pol} returning an \kbd{Flx} in variable $v$.
\subsec{\kbd{FlxV}} See \kbd{FpXV} operations.
\fun{GEN}{FlxV_Flc_mul}{GEN V, GEN W, ulong p}, as \kbd{FpXV\_FpC\_mul}.
\fun{GEN}{FlxV_red}{GEN V, ulong p} reduces each components with \kbd{Flx\_red}.
\fun{GEN}{FlxV_prod}{GEN V, ulong p}, \kbd{V} being a vector of \kbd{Flx},
returns their product.
\subsec{\kbd{FlxT}} See \kbd{FpXT} operations.
\fun{GEN}{FlxT_red}{GEN V, ulong p} reduces each leaf with \kbd{Flx\_red}.
\subsec{\kbd{Flxq}} See \kbd{FpXQ} operations.
\fun{GEN}{Flxq_add}{GEN x, GEN y, GEN T, ulong p}
\fun{GEN}{Flxq_sub}{GEN x, GEN y, GEN T, ulong p}
\fun{GEN}{Flxq_mul}{GEN x, GEN y, GEN T, ulong p}
\fun{GEN}{Flxq_sqr}{GEN y, GEN T, ulong p}
\fun{GEN}{Flxq_inv}{GEN x, GEN T, ulong p}
\fun{GEN}{Flxq_invsafe}{GEN x, GEN T, ulong p}
\fun{GEN}{Flxq_div}{GEN x, GEN y, GEN T, ulong p}
\fun{GEN}{Flxq_pow}{GEN x, GEN n, GEN T, ulong p}
\fun{GEN}{Flxq_powu}{GEN x, ulong n, GEN T, ulong p}
\fun{GEN}{Flxq_powers}{GEN x, long n, GEN T, ulong p}
\fun{GEN}{Flxq_matrix_pow}{GEN x, long m, long n, GEN T, ulong p},
see \kbd{FpXQ\_matrix\_pow}.
\fun{GEN}{Flxq_autpow}{GEN a, long n, GEN T, ulong p}
see \kbd{FpXQ\_autpow}.
\fun{GEN}{Flxq_autsum}{GEN a, long n, GEN T, GEN p}
see \kbd{FpXQ\_autsum}.
\fun{GEN}{Flxq_auttrace}{GEN a, ulong n, GEN T, ulong p}
see \kbd{FpXQ\_auttrace}.
\fun{GEN}{Flxq_ffisom_inv}{GEN S, GEN T, ulong p}, as \kbd{FpXQ\_ffisom\_inv}.
\fun{GEN}{Flx_Flxq_eval}{GEN f, GEN x, GEN T, ulong p} returns
$\kbd{f}(\kbd{x})$.
\fun{GEN}{Flx_FlxqV_eval}{GEN f, GEN x, GEN T, ulong p},
see \kbd{FpX\_FpXQV\_eval}.
\fun{GEN}{FlxqV_roots_to_pol}{GEN V, GEN T, ulong p, long v} as
\kbd{FqV\_roots\_to\_pol} returning an \kbd{FlxqX} in variable $v$.
\fun{int}{Flxq_issquare}{GEN x, GEN T, ulong p} returns $1$ if $x$ is a square
and $0$ otherwise. Assume that \kbd{T} is irreducible mod \kbd{p}.
\fun{int}{Flxq_is2npower}{GEN x, long n, GEN T, ulong p} returns $1$ if $x$ is
a $2^n$-th power and $0$ otherwise. Assume that \kbd{T} is irreducible mod
\kbd{p}.
\fun{GEN}{Flxq_order}{GEN a, GEN ord, GEN T, ulong p}
as \tet{FpXQ_order}.
\fun{GEN}{Flxq_log}{GEN a, GEN g, GEN ord, GEN T, ulong p}
as \tet{FpXQ_log}
\fun{GEN}{Flxq_sqrtn}{GEN x, GEN n, GEN T, ulong p, GEN *zn} as
\tet{FpXQ_sqrtn}.
\fun{GEN}{Flxq_sqrt}{GEN x, GEN T, ulong p} returns a square root of \kbd{x}.
Return \kbd{NULL} if \kbd{x} is not a square.
\fun{GEN}{Flxq_lroot}{GEN a, GEN T, ulong p} returns $x$ such that $x^p = a$.
\fun{GEN}{Flxq_lroot_fast}{GEN a, GEN V, GEN T, ulong p} assuming that
\kbd{V=Flxq\_powers(s,p-1,T,p)} where $s(x)^p \equiv x\pmod{T(x),p}$,
returns $b$ such that $b^p=a$. Only useful if $p$ is less than the degree of
$T$.
\fun{GEN}{Flxq_charpoly}{GEN x, GEN T, ulong p} returns the characteristic
polynomial of \kbd{x}
\fun{GEN}{Flxq_minpoly}{GEN x, GEN T, ulong p} returns the minimal polynomial
of \kbd{x}
\fun{ulong}{Flxq_norm}{GEN x, GEN T, ulong p} returns the norm of \kbd{x}
\fun{ulong}{Flxq_trace}{GEN x, GEN T, ulong p} returns the trace of \kbd{x}
\fun{GEN}{Flxq_conjvec}{GEN x, GEN T, ulong p} returns the conjugates
$[x,x^p,x^{p^2},\ldots,x^{p^{n-1}}]$ where $n$ is the degree of $T$.
\fun{GEN}{gener_Flxq}{GEN T, ulong p, GEN *po} returns a primitive root modulo
$(T,p)$. $T$ is an \kbd{Flx} assumed to be irreducible modulo the prime
$p$. If \kbd{po} is not \kbd{NULL} it is set to $[o,\var{fa}]$, where $o$ is the
order of the multiplicative group of the finite field, and \var{fa} is
its factorization.
\subsec{\kbd{FlxX}} See \kbd{FpXX} operations.
\fun{GEN}{pol1_FlxX}{long vX, long sx} returns the unit \kbd{FlxX} as a
\typ{POL} in variable \kbd{vX} which only coefficient is \kbd{pol1\_Flx(sx)}.
\fun{GEN}{polx_FlxX}{long vX, long sx} returns the variable $X$ as a
degree~1~\typ{POL} with \kbd{Flx} coefficients in the variable $x$.
\fun{long}{FlxY_degreex}{GEN P} return the degree of $P$ with respect to
the secondary variable.
\fun{GEN}{FlxX_add}{GEN P, GEN Q, ulong p}
\fun{GEN}{FlxX_sub}{GEN P, GEN Q, ulong p}
\fun{GEN}{FlxX_Fl_mul}{GEN x, ulong y, ulong p}
\fun{GEN}{FlxX_double}{GEN x, ulong p}
\fun{GEN}{FlxX_triple}{GEN x, ulong p}
\fun{GEN}{FlxX_neg}{GEN x, ulong p}
\fun{GEN}{FlxX_Flx_add}{GEN y, GEN x, ulong p}
\fun{GEN}{FlxX_Flx_mul}{GEN x, GEN y, ulong p}
\fun{GEN}{FlxY_Flx_div}{GEN x, GEN y, ulong p} divides the coefficients of $x$
by $y$ using \kbd{Flx\_div}.
\fun{GEN}{FlxX_deriv}{GEN P, ulong p} returns the derivative of \kbd{P} with
respect to the main variable.
\fun{GEN}{FlxY_evalx}{GEN P, ulong z, ulong p} $P$ being an \kbd{FlxY}, returns
the \kbd{Flx} $P(z,Y)$, where $Y$ is the main variable of $P$.
\fun{GEN}{FlxY_Flx_translate}{GEN P, GEN f, ulong p} $P$ being an \kbd{FlxY} and $f$
being an \kbd{Flx}, return $(P(x,Y+f(x))$, where $Y$ is the main variable of $P$.
\fun{ulong}{FlxY_evalx_powers_pre}{GEN P, GEN xp, ulong p, ulong pi}, \kbd{xp}
being the vector $[1,x,\dots,x^n]$, where $n$ is larger or equal to the degree
of $P$ in $X$, return $P(x,Y)$, where $Y$ is the main variable of $Q$, assuming
$pi$ is the pseudo inverse of $p$.
\fun{ulong}{FlxY_eval_powers_pre}{GEN P, GEN xp, GEN yp, ulong p, ulong pi},
\kbd{xp} being the vector $[1,x,\dots,x^n]$, where $n$ is larger or equal to the degree
of $P$ in $X$ and \kbd{yp} being the vector $[1,y,\dots,y^m]$, where $m$ is larger or equal to the degree of $P$ in $Y$ return $P(x,y)$, assuming
$pi$ is the pseudo inverse of $p$.
\fun{GEN}{FlxY_Flxq_evalx}{GEN x, GEN y, GEN T, ulong p} as \kbd{FpXY\_FpXQ\_evalx}.
\fun{GEN}{FlxY_FlxqV_evalx}{GEN x, GEN V, GEN T, ulong p} as \kbd{FpXY\_FpXQV\_evalx}.
\fun{GEN}{FlxX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.
\fun{GEN}{FlxX_resultant}{GEN u, GEN v, ulong p, long sv} Returns
$\text{Res}_X(u, v)$, which is an \kbd{Flx}. The coefficients of \kbd{u}
and \kbd{v} are assumed to be in the variable $v$.
\fun{GEN}{Flx_FlxY_resultant}{GEN a, GEN b, ulong p}
Returns $\text{Res}_x(a, b)$, which is an \kbd{Flx}
in the main variable of \kbd{b}.
\fun{GEN}{FlxX_shift}{GEN a, long n}
\fun{GEN}{FlxX_swap}{GEN x, long n, long ws}, as \kbd{RgXY\_swap}.
\fun{GEN}{FlxYqq_pow}{GEN x, GEN n, GEN S, GEN T, ulong p}, as
\kbd{FpXYQQ\_pow}.
\subsec{\kbd{FlxqX}} See \kbd{FpXQX} operations.
\subsubsec{Preconditioned reduction}
For faster reduction, the modulus \kbd{S} can be replaced by an extended
modulus, which is an \kbd{FlxqXT}, in all \kbd{FlxqXQ}-classes
functions, and in \kbd{FlxqX\_rem} and \kbd{FlxqX\_divrem}.
\fun{GEN}{FlxqX_get_red}{GEN S, GEN T, ulong p} returns the extended modulus
\kbd{eS}.
To write code that works both with plain and extended moduli, the following
accessors are defined:
\fun{GEN}{get_FlxqX_mod}{GEN eS} returns the underlying modulus \kbd{S}.
\fun{GEN}{get_FlxqX_var}{GEN eS} returns the variable number of the modulus.
\fun{GEN}{get_FlxqX_degree}{GEN eS} returns the degree of the modulus.
\subsubsec{basic functions}
\fun{GEN}{random_FlxqX}{long d, long v, GEN T, ulong p} returns a random
\kbd{FlxqX} in variable \kbd{v}, of degree less than~\kbd{d}.
\fun{GEN}{zxX_to_Kronecker}{GEN P, GEN Q} assuming $P(X,Y)$ is a polynomial
of degree in $X$ strictly less than $n$, returns $P(X,X^{2*n-1})$, the
Kronecker form of $P$.
\fun{GEN}{Kronecker_to_FlxqX}{GEN z, GEN T, ulong p}. Let $n = \deg T$ and let
$P(X,Y)\in \Z[X,Y]$ lift a polynomial in $K[Y]$, where $K := \F_p[X]/(T)$ and
$\deg_X P < 2n-1$ --- such as would result from multiplying minimal degree
lifts of two polynomials in $K[Y]$. Let $z = P(t,t^{2*n-1})$ be a Kronecker
form of $P$, this function returns $Q\in \Z[X,t]$ such that $Q$ is congruent to
$P(X,t)$ mod $(p, T(X))$, $\deg_X Q < n$, and all coefficients are in $[0,p[$.
Not stack-clean. Note that $t$ need not be the same variable as $Y$!
\fun{GEN}{FlxqX_red}{GEN z, GEN T, ulong p}
\fun{GEN}{FlxqX_normalize}{GEN z, GEN T, ulong p}
\fun{GEN}{FlxqX_mul}{GEN x, GEN y, GEN T, ulong p}
\fun{GEN}{FlxqX_Flxq_mul}{GEN P, GEN U, GEN T, ulong p}
\fun{GEN}{FlxqX_Flxq_mul_to_monic}{GEN P, GEN U, GEN T, ulong p}
returns $P*U$ assuming the result is monic of the same degree as $P$ (in
particular $U\neq 0$).
\fun{GEN}{FlxqX_sqr}{GEN x, GEN T, ulong p}
\fun{GEN}{FlxqX_powu}{GEN x, ulong n, GEN T, ulong p}
\fun{GEN}{FlxqX_divrem}{GEN x, GEN y, GEN T, ulong p, GEN *pr}
\fun{GEN}{FlxqX_div}{GEN x, GEN y, GEN T, ulong p}
\fun{GEN}{FlxqX_rem}{GEN x, GEN y, GEN T, ulong p}
\fun{GEN}{FlxqX_invBarrett}{GEN T, GEN Q, ulong p}
\fun{GEN}{FlxqX_gcd}{GEN x, GEN y, ulong p} returns a (not necessarily monic)
greatest common divisor of $x$ and $y$.
\fun{GEN}{FlxqX_extgcd}{GEN x, GEN y, GEN T, ulong p, GEN *ptu, GEN *ptv}
\fun{GEN}{FlxqX_halfgcd}{GEN x, GEN y, GEN T, ulong p}, see \kbd{FpX\_halfgcd}.
\fun{GEN}{FlxqXV_prod}{GEN V, GEN T, ulong p}
\fun{GEN}{FlxqX_safegcd}{GEN P, GEN Q, GEN T, ulong p} Returns the \emph{monic}
GCD of $P$ and $Q$ if Euclid's algorithm succeeds and \kbd{NULL} otherwise. In
particular, if $p$ is not prime or $T$ is not irreducible over $\F_p[X]$, the
routine may still be used (but will fail if non-invertible leading terms
occur).
\fun{GEN}{FlxqX_Frobenius}{GEN S, GEN T, GEN p}, as \kbd{FpXQX\_Frobenius}
\fun{GEN}{FlxqXQ_halfFrobenius}{GEN A, GEN S, GEN T, GEN p}, as
\kbd{FpXQXQ\_halfFrobenius}
\fun{GEN}{FlxqX_roots}{GEN f, GEN T, ulong p} return the roots of \kbd{f} in
$\F_p[X]/(T)$. Assumes \kbd{p} is prime and \kbd{T} irreducible in $\F_p[X]$.
\fun{GEN}{FlxqX_factor}{GEN f, GEN T, ulong p} return the factorization of
\kbd{f} over $\F_p[X]/(T)$. Assumes \kbd{p} is prime and \kbd{T} irreducible
in $\F_p[X]$.
\fun{long}{FlxqX_nbroots}{GEN S, GEN T, GEN p}, as \kbd{FpX\_nbroots}.
\fun{GEN}{FlxqX_FlxqXQ_eval}{GEN Q, GEN x, GEN S, GEN T, ulong p} as
\kbd{FpX\_FpXQ\_eval}.
\fun{GEN}{FlxqX_FlxqXQV_eval}{GEN P, GEN V, GEN S, GEN T, ulong p} as
\kbd{FpX\_FpXQV\_eval}.
\subsec{\kbd{FlxqXQ}} See \kbd{FpXQXQ} operations.
\fun{GEN}{FlxqXQ_mul}{GEN x, GEN y, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_sqr}{GEN x, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_inv}{GEN x, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_invsafe}{GEN x, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_div}{GEN x, GEN y, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_pow}{GEN x, GEN n, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_powu}{GEN x, ulong n, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_powers}{GEN x, long n, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQ_matrix_pow}{GEN x, long n, long m, GEN S, GEN T, ulong p}
\fun{GEN}{FlxqXQV_autpow}{GEN a, long n, GEN S, GEN T, ulong p}
as \kbd{FpXQXQV\_autpow}
\fun{GEN}{FlxqXQV_autsum}{GEN a, long n, GEN S, GEN T, ulong p}
as \kbd{FpXQXQV\_autsum}
\subsec{\kbd{F2x}} An \kbd{F2x}~\kbd{z} is a \typ{VECSMALL}
representing a polynomial over $\F_2[X]$. Specifically
\kbd{z[0]} is the usual codeword, \kbd{z[1] = evalvarn($v$)} for some
variable $v$ and the coefficients are given by the bits of remaining
words by increasing degree.
\subsubsec{Basic operations}
\fun{ulong}{F2x_coeff}{GEN x, long i} returns the coefficient $i\ge 0$ of $x$.
\fun{void}{F2x_clear}{GEN x, long i} sets the coefficient $i\ge 0$ of $x$ to
$0$.
\fun{void}{F2x_flip}{GEN x, long i} adds $1$ to the coefficient $i\ge 0$ of $x$.
\fun{void}{F2x_set}{GEN x, long i} sets the coefficient $i\ge 0$ of $x$ to $1$.
\fun{GEN}{F2x_copy}{GEN x}
\fun{GEN}{Flx_to_F2x}{GEN x}
\fun{GEN}{Z_to_F2x}{GEN x, long v}
\fun{GEN}{ZX_to_F2x}{GEN x}
\fun{GEN}{F2v_to_F2x}{GEN x, long sv}
\fun{GEN}{F2x_to_Flx}{GEN x}
\fun{GEN}{F2x_to_ZX}{GEN x}
\fun{GEN}{pol0_F2x}{long sv} returns a zero \kbd{F2x} in variable $v$.
\fun{GEN}{zero_F2x}{long sv} alias for \kbd{pol0\_F2x}.
\fun{GEN}{pol1_F2x}{long sv} returns the \kbd{F2x} in variable $v$ constant to
$1$.
\fun{GEN}{polx_F2x}{long sv} returns the variable $v$ as degree~1~\kbd{F2x}.
\fun{GEN}{monomial_F2x}{long d, long sv} returns the \kbd{F2x}
$X^d$ in variable $v$.
\fun{GEN}{random_F2x}{long d, long sv} returns a random \kbd{F2x}
in variable \kbd{v}, of degree less than~\kbd{d}.
\fun{long}{F2x_degree}{GEN x} returns the degree of the \kbd{F2x x}. The
degree of $0$ is defined as $-1$.
\fun{int}{F2x_equal1}{GEN x}
\fun{int}{F2x_equal}{GEN x, GEN y}
\fun{GEN}{F2x_1_add}{GEN y} returns \kbd{y+1} where \kbd{y} is a \kbd{Flx}.
\fun{GEN}{F2x_add}{GEN x, GEN y}
\fun{GEN}{F2x_mul}{GEN x, GEN y}
\fun{GEN}{F2x_sqr}{GEN x}
\fun{GEN}{F2x_divrem}{GEN x, GEN y, GEN *pr}
\fun{GEN}{F2x_rem}{GEN x, GEN y}
\fun{GEN}{F2x_div}{GEN x, GEN y}
\fun{GEN}{F2x_renormalize}{GEN x, long lx}
\fun{GEN}{F2x_deriv}{GEN x}
\fun{GEN}{F2x_deflate}{GEN x, long d}
\fun{ulong}{F2x_eval}{GEN P, ulong u} returns $P(u)$.
\fun{void}{F2x_shift}{GEN x, long d} as \tet{RgX_shift}
\fun{void}{F2x_even_odd}{GEN p, GEN *pe, GEN *po} as \tet{RgX_even_odd}
\fun{long}{F2x_valrem}{GEN x, GEN *Z}
\fun{GEN}{F2x_extgcd}{GEN a, GEN b, GEN *ptu, GEN *ptv}
\fun{GEN}{F2x_gcd}{GEN a, GEN b}
\fun{GEN}{F2x_halfgcd}{GEN a, GEN b}
\fun{int}{F2x_issquare}{GEN x} returns $1$ if $x$ is a square of a \kbd{F2x}
and $0$ otherwise.
\fun{int}{F2x_is_irred}{GEN f}, as \tet{FpX_is_irred}.
\fun{GEN}{F2x_degfact}{GEN f} as \tet{FpX_degfact}.
\fun{GEN}{F2x_sqrt}{GEN x} returns the squareroot of $x$, assuming $x$ is a
square of a \kbd{F2x}.
\fun{GEN}{F2x_Frobenius}{GEN T}
\fun{GEN}{F2x_matFrobenius}{GEN T}
\fun{GEN}{F2x_factor}{GEN f}
\fun{GEN}{F2x_factor_squarefree}{GEN f}
\subsec{\kbd{F2xq}} See \kbd{FpXQ} operations.
\fun{GEN}{F2xq_mul}{GEN x, GEN y, GEN pol}
\fun{GEN}{F2xq_sqr}{GEN x,GEN pol}
\fun{GEN}{F2xq_div}{GEN x,GEN y,GEN T}
\fun{GEN}{F2xq_inv}{GEN x, GEN T}
\fun{GEN}{F2xq_invsafe}{GEN x, GEN T}
\fun{GEN}{F2xq_pow}{GEN x, GEN n, GEN pol}
\fun{GEN}{F2xq_powu}{GEN x, ulong n, GEN pol}
\fun{ulong}{F2xq_trace}{GEN x, GEN T}
\fun{GEN}{F2xq_conjvec}{GEN x, GEN T} returns the vector of conjugates
$[x,x^2,x^{2^2},\ldots,x^{2^{n-1}}]$ where $n$ is the degree of $T$.
\fun{GEN}{F2xq_log}{GEN a, GEN g, GEN ord, GEN T}
\fun{GEN}{F2xq_order}{GEN a, GEN ord, GEN T}
\fun{GEN}{F2xq_Artin_Schreier}{GEN a, GEN T} returns a solution of $x^2+x=a$,
assuming it exists.
\fun{GEN}{F2xq_sqrt}{GEN a, GEN T}
\fun{GEN}{F2xq_sqrt_fast}{GEN a, GEN s, GEN T} assuming that
$s^2 \equiv x\pmod{T(x)}$, computes $b \equiv a(s)\pmod{T}$ so that $b^2=a$.
\fun{GEN}{F2xq_sqrtn}{GEN a, GEN n, GEN T, GEN *zeta}
\fun{GEN}{gener_F2xq}{GEN T, GEN *po}
\fun{GEN}{F2xq_powers}{GEN x, long n, GEN T}
\fun{GEN}{F2xq_matrix_pow}{GEN x, long m, long n, GEN T}
\fun{GEN}{F2x_F2xq_eval}{GEN f, GEN x, GEN T}
\fun{GEN}{F2x_F2xqV_eval}{GEN f, GEN x, GEN T}, see \kbd{FpX\_FpXQV\_eval}.
\fun{GEN}{F2xq_autpow}{GEN a, long n, GEN T} computes $\sigma^n(X)$ assuming
$a=\sigma(X)$ where $\sigma$ is an automorphism of the algebra $\F_2[X]/T(X)$.
\subsec{\kbd{F2xqV}, \kbd{F2xqM}}. See \kbd{FqV}, \kbd{FqM} operations.
\fun{GEN}{F2xqM_F2xqC_mul}{GEN a, GEN b, GEN T}
\fun{GEN}{F2xqM_ker}{GEN x, GEN T}
\fun{GEN}{F2xqM_det}{GEN a, GEN T}
\fun{GEN}{F2xqM_image}{GEN x, GEN T}
\fun{GEN}{F2xqM_inv}{GEN a, GEN T}
\fun{GEN}{F2xqM_mul}{GEN a, GEN b, GEN T}
\fun{long}{F2xqM_rank}{GEN x, GEN T}
\fun{GEN}{matid_F2xqM}{long n, GEN T}
\subsec{\kbd{F2xX}}. See \kbd{FpXX} operations.
\fun{GEN}{ZXX_to_F2xX}{GEN x, long v}
\fun{GEN}{FlxX_to_F2xX}{GEN x}
\fun{GEN}{F2xX_to_ZXX}{GEN B}
\fun{GEN}{F2xX_renormalize}{GEN x, long lx}
\fun{long}{F2xY_degreex}{GEN P} return the degree of $P$ with respect to
the secondary variable.
\fun{GEN}{pol1_F2xX}{long v, long sv}
\fun{GEN}{polx_F2xX}{long v, long sv}
\fun{GEN}{F2xX_add}{GEN x, GEN y}
\fun{GEN}{F2xX_F2x_mul}{GEN x, GEN y}
\fun{GEN}{F2xX_deriv}{GEN P} returns the derivative of \kbd{P} with respect to
the main variable.
\fun{GEN}{Kronecker_to_F2xqX}{GEN z, GEN T}
\fun{GEN}{F2xX_to_Kronecker}{GEN z, GEN T}
\fun{GEN}{F2xY_F2xq_evalx}{GEN x, GEN y, GEN T} as \kbd{FpXY\_FpXQ\_evalx}.
\fun{GEN}{F2xY_F2xqV_evalx}{GEN x, GEN V, GEN T} as \kbd{FpXY\_FpXQV\_evalx}.
\subsec{\kbd{F2xXV/F2xXC}}. See \kbd{FpXXV} operations.
\fun{GEN}{FlxXC_to_F2xXC}{GEN B}
\fun{GEN}{F2xXC_to_ZXXC}{GEN B}
\subsec{\kbd{F2xqX}}. See \kbd{FlxqX} operations.
\fun{GEN}{random_F2xqX}{long d, long v, GEN T, ulong p} returns a random
\kbd{F2xqX} in variable \kbd{v}, of degree less than~\kbd{d}.
\fun{GEN}{F2xqX_red}{GEN z, GEN T}
\fun{GEN}{F2xqX_normalize}{GEN z, GEN T}
\fun{GEN}{F2xqX_F2xq_mul}{GEN P, GEN U, GEN T}
\fun{GEN}{F2xqX_F2xq_mul_to_monic}{GEN P, GEN U, GEN T}
\fun{GEN}{F2xqX_mul}{GEN x, GEN y, GEN T}
\fun{GEN}{F2xqX_sqr}{GEN x, GEN T}
\fun{GEN}{F2xqX_rem}{GEN x, GEN y, GEN T}
\fun{GEN}{F2xqX_div}{GEN x, GEN y, GEN T}
\fun{GEN}{F2xqX_divrem}{GEN x, GEN y, GEN T, GEN *pr}
\fun{GEN}{F2xqX_gcd}{GEN x, GEN y, GEN T}
\fun{GEN}{F2xqX_F2xqXQ_eval}{GEN Q, GEN x, GEN S, GEN T} as
\kbd{FpX\_FpXQ\_eval}.
\fun{GEN}{F2xqX_F2xqXQV_eval}{GEN P, GEN V, GEN S, GEN T} as
\kbd{FpX\_FpXQV\_eval}.
\fun{GEN}{F2xqX_roots}{GEN f, GEN T} return the roots of \kbd{f} in
$\F_2[X]/(T)$. Assumes \kbd{T} irreducible in $\F_2[X]$.
\fun{GEN}{F2xqX_factor}{GEN f, GEN T} return the factorisation of \kbd{f} over
$\F_2[X]/(T)$. Assumes \kbd{T} irreducible in $\F_2[X]$.
\subsec{\kbd{F2xqXQ}}. See \kbd{FlxqXQ} operations.
\fun{GEN}{F2xqXQ_mul}{GEN x, GEN y, GEN S, GEN T}
\fun{GEN}{F2xqXQ_sqr}{GEN x, GEN S, GEN T}
\fun{GEN}{F2xqXQ_pow}{GEN x, GEN n, GEN S, GEN T}
\fun{GEN}{F2xqXQ_powers}{GEN x, long n, GEN S, GEN T}
\fun{GEN}{F2xqXQV_autpow}{GEN a, long n, GEN S, GEN T}
as \kbd{FpXQXQV\_autpow}
\fun{GEN}{F2xqXQV_auttrace}{GEN a, long n, GEN S, GEN T}. Let
$\sigma$ be the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$ and
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$; returns the vector
$[\sigma^n(X),\sigma^n(Y),b+\sigma(b)+\ldots+\sigma^{n-1}(b)]$
where $b=a[3]$.
\subsec{Functions returning objects with \typ{INTMOD} coefficients}
Those functions are mostly needed for interface reasons: \typ{INTMOD}s should
not be used in library mode since the modular kernel is more flexible and more
efficient, but GP users do not have access to the modular kernel.
We document them for completeness:
\fun{GEN}{Fp_to_mod}{GEN z, GEN p}, \kbd{z} a \typ{INT}. Returns \kbd{z *
Mod(1,p)}, normalized. Hence the returned value is a \typ{INTMOD}.
\fun{GEN}{FpX_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZX}. Returns \kbd{z *
Mod(1,p)}, normalized. Hence the returned value has \typ{INTMOD} coefficients.
\fun{GEN}{FpC_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZC}. Returns \kbd{Col(z) *
Mod(1,p)}, a \typ{COL} with \typ{INTMOD} coefficients.
\fun{GEN}{FpV_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZV}. Returns \kbd{Vec(z) *
Mod(1,p)}, a \typ{VEC} with \typ{INTMOD} coefficients.
\fun{GEN}{FpVV_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZVV}. Returns \kbd{Vec(z) *
Mod(1,p)}, a \typ{VEC} of \typ{VEC} with \typ{INTMOD} coefficients.
\fun{GEN}{FpM_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZM}. Returns \kbd{z *
Mod(1,p)}, with \typ{INTMOD} coefficients.
\fun{GEN}{F2c_to_mod}{GEN x}
\fun{GEN}{F2m_to_mod}{GEN x}
\fun{GEN}{Flc_to_mod}{GEN z}
\fun{GEN}{Flm_to_mod}{GEN z}
\fun{GEN}{FpXQC_to_mod}{GEN V, GEN T, GEN p} $V$ being a vector of \kbd{FpXQ},
converts each entry to a \typ{POLMOD} with \typ{INTMOD} coefficients, and return
a \typ{COL}.
\fun{GEN}{QXQV_to_mod}{GEN V, GEN T} $V$ a vector of \kbd{QXQ}, which
are lifted representatives of elements of $\Q[X]/(T)$ (number field elements
in most applications) and $T$ is in $\Z[X]$. Return a vector where all
non-rational entries are converted to \typ{POLMOD} modulo $T$; no reduction
mod $T$ is attempted: the representatives should be already reduced. Used to
normalize the output of \kbd{nfroots}.
\fun{GEN}{QXQXV_to_mod}{GEN V, GEN T} $V$ a vector of polynomials whose
coefficients are \kbd{QXQ}. Analogous to \kbd{QXQV\_to\_mod}.
Used to normalize the output of \kbd{nffactor}.
\fun{GEN}{QXQX_to_mod_shallow}{GEN z, GEN T} $v$ a polynomial with \kbd{QXQ}
coefficients; replace them by \kbd{mkpolmod(.,T)}. Shallow function.
The following functions are obsolete and should not be used: they receive a
polynomial with arbitrary coefficients, apply \kbd{RgX\_to\_FpX}, a function
from the modular kernel, then \kbd{*\_to\_mod}:
\fun{GEN}{rootmod}{GEN f, GEN p}, applies \kbd{FpX\_roots}.
\fun{GEN}{rootmod2}{GEN f, GEN p}, applies \kbd{ZX\_to\_flx} then
\kbd{Flx\_roots\_naive}.
\fun{GEN}{factmod}{GEN f, GEN p} applies \kbd{FpX\_factor}.
\fun{GEN}{simplefactmod}{GEN f, GEN p} applies \kbd{FpX\_degfact}.
\subsec{Chinese remainder theorem over $\Z$}
\fun{GEN}{Z_chinese}{GEN a, GEN b, GEN A, GEN B} returns the integer
in $[0, \lcm(A,B)[$ congruent to $a$ mod $A$ and $b$ mod $B$, assuming it
exists; in other words, that $a$ and $b$ are congruent mod $\gcd(A,B)$.
\fun{GEN}{Z_chinese_all}{GEN a, GEN b, GEN A, GEN B, GEN *pC} as
\kbd{Z\_chinese}, setting \kbd{*pC} to the lcm of $A$ and $B$.
\fun{GEN}{Z_chinese_coprime}{GEN a, GEN b, GEN A, GEN B, GEN C}, as
\kbd{Z\_chinese}, assuming that $\gcd(A,B) = 1$ and that $C = \lcm(A,B) = AB$.
\fun{void}{Z_chinese_pre}{GEN A, GEN B, GEN *pC, GEN *pU, GEN *pd}
initializes chinese remainder computations modulo $A$ and $B$. Sets
\kbd{*pC} to $\lcm(A,B)$, \kbd{*pd} to $\gcd(A,B)$,
\kbd{*pU} to an integer congruent to $0$ mod $(A/d)$ and $1$ mod $(B/d)$.
It is allowed to set \kbd{pd = NULL}, in which case, $d$ is still
computed, but not saved.
\fun{GEN}{Z_chinese_post}{GEN a, GEN b, GEN C, GEN U, GEN d} returns
the solution to the chinese remainder problem $x$ congruent
to $a$ mod $A$ and $b$ mod $B$, where $C, U, d$ were set in
\kbd{Z\_chinese\_pre}. If $d$ is \kbd{NULL}, assume the problem has a
solution. Otherwise, return \kbd{NULL} if it has no solution.
\medskip
\fun{GEN}{ZV_producttree}{GEN x} where $x$ are vectors of integer (or
\typ{VECSMALL}s) of length $n\ge 1$, return the vector of \typ{VEC}s
$[f(x),f^2(x),\ldots,f^k(x)]$ where $f$ is the transformation
$[a_1,a_2,\ldots,a_m] \mapsto [a_1\*a_2,a_3\*a_4,\ldots,a_{m-1}\*a_m]$ if $m$
is even and $[a_1\*a_2,a_3\*a4,\ldots,a_{m-2}\*a_{m-1},a_m]$ if $m$ is odd,
and $k$ is chosen so that $f^k(x)$ is of length $1$ (This is the vector
$[a_1\*a_2\*ldots\*a_m]$).
\fun{GEN}{ZV_chinese}{GEN A, GEN P, GEN *pt_mod}
where $A$ and $P$ are vectors of integer (or \typ{VECSMALL}s) of the same
length $n\ge 1$, the elements of $P$ being pairwise coprime, and $M$ being the
product of the elements of $P$, returns the integer in $[0, M[$ congruent to
$A[i]$ mod $P[i]$ for all $1\leq i\leq n$. If \kbd{pt\_mod} is not \kbd{NULL},
set \kbd{*pt\_mod} to $M$
\fun{GEN}{ZV_chinese_tree}{GEN A, GEN P, GEN T, GEN *pt_mod}
as \kbd{ZV\_chinese}, where $T$ is assumed to be the tree created by
\kbd{ZV\_producttree(P)}.
\fun{GEN}{ncV_chinese_center}{GEN A, GEN P, GEN *pt_mod}
where $A$ is a vector of \kbd{VECSMALL}s (seen as vectors of unsigned integers)
and $P$ a \typ{VECSMALL} of the same length $n\ge 1$, the elements of $P$
being pairwise coprime, and $M$ being the product of the elements of $P$,
returns the \typ{COL} whose entries are integers in $[-M/2, M/2[$ congruent to $A[i]$
mod $P[i]$ for all $1\leq i\leq n$.
If \kbd{pt\_mod} is not \kbd{NULL}, set \kbd{*pt\_mod} to $M$.
\fun{GEN}{nmV_chinese_center}{GEN A, GEN P, GEN *pt_mod}
where $A$ is a vector of \kbd{MATSMALL}s (seen as matrices of unsigned integers)
and $P$ a \typ{VECSMALL} of the same length $n\ge 1$, the elements of $P$
being pairwise coprime, and $M$ being the product of the elements of $P$,
returns the matrix whose entries are integers in $[-M/2, M/2[$ congruent to $A[i]$
mod $P[i]$ for all $1\leq i\leq n$.
If \kbd{pt\_mod} is not \kbd{NULL}, set \kbd{*pt\_mod} to $M$.
NB: this function uses the parallel GP interface.
\fun{GEN}{Z_ZV_mod}{GEN A, GEN P}
$P$ being a vector of integers of length $n\ge 1$, the elements of $P$ being
pairwise coprime, return a vector $B$ of the same length such that
$B[i]=A\pmod{P[i]}$ and $0\leq B[i] < P[i]$ for all $1\leq i\leq n$.
\fun{GEN}{Z_nv_mod}{GEN A, GEN P}
$P$ being a \typ{VECSMALL} of length $n\ge 1$, the elements of $P$ being
pairwise coprime, return a \typ{VECSMALL} $B$ of the same length such that
$B[i]=A\pmod{P[i]}$ and $0\leq B[i] < P[i]$ for all $1\leq i\leq n$.
The entries of $P$ and $B$ are treated as \kbd{ulong}s.
\fun{GEN}{ZX_nv_mod_tree}{GEN A, GEN P, GEN T} $A$ being a \kbd{ZX}
and $P$ a \typ{VECSMALL} of length $n\ge 1$, the elements of $P$ being
pairwise coprime, return the vector of \kbd{Flx}
$[A \pmod{P[1]},\ldots,A \pmod{P[n]}]$,
where $T$ is assumed to be the tree created by \kbd{ZV\_producttree(P)}.
\medskip
The following pair of functions is used in homomorphic imaging schemes,
when reconstructing an integer from its images modulo pairwise coprime
integers. The idea is as follows: we want to discover an integer $H$ which
satisfies $|H| < B$ for some known bound $B$; we are given pairs $(H_p, p)$
with $H$ congruent to $H_p$ mod $p$ and all $p$ pairwise coprime.
Given \kbd{H} congruent to $H_p$ modulo a number of $p$, whose product is
$q$, and a new pair $(\kbd{Hp}, \kbd{p})$, \kbd{p} coprime to $q$, the
following incremental functions use the chinese remainder theorem (CRT) to
find a new \kbd{H}, congruent to the preceding one modulo $q$, but also to
\kbd{Hp} modulo \kbd{p}. It is defined uniquely modulo $qp$, and we choose
the centered representative. When $P$ is larger than $2B$, we have $\kbd{H} =
H$, but of course, the value of \kbd{H} may stabilize sooner. In many
applications it is possible to directly check that such a partial result is
correct.
\fun{GEN}{Z_init_CRT}{ulong Hp, ulong p} given a \kbd{Fl} \kbd{Hp} in
$[0, p-1]$, returns the centered representative \kbd{H} congruent to \kbd{Hp}
modulo \kbd{p}.
\fun{int}{Z_incremental_CRT}{GEN *H, ulong Hp, GEN *q, ulong p}
given a \typ{INT} \kbd{*H}, centered modulo \kbd{*q}, a new pair $(\kbd{Hp},
\kbd{p})$ with \kbd{p} coprime to \kbd{q}, this function updates \kbd{*H} so
that it also becomes congruent to $(\kbd{Hp}, \kbd{p})$, and \kbd{*q} to the
product$\kbd{qp} = \kbd{p} \cdot \kbd{*q}$. It returns $1$ if the new value
is equal to the old one, and $0$ otherwise.
\fun{GEN}{chinese1_coprime_Z}{GEN v} an alternative divide-and-conquer
implementation: $v$ is a vector of \typ{INTMOD} with pairwise coprime moduli.
Return the \typ{INTMOD} solving the corresponding chinese remainder problem.
This is a streamlined version of
\fun{GEN}{chinese1}{GEN v}, which solves a general chinese remainder problem
(not necessarily over $\Z$, moduli not assumed coprime).
As above, for $H$ a \kbd{ZM}: we assume that $H$ and all \kbd{Hp} have
dimension $> 0$. The original \kbd{*H} is destroyed.
\fun{GEN}{ZM_init_CRT}{GEN Hp, ulong p}
\fun{int}{ZM_incremental_CRT}{GEN *H, GEN Hp, GEN *q, ulong p}
As above for $H$ a \kbd{ZX}: note that the degree may increase or decrease.
The original \kbd{*H} is destroyed.
\fun{GEN}{ZX_init_CRT}{GEN Hp, ulong p, long v}
\fun{int}{ZX_incremental_CRT}{GEN *H, GEN Hp, GEN *q, ulong p}
\subsec{Rational reconstruction}
\fun{int}{Fp_ratlift}{GEN x, GEN m, GEN amax, GEN bmax, GEN *a, GEN *b}.
Assuming that $0 \leq x < m$, $\kbd{amax} \geq 0$, and
$\kbd{bmax} > 0$ are \typ{INT}s, and that $2 \kbd{amax} \kbd{bmax} < m$,
attempts to recognize $x$ as a rational $a/b$, i.e. to find \typ{INT}s $a$
and $b$ such that
\item $a \equiv b x$ modulo $m$,
\item $|a| \leq \kbd{amax}$, $0 < b \leq \kbd{bmax}$,
\item $\gcd(m,b) = \gcd(a,b)$.
\noindent If unsuccessful, the routine returns $0$ and leaves $a$, $b$
unchanged; otherwise it returns $1$ and sets $a$ and $b$.
In almost all applications, we actually know that a solution exists, as well
as a non-zero multiple $B$ of $b$, and $m = p^\ell$ is a prime power, for a
prime $p$ chosen coprime to $B$ hence to $b$. Under the single assumption
$\gcd(m,b) = 1$, if a solution $a,b$ exists satisfying the three conditions
above, then it is unique.
\fun{GEN}{FpM_ratlift}{GEN M, GEN m, GEN amax, GEN bmax, GEN denom}
given an \kbd{FpM} modulo $m$ with reduced or \kbd{Fp\_center}-ed entries,
reconstructs a matrix with rational coefficients by applying \kbd{Fp\_ratlift}
to all entries. Assume that all preconditions for \kbd{Fp\_ratlift} are
satisfied, as well $\gcd(m,b) = 1$ (so that the solution is unique if it
exists). Return \kbd{NULL} if the reconstruction fails, and the rational
matrix otherwise. If \kbd{denom} is not \kbd{NULL} check further that all
denominators divide \kbd{denom}.
The functions is not stack clean if one coefficients of $M$ is negative
(centered residues), but still suitable for \kbd{gerepileupto}.
\fun{GEN}{FpX_ratlift}{GEN P, GEN m, GEN amax, GEN bmax, GEN denom} as
\kbd{FpM\_ratlift}, where $P$ is an \kbd{FpX}.
\fun{GEN}{FpC_ratlift}{GEN P, GEN m, GEN amax, GEN bmax, GEN denom} as
\kbd{FpM\_ratlift}, where $P$ is an \kbd{FpC}.
\subsec{Zp}
\fun{GEN}{Zp_sqrt}{GEN b, GEN p, long e} $b$ and $p$ being \typ{INT}s, with $p$
a prime (possibly $2$), returns a \typ{INT} $a$ such that $a^2 \equiv b \mod
p^e$.
\fun{GEN}{Z2_sqrt}{GEN b, long e} $b$ being a \typ{INT}s
returns a \typ{INT} $a$ such that $a^2 \equiv b \mod 2^e$.
\fun{GEN}{Zp_sqrtlift}{GEN b, GEN a, GEN p, long e} let
$a,b,p$ be \typ{INT}s, with $p > 1$ odd, such that $a^2\equiv b\mod p$.
Returns a \typ{INT} $A$ such that $A^2 \equiv b \mod p^e$. Special case
of \tet{Zp_sqrtnlift}.
\fun{GEN}{Zp_sqrtnlift}{GEN b, GEN n, GEN a, GEN p, long e} let
$a,b,n,p$ be \typ{INT}s, with $n,p > 1$, and $p$ coprime to $n$,
such that $a^n \equiv b \mod p$. Returns a \typ{INT} $A$ such that
$A^n \equiv b \mod p^e$. Special case of \tet{ZpX_liftroot}.
\fun{GEN}{Zp_teichmuller}{GEN x, GEN p, long e, GEN pe} for $p$ an odd prime,
$x$ a \typ{INT} coprime to $p$, and $pe = p^e$, returns the $(p-1)$-th root of
$1$ congruent to $x$ modulo $p$, modulo $p^e$. For convenience, $p = 2$ is
also allowed and we return $1$ ($x$ is $1$ mod $4$) or $2^e - 1$ ($x$ is $3$
mod $4$).
\fun{GEN}{teichmullerinit}{long p, long n} returns the values of
\tet{Zp_teichmuller} at all $x = 1, \dots, p-1$.
\subsec{ZpX}
\fun{GEN}{ZpX_roots}{GEN f, GEN p, long e} $f$ a \kbd{ZX} with leading
term prime to $p$, and without multiple roots mod $p$. Return a vector
of \typ{INT}s which are the roots of $f$ mod $p^e$.
\fun{GEN}{ZpX_liftroot}{GEN f, GEN a, GEN p, long e} $f$ a \kbd{ZX} with
leading term prime to $p$, and $a$ a root mod $p$ such that
$v_p(f'(a))=0$. Return a \typ{INT} which is the root of $f$ mod $p^e$
congruent to $a$ mod $p$.
\fun{GEN}{ZX_Zp_root}{GEN f, GEN a, GEN p, long e} same as \tet{ZpX_liftroot}
without the assumption $v_p(f'(a)) = 0$. Return a \typ{VEC} of \typ{INT}s,
which are the $p$-adic roots of $f$ congruent to $a$ mod $p$ (given modulo
$p^e$).
\fun{GEN}{ZpX_liftroots}{GEN f, GEN S, GEN p, long e} $f$ a \kbd{ZX} with
leading term prime to $p$, and $S$ a vector of simple roots mod $p$. Return a
vector of \typ{INT}s which are the root of $f$ mod $p^e$ congruent to the
$S[i]$ mod $p$.
\fun{GEN}{ZpX_liftfact}{GEN A, GEN B, GEN pe, GEN p, long e} is
the routine underlying \tet{polhensellift}. Here, $p$ is prime
defines a finite field $\F_p$. $A$ is a polynomial in
$\Z[X]$, whose leading coefficient is non-zero in $\F_q$. $B$ is a vector of
monic \kbd{FpX}, pairwise coprime in $\F_p[X]$, whose product is congruent to
$A/\text{lc}(A)$ in $\F_p[X]$. Lifts the elements of $B$ mod $\kbd{pe} = p^e$.
\fun{GEN}{ZpX_Frobenius}{GEN T, GEN p, ulong e} returns the $p$-adic lift
of the Frobenius automorphism of $\F_p[X]/(T)$ to precision $e$.
\fun{long}{ZpX_disc_val}{GEN f, GEN p} returns the valuation at $p$ of the
discriminant of $f$. Assume that $f$ is a monic \emph{separable} \kbd{ZX}
and that $p$ is a prime number. Proceeds by dynamically increasing the
$p$-adic accuracy; infinite loop if the discriminant of $f$ is
$0$.
\fun{long}{ZpX_resultant_val}{GEN f, GEN g, GEN p, long M} returns the
valuation at $p$ of $\text{Res}(f,g)$. Assume $f,g$ are both \kbd{ZX},
and that $p$ is a prime number coprime to the leading coefficient of $f$.
Proceeds by dynamically increasing the $p$-adic accuracy.
To avoid an infinite loop when the resultant is $0$, we return $M$ if
the Sylvester matrix mod $p^M$ still does not have maximal rank.
\fun{GEN}{ZpX_gcd}{GEN f,GEN g, GEN p, GEN pm} $f$ a monic \kbd{ZX},
$g$ a \kbd{ZX}, $\kbd{pm} = p^m$ a prime power. There is a unique integer
$r\geq 0$ and a monic $h\in \Q_p[X]$ such that
$$p^rh\Z_p[X] + p^m\Z_p[X] = f\Z_p[X] + g\Z_p[X] + p^m\Z_p[X].$$
Return the $0$ polynomial if $r\geq m$ and a monic $h\in\Z[1/p][X]$ otherwise
(whose valuation at $p$ is $> -m$).
\fun{GEN}{ZpX_reduced_resultant}{GEN f, GEN g, GEN p, GEN pm} $f$ a monic
\kbd{ZX}, $g$ a \kbd{ZX}, $\kbd{pm} = p^m$ a prime power. The $p$-adic
\emph{reduced resultant}\varsidx{resultant (reduced)} of $f$ and $g$ is
$0$ if $f$, $g$ not coprime in $\Z_p[X]$, and otherwise the generator of the
form $p^d$ of
$$ (f\Z_p[X] + g\Z_p[X])\cap \Z_p. $$
Return the reduced resultant modulo $p^m$.
\fun{GEN}{ZpX_reduced_resultant_fast}{GEN f, GEN g, GEN p, long M} $f$
a monic \kbd{ZX}, $g$ a \kbd{ZX}, $p$ a prime. Returns
the $p$-adic reduced resultant of $f$ and $g$ modulo $p^M$. This function
computes resultants for a sequence of increasing $p$-adic accuracies
(up to $M$ $p$-adic digits), returning as soon as it obtains a non-zero
result. It is very inefficient when the resultant is $0$, but otherwise
usually more efficient than computations using a priori bounds.
\fun{GEN}{ZpX_monic_factor}{GEN f, GEN p, long M} $f$ a monic
\kbd{ZX}, $p$ a primer, return the $p$-adic factorization of $f$, modulo
$p^M$. This is the underlying low-level recursive function behind
\kbd{factorpadic} (using a combination of Round 4 factorization and Hensel
lifting); the factors are not sorted and the function is not
\kbd{gerepile}-clean.
\subsec{ZpXQ}
\fun{GEN}{ZpXQ_invlift}{GEN b, GEN a, GEN T, GEN p, long e} let
$p$ be a prime \typ{INT} and $a,b$ be \kbd{FpXQ}s (modulo $T$) such that $a\*b
\equiv 1 \mod (p,T)$. Returns an \kbd{FpXQ} $A$ such that
$A\*b \equiv 1 \mod (p^e, T)$. Special case of \tet{ZpXQ_liftroot}.
\fun{GEN}{ZpXQ_inv}{GEN b, GEN T, GEN p, long e} let
$p$ be a prime \typ{INT} and $b$ be a \kbd{FpXQ} (modulo $T, p^e$).
Returns an \kbd{FpXQ} $A$ such that $A\*b \equiv 1 \mod (p^e, T)$.
\fun{GEN}{ZpXQ_div}{GEN a, GEN b, GEN T, GEN q, GEN p, long e} let
$p$ be a prime \typ{INT} and $a$ and $b$ be a \kbd{FpXQ} (modulo $T, p^e$).
Returns an \kbd{FpXQ} $c$ such that $c\*b \equiv a \mod (p^e, T)$.
The parameter $q$ must be equal to $p^e$.
\fun{GEN}{ZpXQ_sqrtnlift}{GEN b, GEN n, GEN a, GEN T, GEN p, long e} let
$n,p$ be \typ{INT}s, with $n,p > 1$ and $p$ coprime to $n$, and $a,b$
be \kbd{FpXQ}s (modulo $T$) such that $a^n \equiv b \mod (p,T)$.
Returns an \kbd{Fq} $A$ such that $A^n \equiv b \mod (p^e, T)$.
Special case of \tet{ZpXQ_liftroot}.
\fun{GEN}{ZpXQ_sqrt}{GEN b, GEN T, GEN p, long e} let
$p$ being a odd prime and $b$ be a \kbd{FpXQ} (modulo $T, p^e$),
returns $a$ such that $a^2 \equiv b \mod (p^e, T)$.
\fun{GEN}{ZpX_ZpXQ_liftroot}{GEN f, GEN a, GEN T, GEN p, long e}
as \tet{ZpXQX_liftroot}, but $f$ is a polynomial in $\Z[X]$.
\fun{GEN}{ZpX_ZpXQ_liftroot_ea}{GEN f, GEN a, GEN T, GEN p, long e,
void *E, int early(void *E, GEN x, GEN q)}
as \tet{ZpX_ZpXQ_liftroot} with early abort: the function \kbd{early(E,x,q)}
will be called with $x$ is a root of $f$ modulo $q=p^n$ for some $n$. If
\kbd{early} returns a non-zero value, the function returns $x$ immediately.
\fun{GEN}{ZpXQ_log}{GEN a, GEN T, GEN p, long e} $T$ being a \kbd{ZpX}
irreducible modulo $p$, return the logarithm of $a$ in $\Z_p[X]/(T)$ to
precision $e$, assuming that $a\equiv 1 \pmod{p\Z_p[X]}$ if $p$ odd or
$a\equiv 1 \pmod{4\Z_2[X]}$ if $p=2$.
\subsec{Zq}
\fun{GEN}{Zq_sqrtnlift}{GEN b, GEN n, GEN a, GEN T, GEN p, long e}
\subsec{ZpXQM}
\fun{GEN}{ZpXQM_prodFrobenius}{GEN M, GEN T, GEN p, long e}
returns the product of matrices $M\*\sigma(M)\*\sigma^2(M)\ldots\sigma^{n-1}(M)$
to precision $e$ where $\sigma$ is the lift of the Frobenius automorphism
over $\Z_p[X]/(T)$ and $n$ is the degree of $T$.
\subsec{ZpXQX}
\fun{GEN}{ZpXQX_liftfact}{GEN A, GEN B, GEN T, GEN pe, GEN p, long e} is the
routine underlying \tet{polhensellift}. Here, $p$ is prime, $T(Y)$ defines a
finite field $\F_q$. $A$ is a polynomial in $\Z[X,Y]$, whose leading
coefficient is non-zero in $\F_q$. $B$ is a vector of monic or \kbd{FqX},
pairwise coprime in $\F_q[X]$, whose product is congruent to $A/\text{lc}(A)$
in $\F_q[X]$. Lifts the elements of $B$ mod $\kbd{pe} = p^e$, such that the
congruence now holds mod $(T,p^e)$.
\fun{GEN}{ZpXQX_liftroot}{GEN f, GEN a, GEN T, GEN p, long e} as
\tet{ZpX_liftroot}, but $f$ is now a polynomial in $\Z[X,Y]$ and lift the
root $a$ in the unramified extension of $\Q_p$ with residue field $\F_p[Y]/(T)$,
assuming $v_p(f(a))>0$ and $v_p(f'(a))=0$.
\fun{GEN}{ZpXQX_liftroot_vald}{GEN f, GEN a, long v, GEN T, GEN p, long e}
returns the foots of $f$ as \tet{ZpXQX_liftroot}, where $v$ is the valuation
of the content of $f'$ and it is required that $v_p(f(a))>v$ and
$v_p(f'(a))=v$.
\fun{GEN}{ZpXQX_roots}{GEN F, GEN T, GEN p, long e}
\fun{GEN}{ZpXQX_divrem}{GEN x, GEN Sp, GEN T,GEN q,GEN p,long e, GEN *pr}
as \kbd{FpXQX\_divrem}. The parameter $q$ must be equal to $p^e$.
\fun{GEN}{ZpXQX_digits}{GEN x, GEN B, GEN T, GEN q, GEN p, long e}
As \kbd{FpXQX\_digits}. The parameter $q$ must be equal to $p^e$.
\subsec{ZqX}
\fun{GEN}{ZqX_roots}{GEN F, GEN T, GEN p, long e}
\fun{GEN}{ZqX_liftfact}{GEN A, GEN B, GEN T, GEN pe, GEN p, long e}
\fun{GEN}{ZqX_liftroot}{GEN f, GEN a, GEN T, GEN p, long e}
\subsec{Other $p$-adic functions}
\fun{GEN}{ZpM_echelon}{GEN M, long early_abort, GEN p, GEN pm} given a
\kbd{ZM} $M$, a prime $p$ and $\kbd{pm} = p^m$, returns an echelon form
$E$ for $M$ mod $p^m$. I.e. there exist a square integral matrix $U$ with
$\det U$ coprime to $p$ such that $E = MU$ modulo $p^m$. I
\kbd{early\_abort} is non-zero, return NULL as soon as one pivot in
the echelon form is divisible by $p^m$. The echelon form is an upper
triangular HNF, we do not waste time to reduce it to Gauss-Jordan form.
\fun{GEN}{zlm_echelon}{GEN M, long early_abort, ulong p, ulong pm}
variant of \kbd{ZpM\_echelon}, for a \kbd{Zlm} $M$.
\fun{GEN}{ZlM_gauss}{GEN a, GEN b, ulong p, long e, GEN C} as \kbd{gauss}
with the following peculiarities: $a$ and $b$ are \kbd{ZM}, such that $a$ is
invertible modulo $p$. Optional $C$ is an \kbd{Flm} that is an inverse of
$a\mod p$ or \kbd{NULL}. Return the matrix $x$ such that $ax=b\mod p^e$ and
all elements of $x$ are in $[0,p^e-1]$. For efficiency, it is better
to reduce $a$ and $b$ mod $p^e$ first.
\fun{GEN}{padic_to_Q}{GEN x} truncate the \typ{PADIC} to a \typ{INT} or
\typ{FRAC}.
\fun{GEN}{padic_to_Q_shallow}{GEN x} shallow version of \tet{padic_to_Q}
\fun{GEN}{QpV_to_QV}{GEN v} apply \tet{padic_to_Q_shallow}
\fun{long}{padicprec}{GEN x, GEN p} returns the absolute $p$-adic precision of
the object $x$, by definition the minimum precision of the components of $x$.
For a non-zero \typ{PADIC}, this returns \kbd{valp(x) + precp(x)}.
\fun{long}{padicprec_relative}{GEN x} returns the relative $p$-adic
precision of the \typ{INT}, \typ{FRAC}, or \typ{PADIC} $x$ (minimum precision
of the components of $x$ for \typ{POL} or vector/matrices).
For a \typ{PADIC}, this returns \kbd{precp(x)} if $x\neq0$, and $0$ for $x=0$.
\subsubsec{low-level}
The following technical function returns an optimal sequence of $p$-adic
accuracies, for a given target accuracy:
\fun{ulong}{quadratic_prec_mask}{long n} we want to reach accuracy
$n\geq 1$, starting from accuracy 1, using a quadratically convergent,
self-correcting, algorithm; in other words, from inputs correct to accuracy
$l$ one iteration outputs a result correct to accuracy $2l$.
For instance, to reach $n = 9$, we want to use accuracies
$[1,2,3,5,9]$ instead of $[1,2,4,8,9]$. The idea is to essentially double
the accuracy at each step, and not overshoot in the end.
Let $a_0$ = 1, $a_1 = 2, \ldots, a_k = n$, be the desired sequence of
accuracies. To obtain it, we work backwards and set
$$ a_k = n,\quad a_{i-1} = (a_i + 1)\,\bs\, 2.$$
This is in essence what the function returns.
But we do not want to store the $a_i$ explicitly, even as a \typ{VECSMALL},
since this would leave an object on the stack. Instead, we store $a_i$
implicitly in a bitmask \kbd{MASK}: let $a_0 = 1$, if the $i$-th bit of the
mask is set, set $a_{i+1} = 2a_i - 1$, and $2a_i$ otherwise; in short the
bits indicate the places where we do something special and do not quite
double the accuracy (which would be the straightforward thing to do).
In fact, to avoid returning separately the mask and the sequence length
$k+1$, the function returns $\kbd{MASK} + 2^{k+1}$, so the highest bit of
the mask indicates the length of the sequence, and the following ones give
an algorithm to obtain the accuracies. This is much simpler than it sounds,
here is what it looks like in practice:
\bprog
ulong mask = quadratic_prec_mask(n);
long l = 1;
while (mask > 1) { /* here, the result is known to accuracy l */
l = 2*l; if (mask & 1) l--; /* new accuracy l for the iteration */
mask >>= 1; /* pop low order bit */
/* ... lift to the new accuracy ... */
}
/* we are done. At this point l = n */
@eprog\noindent We just pop the bits in \kbd{mask} starting from the low
order bits, stop when \kbd{mask} is $1$ (that last bit corresponds to the
$2^{k+1}$ that we added to the mask proper). Note that there is nothing
specific to Hensel lifts in that function: it would work equally well for
an Archimedean Newton iteration.
Note that in practice, we rather use an infinite loop, and insert an
\bprog
if (mask == 1) break;
@eprog\noindent in the middle of the loop: the loop body usually includes
preparations for the next iterations (e.g. lifting Bezout coefficients
in a quadratic Hensel lift), which are costly and useless in the \emph{last}
iteration.
\subsec{Conversions involving single precision objects}
\subsubsec{To single precision}
\fun{ulong}{Rg_to_Fl}{GEN z, ulong p}, \kbd{z} which can be mapped to
$\Z/p\Z$: a \typ{INT}, a \typ{INTMOD} whose modulus is divisible by $p$,
a \typ{FRAC} whose denominator is coprime to $p$, or a \typ{PADIC} with
underlying prime $\ell$ satisfying $p = \ell^n$ for some $n$ (less than the
accuracy of the input). Returns \kbd{lift(z * Mod(1,p))}, normalized, as an
\kbd{Fl}.
\fun{ulong}{Rg_to_F2}{GEN z}, as \tet{Rg_to_Fl} for $p = 2$.
\fun{ulong}{padic_to_Fl}{GEN x, ulong p} special case of \tet{Rg_to_Fl},
for a $x$ a \typ{PADIC}.
\fun{GEN}{RgX_to_F2x}{GEN x}, \kbd{x} a \typ{POL}, returns the
\kbd{F2x} obtained by applying \kbd{Rg\_to\_Fl} coefficientwise.
\fun{GEN}{RgX_to_Flx}{GEN x, ulong p}, \kbd{x} a \typ{POL}, returns the
\kbd{Flx} obtained by applying \kbd{Rg\_to\_Fl} coefficientwise.
\fun{GEN}{Rg_to_F2xq}{GEN z, GEN T}, \kbd{z} a \kbd{GEN} which can be
mapped to $\F_2[X]/(T)$: anything \kbd{Rg\_to\_Fl} can be applied to,
a \typ{POL} to which \kbd{RgX\_to\_F2x} can be applied to, a \typ{POLMOD}
whose modulus is divisible by $T$ (once mapped to a \kbd{F2x}), a suitable
\typ{RFRAC}. Returns \kbd{z} as an \kbd{F2xq}, normalized.
\fun{GEN}{Rg_to_Flxq}{GEN z, GEN T, ulong p}, \kbd{z} a \kbd{GEN} which can be
mapped to $\F_p[X]/(T)$: anything \kbd{Rg\_to\_Fl} can be applied to,
a \typ{POL} to which \kbd{RgX\_to\_Flx} can be applied to, a \typ{POLMOD}
whose modulus is divisible by $T$ (once mapped to a \kbd{Flx}), a suitable
\typ{RFRAC}. Returns \kbd{z} as an \kbd{Flxq}, normalized.
\fun{GEN}{ZX_to_Flx}{GEN x, ulong p} reduce \kbd{ZX}~\kbd{x} modulo \kbd{p}
(yielding an \kbd{Flx}). Faster than \kbd{RgX\_to\_Flx}.
\fun{GEN}{ZV_to_Flv}{GEN x, ulong p} reduce \kbd{ZV}~\kbd{x} modulo \kbd{p}
(yielding an \kbd{Flv}).
\fun{GEN}{ZXV_to_FlxV}{GEN v, ulong p}, as \kbd{ZX\_to\_Flx}, repeatedly
called on the vector's coefficients.
\fun{GEN}{ZXT_to_FlxT}{GEN v, ulong p}, as \kbd{ZX\_to\_Flx}, repeatedly
called on the tree leaves.
\fun{GEN}{ZXX_to_FlxX}{GEN B, ulong p, long v}, as \kbd{ZX\_to\_Flx},
repeatedly called on the polynomial's coefficients.
\fun{GEN}{zxX_to_FlxX}{GEN z, ulong p} as \kbd{zx\_to\_Flx},
repeatedly called on the polynomial's coefficients.
\fun{GEN}{ZXXV_to_FlxXV}{GEN V, ulong p, long v}, as \kbd{ZXX\_to\_FlxX},
repeatedly called on the vector's coefficients.
\fun{GEN}{ZXXT_to_FlxXT}{GEN V, ulong p, long v}, as \kbd{ZXX\_to\_FlxX},
repeatedly called on the tree leaves.
\fun{GEN}{RgV_to_Flv}{GEN x, ulong p} reduce the \typ{VEC}/\typ{COL}
$x$ modulo $p$, yielding a \typ{VECSMALL}.
\fun{GEN}{RgM_to_Flm}{GEN x, ulong p} reduce the \typ{MAT} $x$ modulo $p$.
\fun{GEN}{ZM_to_Flm}{GEN x, ulong p} reduce \kbd{ZM}~$x$ modulo $p$
(yielding an \kbd{Flm}).
\fun{GEN}{ZV_to_zv}{GEN z}, converts coefficients using \kbd{itos}
\fun{GEN}{ZV_to_nv}{GEN z}, converts coefficients using \kbd{itou}
\fun{GEN}{ZM_to_zm}{GEN z}, converts coefficients using \kbd{itos}
\fun{GEN}{FqC_to_FlxC}{GEN x, GEN T, GEN p}, converts coefficients in \kbd{Fq}
to coefficient in Flx, result being a column vector.
\fun{GEN}{FqV_to_FlxV}{GEN x, GEN T, GEN p}, converts coefficients in \kbd{Fq}
to coefficient in Flx, result being a line vector.
\fun{GEN}{FqM_to_FlxM}{GEN x, GEN T, GEN p}, converts coefficients in \kbd{Fq}
to coefficient in Flx.
\subsubsec{From single precision}
\fun{GEN}{Flx_to_ZX}{GEN z}, converts to \kbd{ZX} (\typ{POL} of non-negative
\typ{INT}s in this case)
\fun{GEN}{Flx_to_FlxX}{GEN z}, converts to \kbd{FlxX} (\typ{POL} of constant
\kbd{Flx} in this case).
\fun{GEN}{Flx_to_ZX_inplace}{GEN z}, same as \kbd{Flx\_to\_ZX}, in place
(\kbd{z} is destroyed).
\fun{GEN}{FlxX_to_ZXX}{GEN B}, converts an \kbd{FlxX} to a polynomial with
\kbd{ZX} or \typ{INT} coefficients (repeated calls to \kbd{Flx\_to\_ZX}).
\fun{GEN}{FlxXC_to_ZXXC}{GEN B}, converts an \kbd{FlxXC} to a \typ{COL} with
\kbd{ZXX} coefficients (repeated calls to \kbd{FlxX\_to\_ZXX}).
\fun{GEN}{FlxXM_to_ZXXM}{GEN B}, converts an \kbd{FlxXM} to a \typ{MAT} with
\kbd{ZXX} coefficients (repeated calls to \kbd{FlxX\_to\_ZXX}).
\fun{GEN}{FlxC_to_ZXC}{GEN x}, converts a vector of \kbd{Flx} to a column
vector of polynomials with \typ{INT} coefficients (repeated calls to
\kbd{Flx\_to\_ZX}).
\fun{GEN}{FlxV_to_ZXV}{GEN x}, as above but return a \typ{VEC}.
\fun{void}{F2xV_to_FlxV_inplace}{GEN v} v is destroyed.
\fun{void}{F2xV_to_ZXV_inplace}{GEN v} v is destroyed.
\fun{void}{FlxV_to_ZXV_inplace}{GEN v} v is destroyed.
\fun{GEN}{FlxM_to_ZXM}{GEN z}, converts a matrix of \kbd{Flx} to a matrix of
polynomials with \typ{INT} coefficients (repeated calls to \kbd{Flx\_to\_ZX}).
\fun{GEN}{zx_to_ZX}{GEN z}, as \kbd{Flx\_to\_ZX}, without assuming
the coefficients to be non-negative.
\fun{GEN}{zx_to_Flx}{GEN z, ulong p} as \kbd{Flx\_red} without assuming
the coefficients to be non-negative.
\fun{GEN}{Flc_to_ZC}{GEN z}, converts to \kbd{ZC} (\typ{COL} of non-negative
\typ{INT}s in this case)
\fun{GEN}{Flv_to_ZV}{GEN z}, converts to \kbd{ZV} (\typ{VEC} of non-negative
\typ{INT}s in this case)
\fun{GEN}{Flm_to_ZM}{GEN z}, converts to \kbd{ZM} (\typ{MAT} with
non-negative \typ{INT}s coefficients in this case)
\fun{GEN}{zc_to_ZC}{GEN z} as \kbd{Flc\_to\_ZC}, without assuming
coefficients are non-negative.
\fun{GEN}{zv_to_ZV}{GEN z} as \kbd{Flv\_to\_ZV}, without assuming
coefficients are non-negative.
\fun{GEN}{zm_to_ZM}{GEN z} as \kbd{Flm\_to\_ZM}, without assuming
coefficients are non-negative.
\fun{GEN}{zv_to_Flv}{GEN z, ulong p}
\fun{GEN}{zm_to_Flm}{GEN z, ulong p}
\subsubsec{Mixed precision linear algebra} Assumes dimensions are compatible.
Multiply a multiprecision object by a single-precision one.
\fun{GEN}{RgM_zc_mul}{GEN x, GEN y}
\fun{GEN}{RgMrow_zc_mul}{GEN x, GEN y, long i}
\fun{GEN}{RgM_zm_mul}{GEN x, GEN y}
\fun{GEN}{RgV_zc_mul}{GEN x, GEN y}
\fun{GEN}{RgV_zm_mul}{GEN x, GEN y}
\fun{GEN}{ZM_zc_mul}{GEN x, GEN y}
\fun{GEN}{zv_ZM_mul}{GEN x, GEN y}
\fun{GEN}{ZV_zc_mul}{GEN x, GEN y}
\fun{GEN}{ZM_zm_mul}{GEN x, GEN y}
\fun{GEN}{ZC_z_mul}{GEN x, long y}
\fun{GEN}{ZM_nm_mul}{GEN x, GEN y} the entries of $y$ are \kbd{ulong}s.
\fun{GEN}{nm_Z_mul}{GEN y, GEN c} the entries of $y$ are \kbd{ulong}s.
\subsubsec{Miscellaneous involving Fl}
\fun{GEN}{Fl_to_Flx}{ulong x, long evx} converts a \kbd{unsigned long} to a
scalar \kbd{Flx}. Assume that \kbd{evx = evalvarn(vx)} for some variable
number \kbd{vx}.
\fun{GEN}{Z_to_Flx}{GEN x, ulong p, long sv} converts a \typ{INT} to a scalar
\kbd{Flx} polynomial. Assume that \kbd{sv = evalvarn(v)} for some variable
number \kbd{v}.
\fun{GEN}{Flx_to_Flv}{GEN x, long n} converts from \kbd{Flx} to \kbd{Flv}
with \kbd{n} components (assumed larger than the number of coefficients of
\kbd{x}).
\fun{GEN}{zx_to_zv}{GEN x, long n} as \kbd{Flx\_to\_Flv}.
\fun{GEN}{Flv_to_Flx}{GEN x, long sv} converts from vector (coefficient
array) to (normalized) polynomial in variable $v$.
\fun{GEN}{zv_to_zx}{GEN x, long n} as \kbd{Flv\_to\_Flx}.
\fun{GEN}{Flm_to_FlxV}{GEN x, long sv} converts the columns of
\kbd{Flm}~\kbd{x} to an array of \kbd{Flx} in the variable $v$
(repeated calls to \kbd{Flv\_to\_Flx}).
\fun{GEN}{zm_to_zxV}{GEN x, long n} as \kbd{Flm\_to\_FlxV}.
\fun{GEN}{Flm_to_FlxX}{GEN x, long sw, long sv} same as
\kbd{Flm\_to\_FlxV(x,sv)} but returns the result as a (normalized) polynomial
in variable $w$.
\fun{GEN}{FlxV_to_Flm}{GEN v, long n} reverse \kbd{Flm\_to\_FlxV}, to obtain
an \kbd{Flm} with \kbd{n} rows (repeated calls to \kbd{Flx\_to\_Flv}).
\fun{GEN}{FlxX_to_Flm}{GEN v, long n} reverse \kbd{Flm\_to\_FlxX}, to obtain
an \kbd{Flm} with \kbd{n} rows (repeated calls to \kbd{Flx\_to\_Flv}).
\fun{GEN}{FlxX_to_FlxC}{GEN B, long n, long sv} see \kbd{RgX\_to\_RgV}.
The coefficients of \kbd{B} are assumed to be in the variable $v$.
\fun{GEN}{FlxXV_to_FlxM}{GEN V, long n, long sv} see \kbd{RgXV\_to\_RgM}.
The coefficients of \kbd{V[i]} are assumed to be in the variable $v$.
\fun{GEN}{Fly_to_FlxY}{GEN a, long sv} convert coefficients of \kbd{a} to
constant \kbd{Flx} in variable $v$.
\subsubsec{Miscellaneous involving \kbd{F2x}}
\fun{GEN}{F2x_to_F2v}{GEN x, long n} converts from \kbd{F2x} to \kbd{F2v}
with \kbd{n} components (assumed larger than the number of coefficients of
\kbd{x}).
\fun{GEN}{F2xC_to_ZXC}{GEN x}, converts a vector of \kbd{F2x} to a column
vector of polynomials with \typ{INT} coefficients (repeated calls to
\kbd{F2x\_to\_ZX}).
\fun{GEN}{F2xC_to_FlxC}{GEN x}
\fun{GEN}{FlxC_to_F2xC}{GEN x}
\fun{GEN}{F2xV_to_F2m}{GEN v, long n} \kbd{F2x\_to\_F2v} to each polynomial
to get an \kbd{F2m} with \kbd{n} rows.
\section{Higher arithmetic over $\Z$: primes, factorization}
\subsec{Pure powers}
\fun{long}{Z_issquare}{GEN n} returns $1$ if the \typ{INT} $n$ is
a square, and $0$ otherwise. This is tested first modulo small prime
powers, then \kbd{sqrtremi} is called.
\fun{long}{Z_issquareall}{GEN n, GEN *sqrtn} as \kbd{Z\_issquare}. If
$n$ is indeed a square, set \kbd{sqrtn} to its integer square root.
Uses a fast congruence test mod $64\times 63\times 65\times 11$ before
computing an integer square root.
\fun{long}{Z_ispow2}{GEN x} returns $1$ if the \typ{INT} $x$ is a power of
$2$, and $0$ otherwise.
\fun{long}{uissquare}{ulong n} as \kbd{Z\_issquare},
for an \kbd{ulong} operand \kbd{n}.
\fun{long}{uissquareall}{ulong n, ulong *sqrtn} as \kbd{Z\_issquareall},
for an \kbd{ulong} operand \kbd{n}.
\fun{ulong}{usqrt}{ulong a} returns the floor of the square root of $a$.
\fun{ulong}{usqrtn}{ulong a, ulong n} returns the floor of the $n$-th root
of $a$.
\fun{long}{Z_ispower}{GEN x, ulong k} returns $1$ if the \typ{INT} $n$ is a
$k$-th power, and $0$ otherwise; assume that $k > 1$.
\fun{long}{Z_ispowerall}{GEN x, ulong k, GEN *pt} as \kbd{Z\_ispower}. If
$n$ is indeed a $k$-th power, set \kbd{*pt} to its integer $k$-th root.
\fun{long}{Z_isanypower}{GEN x, GEN *ptn} returns the maximal $k\geq 2$ such
that the \typ{INT} $x = n^k$ is a perfect power, or $0$ if no such $k$ exist;
in particular \kbd{ispower(1)}, \kbd{ispower(0)}, \kbd{ispower(-1)} all
return 0. If the return value $k$ is not $0$ (so that $x = n^k$) and
\kbd{ptn} is not \kbd{NULL}, set \kbd{*ptn} to $n$.
The following low-level functions are called by \tet{Z_isanypower} but can
be directly useful:
\fun{int}{is_357_power}{GEN x, GEN *ptn, ulong *pmask} tests whether the
integer $x > 0$ is a $3$-rd, $5$-th or $7$-th power. The bits of \kbd{*mask}
initially indicate which test is to be performed;
bit $0$: $3$-rd,
bit $1$: $5$-th,
bit $2$: $7$-th (e.g.~$\kbd{*pmask} = 7$ performs all tests). They are
updated during the call: if the ``$i$-th power'' bit is set to $0$
then $x$ is not a $k$-th power. The function returns $0$
(not a
$3$-rd,
$5$-th or
$7$-th power),
$3$
($3$-rd power,
not a $5$-th or
$7$-th power),
$5$
($5$-th power,
not a $7$-th power),
or $7$
($7$-th power); if an $i$-th power bit is initially set to $0$, we take it
at face value and assume $x$ is not an $i$-th power without performing any
test. If the return value $k$ is non-zero, set \kbd{*ptn} to $n$ such that $x
= n^k$.
\fun{int}{is_pth_power}{GEN x, GEN *ptn, forprime_t *T, ulong cutoff}
let $x > 0$ be an integer, $\kbd{cutoff} > 0$ and $T$ be an iterator over
primes $\geq 11$, we look for the smallest prime $p$ such that $x = n^p$
(advancing $T$ as we go along). The $11$ is due to the fact that
\tet{is_357_power} and \kbd{issquare} are faster than the generic version for
$p < 11$.
Fail and return $0$ when the existence of $p$ would imply $2^{\kbd{cutoff}} >
x^{1/p}$, meaning that a possible $n$ is so small that it should have been
found by trial division; for maximal speed, you should start by a round of
trial division, but the cut-off may also be set to $1$ for a rigorous result
without any trial division.
Otherwise returns the smallest suitable prime power $p^i$ and set \kbd{*ptn}
to the $p^i$-th root of $x$ (which is now not a $p$-th power). We may
immediately recall the function with the same parameters after setting $x =
\kbd{*ptn}$: it will start at the next prime.
\subsec{Factorization}
\fun{GEN}{Z_factor}{GEN n} factors the \typ{INT} \kbd{n}. The ``primes''
in the factorization are actually strong pseudoprimes.
\fun{GEN}{absZ_factor}{GEN n} returns \kbd{Z\_factor(absi(n))}.
\fun{long}{Z_issmooth}{GEN n, ulong lim} returns $1$ if all the
prime factors of the \typ{INT} $n$ are less or equal to $lim$.
\fun{GEN}{Z_issmooth_fact}{GEN n, ulong lim} returns \kbd{NULL} if a prime
factor of the \typ{INT} $n$ is $> lim$, and returns the factorization
of $n$ otherwise, as a \typ{MAT} with \typ{VECSMALL} columns (word-size
primes and exponents). Neither memory-clean nor suitable for
\kbd{gerepileupto}.
\fun{GEN}{Z_factor_until}{GEN n, GEN lim} as \kbd{Z\_factor}, but stop the
factorization process as soon as the unfactored part is smaller than \kbd{lim}.
The resulting factorization matrix only contains the factors found. No other
assumptions can be made on the remaining factors.
\fun{GEN}{Z_factor_limit}{GEN n, ulong lim} trial divide $n$ by all primes $p
< \kbd{lim}$ in the precomputed list of prime numbers and return the
corresponding factorization matrix. In this case, the last ``prime'' divisor
in the first column of the factorization matrix may well be a proven
composite.
If $\kbd{lim} = 0$, the effect is the same as setting $\kbd{lim} =
\kbd{maxprime()} + 1$: use all precomputed primes.
\fun{GEN}{absZ_factor_limit}{GEN n, ulong all}returns
\kbd{Z\_factor\_limit(absi(n))}.
\fun{GEN}{boundfact}{GEN x, ulong lim} as \tet{Z_factor_limit}, applying to
\typ{INT} or \typ{FRAC} inputs.
\fun{GEN}{Z_smoothen}{GEN n, GEN L, GEN *pP, GEN *pE} given a \typ{VECSMALL}
$L$ containing a list of small primes and a \typ{INT} $n$, trial divide
$n$ by the elements of $L$ and return the cofactor. Return \kbd{NULL} if the
cofactor is $\pm 1$. \kbd{*P} and \kbd{*E} contain the list of prime divisors
found and their exponents, as \typ{VECSMALL}s. Neither memory-clean, nor
suitable for \tet{gerepileupto}.
\fun{GEN}{Z_factor_listP}{GEN N, GEN L} given a \typ{INT} $N$, a vector or
primes $L$ containing all prime divisors of $N$ (and possibly others). Return
\kbd{factor(N)}. Neither memory-clean, nor suitable for \tet{gerepileupto}.
\fun{GEN}{factor_pn_1}{GEN p, ulong n} returns the factorization of $p^n-1$,
where $p$ is prime and $n$ is a positive integer.
\fun{GEN}{factor_pn_1_limit}{GEN p, ulong n, ulong B} returns a partial
factorization of $p^n-1$, where $p$ is prime and $n$ is a positive integer.
Don't actively search for prime divisors $p > B$, but we may find still find
some due to Aurifeuillian factorizations. Any entry $> B^2$ in the output
factorization matrix is \emph{a priori} not a prime (but may well be).
\fun{GEN}{factor_Aurifeuille_prime}{GEN p, long n} an Aurifeuillian factor
of $\phi_n(p)$, assuming $p$ prime and an Aurifeuillian factor exists
($p \zeta_n$ is a square in $\Q(\zeta_n)$).
\fun{GEN}{factor_Aurifeuille}{GEN a, long d} an Aurifeuillian factor of
$\phi_n(a)$, assuming $a$ is a non-zero integer and $n > 2$. Returns $1$
if no Aurifeuillian factor exists.
\fun{GEN}{odd_prime_divisors}{GEN a} \typ{VEC} of all prime divisors of the
\typ{INT} $a$.
\fun{GEN}{factoru}{ulong n}, returns the factorization of $n$. The result
is a $2$-component vector $[P,E]$, where $P$ and $E$ are \typ{VECSMALL}
containing the prime divisors of $n$, and the $v_p(n)$.
\fun{GEN}{factoru_pow}{ulong n}, returns the factorization of $n$. The result
is a $3$-component vector $[P,E,C]$, where $P$, $E$ and $C$ are
\typ{VECSMALL} containing the prime divisors of $n$, the $v_p(n)$
and the $p^{v_p(n)}$.
\fun{ulong}{tridiv_bound}{GEN n} returns the trial division bound used by
\tet{Z_factor}$(n)$.
\subsec{Coprime factorization}
Given $a$ and $b$ two non-zero integers, let \teb{ppi}$(a,b)$, \teb{ppo}$(a,b)$,
\teb{ppg}$(a,b)$, \teb{pple}$(a,b)$ (powers in $a$ of primes inside $b$,
outside $b$, greater than thos in $b$, less than or equal to those in $b$) be
the integers defined by
\item $v_p(\text{ppi}) = v_p(a) [v_p(b) > 0]$,
\item $v_p(\text{ppo}) = v_p(a) [v_p(b) = 0]$,
\item $v_p(\text{ppg}) = v_p(a) [v_p(a) > v_p(b)]$,
\item $v_p(\text{pple}) = v_p(a) [v_p(a) \leq v_p(b)]$.
\fun{GEN}{Z_ppo}{GEN a, GEN b} returns $\text{ppo}(a,b)$; shallow function.
\fun{ulong}{u_ppo}{ulong a, ulong b} returns $\text{ppo}(a,b)$.
\fun{GEN}{Z_ppgle}{GEN a, GEN b} returns $[\text{ppg}(a,b), \text{pple}(a,b)]$;
shallow function.
\fun{GEN}{Z_ppio}{GEN a, GEN b} returns
$[\gcd(a,b), \text{ppi}(a,b), \text{ppo}(a,b)]$; shallow function.
\fun{GEN}{Z_cba}{GEN a, GEN b} fast natural coprime base algorithm. Returns a
vector of coprime divisors of $a$ and $b$ such that both $a$ and $b$ can
be multiplicatively generated from this set.
\subsec{Checks attached to arithmetic functions}
Arithmetic functions accept arguments of the following kind: a plain positive
integer $N$ (\typ{INT}), the factorization \var{fa} of a positive integer (a
\typ{MAT} with two columns containing respectively primes and exponents), or
a vector $[N,\var{fa}]$. A few functions accept non-zero
integers (e.g.~\tet{omega}), and some others arbitrary integers
(e.g.~\tet{factorint}, \dots).
\fun{int}{is_Z_factorpos}{GEN f} returns $1$ if $f$ looks like the
factorization of a positive integer, and $0$ otherwise. Useful for sanity
checks but not 100\% foolproof. Specifically, this routine checks that $f$ is
a two-column matrix all of whose entries are positive integers. It does
\emph{not} check that entries in the first column (``primes'') are prime,
or even pairwise coprime, nor that they are stricly increasing.
\fun{int}{is_Z_factornon0}{GEN f} returns $1$ if $f$ looks like the
factorization of a non-zero integer, and $0$ otherwise. Useful for sanity
checks but not 100\% foolproof, analogous to \tet{is_Z_factorpos}. (Entries
in the first column need only be non-zero integers.)
\fun{int}{is_Z_factor}{GEN f} returns $1$ if $f$ looks like the
factorization of an integer, and $0$ otherwise. Useful for sanity
checks but not 100\% foolproof. Specifically, this routine checks that $f$ is
a two-column matrix all of whose entries are integers. Entries in the second
column (``exponents'') are all positive. Either it encodes the
``factorization'' $0^e$, $e > 0$, or entries in the first column (``primes'')
are all non-zero.
\fun{GEN}{clean_Z_factor}{GEN f} assuming $f$ is the factorization of an
integer $n$, return the factorization of $|n|$, i.e.~remove $-1$ from the
factorization. Shallow function.
\fun{GEN}{fuse_Z_factor}{GEN f, GEN B} assuming $f$ is the
factorization of an integer $n$, return \kbd{boundfact(n, B)}, i.e.
return a factorization where all primary factors for $|p| \leq B$
are preserved, and all others are ``fused'' into a single composite
integer; if that remainder is trivial, i.e.~equal to 1, it is of course
not included. Shallow function.
In the following three routines, $f$ is the name of an arithmetic function,
and $n$ a supplied argument. They all raise exceptions if $n$ does not
correspond to an integer or an integer factorization of the expected shape.
\fun{GEN}{check_arith_pos}{GEN n, const char *f} check whether $n$
is attached to the factorization of a positive integer, and return
\kbd{NULL} (plain \typ{INT}) or a factorization extracted from $n$ otherwise.
May raise an \tet{e_DOMAIN} ($n \leq 0$) or an \tet{e_TYPE} exception (other
failures).
\fun{GEN}{check_arith_non0}{GEN n, const char *f} check whether $n$
is attached to the factorization of a non-$0$ integer, and return
\kbd{NULL} (plain \typ{INT}) or a factorization extracted from $n$ otherwise.
May raise an \tet{e_TYPE} exception.
\fun{GEN}{check_arith_all}{GEN n, const char *f}
is attached to the factorization of an integer, and return \kbd{NULL}
(plain \typ{INT}) or a factorization extracted from $n$ otherwise.
\subsec{Incremental integer factorization}
Routines attached to the dynamic factorization of an integer $n$, iterating
over successive prime divisors. This is useful to implement high-level
routines allowed to take shortcuts given enough partial information: e.g.
\kbd{moebius}$(n)$ can be trivially computed if we hit $p$ such that $p^2
\mid n$. For efficiency, trial division by small primes should have already
taken place. In any case, the functions below assume that no prime $< 2^{14}$
divides $n$.
\fun{GEN}{ifac_start}{GEN n, int moebius} schedules a new factorization
attempt for the integer $n$. If \kbd{moebius} is non-zero, the factorization
will be aborted as soon as a repeated factor is detected (Moebius mode).
The function assumes that $n > 1$ is a \emph{composite} \typ{INT} whose prime
divisors satisfy $p > 2^{14}$ \emph{and} that one can write to $n$ in place.
This function stores data on the stack, no \kbd{gerepile} call should
delete this data until the factorization is complete. Returns \kbd{partial},
a data structure recording the partial factorization state.
\fun{int}{ifac_next}{GEN *partial, GEN *p, long *e} deletes a primary factor
$p^e$ from \kbd{partial} and sets \kbd{p} (prime) and \kbd{e} (exponent), and
normally returns $1$. Whatever remains in the \kbd{partial} structure is now
coprime to $p$.
Returns $0$ if all primary factors have been used already, so we are done
with the factorization. In this case $p$ is set to \kbd{NULL}. If we ran in
Moebius mode and the factorization was in fact aborted, we have $e = 1$,
otherwise $e = 0$.
\fun{int}{ifac_read}{GEN part, GEN *k, long *e} peeks at the next integer
to be factored in the list $k^e$, where $k$ is not necessarily prime
and can be a perfect power as well, but will be factored by the next call to
\tet{ifac_next}. You can remove this factorization from the schedule by
calling:
\fun{void}{ifac_skip}{GEN part} removes the next scheduled factorization.
\fun{int}{ifac_isprime}{GEN n} given $n$ whose prime divisors are $> 2^{14}$,
returns the decision the factoring engine would take about the compositeness
of $n$: $0$ if $n$ is a proven composite, and $1$ if we believe it to be
prime; more precisely, $n$ is a proven prime if \tet{factor_proven} is
set, and only a BPSW-pseudoprime otherwise.
\subsec{Integer core, squarefree factorization}
\fun{long}{Z_issquarefree}{GEN n} returns $1$ if the \typ{INT} \kbd{n}
is square-free, and $0$ otherwise.
\fun{long}{Z_isfundamental}{GEN x} returns $1$ if the \typ{INT} \kbd{x}
is a fundamental discriminant, and $0$ otherwise.
\fun{GEN}{core}{GEN n} unique squarefree integer $d$ dividing $n$ such that
$n/d$ is a square. The core of $0$ is defined to be $0$.
\fun{GEN}{core2}{GEN n} return $[d,f]$ with $d$ squarefree and $n = df^2$.
\fun{GEN}{corepartial}{GEN n, long lim} as \kbd{core}, using
\kbd{boundfact(n,lim)} to partially factor \kbd{n}. The result is not
necessarily squarefree, but $p^2 \mid n$ implies $p > \kbd{lim}$.
\fun{GEN}{core2partial}{GEN n, long lim} as \kbd{core2}, using
\kbd{boundfact(n,lim)} to partially factor \kbd{n}. The resulting $d$ is not
necessarily squarefree, but $p^2 \mid n$ implies $p > \kbd{lim}$.
\subsec{Primes, primality and compositeness tests}
\subsubsec{Chebyshev's $\pi$ function, bounds}
\fun{ulong}{uprimepi}{ulong n}, returns the number of primes $p\leq n$
(Chebyshev's $\pi$ function).
\fun{double}{primepi_upper_bound}{double x} return a quick upper bound for
$\pi(x)$, using Dusart bounds.
\fun{GEN}{gprimepi_upper_bound}{GEN x} as \tet{primepi_upper_bound}, returns a
\typ{REAL}.
\fun{double}{primepi_lower_bound}{double x} return a quick lower bound for
$\pi(x)$, using Dusart bounds.
\fun{GEN}{gprimepi_lower_bound}{GEN x} as \tet{primepi_lower_bound}, returns
a \typ{REAL} or \kbd{gen\_0}.
\subsubsec{Primes, primes in intervals}
\fun{ulong}{unextprime}{ulong n}, returns the smallest prime $\geq n$. Return
$0$ if it cannot be represented as an \kbd{ulong} ($n$ bigger than $2^{64} -
59$ or $2^{32} - 5$ depending on the word size).
\fun{ulong}{uprecprime}{ulong n}, returns the largest prime $\leq n$. Return
$0$ if $n\leq 1$.
\fun{ulong}{uprime}{long n} returns the $n$-th prime, assuming it fits in an
\kbd{ulong} (overflow error otherwise).
\fun{GEN}{prime}{long n} same as \kbd{utoi(uprime(n))}.
\fun{GEN}{primes_zv}{long m} returns the first $m$ primes, in a
\typ{VECSMALL}.
\fun{GEN}{primes}{long m} return the first $m$ primes, as a \typ{VEC} of
\typ{INT}s.
\fun{GEN}{primes_interval}{GEN a, GEN b} return the primes in the interval
$[a,b]$, as a \typ{VEC} of \typ{INT}s.
\fun{GEN}{primes_interval_zv}{ulong a, ulong b} return the primes in the
interval $[a,b]$, as a \typ{VECSMALL} of \kbd{ulongs}s.
\fun{GEN}{primes_upto_zv}{ulong b} return the primes in the interval $[2,b]$,
as a \typ{VECSMALL} of \kbd{ulongs}s.
\subsubsec{Tests}
\fun{int}{uisprime}{ulong p}, returns $1$ if \kbd{p} is a prime number and
$0$ otherwise.
\fun{int}{uisprime_101}{ulong p}, assuming that $p$ has no divisor $\leq
101$, returns $1$ if \kbd{p} is a prime number and $0$ otherwise.
\fun{int}{uisprime_661}{ulong p}, assuming that $p$ has no divisor $\leq
661$, returns $1$ if \kbd{p} is a prime number and $0$ otherwise.
\fun{int}{isprime}{GEN n}, returns $1$ if the \typ{INT} \kbd{n} is a
(fully proven) prime number and $0$ otherwise.
\fun{long}{isprimeAPRCL}{GEN n}, returns $1$ if the \typ{INT} \kbd{n} is a
prime number and $0$ otherwise, using only the APRCL test --- not even trial
division or compositeness tests. The workhorse \kbd{isprime} should be
faster on average, especially if non-primes are included!
\fun{long}{BPSW_psp}{GEN n}, returns $1$ if the \typ{INT} \kbd{n} is a
Baillie-Pomerance-Selfridge-Wagstaff pseudoprime, and $0$ otherwise (proven
composite).
\fun{int}{BPSW_isprime}{GEN x} assuming $x$ is a BPSW-pseudoprime, rigorously
prove its primality. The function \tet{isprime} is currently implemented
as
\bprog
BPSW_psp(x) && BPSW_isprime(x)
@eprog
\fun{long}{millerrabin}{GEN n, long k} performs $k$ strong Rabin-Miller
compositeness tests on the \typ{INT} $n$, using $k$ random bases. This
function also caches square roots of $-1$ that are encountered during the
successive tests and stops as soon as three distinct square roots have been
produced; we have in principle factored $n$ at this point, but
unfortunately, there is currently no way for the factoring machinery to
become aware of it. (It is highly implausible that hard to find factors
would be exhibited in this way, though.) This should be slower than
\tet{BPSW_psp} for $k\geq 4$ and we would expect it to be less reliable.
\subsec{Iterators over primes}
\fun{int}{forprime_init}{forprime_t *T, GEN a, GEN b} initialize an
iterator $T$ over primes in $[a,b]$; over primes $\geq a$ if $b =
\kbd{NULL}$. Return $0$ if the range is known to be empty from the start
(as if $b < a$ or $b < 0$), and return $1$ otherwise.
\fun{GEN}{forprime_next}{forprime_t *T} returns the next prime in the range,
assuming that $T$ was initialized by \tet{forprime_init}.
\fun{int}{u_forprime_init}{forprime_t *T, ulong a, ulong b}
\fun{ulong}{u_forprime_next}{forprime_t *T}
\fun{void}{u_forprime_restrict}{forprime_t *T, ulong c} let $T$ an iterator
over primes initialized via \kbd{u\_forprime\_init(\&T, a, b)}, possibly
followed by a number of calls to \tet{u_forprime_next}, and $a \leq c \leq
b$. Restrict the range of primes considered to $[a,c]$.
\fun{int}{u_forprime_arith_init}{forprime_t *T, ulong a,ulong b, ulong c,ulong q} initialize an iterator over primes in $[a,b]$, congruent to $c$
modulo $q$. Assume $0 \leq c < q$ and $(c,q) = 1$. Subsequent calls to
\tet{u_forprime_next} will only return primes congruent to $c$ modulo $q$.
\section{Integral, rational and generic linear algebra}
\subsec{\kbd{ZC} / \kbd{ZV}, \kbd{ZM}} A \kbd{ZV} (resp.~a~\kbd{ZM},
resp.~a~\kbd{ZX}) is a \typ{VEC} or \typ{COL} (resp.~\typ{MAT},
resp.~\typ{POL}) with \typ{INT} coefficients.
\subsubsec{\kbd{ZC} / \kbd{ZV}}
\fun{void}{RgV_check_ZV}{GEN x, const char *s} Assuming \kbd{x} is a \typ{VEC}
or \typ{COL} raise an error if it is not a \kbd{ZV} ($s$ should point to the
name of the caller).
\fun{int}{RgV_is_ZV}{GEN x} Assuming \kbd{x} is a \typ{VEC}
or \typ{COL} return $1$ if it is a \kbd{ZV}, and $0$ otherwise.
\fun{int}{RgV_is_QV}{GEN P} return 1 if the \kbd{RgV}~$P$ has only
\typ{INT} and \typ{FRAC} coefficients, and 0 otherwise.
\fun{int}{ZV_equal0}{GEN x} returns 1 if all entries of the \kbd{ZV} $x$ are
zero, and $0$ otherwise.
\fun{int}{ZV_cmp}{GEN x, GEN y} compare two \kbd{ZV}, which we assume have
the same length (lexicographic order, comparing absolute values).
\fun{int}{ZV_abscmp}{GEN x, GEN y} compare two \kbd{ZV}, which we assume have
the same length (lexicographic order).
\fun{int}{ZV_equal}{GEN x, GEN y} returns $1$ if the two \kbd{ZV} are equal
and $0$ otherwise. A \typ{COL} and a \typ{VEC} with the same entries are
declared equal.
\fun{GEN}{ZC_add}{GEN x, GEN y} adds \kbd{x} and \kbd{y}.
\fun{GEN}{ZC_sub}{GEN x, GEN y} subtracts \kbd{x} and \kbd{y}.
\fun{GEN}{ZC_Z_add}{GEN x, GEN y} adds \kbd{y} to \kbd{x[1]}.
\fun{GEN}{ZC_Z_sub}{GEN x, GEN y} subtracts \kbd{y} to \kbd{x[1]}.
\fun{GEN}{Z_ZC_sub}{GEN a, GEN x} returns the vector $[a - x_1,
-x_2,\dots,-x_n]$.
\fun{GEN}{ZC_copy}{GEN x} returns a (\typ{COL}) copy of \kbd{x}.
\fun{GEN}{ZC_neg}{GEN x} returns $-\kbd{x}$ as a \typ{COL}.
\fun{void}{ZV_neg_inplace}{GEN x} negates the \kbd{ZV} \kbd{x} in place, by
replacing each component by its opposite (the type of \kbd{x} remains the
same, \typ{COL} or \typ{COL}). If you want to save even more memory by
avoiding the implicit component copies, use \kbd{ZV\_togglesign}.
\fun{void}{ZV_togglesign}{GEN x} negates \kbd{x} in place, by toggling the
sign of its integer components. Universal constants \kbd{gen\_1},
\kbd{gen\_m1}, \kbd{gen\_2} and \kbd{gen\_m2} are handled specially and will
not be corrupted. (We use \tet{togglesign_safe}.)
\fun{GEN}{ZC_Z_mul}{GEN x, GEN y} multiplies the \kbd{ZC} or \kbd{ZV}~\kbd{x}
(which can be a column or row vector) by the \typ{INT}~\kbd{y}, returning a
\kbd{ZC}.
\fun{GEN}{ZC_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all divisions
are exact.
\fun{GEN}{ZC_Z_div}{GEN x, GEN y} returns $x/y$, where the resulting vector
has rational entries.
\fun{GEN}{ZV_dotproduct}{GEN x,GEN y} as \kbd{RgV\_dotproduct} assuming $x$
and $y$ have \typ{INT} entries.
\fun{GEN}{ZV_dotsquare}{GEN x} as \kbd{RgV\_dotsquare} assuming $x$
has \typ{INT} entries.
\fun{GEN}{ZC_lincomb}{GEN u, GEN v, GEN x, GEN y} returns $ux + vy$, where
$u$, $v$ are \typ{INT} and $x,y$ are \kbd{ZC} or \kbd{ZV}. Return a \kbd{ZC}
\fun{void}{ZC_lincomb1_inplace}{GEN X, GEN Y, GEN v} sets $X\leftarrow X +
vY$, where $v$ is a \typ{INT} and $X,Y$ are \kbd{ZC} or \kbd{ZV}. (The result
has the type of $X$.) Memory efficient (e.g. no-op if $v = 0$), but not
gerepile-safe.
\fun{GEN}{ZC_ZV_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZC}~\kbd{x}
(seen as a column vector) by the \kbd{ZV}~\kbd{y} (seen as a row vector,
assumed to have compatible dimensions).
\fun{GEN}{ZV_content}{GEN x} returns the GCD of all the components
of~\kbd{x}.
\fun{GEN}{ZV_extgcd}{GEN A} given a vector of $n$ integers $A$, returns $[d,
U]$, where $d$ is the content of $A$ and $U$ is a matrix
in $\text{GL}_n(\Z)$ such that $AU = [D,0, \dots,0]$.
\fun{GEN}{ZV_prod}{GEN x} returns the product of all the components
of~\kbd{x} ($1$ for the empty vector).
\fun{GEN}{ZV_sum}{GEN x} returns the sum of all the components
of~\kbd{x} ($0$ for the empty vector).
\fun{long}{ZV_max_lg}{GEN x} returns the effective length of the longest
entry in $x$.
\fun{int}{ZV_dvd}{GEN x, GEN y} assuming $x$, $y$ are two \kbd{ZV}s of the same
length, return $1$ if $y[i]$ divides $x[i]$ for all $i$ and $0$ otherwise.
Error if one of the $y[i]$ is $0$.
\fun{GEN}{ZV_sort}{GEN L} sort the \kbd{ZV} $L$.
Returns a vector with the same type as $L$.
\fun{GEN}{ZV_sort_uniq}{GEN L} sort the \kbd{ZV} $L$, removing duplicate
entries. Returns a vector with the same type as $L$.
\fun{long}{ZV_search}{GEN L, GEN y} look for the \typ{INT} $y$ in the sorted
\kbd{ZV} $L$. Return an index $i$ such that $L[i] = y$, and $0$ otherwise.
\fun{GEN}{ZV_indexsort}{GEN L} returns the permutation which, applied to the
\kbd{ZV} $L$, would sort the vector. The result is a \typ{VECSMALL}.
\fun{GEN}{ZV_union_shallow}{GEN x, GEN y} given two \emph{sorted} ZV (as per
\tet{ZV_sort}, returns the union of $x$ and $y$. Shallow function. In case two
entries are equal in $x$ and $y$, include the one from $x$.
\subsubsec{\kbd{ZM}}
\fun{void}{RgM_check_ZM}{GEN A, const char *s} Assuming \kbd{x} is a \typ{MAT}
raise an error if it is not a \kbd{ZM} ($s$ should point to the name of the
caller).
\fun{GEN}{ZM_copy}{GEN x} returns a copy of \kbd{x}.
\fun{int}{ZM_equal}{GEN A, GEN B} returns $1$ if the two \kbd{ZM} are equal
and $0$ otherwise.
\fun{GEN}{ZM_add}{GEN x, GEN y} returns $\kbd{x} + \kbd{y}$ (assumed to have
compatible dimensions).
\fun{GEN}{ZM_sub}{GEN x, GEN y} returns $\kbd{x} - \kbd{y}$ (assumed to have
compatible dimensions).
\fun{GEN}{ZM_neg}{GEN x} returns $-\kbd{x}$.
\fun{void}{ZM_togglesign}{GEN x} negates \kbd{x} in place, by toggling the
sign of its integer components. Universal constants \kbd{gen\_1},
\kbd{gen\_m1}, \kbd{gen\_2} and \kbd{gen\_m2} are handled specially and will
not be corrupted. (We use \tet{togglesign_safe}.)
\fun{GEN}{ZM_mul}{GEN x, GEN y} multiplies \kbd{x} and \kbd{y} (assumed to
have compatible dimensions).
\fun{GEN}{ZM_sqr}{GEN x} returns $x^2$, where $x$ is a square \kbd{ZM}.
\fun{GEN}{ZM_Z_mul}{GEN x, GEN y} multiplies the \kbd{ZM}~\kbd{x}
by the \typ{INT}~\kbd{y}.
\fun{GEN}{ZM_ZC_mul}{GEN x, GEN y} multiplies the \kbd{ZM}~\kbd{x}
by the \kbd{ZC}~\kbd{y} (seen as a column vector, assumed to have compatible
dimensions).
\fun{GEN}{ZM_diag_mul}{GEN d, GEN m} given a vector $d$ with integer entries
and a \kbd{ZM} $m$ of compatible dimensions, return \kbd{diagonal(d) * m}.
\fun{GEN}{ZM_mul_diag}{GEN m, GEN d} given a vector $d$ with integer entries
and a \kbd{ZM} $m$ of compatible dimensions, return \kbd{m * diagonal(d)}.
\fun{GEN}{ZM_multosym}{GEN x, GEN y}
\fun{GEN}{ZM_transmultosym}{GEN x, GEN y}
\fun{GEN}{ZM_transmul}{GEN x, GEN y}
\fun{GEN}{ZMrow_ZC_mul}{GEN x, GEN y, long i} multiplies the $i$-th row
of \kbd{ZM}~\kbd{x} by the \kbd{ZC}~\kbd{y} (seen as a column vector, assumed
to have compatible dimensions). Assumes that $x$ is non-empty and
$0 < i < \kbd{lg(x[1])}$.
\fun{GEN}{ZV_ZM_mul}{GEN x, GEN y} multiplies the \kbd{ZV}~\kbd{x}
by the \kbd{ZM}~\kbd{y}. Returns a \typ{VEC}.
\fun{GEN}{ZM_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all divisions
are exact.
\fun{GEN}{ZM_Z_div}{GEN x, GEN y} returns $x/y$, where the resulting matrix
has rational entries.
\fun{GEN}{ZM_pow}{GEN x, GEN n} returns $\kbd{x}^\kbd{n}$, assuming \kbd{x}
is a square \kbd{ZM} and $\kbd{n}\geq 0$.
\fun{GEN}{ZM_powu}{GEN x, ulong n} returns $\kbd{x}^\kbd{n}$, assuming \kbd{x}
is a square \kbd{ZM} and $\kbd{n}\geq 0$.
\fun{GEN}{ZM_det}{GEN M} if \kbd{M} is a \kbd{ZM}, returns the determinant of
$M$. This is the function underlying \tet{matdet} whenever $M$ is a \kbd{ZM}.
\fun{GEN}{ZM_detmult}{GEN M} if \kbd{M} is a \kbd{ZM}, returns a multiple of
the determinant of the lattice generated by its columns. This is the function
underlying \tet{detint}.
\fun{GEN}{ZM_supnorm}{GEN x} return the sup norm of the \kbd{ZM} $x$.
\fun{GEN}{ZM_charpoly}{GEN M} returns the characteristic polynomial (in
variable $0$) of the \kbd{ZM} $M$.
\fun{GEN}{QM_charpoly_ZX}{GEN M} returns the characteristic polynomial
(in variable $0$) of the \kbd{QM} $M$, assuming that the result has integer
coefficients.
\fun{GEN}{QM_charpoly_ZX_bound}{GEN M, long b} as \tet{QM_charpoly_ZX}
assuming that the sup norm of the (integral) result is $\leq 2^b$.
\fun{GEN}{ZM_imagecompl}{GEN x} returns \kbd{matimagecompl(x)}.
\fun{long}{ZM_rank}{GEN x} returns \kbd{matrank(x)}.
\fun{GEN}{ZM_indexrank}{GEN x} returns \kbd{matindexrank(x)}.
\fun{GEN}{ZM_indeximage}{GEN x} returns \kbd{gel(ZM\_indexrank(x), 2)}.
\fun{long}{ZM_max_lg}{GEN x} returns the effective length of the longest
entry in $x$.
\fun{GEN}{ZM_inv}{GEN M, GEN d} if \kbd{M} is a \kbd{ZM} and \kbd{d}
is a \typ{INT} such that $M' := \kbd{d}\kbd{M}^{-1}$ is integral,
return $M'$. It is allowed to set \kbd{d = NULL}, in which case, the
determinant of \kbd{M} is used instead.
\fun{GEN}{ZM_inv_ratlift}{GEN M, GEN *pd} if \kbd{M} is a \kbd{ZM},
return a primitive matrix $H$ such that $M H$ is $d$ times the identity
and set \kbd{*pd} to $d$. To be used when you expect that the denominator
of $M^{-1}$ is much smaller than $\det M$ and no sharp multiplicative
bound is available; else use \kbd{ZM\_inv}.
\fun{GEN}{QM_inv}{GEN M, GEN d} as above, with \kbd{M} a \kbd{QM}. We
still assume that $M'$ has integer coefficients.
\fun{GEN}{ZM_det_triangular}{GEN x} returns the product of the diagonal
entries of $x$ (its determinant if it is indeed triangular).
\fun{int}{ZM_isidentity}{GEN x} return 1 if the \kbd{ZM} $x$ is the
identity matrix, and 0 otherwise.
\fun{int}{ZM_isscalar}{GEN x, GEN s} given a \kbd{ZM} $x$ and a
\typ{INT} $s$, return 1 if $x$ is equal to $s$ times the identity, and 0
otherwise. If $s$ is \kbd{NULL}, test whether $x$ is an arbitrary scalar
matrix.
\fun{long}{ZC_is_ei}{GEN x} return $i$ if the \kbd{ZC} $x$ has $0$ entries,
but for a $1$ at position $i$.
\fun{int}{ZM_ishnf}{GEN x} return $1$ if $x$ is in HNF form, i.e. is upper
triangular with positive diagonal coefficients, and for $j>i$,
$x_{i,i}>x_{i,j} \ge 0$.
\fun{GEN}{Qevproj_init}{GEN M} let $M$ be a $n\times d$ \kbd{ZM} of
maximal rank $d \leq n$, representing the basis of a $\Q$-subspace
$V$ of $\Q^n$. Return a projector on $V$, to be used by \tet{Qevproj_apply}.
The interface details may change in the future, but this function currently
returns $[M, B,D,p]$, where $p$ is a \typ{VECSMALL} with $d$ entries
such that the submatrix $A = \kbd{rowpermute}(M,p)$ is invertible, $B$ is a
\kbd{ZM} and $d$ a \typ{INT} such that $A B = D \Id_d$.
\fun{GEN}{Qevproj_apply}{GEN T, GEN pro} let $T$ be an $n\times n$
\kbd{QM}, stabilizing a $\Q$-subspace $V\subset \Q^n$ of dimension $d$, and
let \kbd{pro} be a projector on that subspace initialized by
\tet{Qevproj_init}$(M)$. Return the $d\times d$ matrix representing $T_{|V}$
on the basis given by the columns of $M$.
\fun{GEN}{Qevproj_apply_vecei}{GEN T, GEN pro, long k} as
\tet{Qevproj_apply}, return only the image of the $k$-th basis vector $M[k]$
(still on the basis given by the columns of $M$).
\subsec{\kbd{zv}, \kbd{zm}}
\fun{GEN}{zv_neg}{GEN x} return $-x$. No check for overflow is done, which
occurs in the fringe case where an entry is equal to $2^{\B-1}$.
\fun{GEN}{zv_neg_inplace}{GEN x} negates $x$ in place and return it. No check
for overflow is done, which occurs in the fringe case where an entry is equal
to $2^{\B-1}$.
\fun{GEN}{zm_zc_mul}{GEN x, GEN y}
\fun{GEN}{zm_mul}{GEN x, GEN y}
\fun{GEN}{zv_z_mul}{GEN x, long n} return $n\*x$. No check for overflow is
done.
\fun{long}{zv_content}{GEN x} returns the gcd of the entries of $x$.
\fun{long}{zv_dotproduct}{GEN x, GEN y}
\fun{long}{zv_prod}{GEN x} returns the product of all the components
of~\kbd{x} (assumes no overflow occurs).
\fun{GEN}{zv_prod_Z}{GEN x} returns the product of all the components
of~\kbd{x}; consider all $x[i]$ as \kbd{ulong}s.
\fun{long}{zv_sum}{GEN x} returns the sum of all the components
of~\kbd{x} (assumes no overflow occurs).
\fun{int}{zv_cmp0}{GEN x} returns 1 if all entries of the \kbd{zv} $x$ are $0$,
and $0$ otherwise.
\fun{int}{zv_equal}{GEN x, GEN y} returns $1$ if the two \kbd{zv} are equal
and $0$ otherwise.
\fun{int}{zv_equal0}{GEN x} returns $1$ if all entries are $0$, and return
$0$ otherwise.
\fun{long}{zv_search}{GEN L, long y} look for $y$ in the sorted
\kbd{zv} $L$. Return an index $i$ such that $L[i] = y$, and $0$ otherwise.
\fun{GEN}{zv_copy}{GEN x} as \kbd{Flv\_copy}.
\fun{GEN}{zm_transpose}{GEN x} as \kbd{Flm\_transpose}.
\fun{GEN}{zm_copy}{GEN x} as \kbd{Flm\_copy}.
\fun{GEN}{zero_zm}{long m, long n} as \kbd{zero\_Flm}.
\fun{GEN}{zero_zv}{long n} as \kbd{zero\_Flv}.
\fun{GEN}{zm_row}{GEN A, long x0} as \kbd{Flm\_row}.
\fun{int}{zvV_equal}{GEN x, GEN y} returns $1$ if the two \kbd{zvV} (vectors
of \kbd{zv}) are equal and $0$ otherwise.
\subsec{\kbd{ZMV} / \kbd{zmV} (vectors of \kbd{ZM}/\kbd{zm})}
\fun{int}{RgV_is_ZMV}{GEN x} Assuming \kbd{x} is a \typ{VEC}
or \typ{COL} return $1$ if its components are \kbd{ZM}, and $0$ otherwise.
\fun{GEN}{ZMV_to_zmV}{GEN z}
\fun{GEN}{zmV_to_ZMV}{GEN z}
\fun{GEN}{ZMV_to_FlmV}{GEN z, ulong m}
\subsec{\kbd{RgC} / \kbd{RgV}, \kbd{RgM}}
\kbd{RgC} and \kbd{RgV} routines assume the inputs are \kbd{VEC} or \kbd{COL}
of the same dimension. \kbd{RgM} assume the inputs are \kbd{MAT} of
compatible dimensions.
\subsubsec{Matrix arithmetic}
\fun{void}{RgM_dimensions}{GEN}{x, long *m, long *n} sets $m$, resp.~$n$, to
the number of rows, resp.~columns of the \typ{MAT} $x$.
\fun{GEN}{RgC_add}{GEN x, GEN y} returns $x + y$ as a \typ{COL}.
\fun{GEN}{RgC_neg}{GEN x} returns $-x$ as a \typ{COL}.
\fun{GEN}{RgC_sub}{GEN x, GEN y} returns $x - y$ as a \typ{COL}.
\fun{GEN}{RgV_add}{GEN x, GEN y} returns $x + y$ as a \typ{VEC}.
\fun{GEN}{RgV_neg}{GEN x} returns $-x$ as a \typ{VEC}.
\fun{GEN}{RgV_sub}{GEN x, GEN y} returns $x - y$ as a \typ{VEC}.
\fun{GEN}{RgM_add}{GEN x, GEN y} return $x+y$.
\fun{GEN}{RgM_neg}{GEN x} returns $-x$.
\fun{GEN}{RgM_sub}{GEN x, GEN y} returns $x-y$.
\fun{GEN}{RgM_Rg_add}{GEN x, GEN y} assuming $x$ is a square matrix
and $y$ a scalar, returns the square matrix $x + y*\text{Id}$.
\fun{GEN}{RgM_Rg_add_shallow}{GEN x, GEN y} as \kbd{RgM\_Rg\_add} with much
fewer copies. Not suitable for \kbd{gerepileupto}.
\fun{GEN}{RgM_Rg_sub}{GEN x, GEN y} assuming $x$ is a square matrix
and $y$ a scalar, returns the square matrix $x - y*\text{Id}$.
\fun{GEN}{RgM_Rg_sub_shallow}{GEN x, GEN y} as \kbd{RgM\_Rg\_sub} with much
fewer copies. Not suitable for \kbd{gerepileupto}.
\fun{GEN}{RgC_Rg_add}{GEN x, GEN y} assuming $x$ is a non-empty column vector
and $y$ a scalar, returns the vector $[x_1 + y, x_2,\dots,x_n]$.
\fun{GEN}{RgC_Rg_sub}{GEN x, GEN y} assuming $x$ is a non-empty column vector
and $y$ a scalar, returns the vector $[x_1 - y, x_2,\dots,x_n]$.
\fun{GEN}{Rg_RgC_sub}{GEN a, GEN x} assuming $x$ is a non-empty column vector
and $a$ a scalar, returns the vector $[a - x_1, -x_2,\dots,-x_n]$.
\fun{GEN}{RgC_Rg_div}{GEN x, GEN y}
\fun{GEN}{RgM_Rg_div}{GEN x, GEN y} returns $x/y$ ($y$ treated as a scalar).
\fun{GEN}{RgC_Rg_mul}{GEN x, GEN y}
\fun{GEN}{RgV_Rg_mul}{GEN x, GEN y}
\fun{GEN}{RgM_Rg_mul}{GEN x, GEN y} returns $x\times y$ ($y$ treated as a
scalar).
\fun{GEN}{RgV_RgC_mul}{GEN x, GEN y} returns $x\times y$.
\fun{GEN}{RgV_RgM_mul}{GEN x, GEN y} returns $x\times y$.
\fun{GEN}{RgM_RgC_mul}{GEN x, GEN y} returns $x\times y$.
\fun{GEN}{RgM_mul}{GEN x, GEN y} returns $x\times y$.
\fun{GEN}{RgM_transmul}{GEN x, GEN y} returns $x\til \times y$.
\fun{GEN}{RgM_multosym}{GEN x, GEN y} returns $x\times y$, assuming
the result is a symmetric matrix (about twice faster than a generic matrix
multiplication).
\fun{GEN}{RgM_transmultosym}{GEN x, GEN y} returns $x\til \times y$, assuming
the result is a symmetric matrix (about twice faster than a generic matrix
multiplication).
\fun{GEN}{RgMrow_RgC_mul}{GEN x, GEN y, long i} multiplies the $i$-th row of
\kbd{RgM}~\kbd{x} by the \kbd{RgC}~\kbd{y} (seen as a column vector, assumed
to have compatible dimensions). Assumes that $x$ is non-empty and $0 < i <
\kbd{lg(x[1])}$.
\fun{GEN}{RgM_mulreal}{GEN x, GEN y} returns the real part of $x\times y$
(whose entries are \typ{INT}, \typ{FRAC}, \typ{REAL} or \typ{COMPLEX}).
\fun{GEN}{RgM_sqr}{GEN x} returns $x^2$.
\fun{GEN}{RgC_RgV_mul}{GEN x, GEN y} returns $x\times y$ (the square matrix
$(x_iy_j)$).
The following two functions are not well defined in general and only provided
for convenience in specific cases:
\fun{GEN}{RgC_RgM_mul}{GEN x, GEN y} returns $x\times y[1,]$ if $y$ is
a row matrix $1\times n$, error otherwise.
\fun{GEN}{RgM_RgV_mul}{GEN x, GEN y} returns $x\times y[,1]$ if $y$ is
a column matrix $n\times 1$, error otherwise.
\fun{GEN}{RgM_powers}{GEN x, long n} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC} of \kbd{RgM}s.
\smallskip
\fun{GEN}{RgV_sum}{GEN v} sum of the entries of $v$
\fun{GEN}{RgV_prod}{GEN v} product of the entries of $v$, using
a divide and conquer strategy
\fun{GEN}{RgV_sumpart}{GEN v, long n} returns the sum $v[1] + \dots + v[n]$
(assumes that \kbd{lg}$(v) > n$).
\fun{GEN}{RgV_sumpart2}{GEN v, long m, long n} returns the sum $v[m] + \dots +
v[n]$ (assumes that \kbd{lg}$(v) > n$ and $m > 0$). Returns \kbd{gen\_0}
when $m > n$.
\fun{GEN}{RgM_sumcol}{GEN v} returns a \typ{COL}, sum of the columns of the
\typ{MAT} $v$.
\fun{GEN}{RgV_dotproduct}{GEN x,GEN y} returns the scalar product of $x$ and $y$
\fun{GEN}{RgV_dotsquare}{GEN x} returns the scalar product of $x$ with itself.
\fun{GEN}{RgV_kill0}{GEN v} returns a shallow copy of $v$ where entries
matched by \kbd{gequal0} are replaced by \kbd{NULL}. The return value
is not a valid \kbd{GEN} and must be handled specially. The idea is
to pre-treat a vector of coefficients to speed up later linear combinations
or scalar products.
\fun{GEN}{gram_matrix}{GEN v} returns the \idx{Gram matrix} $(v_i\cdot v_j)$
attached to the entries of $v$ (matrix, or vector of vectors).
\fun{GEN}{RgV_polint}{GEN X, GEN Y, long v} $X$ and $Y$ being two vectors of
the same length, returns the polynomial $T$ in variable $v$ such that
$T(X[i]) = Y[i]$ for all $i$. The special case $X = \kbd{NULL}$
corresponds to $X = [1,2,\dots,n]$, where $n$ is the length of $Y$.
\subsubsec{Special shapes}
The following routines check whether matrices or vectors have a special
shape, using \kbd{gequal1} and \kbd{gequal0} to test components. (This makes
a difference when components are inexact.)
\fun{int}{RgV_isscalar}{GEN x} return 1 if all the entries of $x$ are $0$
(as per \kbd{gequal0}), except possibly the first one. The name comes from
vectors expressing polynomials on the standard basis $1,T,\dots, T^{n-1}$, or
on \kbd{nf.zk} (whose first element is $1$).
\fun{int}{QV_isscalar}{GEN x} as \kbd{RgV\_isscalar}, assuming $x$ is a
\kbd{QV} (\typ{INT} and \typ{FRAC} entries only).
\fun{int}{ZV_isscalar}{GEN x} as \kbd{RgV\_isscalar}, assuming $x$ is a
\kbd{ZV} (\typ{INT} entries only).
\fun{int}{RgM_isscalar}{GEN x, GEN s} return 1 if $x$ is the scalar matrix
equal to $s$ times the identity, and 0 otherwise. If $s$ is \kbd{NULL}, test
whether $x$ is an arbitrary scalar matrix.
\fun{int}{RgM_isidentity}{GEN x} return 1 if the \typ{MAT} $x$ is the
identity matrix, and 0 otherwise.
\fun{int}{RgM_isdiagonal}{GEN x} return 1 if the \typ{MAT} $x$ is a
diagonal matrix, and 0 otherwise.
\fun{long}{RgC_is_ei}{GEN x} return $i$ if the \typ{COL} $x$ has $0$ entries,
but for a $1$ at position $i$.
\fun{int}{RgM_is_ZM}{GEN x} return 1 if the \typ{MAT}~$x$ has only
\typ{INT} coefficients, and 0 otherwise.
\fun{long}{RgV_isin}{GEN v, GEN x} return the first index $i$ such that
$v[i] = x$ if it exists, and $0$ otherwise. Naive search in linear time, does
not assume that \kbd{v} is sorted.
\fun{GEN}{RgM_diagonal}{GEN m} returns the diagonal of $m$ as a \typ{VEC}.
\fun{GEN}{RgM_diagonal_shallow}{GEN m} shallow version of \kbd{RgM\_diagonal}
\subsubsec{Conversion to floating point entries}
\fun{GEN}{RgC_gtofp}{GEN x, GEN prec} returns the \typ{COL} obtained by
applying \kbd{gtofp(gel(x,i), prec)} to all coefficients of $x$.
\fun{GEN}{RgC_gtomp}{GEN x, long prec} returns the \typ{COL} obtained by
applying \kbd{gtomp(gel(x,i), prec)} to all coefficients of $x$.
\fun{GEN}{RgC_fpnorml2}{GEN x, long prec} returns (a stack-clean variant of)
\bprog
gnorml2( RgC_gtofp(x, prec) )
@eprog
\fun{GEN}{RgM_gtofp}{GEN x, GEN prec} returns the \typ{MAT} obtained by
applying \kbd{gtofp(gel(x,i), prec)} to all coefficients of $x$.
\fun{GEN}{RgM_gtomp}{GEN x, long prec} returns the \typ{MAT} obtained by
applying \kbd{gtomp(gel(x,i), prec)} to all coefficients of $x$.
\fun{GEN}{RgM_fpnorml2}{GEN x, long prec} returns (a stack-clean variant of)
\bprog
gnorml2( RgM_gtofp(x, prec) )
@eprog
\subsubsec{Linear algebra, linear systems}
\fun{GEN}{RgM_inv}{GEN a} returns a left inverse of $a$ (which needs not be
square), or \kbd{NULL} if this turns out to be impossible. The latter
happens when the matrix does not have maximal rank (or when rounding errors
make it appear so).
\fun{GEN}{RgM_inv_upper}{GEN a} as \kbd{RgM\_inv}, assuming that $a$ is a
non-empty invertible upper triangular matrix, hence a little faster.
\fun{GEN}{RgM_RgC_invimage}{GEN A, GEN B} returns a \typ{COL} $X$ such that
$A X = B$ if one such exists, and \kbd{NULL} otherwise.
\fun{GEN}{RgM_invimage}{GEN A, GEN B} returns a \typ{MAT} $X$ such that
$A X = B$ if one such exists, and \kbd{NULL} otherwise.
\fun{GEN}{RgM_Hadamard}{GEN a} returns a upper bound for the absolute
value of $\text{det}(a)$. The bound is a \typ{INT}.
\fun{GEN}{RgM_solve}{GEN a, GEN b} returns $a^{-1}b$ where $a$ is a square
\typ{MAT} and $b$ is a \typ{COL} or \typ{MAT}. Returns \kbd{NULL} if $a^{-1}$
cannot be computed, see \tet{RgM_inv}.
If $b = \kbd{NULL}$, the matrix $a$ need no longer be square, and we strive
to return a left inverse for $a$ (\kbd{NULL} if it does not exist).
\fun{GEN}{RgM_solve_realimag}{GEN M, GEN b} $M$ being a \typ{MAT}
with $r_1+r_2$ rows and $r_1+2r_2$ columns, $y$ a \typ{COL} or \typ{MAT}
such that the equation $Mx = y$ makes sense, returns $x$ under the following
simplifying assumptions: the first $r_1$ rows of $M$ and $y$ are real
(the $r_2$ others are complex), and $x$ is real. This is stabler and faster
than calling $\kbd{RgM\_solve}(M, b)$ over $\C$. In most applications,
$M$ approximates the complex embeddings of an integer basis in a number
field, and $x$ is actually rational.
\fun{GEN}{split_realimag}{GEN x, long r1, long r2} $x$ is a \typ{COL} or
\typ{MAT} with $r_1 + r_2$ rows, whose first $r_1$ rows have real entries
(the $r_2$ others are complex). Return an object of the same type as
$x$ and $r_1 + 2r_2$ rows, such that the first $r_1 + r_2$ rows contain
the real part of $x$, and the $r_2$ following ones contain the imaginary part
of the last $r_2$ rows of $x$. Called by \tet{RgM_solve_realimag}.
\fun{GEN}{RgM_det_triangular}{GEN x} returns the product of the diagonal
entries of $x$ (its determinant if it is indeed triangular).
\fun{GEN}{Frobeniusform}{GEN V, long n} given the vector $V$ of elementary
divisors for $M - x\text{Id}$, where $M$ is an $n\times n$ square matrix.
Returns the Frobenius form of $M$.
\fun{int}{RgM_QR_init}{GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec}
QR-decomposition of a square invertible \typ{MAT} $x$ with real coefficients.
Sets \kbd{*pB} to the vector of squared lengths of the $x[i]$, \kbd{*pL} to
the Gram-Schmidt coefficients and \kbd{*pQ} to a vector of successive
Householder transforms. If $R$ denotes the transpose of $L$ and $Q$ is the
result of applying \kbd{*pQ} to the identity matrix, then $x = QR$ is the QR
decomposition of $x$. Returns $0$ is $x$ is not invertible or we hit a
precision problem, and $1$ otherwise.
\fun{int}{QR_init}{GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec} as
\kbd{RgM\_QR\_init}, assuming further that $x$ has \typ{INT} or \typ{REAL}
coefficients.
\fun{GEN}{R_from_QR}{GEN x, long prec} assuming that $x$ is a square
invertible \typ{MAT} with \typ{INT} or \typ{REAL} coefficients, return
the upper triangular $R$ from the $QR$ docomposition of $x$. Not memory
clean. If the matrix is not known to have \typ{INT} or \typ{REAL}
coefficients, apply \tet{RgM_gtomp} first.
\fun{GEN}{gaussred_from_QR}{GEN x, long prec} assuming that $x$ is a square
invertible \typ{MAT} with \typ{INT} or \typ{REAL} coefficients, returns
\kbd{qfgaussred(x\til * x)}; this is essentially the upper triangular $R$
matrix from the $QR$ decomposition of $x$, renormalized to accomodate
\kbd{qfgaussred} conventions. Not memory clean.
\fun{GEN}{RgM_gram_schmidt}{GEN e, GEN *ptB} naive (unstable) Gram-Schmidt
orthogonalization of the basis $(e_i)$ given by the columns of \typ{MAT} $e$.
Return the $e_i^*$ (as columns of a \typ{MAT}) and set \kbd{*ptB} to the
vector of squared lengths $|e_i^*|^2$.
\fun{GEN}{RgM_Babai}{GEN M, GEN y} given an LLL-reduced \typ{MAT} $M$ and
a \typ{COL} $y$ of the same dimension, apply Babai's nearest plane algorithm
to return an \emph{integral} $x$ such that $y - Mx$ has small $L_2$ norm.
This yields an approximate solution to the closest vector problem.
\subsec{\kbd{ZG}}
Let $G$ be a multiplicative group with neutral element $1_G$ whose
multiplication is supported by \kbd{gmul} and where equality test is
performed using \tet{gidentical}, e.g. a matrix group. The following
routines implement basic computations in the group algebra $\Z[G]$. All of
them are shallow for efficiency reasons. A \kbd{ZG} is either
\item a \typ{INT} $n$, representing $n[1_G]$
\item or a ``factorization matrix'' with two columns $[g,e]$: the first one
contains group elements, sorted according to \tet{cmp_universal}, and the
second one contains integer ``exponents'', representing $\sum e_i [g_i]$.
Note that \tet{to_famat} and \tet{to_famat_shallow}$(g,e)$ allow to build
the \kbd{ZG} $e[g]$ from $e\in \Z$ and $g\in G$.
\fun{GEN}{ZG_normalize}{GEN x} given a \typ{INT} $x$ or a factorization
matrix \emph{without} assuming that the first column is properly sorted.
Return a valid (sorted) \kbd{ZG}. Shallow function.
\fun{GEN}{ZG_add}{GEN x, GEN y} return $x+y$; shallow function.
\fun{GEN}{ZG_neg}{GEN x} return $-x$; shallow function.
\fun{GEN}{ZG_sub}{GEN x, GEN y} return $x-y$; shallow function.
\fun{GEN}{ZG_mul}{GEN x, GEN y} return $xy$; shallow function.
\fun{GEN}{ZG_G_mul}{GEN x, GEN y} given a \kbd{ZG} $x$ and $y\in G$,
return $xy$; shallow function.
\fun{GEN}{G_ZG_mul}{GEN x, GEN y} given a \kbd{ZG} $y$ and $x\in G$,
return $xy$; shallow function.
\fun{GEN}{ZG_Z_mul}{GEN x, GEN n} given a \kbd{ZG} $x$ and $y\in \Z$,
return $xy$; shallow function.
\fun{GEN}{ZGC_G_mul}{GEN v, GEN x} given $v$ a vector of \kbd{ZG} and $x\in
G$ return the vector (with the same type as $v$ with entries $v[i]\cdot x$.
Shallow function.
\fun{void}{ZGC_G_mul_inplace}{GEN v, GEN x} as \tet{ZGC_G_mul}, modifying
$v$ in place.
\fun{GEN}{ZGC_Z_mul}{GEN v, GEN n} given $v$ a vector of \kbd{ZG} and $n\in
Z$ return the vector (with the same type as $v$ with entries $n \cdot v[i]$.
Shallow function.
\fun{GEN}{G_ZGC_mul}{GEN x, GEN v} given $v$ a vector of \kbd{ZG} and $x\in
G$ return the vector of $x \cdot v[i]$. Shallow function.
\fun{GEN}{ZGCs_add}{GEN x, GEN y} add two sparse vectors of
\kbd{ZG} elements (see Blackbox linear algebra below).
\subsec{Blackbox linear algebra}
A sparse column \kbd{zCs} $v$ is a \typ{COL} with two components $C$ and $E$
which are \typ{VECSMALL} of the same length, representing $\sum_i
E[i]*e_{C[i]}$, where $(e_j)$ is the canonical basis. A sparse matrix
(\kbd{zMs}) is a \typ{VEC} of \kbd{zCs}.
\kbd{FpCs} and \kbd{FpMs} are identical to the above, but $E[i]$ is now
interpreted as a \emph{signed} C long integer representing an element of
$\F_p$. This is important since $p$ can be so large that $p+E[i]$ would not
fit in a C long.
\kbd{RgCs} and \kbd{RgMs} are similar, except that the type of the components
of $E$ is now unspecified. Functions handling those later objects
must not depend on the type of those components.
It is not possible to derive the space dimension (number of rows) from the
above data. Thus most functions take an argument \kbd{nbrow} which is the
number of rows of the corresponding column/matrix in dense representation.
\fun{GEN}{zCs_to_ZC}{GEN C, long nbrow} convert the sparse vector $C$
to a dense \kbd{ZC} of dimension \kbd{nbrow}.
\fun{GEN}{zMs_to_ZM}{GEN M, long nbrow} convert the sparse matrix $M$
to a dense \kbd{ZM} whose columns have dimension \kbd{nbrow}.
\fun{GEN}{FpMs_FpC_mul}{GEN M, GEN B, GEN p} multiply the sparse matrix $M$
(over $\F_p$) by the sparse vector $B$. The result is an \kbd{FpC}, i.e.~a
dense vector.
\fun{GEN}{zMs_ZC_mul}{GEN M, GEN B, GEN p} multiply the sparse matrix $M$
by the sparse vector $B$ (over $\Z$). The result is an \kbd{ZC}, i.e.~a
dense vector.
\fun{GEN}{FpV_FpMs_mul}{GEN B, GEN M, GEN p} multiply the sparse vector $B$
by the sparse matrix $M$ (over $\F_p$). The result is an \kbd{FpV}, i.e.~a
dense vector.
\fun{GEN}{ZV_zMs_mul}{GEN B, GEN M, GEN p} multiply the sparse vector $B$ (over
$\Z$) by the sparse matrix $M$. The result is an \kbd{ZV}, i.e.~a
dense vector.
\fun{void}{RgMs_structelim}{GEN M, long nbrow, GEN A, GEN *p_col, GEN *p_row}
$M$ being a RgMs with \kbd{nbrow} rows, $A$ being a list of row indices,
Perform structured elimination on $M$ by removing some rows and columns until
the number of effectively present rows is equal to the number of columns.
the result is stored in two \typ{VECSMALL}s, \kbd{*p\_col} and \kbd{*p\_row}:
\kbd{*p\_col} is a map from the new columns indices to the old one.
\kbd{*p\_row} is a map from the old rows indices to the new one ($0$ if removed).
\fun{GEN}{FpMs_leftkernel_elt}{GEN M, long nbrow, GEN p}
$M$ being a sparse matrix over $\F_p$, return a non-zero kbd{FpV} $X$ such
that $X\*M$ components are almost all $0$.
\fun{GEN}{FpMs_FpCs_solve}{GEN M, GEN B, long nbrow, GEN p}
solve the equation $M\*X = B$, where $M$ is a sparse matrix and $B$ is a sparse
vector, both over $\F_p$. Return either a solution as a \typ{COL} (dense
vector), the index of a column which is linearly dependent from the
others as a \typ{VECSMALL} with a single component, or \kbd{NULL}
(can happen if $B$ is not in the image of $M$).
\fun{GEN}{FpMs_FpCs_solve_safe}{GEN M, GEN B, long nbrow, GEN p}
as above, but in the event that $p$ is not a prime and an impossible division
occurs, return \kbd{NULL}.
\fun{GEN}{ZpMs_ZpCs_solve}{GEN M, GEN B, long nbrow, GEN p, long e}
solve the equation $MX = B$, where $M$ is a sparse matrix and $B$ is a sparse
vector, both over $\Z/p^e\Z$. Return either a solution as a \typ{COL} (dense
vector), or the index of a column which is linearly dependent from the
others as a \typ{VECSMALL} with a single component.
\fun{GEN}{gen_FpM_Wiedemann}{void *E, GEN (*f)(void*, GEN), GEN B, GEN p}
solve the equation $f(X) = B$ over $\F_p$, where $B$ is a \kbd{FpV}, and $f$
is a blackbox endomorphism, where $f(E, X)$ computes the value of $f$ at the
(dense) column vector $X$. Returns either a solution \typ{COL}, or a kernel
vector as a \typ{VEC}.
\fun{GEN}{gen_ZpM_Dixon}{void *E, GEN (*f)(void*, GEN), GEN B, GEN p, long e}
solve equation $f(X) = B$ over $\Z/p^e\Z$, where $B$ is a \kbd{ZV}, and $f$ is a
blackbox endomorphism, where $f(E, X)$ computes the value of $f$ at the
(dense) column vector $X$. Returns either a solution \typ{COL}, or a kernel
vector as a \typ{VEC}.
\subsec{Obsolete functions}
The functions in this section are kept for backward compatibility only
and will eventually disappear.
\fun{GEN}{image2}{GEN x} compute the image of $x$ using a very slow
algorithm. Use \tet{image} instead.
\section{Integral, rational and generic polynomial arithmetic}
\subsec{\kbd{ZX}}
\fun{void}{RgX_check_ZX}{GEN x, const char *s} Assuming \kbd{x} is a \typ{POL}
raise an error if it is not a \kbd{ZX} ($s$ should point to the name of the
caller).
\fun{GEN}{ZX_copy}{GEN x,GEN p} returns a copy of \kbd{x}.
\fun{long}{ZX_max_lg}{GEN x} returns the effective length of the longest
component in $x$.
\fun{GEN}{scalar_ZX}{GEN x, long v} returns the constant \kbd{ZX} in variable
$v$ equal to the \typ{INT} $x$.
\fun{GEN}{scalar_ZX_shallow}{GEN x, long v} returns the constant \kbd{ZX} in
variable $v$ equal to the \typ{INT} $x$. Shallow function not suitable for
\kbd{gerepile} and friends.
\fun{GEN}{ZX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.
\fun{int}{ZX_equal}{GEN x, GEN y} returns $1$ if the two \kbd{ZX} have
the same \kbd{degpol} and their coefficients are equal. Variable numbers are
not checked.
\fun{int}{ZX_equal1}{GEN x} returns $1$ if the \kbd{ZX} is equal to $1$
and $0$ otherwise.
\fun{GEN}{ZX_add}{GEN x,GEN y} adds \kbd{x} and \kbd{y}.
\fun{GEN}{ZX_sub}{GEN x,GEN y} subtracts \kbd{x} and \kbd{y}.
\fun{GEN}{ZX_neg}{GEN x,GEN p} returns $-\kbd{x}$.
\fun{GEN}{ZX_Z_add}{GEN x,GEN y} adds the integer \kbd{y} to the
\kbd{ZX}~\kbd{x}.
\fun{GEN}{ZX_Z_add_shallow}{GEN x,GEN y} shallow version of \tet{ZX_Z_add}.
\fun{GEN}{ZX_Z_sub}{GEN x,GEN y} subtracts the integer \kbd{y} to the
\kbd{ZX}~\kbd{x}.
\fun{GEN}{Z_ZX_sub}{GEN x,GEN y} subtracts the \kbd{ZX} \kbd{y} to the
integer \kbd{x}.
\fun{GEN}{ZX_Z_mul}{GEN x,GEN y} multiplies the \kbd{ZX} \kbd{x} by the
integer \kbd{y}.
\fun{GEN}{ZX_mulu}{GEN x, ulong y} multiplies \kbd{x} by the integer \kbd{y}.
\fun{GEN}{ZX_shifti}{GEN x, long n} shifts all coefficients of \kbd{x} by $n$
bits, which can be negative.
\fun{GEN}{ZX_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all divisions
are exact.
\fun{GEN}{ZX_remi2n}{GEN x, long n} reduces all coefficients of \kbd{x} to
$n$ bits, using \tet{remi2n}.
\fun{GEN}{ZX_mul}{GEN x,GEN y} multiplies \kbd{x} and \kbd{y}.
\fun{GEN}{ZX_sqr}{GEN x,GEN p} returns $\kbd{x}^2$.
\fun{GEN}{ZX_mulspec}{GEN a, GEN b, long na, long nb}. Internal routine:
\kbd{a} and \kbd{b} are arrays of coefficients representing polynomials
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$ and
$\sum_{i = 0}^{\kbd{nb-1}} \kbd{b}[i] X^i$. Returns their product (as a true
\kbd{GEN}).
\fun{GEN}{ZX_sqrspec}{GEN a, long na}. Internal routine:
\kbd{a} is an array of coefficients representing polynomial
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$. Return its square (as a true
\kbd{GEN}).
\fun{GEN}{ZX_rem}{GEN x, GEN y} returns the remainder of the Euclidean
division of $x$ mod $y$. Assume that $x$, $y$ are two \kbd{ZX} and that
$y$ is monic.
\fun{GEN}{ZX_mod_Xnm1}{GEN T, ulong n} return $T$ modulo $X^n - 1)$. Shallow
function.
\fun{GEN}{ZX_div_by_X_1}{GEN T, GEN *r} return the quotient of $T$ by $X-1$.
If $r$ is not \kbd{NULL} set it to $T(1)$.
\fun{GEN}{ZX_gcd}{GEN x,GEN y} returns a gcd of the \kbd{ZX} $x$ and $y$.
Not memory-clean, but suitable for \kbd{gerepileupto}.
\fun{GEN}{ZX_gcd_all}{GEN x, GEN y, GEN *pX}. returns a gcd $d$ of $x$ and
$y$. If \kbd{pX} is not \kbd{NULL}, set $\kbd{*pX}$ to a (non-zero) integer
multiple of $x/d$. If $x$ and $y$ are both monic, then $d$ is monic and
\kbd{*pX} is exactly $x/d$. Not memory clean if the gcd is $1$
(in that case \kbd{*pX} is set to $x$).
\fun{GEN}{ZX_content}{GEN x} returns the content of the \kbd{ZX} $x$.
\fun{long}{ZX_val}{GEN P} as \kbd{RgX\_val}, but assumes \kbd{P} has \typ{INT}
coefficients.
\fun{long}{ZX_valrem}{GEN P, GEN *z} as \kbd{RgX\_valrem}, but assumes
\kbd{P} has \typ{INT} coefficients.
\fun{GEN}{ZX_to_monic}{GEN q GEN *L} given $q$ a non-zero \kbd{ZX},
returns a monic integral polynomial $Q$ such that $Q(x) = C q(x/L)$, for some
rational $C$ and positive integer $L > 0$. If $\kbd{L}$ is not \kbd{NULL},
set \kbd{*L} to $L$; if $L = 1$, \kbd{*L} is set to \kbd{gen\_1}. Not
suitable for gerepileupto.
\fun{GEN}{ZX_primitive_to_monic}{GEN q, GEN *L} as \tet{ZX_to_monic} except
$q$ is assumed to have trivial content, which avoids recomputing it.
The result is suboptimal if $q$ is not primitive ($L$ larger than
necessary), but remains correct.
\fun{GEN}{ZX_Z_normalize}{GEN q, GEN *L} a restricted version of
\kbd{ZX\_primitive\_to\_monic}, where $q$ is a \emph{monic} \kbd{ZX}
of degree $> 0$. Finds the largest integer $L > 0$ such that
$Q(X) := L^{-\deg q} q(Lx)$ is integral and return $Q$; this is not
well-defined if $q$ is a monomial, in that case, set $L=1$ and $Q = q$. If
\kbd{L} is not \kbd{NULL}, set \kbd{*L} to $L$.
\fun{GEN}{ZX_Q_normalize}{GEN q, GEN *L} a variant of \tet{ZX_Z_normalize}
where $L > 0$ is allowed to be rational, the monic $Q\in \Z[X]$ has possibly
smaller coefficients.
\fun{long}{ZX_deflate_order}{GEN P} given a non-constant \kbd{ZX}
$P$, returns the largest exponent $d$ such that $P$ is of the form $P(x^d)$.
\fun{long}{ZX_deflate_max}{GEN P, long *d}. Given a non-constant
polynomial with integer coefficients $P$, sets \kbd{d} to
\kbd{ZX\_deflate\_order(P)} and returns \kbd{RgX\_deflate(P,d)}. Shallow
function.
\fun{GEN}{ZX_rescale}{GEN P, GEN h} returns $h^{\deg(P)} P(x/h)$.
\kbd{P} is a \kbd{ZX} and \kbd{h} is a non-zero integer. Neither memory-clean
nor suitable for \kbd{gerepileupto}.
\fun{GEN}{ZX_rescale2n}{GEN P, long n} returns $2^{n\deg(P)} P(x>>n)$ where
\kbd{P} is a \kbd{ZX}. Neither memory-clean nor suitable for
\kbd{gerepileupto}.
\fun{GEN}{ZX_rescale_lt}{GEN P} returns the monic integral polynomial
$h^{\deg(P)-1} P(x/h)$, where \kbd{P} is a non-zero \kbd{ZX} and \kbd{h} is
its leading coefficient. Neither memory-clean nor suitable for
\kbd{gerepileupto}.
\fun{GEN}{ZX_translate}{GEN P, GEN c} assume $P$ is a \kbd{ZX} and $c$ an
integer. Returns $P(X + c)$ (optimized for $c = \pm 1$).
\fun{GEN}{ZX_unscale}{GEN P, GEN h} given a \kbd{ZX} $P$ and a \typ{INT} $h$,
returns $P(hx)$. Not memory clean.
\fun{GEN}{ZX_unscale2n}{GEN P, long n} given a \kbd{ZX} $P$, returns
$P(x<<n)$. Not memory clean.
\fun{GEN}{ZX_unscale_div}{GEN P, GEN h} given a \kbd{ZX} $P$ and a \typ{INT} $h$
such that $h \mid P(0)$, returns $P(hx)/h$. Not memory clean.
\fun{GEN}{ZX_eval1}{GEN P} returns the integer $P(1)$.
\fun{GEN}{ZX_graeffe}{GEN p} returns the Graeffe transform of $p$, i.e. the
\kbd{ZX} $q$ such that $p(x)p(-x) = q(x^2)$.
\fun{GEN}{ZX_deriv}{GEN x} returns the derivative of \kbd{x}.
\fun{GEN}{ZX_resultant}{GEN A, GEN B} returns the resultant of the
\kbd{ZX}~\kbd{A} and \kbd{B}.
\fun{GEN}{ZX_disc}{GEN T} returns the discriminant of the \kbd{ZX}
\kbd{T}.
\fun{GEN}{ZX_factor}{GEN T} returns the factorization of the primitive part
of \kbd{T} over $\Q[X]$ (the content is lost).
\fun{int}{ZX_is_squarefree}{GEN T} returns $1$ if the
\kbd{ZX}~\kbd{T} is squarefree, $0$ otherwise.
\fun{long}{ZX_is_irred}{GEN T} returns 1 it \kbd{T} is irreducible, and
0 otherwise.
\fun{GEN}{ZX_squff}{GEN T, GEN *E} write $T$ as a product $\prod T_i^{e_i}$
with the $e_1 < e_2 < \cdots$ all distinct and the $T_i$ pairwise coprime.
Return the vector of the $T_i$, and set \kbd{*E} to the vector of the $e_i$,
as a \typ{VECSMALL}.
\fun{GEN}{ZX_Uspensky}{GEN P, GEN ab, long flag, long bitprec} let \kbd{P} be a
primitive \kbd{ZX} polynomial whose real roots are simple and \kbd{bitprec} is
the relative precision in bits.
\item If \kbd{flag} is 0 returns a list of intervals that isolate the real
roots of \kbd{P}. The return value is a column of elements which are either
vectors \kbd{[a,b]} meaning that there is a single root in the open interval
\kbd{(a,b)} or elements \kbd{x0} such that \kbd{x0} is a root of \kbd{P}.
There is no guarantee that all rational roots are found (at most those with
denominator a power of $2$ can be found and even those are not guaranteed).
Beware that the limits of the open intervals can be roots of the polynomial.
\item If \kbd{flag} is 1 returns an approximation of the real roots of \kbd{P}.
\item If \kbd{flag} is 2 returns the number of roots.
The argument \kbd{ab} specify the interval in which the roots
are searched. The default interval is $(-\infty,\infty)$. If \kbd{ab} is an
integer or fraction $a$ then the interval is $[a,\infty)$. If \kbd{ab} is
a vector $[a,b]$, where \typ{INT}, \typ{FRAC} or \typ{INFINITY} are allowed
for $a$ and $b$, the interval is $[a,b]$.
\fun{long}{ZX_sturm}{GEN P} number of real roots of the non-constant
squarefree \kbd{ZX} $P$. For efficiency, it is advised to make $P$ primitive
first.
\fun{long}{ZX_sturmpart}{GEN P, GEN ab} number of real roots of the
non-constant squarefree \kbd{ZX} $P$ in the interval specified by \kbd{ab}:
either \kbd{NULL} (no restriction) or a \typ{VEC} $[a,b]$ with two real
components (of type \typ{INT}, \typ{FRAC} or \typ{INFINITY}). For efficiency,
it is advised to make $P$ primitive first.
\subsec{\kbd{ZXQ}}
\fun{GEN}{ZXQ_mul}{GEN x,GEN y,GEN T} returns $x*y$ mod $T$, assuming
that all inputs are \kbd{ZX}s and that $T$ is monic.
\fun{GEN}{ZXQ_sqr}{GEN x,GEN T} returns $x^2$ mod $T$, assuming
that all inputs are \kbd{ZX}s and that $T$ is monic.
\fun{GEN}{ZXQ_charpoly}{GEN A, GEN T, long v}: let \kbd{T} and \kbd{A} be
\kbd{ZX}s, returns the characteristic polynomial of \kbd{Mod(A, T)}.
More generally, \kbd{A} is allowed to be a \kbd{QX}, hence possibly has
rational coefficients, \emph{assuming} the result is a \kbd{ZX}, i.e.~the
algebraic number \kbd{Mod(A,T)} is integral over \kbd{Z}.
\fun{GEN}{ZX_ZXY_resultant}{GEN A, GEN B}
under the assumption that \kbd{A} in $\Z[Y]$, \kbd{B} in $\Q[Y][X]$, and
$R = \text{Res}_Y(A, B) \in \Z[X]$, returns the resultant $R$.
\fun{GEN}{ZX_compositum_disjoint}{GEN A, GEN B} given two irreducible \kbd{ZX}
defining linearly disjoint extensions, returns a \kbd{ZX} defining their
compositum.
\fun{GEN}{ZX_ZXY_rnfequation}{GEN A, GEN B, long *lambda},
assume \kbd{A} in $\Z[Y]$, \kbd{B} in $\Q[Y][X]$, and $R =
\text{Res}_Y(A, B) \in \Z[X]$. If \kbd{lambda = NULL}, returns $R$
as in \kbd{ZY\_ZXY\_resultant}. Otherwise, \kbd{lambda} must point to
some integer, e.g. $0$ which is used as a seed. The function then finds a
small $\lambda \in \Z$ (starting from \kbd{*lambda}) such that
$R_\lambda(X) := \text{Res}_Y(A, B(X + \lambda Y))$ is squarefree, resets
\kbd{*lambda} to the chosen value and returns $R_{\lambda}$.
\subsec{\kbd{ZXV}}
\fun{GEN}{ZXV_equal}{GEN x,GEN y} returns $1$ if the two vectors of \kbd{ZX}
are equal, as per \tet{ZX_equal} (variables are not checked to be equal) and
$0$ otherwise.
\fun{GEN}{ZXV_Z_mul}{GEN x,GEN y} multiplies the vector of \kbd{ZX} \kbd{x}
by the integer \kbd{y}.
\fun{GEN}{ZXV_remi2n}{GEN x, long n} applies \kbd{ZX\_remi2n} to all
coefficients of \kbd{x}.
\fun{GEN}{ZXV_dotproduct}{GEN x,GEN y} as \kbd{RgV\_dotproduct} assuming $x$
and $y$ have \kbd{ZX} entries.
\subsec{\kbd{ZXT}}
\fun{GEN}{ZXT_remi2n}{GEN x, long n} applies \kbd{ZX\_remi2n} to all
leaves of the tree \kbd{x}.
\subsec{\kbd{ZXX}}
\fun{void}{RgX_check_ZXX}{GEN x, const char *s} Assuming \kbd{x} is a \typ{POL}
raise an error if it one of its coefficients is not an integer or a \kbd{ZX}
($s$ should point to the name of the caller).
\fun{GEN}{ZXX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.
\fun{long}{ZXX_max_lg}{GEN x} returns the effective length of the longest
component in $x$; assume all coefficients are \typ{INT} or \kbd{ZX}s.
\fun{GEN}{ZXX_Z_mul}{GEN x, GEN y} returns $x\*y$.
\fun{GEN}{ZXX_Z_add_shallow}{GEN x, GEN y} returns $x+y$. Shallow function.
\fun{GEN}{ZXX_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all integer
divisions are exact.
\fun{GEN}{ZXX_to_Kronecker}{GEN P, long n} Assuming $P(X,Y)$ is a polynomial
of degree in $X$ strictly less than $n$, returns $P(X,X^{2*n-1})$, the
Kronecker form of $P$. Shallow function.
\fun{GEN}{ZXX_to_Kronecker_spec}{GEN Q, long lQ, long n} return
\tet{ZXX_to_Kronecker}$(P, n)$, where $P$ is the polynomial
$\sum_{i = 0}^{\kbd{lQ} - 1} Q[i] x^i$. To be used when splitting
the coefficients of genuine polynomials into blocks. Shallow function.
\fun{GEN}{Kronecker_to_ZXX}{GEN z, long n, long v} recover $P(X,Y)$
from its Kronecker form $P(X,X^{2\*n-1})$, $v$ is the variable number
corresponding to $Y$. Shallow function.
\fun{GEN}{ZXX_mul_Kronecker}{GEN P, GEN Q, long n} return \tet{ZX_mul}
applied to the Kronecker forms $P(X,X^{2\*n-1})$ and $Q(X,X^{2\*n-1})$
of $P$ and $Q$. Not memory clean.
\fun{GEN}{ZXX_sqr_Kronecker}{GEN P, long n} return \tet{ZX_sqr}
applied to the Kronecker forms $P(X,X^{2\*n-1})$
of $P$. Not memory clean.
\subsec{\kbd{QX}}
\fun{void}{RgX_check_QX}{GEN x, const char *s} Assuming \kbd{x} is a \typ{POL}
raise an error if it is not a \kbd{QX} ($s$ should point to the name of the
caller).
\fun{GEN}{QX_gcd}{GEN x,GEN y} returns a gcd of the \kbd{QX} $x$ and $y$.
\fun{GEN}{QX_disc}{GEN T} returns the discriminant of the \kbd{QX}
\kbd{T}.
\fun{GEN}{QX_factor}{GEN T} as \kbd{ZX\_factor}.
\fun{GEN}{QX_resultant}{GEN A, GEN B} returns the resultant of the
\kbd{QX}~\kbd{A} and \kbd{B}.
\fun{GEN}{QX_complex_roots}{GEN p, long l} returns the complex roots of the
\kbd{QX} $p$ at accuracy $l$, where real roots are returned as \typ{REAL}s.
More efficient when $p$ is irreducible and primitive. Special case
of \tet{cleanroots}.
\subsec{\kbd{QXQ}}
\fun{GEN}{QXQ_norm}{GEN A, GEN B} $A$ being a \kbd{QX} and $B$ being a
\kbd{ZX}, returns the norm of the algebraic number $A \mod B$, using a
modular algorithm. To ensure that $B$ is a \kbd{ZX}, one may replace it by
\kbd{Q\_primpart(B)}, which of course does not change the norm.
If $A$ is not a \kbd{ZX} --- it has a denominator ---, but the result is
nevertheless known to be an integer, it is much more efficient to call
\tet{QXQ_intnorm} instead.
\fun{GEN}{QXQ_intnorm}{GEN A, GEN B} $A$ being a \kbd{QX} and $B$
being a \kbd{ZX}, returns the norm of the algebraic number $A \mod B$,
\emph{assuming} that the result is an integer, which is for instance the case
is $A\mod B$ is an algebraic integer, in particular if $A$ is a \kbd{ZX}. To
ensure that $B$ is a \kbd{ZX}, one may replace it by \kbd{Q\_primpart(B)}
(which of course does not change the norm).
If the result is not known to be an integer, you must use \tet{QXQ_norm}
instead, which is slower.
\fun{GEN}{QXQ_inv}{GEN A, GEN B} returns the inverse of $A$ modulo $B$
where $A$ is a \kbd{QX} and $B$ is a \kbd{ZX}. Should you need this for
a \kbd{QX} $B$, just use
\bprog
QXQ_inv(A, Q_primpart(B));
@eprog\noindent But in all cases where modular arithmetic modulo $B$ is
desired, it is much more efficient to replace $B$ by \kbd{Q\_primpart$(B)$}
once and for all.
\fun{GEN}{QXQ_charpoly}{GEN A, GEN T, long v} where \kbd{A} is a \kbd{QX} and
\kbd{T} is a \kbd{ZX}, returns the characteristic polynomial of \kbd{Mod(A, T)}.
If the result is known to be a \kbd{ZX}, then calling \kbd{ZXQ\_charpoly} will
be faster.
\fun{GEN}{QXQ_powers}{GEN x, long n, GEN T} returns $[\kbd{x}^0, \dots,
\kbd{x}^\kbd{n}]$ as \kbd{RgXQ\_powers} would, but in a more efficient way when
$x$ has a huge integer denominator (we start by removing that denominator).
Meant to be used to precompute powers of algebraic integers in $\Q[t]/(T)$.
The current implementation does not require $x$ to be a \kbd{QX}: any
polynomial to which \kbd{Q\_remove\_denom} can be applied is fine.
\fun{GEN}{QXQ_reverse}{GEN f, GEN T} as \kbd{RgXQ\_reverse}, assuming $f$
is a \kbd{QX}.
\fun{GEN}{QX_ZXQV_eval}{GEN f, GEN nV, GEN dV} as \kbd{RgX\_RgXQV\_eval},
except that $f$ is assumed to be a \kbd{QX}, $V$ is given implicitly
by a numerator \kbd{nV} (\kbd{ZV}) and denominator \kbd{dV} (a positive
\typ{INT} or \kbd{NULL} for trivial denominator). Not memory clean, but
suitable for \kbd{gerepileupto}.
\fun{GEN}{QXV_QXQ_eval}{GEN v, GEN a, GEN T} $v$ is a vector of \kbd{QX}s
(possibly scalars, i.e.~rational numbers, for convenience), $a$ and $T$ both
\kbd{QX}. Return the vector of evaluations at $a$ modulo $T$.
Not memory clean, nor suitable for \kbd{gerepileupto}.
\fun{GEN}{QXX_QXQ_eval}{GEN P, GEN a, GEN T} $P(X,Y)$ is a \typ{POL} with
\kbd{QX} coefficients (possibly scalars, i.e.~rational numbers, for
convenience) , $a$ and $T$ both \kbd{QX}. Return the \kbd{QX} $P(X, a \mod
T)$. Not memory clean, nor suitable for \kbd{gerepileupto}.
\fun{GEN}{nfgcd}{GEN P, GEN Q, GEN T, GEN den} given $P$ and $Q$ in
$\Z[X,Y]$, $T$ monic irreducible in $\Z[Y]$, returns the primitive $d$ in
$\Z[X,Y]$ which is a gcd of $P$, $Q$ in $K[X]$, where $K$ is the number field
$\Q[Y]/(T)$. If not \kbd{NULL}, \kbd{den} is a multiple of the integral
denominator of the (monic) gcd of $P,Q$ in $K[X]$.
\fun{GEN}{nfgcd_all}{GEN P, GEN Q, GEN T, GEN den, GEN *Pnew} as \kbd{nfgcd}.
If \kbd{Pnew} is not \kbd{NULL}, set \kbd{*Pnew} to a non-zero integer
multiple of $P/d$. If $P$ and $Q$ are both monic, then $d$ is monic and
\kbd{*Pnew} is exactly $P/d$. Not memory clean if the gcd is $1$
(in that case \kbd{*Pnew} is set to $P$).
\subsec{\kbd{zx}}
\fun{GEN}{zero_zx}{long sv} returns a zero \kbd{zx} in variable $v$.
\fun{GEN}{polx_zx}{long sv} returns the variable $v$ as degree~1~\kbd{Flx}.
\fun{GEN}{zx_renormalize}{GEN x, long l}, as \kbd{Flx\_renormalize}, where
$\kbd{l} = \kbd{lg(x)}$, in place.
\fun{GEN}{zx_shift}{GEN T, long n} returns \kbd{T}
multiplied by $\kbd{x}^n$, assuming $n\geq 0$.
\subsec{\kbd{RgX}}
\subsubsec{Coefficient ring}
\fun{long}{RgX_type}{GEN x, GEN *ptp, GEN *ptpol, long *ptprec} returns
the ``natural'' base ring over which the polynomial $x$ is defined. Contrary
to what its name suggests, this function also works for scalar types,
\typ{SER} and \typ{MAT} $x$.
Raise an error if it detects consistency problems in modular objects:
incompatible rings (e.g. $\F_p$ and $\F_q$ for primes $p\neq q$,
$\F_p[X]/(T)$ and $\F_p[X]/(U)$ for $T\neq U$). Minor discrepancies are
supported if they make general sense (e.g. $\F_p$ and $\F_{p^k}$, but not
$\F_p$ and $\Q_p$); \typ{FFELT} and \typ{POLMOD} of \typ{INTMOD}s are
considered inconsistent, even if they define the same field: if you need to
use simultaneously these different finite field implementations, multiply the
polynomial by a \typ{FFELT} equal to $1$ first.
\item 0: none of the others (presumably multivariate, possibly inconsistent).
\item \typ{INT}: defined over $\Q$ (not necessarily $\Z$).
\item \typ{INTMOD}: defined over $\Z/p\Z$, where \kbd{*ptp} is set to $p$.
It is not checked whether $p$ is prime.
\item \typ{COMPLEX}: defined over $\C$ (at least one \typ{COMPLEX} with at
least one inexact floating point \typ{REAL} component). Set \kbd{*ptprec}
to the minimal accuracy (as per \kbd{precision}) of inexact components.
\item \typ{REAL}: defined over $\R$ (at least one inexact floating point
\typ{REAL} component). Set \kbd{*ptprec} to the minimal accuracy (as per
\kbd{precision}) of inexact components.
\item \typ{PADIC}: defined over $\Q_p$, where \kbd{*ptp} is set to $p$ and
\kbd{*ptprec} to the $p$-adic accuracy.
\item \typ{FFELT}: defined over a finite field $\F_{p^k}$, where \kbd{*ptp}
is set to the field characteristic $p$ and \kbd{*ptpol} is set to a
\typ{FFELT} belonging to the field.
\item other values are composite corresponding to quotients $R[X]/(T)$, with
one primary type \kbd{t1}, describing the form of the quotient,
and a secondary type \kbd{t2}, describing $R$. If \kbd{t} is the
\kbd{RgX\_type}, \kbd{t1} and \kbd{t2} are recovered using
\fun{void}{RgX_type_decode}{long t, long *t1, long *t2}
\kbd{t1} is one of
\typ{POLMOD}: at least one \typ{POLMOD} component,
set \kbd{*ppol} to the modulus,
\typ{QUAD}: no \typ{POLMOD}, at least one \typ{QUAD} component,
set \kbd{*ppol} to the modulus (\kbd{$-$.pol}) of the \typ{QUAD},
\typ{COMPLEX}: no \typ{POLMOD} or \typ{QUAD}, at least one \typ{COMPLEX}
component, set \kbd{*ppol} to $y^2 + 1$.
and the underlying base ring $R$ is given by \kbd{t2}, which
is one of \typ{INT}, \typ{INTMOD} (set \kbd{*ptp}) or \typ{PADIC}
(set \kbd{*ptp} and \kbd{*ptprec}), with the same meaning
as above.
\fun{int}{RgX_type_is_composite}{long t} $t$ as returned by \kbd{RgX\_type},
return 1 if $t$ is a composite type, and 0 otherwise.
\fun{GEN}{RgX_get_0}{GEN x} returns $0$ in the base ring over which $x$
is defined, to the proper accuracy (e.g. \kbd{0}, \kbd{Mod(0,3)},
\kbd{O(5\pow 10)}).
\fun{GEN}{RgX_get_1}{GEN x} returns $1$ in the base ring over which $x$
is defined, to the proper accuracy (e.g. \kbd{0}, \kbd{Mod(0,3)},
\subsubsec{Tests}
\fun{long}{RgX_degree}{GEN x, long v} $x$ being a \typ{POL} and $v \geq 0$,
returns the degree in $v$ of $x$. Error if $x$ is not a polynomial in $v$.
\fun{int}{RgX_isscalar}{GEN x} return 1 if $x$ all the coefficients of
$x$ of degree $> 0$ are $0$ (as per \kbd{gequal0}).
\fun{int}{RgX_is_rational}{GEN P} return 1 if the \kbd{RgX}~$P$ has only
rational coefficients (\typ{INT} and \typ{FRAC}), and 0 otherwise.
\fun{int}{RgX_is_QX}{GEN P} return 1 if the \kbd{RgX}~$P$ has only
\typ{INT} and \typ{FRAC} coefficients, and 0 otherwise.
\fun{int}{RgX_is_ZX}{GEN P} return 1 if the \kbd{RgX}~$P$ has only
\typ{INT} coefficients, and 0 otherwise.
\fun{int}{RgX_is_monomial}{GEN x} returns 1 (true) if \kbd{x} is a non-zero
monomial in its main variable, 0~otherwise.
\fun{long}{RgX_equal}{GEN x, GEN y} returns $1$ if the \typ{POL}s $x$ and $y$
have the same \kbd{degpol} and their coefficients are equal (as per
\tet{gequal}). Variable numbers are not checked. Note that this is more
stringent than \kbd{gequal(x,y)}, which only checks whether $x - y$ satisfies
\kbd{gequal0}; in particular, they may have different apparent degrees provided
the extra leading terms are $0$.
\fun{long}{RgX_equal_var}{GEN x, GEN y} returns $1$ if $x$ and $y$
have the same variable number and \kbd{RgX\_equal(x,y)} is $1$.
\subsubsec{Coefficients, blocks}
\fun{GEN}{RgX_coeff}{GEN P, long n} return the coefficient of $x^n$ in $P$,
defined as \kbd{gen\_0} if $n < 0$ or $n > \kbd{degpol}(P)$. Shallow
function.
\fun{int}{RgX_blocks}{GEN P, long n, long m} writes
$P(X)=a_0(X)+X^n*a_1(X)*X^n+\ldots+X^{n*(m-1)}\*a_{m-1}(X)$,
where the $a_i$ are polynomial of degree at most $n-1$
(except possibly for the last one) and returns
$[a_0(X),a_1(X),\ldots,a_{m-1}(X)]$. Shallow function.
\fun{void}{RgX_even_odd}{GEN p, GEN *pe, GEN *po} write $p(X) = E(X^2) +
X O(X^2)$ and set \kbd{*pe = E}, \kbd{*po = O}. Shallow function.
\fun{GEN}{RgX_splitting}{GEN P, long k} write
$P(X)=a_0(X^k)+X\*a_1(X^k)+\ldots+X^{k-1}\*a_{k-1}(X^k)$ and return
$[a_0(X),a_1(X),\ldots,a_{k-1}(X)]$. Shallow function.
\fun{GEN}{RgX_copy}{GEN x} returns (a deep copy of) $\kbd{x}$.
\fun{GEN}{RgX_renormalize}{GEN x} remove leading terms in \kbd{x} which are
equal to (necessarily inexact) zeros.
\fun{GEN}{RgX_renormalize_lg}{GEN x, long lx} as \kbd{setlg(x, lx)}
followed by \kbd{RgX\_renormalize(x)}. Assumes that $\kbd{lx} \leq
\kbd{lg(x)}$.
\fun{GEN}{RgX_recip}{GEN P} returns the reverse of the polynomial
$P$, i.e. $X^{\deg P} P(1/X)$.
\fun{GEN}{RgX_recip_shallow}{GEN P} shallow function of \tet{RgX_recip}.
\fun{GEN}{RgX_deflate}{GEN P, long d} assuming $P$ is a polynomial of the
form $Q(X^d)$, return $Q$. Shallow function, not suitable for
\kbd{gerepileupto}.
\fun{long}{RgX_deflate_order}{GEN P} given a non-constant polynomial
$P$, returns the largest exponent $d$ such that $P$ is of the form $P(x^d)$
(use \kbd{gequal0} to check whether coefficients are 0).
\fun{long}{RgX_deflate_max}{GEN P, long *d} given a non-constant polynomial
$P$, sets \kbd{d} to \kbd{RgX\_deflate\_order(P)} and
returns \kbd{RgX\_deflate(P,d)}. Shallow function.
\fun{GEN}{RgX_inflate}{GEN P, long d} return $P(X^d)$. Shallow function, not
suitable for \kbd{gerepileupto}.
\subsubsec{Shifts, valuations}
\fun{GEN}{RgX_shift}{GEN x, long n} returns $\kbd{x} * t^n$ if $n\geq 0$,
and $\kbd{x} \bs t^{-n}$ otherwise.
\fun{GEN}{RgX_shift_shallow}{GEN x, long n} as \kbd{RgX\_shift}, but
shallow (coefficients are not copied).
\fun{GEN}{RgX_rotate_shallow}{GEN P, long k, long p} returns $\kbd{P} * X^k
\pmod {X^p-1}$, assuming the degree of $P$ is strictly less than $p$, and
$k\geq 0$.
\fun{void}{RgX_shift_inplace_init}{long v} $v \geq 0$, prepare for a later
call to \tet{RgX_shift_inplace}. Reserves $v$ words on the stack.
\fun{GEN}{RgX_shift_inplace}{GEN x, long v} $v \geq 0$, assume that
\tet{RgX_shift_inplace_init}$(v)$ has been called (reserving $v$ words on the
stack), immediately followed by a \typ{POL} $x$. Return \kbd{RgX\_shift}$(x,v)$
by shifting $x$ in place. To be used as follows
\bprog
RgX_shift_inplace_init(v);
av = avma;
...
x = gerepileupto(av, ...); /* a t_POL */
return RgX_shift_inplace(x, v);
@eprog
\fun{long}{RgX_valrem}{GEN P, GEN *pz} returns the valuation $v$ of the
\typ{POL}~\kbd{P} with respect to its main variable $X$. Check whether
coefficients are $0$ using \kbd{gequal0}. Set \kbd{*pz} to
$\kbd{RgX\_shift\_shallow}(P,-v)$.
\fun{long}{RgX_val}{GEN P} returns the valuation $v$ of the
\typ{POL}~\kbd{P} with respect to its main variable $X$. Check whether
coefficients are $0$ using \kbd{gequal0}.
\fun{long}{RgX_valrem_inexact}{GEN P, GEN *z} as \kbd{RgX\_valrem}, using
\kbd{isexactzero} instead of \kbd{gequal0}.
\subsubsec{Basic arithmetic}
\fun{GEN}{RgX_add}{GEN x,GEN y} adds \kbd{x} and \kbd{y}.
\fun{GEN}{RgX_sub}{GEN x,GEN y} subtracts \kbd{x} and \kbd{y}.
\fun{GEN}{RgX_neg}{GEN x} returns $-\kbd{x}$.
\fun{GEN}{RgX_Rg_add}{GEN y, GEN x} returns $x+y$.
\fun{GEN}{RgX_Rg_add_shallow}{GEN y, GEN x} returns $x+y$; shallow function.
\fun{GEN}{Rg_RgX_sub}{GEN x, GEN y}
\fun{GEN}{RgX_Rg_sub}{GEN y, GEN x} returns $x-y$
\fun{GEN}{RgX_Rg_mul}{GEN y, GEN x} multiplies the \kbd{RgX} \kbd{y}
by the scalar \kbd{x}.
\fun{GEN}{RgX_muls}{GEN y, long s} multiplies the \kbd{RgX} \kbd{y}
by the \kbd{long}~\kbd{s}.
\fun{GEN}{RgX_Rg_div}{GEN y, GEN x} divides the \kbd{RgX} \kbd{y}
by the scalar \kbd{x}.
\fun{GEN}{RgX_divs}{GEN y, long s} divides the \kbd{RgX} \kbd{y}
by the \kbd{long}~\kbd{s}.
\fun{GEN}{RgX_Rg_divexact}{GEN x, GEN y} exact division of the \kbd{RgX}
\kbd{y} by the scalar \kbd{x}.
\fun{GEN}{RgX_Rg_eval_bk}{GEN f, GEN x} returns $\kbd{f}(\kbd{x})$ using
Brent and Kung algorithm. (Use \tet{poleval} for Horner algorithm.)
\fun{GEN}{RgX_RgV_eval}{GEN f, GEN V} as \kbd{RgX\_Rg\_eval\_bk(f, x)},
assuming $V$ was output by \kbd{gpowers(x, n)} for some $n\geq 1$.
\fun{GEN}{RgXV_RgV_eval}{GEN f, GEN V} apply \kbd{RgX\_RgV\_eval\_bk(, V)}
to all the components of the vector $f$.
\fun{GEN}{RgX_normalize}{GEN x} divides $x$ by its
leading coefficient. If the latter is~$1$, $x$ itself is returned, not a
copy. Leading coefficients equal to $0$ are stripped, e.g.
\bprog
0.*t^3 + Mod(0,3)*t^2 + 2*t
@eprog\noindent is normalized to $t$.
\fun{GEN}{RgX_mul}{GEN x, GEN y} multiplies the two \typ{POL} (in the same
variable) \kbd{x} and \kbd{y}. Uses Karatsuba algorithm.
\fun{GEN}{RgX_mul_normalized}{GEN A, long a, GEN B, long b}
returns $(X^a + A)(X^b + B) - X^(a+b)$, where we assume that $\deg A < a$
and $\deg B < b$ are polynomials in the same variable $X$.
\fun{GEN}{RgX_mulspec}{GEN a, GEN b, long na, long nb}. Internal routine:
\kbd{a} and \kbd{b} are arrays of coefficients representing polynomials
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$ and
$\sum_{i = 0}^{\kbd{nb-1}} \kbd{b}[i] X^i$. Returns their product (as a true
\kbd{GEN}).
\fun{GEN}{RgX_sqr}{GEN x} squares the \typ{POL} \kbd{x}. Uses Karatsuba
algorithm.
\fun{GEN}{RgX_sqrspec}{GEN a, long na}. Internal routine:
\kbd{a} is an array of coefficients representing polynomial
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$. Return its square (as a true
\kbd{GEN}).
\fun{GEN}{RgX_divrem}{GEN x, GEN y, GEN *r} by default, returns the Euclidean
quotient and store the remainder in $r$. Three special values of $r$ change
that behavior
\item \kbd{NULL}: do not store the remainder, used to implement \kbd{RgX\_div},
\item \tet{ONLY_REM}: return the remainder, used to implement \kbd{RgX\_rem},
\item \tet{ONLY_DIVIDES}: return the quotient if the division is exact, and
\kbd{NULL} otherwise.
\fun{GEN}{RgX_div}{GEN x, GEN y}
\fun{GEN}{RgX_div_by_X_x}{GEN A, GEN a, GEN *r} returns the
quotient of the \kbd{RgX}~\kbd{A} by $(X - \kbd{a})$, and sets \kbd{r} to the
remainder $\kbd{A}(\kbd{a})$.
\fun{GEN}{RgX_rem}{GEN x, GEN y}
\fun{GEN}{RgX_pseudodivrem}{GEN x, GEN y, GEN *ptr} compute a pseudo-quotient
$q$ and pseudo-remainder $r$ such that $\kbd{lc}(y)^{\deg(x) - \deg(y) + 1}x
= qy + r$. Return $q$ and set \kbd{*ptr} to $r$.
\fun{GEN}{RgX_pseudorem}{GEN x, GEN y} return the remainder
in the pseudo-division of $x$ by $y$.
\fun{GEN}{RgXQX_pseudorem}{GEN x, GEN y, GEN T} return the remainder
in the pseudo-division of $x$ by $y$ over $R[X]/(T)$.
\fun{int}{ZXQX_dvd}{GEN x, GEN y, GEN T} let $T$ be a monic irreducible
\kbd{ZX}, let $x, y$ be \typ{POL} whose coefficients are either \typ{INT}s or
\kbd{ZX} in the same variable as $T$. Assume further that the leading
coefficient of $y$ is an integer. Return $1$ if $y | x$ in $(\Z[Y]/(T))[X]$,
and $0$ otherwise.
\fun{GEN}{RgXQX_pseudodivrem}{GEN x, GEN y, GEN T, GEN *ptr} compute
a pseudo-quotient $q$ and pseudo-remainder $r$ such that
$\kbd{lc}(y)^{\deg(x) - \deg(y) + 1}x = qy + r$ in $R[X]/(T)$. Return $q$ and
set \kbd{*ptr} to $r$.
\fun{GEN}{RgX_mulXn}{GEN x, long n} returns $\kbd{x} * t^n$. This may
be a \typ{FRAC} if $n < 0$ and the valuation of \kbd{x} is not large
enough.
\subsubsec{GCD, Resultant}
\fun{GEN}{RgX_gcd}{GEN x, GEN y} returns the GCD of \kbd{x} and \kbd{y},
assumed to be \typ{POL}s in the same variable.
\fun{GEN}{RgX_gcd_simple}{GEN x, GEN y} as \tet{RgX_gcd} using a standard
extended Euclidean algorithm. Usually slower than \tet{RgX_gcd}.
\fun{GEN}{RgX_extgcd}{GEN x, GEN y, GEN *u, GEN *v} returns
$d = \text{GCD}(\kbd{x},\kbd{y})$, and sets \kbd{*u}, \kbd{*v} to the Bezout
coefficients such that $\kbd{*ux} + \kbd{*vy} = d$. Uses a generic
subresultant algorithm.
\fun{GEN}{RgX_extgcd_simple}{GEN x, GEN y, GEN *u, GEN *v} as
\tet{RgX_extgcd} using a standard extended Euclidean algorithm. Usually
slower than \tet{RgX_extgcd}.
\fun{GEN}{RgX_disc}{GEN x} returns the discriminant of the \typ{POL} \kbd{x}
with respect to its main variable.
\fun{GEN}{RgX_resultant_all}{GEN x, GEN y, GEN *sol} returns
\kbd{resultant(x,y)}. If \kbd{sol} is not \kbd{NULL}, sets it to the last
non-constant remainder in the polynomial remainder sequence if it exists and to
\kbd{gen\_0} otherwise (e.g. one polynomial has degree 0). Compared to
\kbd{resultant\_all}, this function always uses the generic subresultant
algorithm, hence always computes \kbd{sol}.
\subsubsec{Other operations}
\fun{GEN}{RgX_gtofp}{GEN x, GEN prec} returns the polynomial obtained by
applying
\bprog
gtofp(gel(x,i), prec)
@eprog\noindent to all coefficients of $x$.
\fun{GEN}{RgX_fpnorml2}{GEN x, long prec} returns (a stack-clean variant of)
\bprog
gnorml2( RgX_gtofp(x, prec) )
@eprog
\fun{GEN}{RgX_deriv}{GEN x} returns the derivative of \kbd{x} with respect to
its main variable.
\fun{GEN}{RgX_integ}{GEN x} returns the primitive of \kbd{x} vanishing at
$0$, with respect to its main variable.
\fun{GEN}{RgX_rescale}{GEN P, GEN h} returns $h^{\deg(P)} P(x/h)$.
\kbd{P} is an \kbd{RgX} and \kbd{h} is non-zero. (Leaves small objects on the
stack. Suitable but inefficient for \kbd{gerepileupto}.)
\fun{GEN}{RgX_unscale}{GEN P, GEN h} returns $P(h x)$. (Leaves small objects
on the stack. Suitable but inefficient for \kbd{gerepileupto}.)
\fun{GEN}{RgXV_unscale}{GEN v, GEN h} apply \kbd{RgX\_unscale} to a vector
of \kbd{RgX}.
\fun{GEN}{RgX_translate}{GEN P, GEN c} assume $c$ is a scalar or
a polynomials whose main variable has lower priority than the main variable
$X$ of $P$. Returns $P(X + c)$ (optimized for $c = \pm 1$).
\subsubsec{Function related to modular forms}
\fun{GEN}{RgX_act_Gl2Q}{GEN g, long k} let $R$ be a commutative ring
and $g = [a,b;c,d]$ be in $\text{GL}_2(\Q)$, $g$ acts (on the left)
on homogeneous polynomials of degree $k-2$ in $V := R[X,Y]_{k-2}$ via
$$ g\cdot P := P(dX-cY, -bX+aY) = (\det g)^{k-2} P((X,Y)\cdot g^{-1}).$$
This function returns the matrix in $M_{k-1}(R)$ of $P\mapsto g\cdot P$ in
the basis $(X^{k-2},\dots,Y^{k-2})$ of $V$.
\fun{GEN}{RgX_act_ZGl2Q}{GEN z, long k} let $G:=\text{GL}_2(\Q)$, acting
on $R[X,Y]_{k-2}$ and $z\in \Z[G]$. Return the matrix giving
$P\mapsto z\cdot P$ in the basis $(X^{k-2},\dots,Y^{k-2})$.
\subsec{\kbd{RgXn}}
\fun{GEN}{RgXn_red_shallow}{GEN x, long n} return $\kbd{x \% } t^n$,
where $n\geq 0$. Shallow function.
\fun{GEN}{RgXn_mul}{GEN a, GEN b, long n} returns $a b$ modulo $X^n$,
where $a,b$ are two \typ{POL} in the same variable $X$ and $n \geq 0$. Uses
Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).
\fun{GEN}{RgXn_sqr}{GEN a, long n} returns $a^2$ modulo $X^n$,
where $a$ is a \typ{POL} in the variable $X$ and $n \geq 0$. Uses
Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).
\fun{GEN}{RgXn_inv}{GEN a, long n} returns $a^{-1}$ modulo $X^n$,
where $a$ is a \typ{POL} in the variable $X$ and $n \geq 0$. Uses
Newton-Raphson algorithm.
\fun{GEN}{RgXn_powers}{GEN x, long m, long n} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{m}]$ modulo $X^n$ as a \typ{VEC} of \kbd{RgXn}s.
\fun{GEN}{RgXn_powu}{GEN x, ulong m, long n} returns $x^m$ modulo
$X^n$.
\fun{GEN}{RgXn_powu_i}{GEN x, ulong m, long n} as \tet{RgXn_powu},
not memory clean.
\fun{GEN}{RgXn_exp}{GEN a, long n} returns $exp(a)$ modulo $X^n$, assuming
$a = 0 \mod{X}$. Uses Hanrot-Zimmermann algorithm.
\fun{GEN}{RgXn_eval}{GEN Q, GEN x, long n} special case of
\tet{RgX_RgXQ_eval}, when the modulus is a monomial:
returns $\kbd{Q}(\kbd{x})$ modulo $t^n$, where $x \in R[t]$.
\fun{GEN}{RgX_RgXn_eval}{GEN f, GEN x, long n} returns $\kbd{f}(\kbd{x})$ modulo
$X^n$.
\fun{GEN}{RgX_RgXnV_eval}{GEN f, GEN V, long n} as \kbd{RgX\_RgXn\_eval(f, x, n)},
assuming $V$ was output by \kbd{RgXn\_powers(x, m, n)} for some $m\geq 1$.
\fun{GEN}{RgXn_reverse}{GEN f, long n} assuming that $f = a\*x \mod{x^2}$
with $a$ invertible, returns a \typ{POL} $g$ of degree $< n$ such that $(g
\circ f)(x) = x$ modulo $x^n$.
\subsec{\kbd{RgXnV}}
\fun{GEN}{RgXnV_red_shallow}{GEN x, long n} apply \kbd{RgXn\_red\_shallow}
to all the components of the vector $x$.
\subsec{\kbd{RgXQ}}
\fun{GEN}{RgXQ_mul}{GEN y, GEN x, GEN T} computes $xy$ mod $T$
\fun{GEN}{RgXQ_sqr}{GEN x, GEN T} computes $x^2$ mod $T$
\fun{GEN}{RgXQ_inv}{GEN x, GEN T} return the inverse of $x$ mod $T$.
\fun{GEN}{RgXQ_pow}{GEN x, GEN n, GEN T} computes $x^n$ mod $T$
\fun{GEN}{RgXQ_powu}{GEN x, ulong n, GEN T} computes $x^n$ mod $T$,
$n$ being an \kbd{ulong}.
\fun{GEN}{RgXQ_powers}{GEN x, long n, GEN T} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC} of \kbd{RgXQ}s.
\fun{GEN}{RgXQ_matrix_pow}{GEN y, long n, long m, GEN P} returns
\kbd{RgXQ\_powers(y,m-1,P)}, as a matrix of dimension $n \geq \deg P$.
\fun{GEN}{RgXQ_norm}{GEN x, GEN T} returns the norm of \kbd{Mod(x, T)}.
\fun{GEN}{RgXQ_charpoly}{GEN x, GEN T, long v} returns the characteristic
polynomial of \kbd{Mod(x, T)}, in variable $v$.
\fun{GEN}{RgX_RgXQ_eval}{GEN f, GEN x, GEN T} returns $\kbd{f}(\kbd{x})$ modulo
$T$.
\fun{GEN}{RgX_RgXQV_eval}{GEN f, GEN V, GEN T} as \kbd{RgX\_RgXQ\_eval(f, x, T)},
assuming $V$ was output by \kbd{RgXQ\_powers(x, n, T)} for some $n\geq 1$.
\fun{int}{RgXQ_ratlift}{GEN x, GEN T, long amax, long bmax, GEN *P, GEN *Q}
Assuming that $\kbd{amax}+\kbd{bmax}<\deg T$, attempts to recognize $x$ as a
rational function $a/b$, i.e. to find \typ{POL}s $P$ and $Q$ such that
\item $P \equiv Q x$ modulo $T$,
\item $\deg P \leq \kbd{amax}$, $\deg Q \leq \kbd{bmax}$,
\item $\gcd(T,P) = \gcd(P,Q)$.
\noindent If unsuccessful, the routine returns $0$ and leaves $P$, $Q$
unchanged; otherwise it returns $1$ and sets $P$ and $Q$.
\fun{GEN}{RgXQ_reverse}{GEN f, GEN T} returns a \typ{POL} $g$ of degree $< n
= \text{deg}~T$ such that $T(x)$ divides $(g \circ f)(x) - x$, by solving a
linear system. Low-level function underlying \tet{modreverse}: it returns a
lift of \kbd[modreverse(f,T)]; faster than the high-level function since it
needs not compute the characteristic polynomial of $f$ mod $T$ (often already
known in applications). In the trivial case where $n \leq 1$, returns a
scalar, not a constant \typ{POL}.
\subsec{\kbd{RgXQV, RgXQC}}
\fun{GEN}{RgXQC_red}{GEN z, GEN T} \kbd{z} a vector whose
coefficients are \kbd{RgX}s (arbitrary \kbd{GEN}s in fact), reduce them to
\kbd{RgXQ}s (applying \kbd{grem} coefficientwise) in a \typ{COL}.
\fun{GEN}{RgXQV_red}{GEN z, GEN T} \kbd{z} a \typ{POL} whose
coefficients are \kbd{RgX}s (arbitrary \kbd{GEN}s in fact), reduce them to
\kbd{RgXQ}s (applying \kbd{grem} coefficientwise) in a \typ{VEC}.
\fun{GEN}{RgXQV_RgXQ_mul}{GEN z, GEN x, GEN T} \kbd{z} multiplies the
\kbd{RgXQV} \kbd{z} by the scalar (\kbd{RgXQ}) \kbd{x}.
\subsec{\kbd{RgXQX}}
\fun{GEN}{RgXQX_red}{GEN z, GEN T} \kbd{z} a \typ{POL} whose
coefficients are \kbd{RgX}s (arbitrary \kbd{GEN}s in fact), reduce them to
\kbd{RgXQ}s (applying \kbd{grem} coefficientwise).
\fun{GEN}{RgXQX_mul}{GEN x, GEN y, GEN T}
\fun{GEN}{RgXQX_RgXQ_mul}{GEN x, GEN y, GEN T} multiplies the \kbd{RgXQX}
\kbd{y} by the scalar (\kbd{RgXQ}) \kbd{x}.
\fun{GEN}{RgXQX_sqr}{GEN x, GEN T}
\fun{GEN}{RgXQX_divrem}{GEN x, GEN y, GEN T, GEN *pr}
\fun{GEN}{RgXQX_div}{GEN x, GEN y, GEN T, GEN *r}
\fun{GEN}{RgXQX_rem}{GEN x, GEN y, GEN T, GEN *r}
\fun{GEN}{RgXQX_translate}{GEN P, GEN c, GEN T} assume the main variable
$X$ of $P$ has higher priority than the main variable $Y$ of $T$ and $c$.
Return a lift of $P(X+\text{Mod}(c(Y), T(Y)))$.
\fun{GEN}{Kronecker_to_mod}{GEN z, GEN T} $z\in R[X]$ represents an element
$P(X,Y)$ in $R[X,Y]$ mod $T(Y)$ in Kronecker form, i.e. $z = P(X,X^{2*n-1})$
Let $R$ be some commutative ring, $n = \deg T$ and let $P(X,Y)\in R[X,Y]$ lift
a polynomial in $K[Y]$, where $K := R[X]/(T)$ and $\deg_X P < 2n-1$ --- such as
would result from multiplying minimal degree lifts of two polynomials in
$K[Y]$. Let $z = P(t,t^{2*n-1})$ be a Kronecker form of $P$, this function
returns the image of $P(X,t)$ in $K[t]$, with \typ{POLMOD} coefficients.
Not stack-clean. Note that $t$ need not be the same variable as $Y$!
\chapter{Black box algebraic structures}
The generic routines like \kbd{gmul} or \kbd{gadd} allow handling objects
belonging to a fixed list of basic types, with some natural polymorphism
(you can mix rational numbers and polynomials, etc.), at the expense of
efficiency and sometimes of clarity when the recursive structure becomes
complicated, e.g. a few levels of \typ{POLMOD}s attached to different
polynomials and variable numbers for quotient structures. This
is the only possibility in GP.
On the other hand, the Level 2 Kernel allows dedicated routines to handle
efficiently objects of a very specific type, e.g. polynomials with
coefficients in the same finite field. This is more efficient, but imvolves a
lot of code duplication since polymorphism is no longer possible.
A third and final option, still restricted to library programming, is to
define an arbitrary algebraic structure (currently groups, fields, rings,
algebras and $\Z_p$-modules) by providing suitable methods, then using generic
algorithms. For instance naive Gaussian pivoting applies over all base fields
and need only be implemented once. The difference with the first solution
is that we no longer depend on the way functions like \kbd{gmul} or
\kbd{gadd} will guess what the user is trying to do. We can then implement
independently various groups / fields / algebras in a clean way.
\section{Black box groups}
A black box group is defined by a \tet{bb_group} struct, describing methods
available to handle group elements:
\bprog
struct bb_group
{
GEN (*mul)(void*, GEN, GEN);
GEN (*pow)(void*, GEN, GEN);
GEN (*rand)(void*);
ulong (*hash)(GEN);
int (*equal)(GEN, GEN);
int (*equal1)(GEN);
GEN (*easylog)(void *E, GEN, GEN, GEN);
};
@eprog
\kbd{mul(E,x,y)} returns the product $x\*y$.
\kbd{pow(E,x,n)} returns $x^n$ ($n$ integer, possibly negative or zero).
\kbd{rand(E)} returns a random element in the group.
\kbd{hash(x)} returns a hash value for $x$ (\kbd{hash\_GEN} is suitable for this field).
\kbd{equal(x,y)} returns one if $x=y$ and zero otherwise.
\kbd{equal1(x)} returns one if $x$ is the neutral element in the group,
and zero otherwise.
\kbd{easylog(E,a,g,o)} (optional) returns either NULL or the discrete logarithm
$n$ such that $g^n=a$, the element $g$ being of order $o$. This provides a
short-cut in situation where a better algorithm than the generic one is known.
A group is thus described by a \kbd{struct bb\_group} as above and auxiliary
data typecast to \kbd{void*}. The following functions operate on black box
groups:
\fun{GEN}{gen_Shanks_log}{GEN x, GEN g, GEN N, void *E, const struct bb_group
*grp} \hbadness 10000\break
Generic baby-step/giant-step algorithm (Shanks's method). Assuming
that $g$ has order $N$, compute an integer $k$ such that $g^k = x$.
Return \kbd{cgetg(1, t\_VEC)} if there are no solutions. This requires
$O(\sqrt{N})$ group operations and uses an auxiliary table containing
$O(\sqrt{N})$ group elements.
The above is useful for a one-shot computation. If many discrete logs
are desired:
\fun{GEN}{gen_Shanks_init}{GEN g, long n, void *E, const struct bb_group *grp}
return an auxiliary data structure $T$ required to compute a discrete log in
base $g$. Compute and store all powers $g^i$, $i < n$.
\fun{GEN}{gen_Shanks}{GEN T, GEN x, ulong N, void *E, const struct bb_group *grp}
Let $T$ be computed by \tet{gen_Shanks_init}$(g,n,\dots)$.
Return $k < n N$ such that $g^k = x$ or \kbd{NULL} if no such index exist.
It uses $O(N)$ operation in the group and fast table lookups (in time
$O(\log n)$). The interface is such that the function may be used when the
order of the base $g$ is unknown, and hence compute it given only an upper
bound $B$ for it: e.g. choose $n,N$ such that $nN \geq B$ and compute the
discrete log $l$ of $g^{-1}$ in base $g$, then use \tet{gen_order}
with multiple $N = l+1$.
\fun{GEN}{gen_Pollard_log}{GEN x, GEN g, GEN N, void *E, const struct bb_group
*grp} \hbadness 10000\break
Generic Pollard rho algorithm. Assuming that $g$ has order $N$, compute an
integer $k$ such that $g^k = x$. This requires $O(\sqrt{N})$ group operations
in average and $O(1)$ storage. Will enter an infinite loop if there are no
solutions.
\fun{GEN}{gen_plog}{GEN x, GEN g, GEN N, void *E, const struct bb_group}
Assuming that $g$ has prime order $N$, compute an integer $k$ such that
$g^k = x$, using either \kbd{gen\_Shanks\_log} or \kbd{gen\_Pollard\_log}.
Return \kbd{cgetg(1, t\_VEC)} if there are no solutions.
\fun{GEN}{gen_Shanks_sqrtn}{GEN a, GEN n, GEN N, GEN *zetan, void *E, const
struct bb_group *grp} \hbadness 10000 returns one solution of $x^n = a$ in a
black box cyclic group of order $N$. Return \kbd{NULL} if no solution exists.
If \kbd{zetan} is not \kbd{NULL} it is set to an element of exact order $n$.
This function uses \kbd{gen\_plog} for all prime divisors of $\gcd(n,N)$.
\fun{GEN}{gen_PH_log}{GEN a, GEN g, GEN N, void *E, const struct bb_group
*grp}
returns an integer $k$ such that $g^k = x$, assuming that $g$ has order $N$,
by Pohlig-Hellman algorithm. Return \kbd{cgetg(1, t\_VEC)} if there are no
solutions. This calls \tet{gen_plog} repeatedly for all prime divisors $p$ of
$N$.
In the following functions the integer parameter \kbd{ord} can be given
in all the formats recognized for the argument of arithmetic functions,
i.e.~either as a positive \typ{INT} $N$, or as its factorization matrix
$\var{faN}$, or (preferred) as a pair $[N,\var{faN}]$.
\fun{GEN}{gen_order}{GEN x, GEN ord, void *E, const struct bb_group *grp}
computes the order of $x$; \kbd{ord} is a multiple of the order, for instance
the group order.
\fun{GEN}{gen_factored_order}{GEN x, GEN ord, void *E, const struct bb_group
*grp} returns a pair $[o,F]$, where $o$ is the order of $x$ and $F$ is the
factorization of $o$; \kbd{ord} is as in \tet{gen_order}.
\fun{GEN}{gen_gener}{GEN ord, void *E, const struct bb_group *grp}
returns a random generator of the group, assuming it is of order exactly
\kbd{ord}.
\fun{GEN}{get_arith_Z}{GEN ord} given \kbd{ord} as above in one of the
formats recognized for arithmetic functions, i.e. a positive
\typ{INT} $N$, its factorization \var{faN}, or the pair $[N, \var{faN}]$,
return $N$.
\fun{GEN}{get_arith_ZZM}{GEN ord} given \kbd{ord} as above,
return the pair $[N, \var{faN}]$. This may require factoring $N$.
\fun{GEN}{gen_select_order}{GEN v, void *E, const struct bb_group *grp}
Let $v$ be a vector of possible orders for the group; try to find the true
order by checking orders of random points. This will not terminate if there
is an ambiguity.
\subsec{Black box groups with pairing}
Theses functions handle groups of rank at most $2$ equipped with a family of
bilinear pairings which behave like the Weil pairing on elliptic curves over
finite field. In the descriptions below, the function \kbd{pairorder(E, P, Q,
m, F)} must return the order of the $m$-pairing of $P$ and $Q$, both of order
dividing $m$, where $F$ is the factorisation matrix of a multiple of $m$.
\fun{GEN}{gen_ellgroup}{GEN o, GEN d, GEN *pt_m, void *E, const struct bb_group *grp,
GEN pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)}
returns the elementary divisors $[d_1, d_2]$ of the group, assuming it is of
order exactly $o>1$ (which can be given by a factorization matrix), and that
$d_2$ divides $d$. If $d_2=1$ then $[o]$ is returned, otherwise
\kbd{m=*pt\_m} is set to the order of the pairing required to verify a
generating set which is to be used with \kbd{gen\_ellgens}.
\fun{GEN}{gen_ellgens}{GEN d1, GEN d2, GEN m, void *E, const struct bb_group *grp,
GEN pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)}
the parameters $d_1$, $d_2$, $m$ being as returned by \kbd{gen\_ellgroup},
returns a pair of generators $[P,Q]$ such that $P$ is of order $d_1$ and the
$m$-pairing of $P$ and $Q$ is of order $m$. (Note: $Q$ needs not be of order
$d_2$).
\subsec{Functions returning black box groups}
\fun{const struct bb_group *}{get_Flxq_star}{void **E, GEN T, ulong p}
\fun{const struct bb_group *}{get_FpXQ_star}{void **E, GEN T, GEN p}
returns a pointer to the black box group $(\F_p[x]/(T))^*$.
\fun{const struct bb_group *}{get_FpE_group}{void **pE, GEN a4, GEN a6, GEN p}
returns a pointer to a black box group and set \kbd{*pE} to the necessary data for
computing in the group $E(\F_p)$ where $E$ is the elliptic curve $E:y^2=x^3+a_4\*x+a_6$,
with $a_4$ and $a_6$ in $\F_p$.
\fun{const struct bb_group *}{get_FpXQE_group}{void **pE, GEN a4, GEN a6, GEN T, GEN p}
returns a pointer to a black box group and set \kbd{*pE} to the necessary data for
computing in the group $E(\F_p[X]/(T))$ where $E$ is the elliptic curve $E:y^2=x^3+a_4\*x+a_6$,
with $a_4$ and $a_6$ in $\F_p[X]/(T)$.
\fun{const struct bb_group *}{get_FlxqE_group}{void **pE, GEN a4, GEN a6, GEN
T, ulong p} idem for small $p$.
\fun{const struct bb_group *}{get_F2xqE_group}{void **pE, GEN a2, GEN a6, GEN T}
idem for $p=2$.
\section{Black box finite fields}
A black box finite field is defined by a \tet{bb_field} struct, describing methods
available to handle field elements:
\bprog
struct bb_field
{
GEN (*red)(void *E ,GEN);
GEN (*add)(void *E ,GEN, GEN);
GEN (*mul)(void *E ,GEN, GEN);
GEN (*neg)(void *E ,GEN);
GEN (*inv)(void *E ,GEN);
int (*equal0)(GEN);
GEN (*s)(void *E, long);
};
@eprog\noindent In contrast of black box group, elements can have
non canonical forms, and only \kbd{red} is required to return a canonical form.
\kbd{red(E,x)} returns the canonical form of $x$.
\kbd{add(E,x,y)} returns the sum $x+y$.
\kbd{mul(E,x,y)} returns the product $x\*y$.
\kbd{neg(E,x)} returns $-x$.
\kbd{inv(E,x)} returns the inverse of $x$.
\kbd{equal0(x)} $x$ being in canonical form, returns one if $x=0$ and zero otherwise.
\kbd{s(n)} $n$ being a small signed integer, returns $n$ times the unit element.
\noindent A finite field is thus described by a \kbd{struct bb\_field} as
above and auxiliary data typecast to \kbd{void*}. The following functions
operate on black box fields:
\fun{GEN}{gen_Gauss}{GEN a, GEN b, void *E, const struct bb_field *ff}
\fun{GEN}{gen_Gauss_pivot}{GEN x, long *rr, void *E, const struct bb_field *ff}
\fun{GEN}{gen_det}{GEN a, void *E, const struct bb_field *ff}
\fun{GEN}{gen_ker}{GEN x, long deplin, void *E, const struct bb_field *ff}
\fun{GEN}{gen_matcolmul}{GEN a, GEN b, void *E, const struct bb_field *ff}
\fun{GEN}{gen_matid}{long n, void *E, const struct bb_field *ff}
\fun{GEN}{gen_matmul}{GEN a, GEN b, void *E, const struct bb_field *ff}
\subsec{Functions returning black box fields}
\fun{const struct bb_field *}{get_Fp_field}{void **pE, GEN p}
\fun{const struct bb_field *}{get_Fq_field}{void **pE, GEN T, GEN p}
\fun{const struct bb_field *}{get_Flxq_field}{void **pE, GEN T, ulong p}
\fun{const struct bb_field *}{get_F2xq_field}{void **pE, GEN T}
\fun{const struct bb_field *}{get_nf_field}{void **pE, GEN nf}
\section{Black box algebra}
A black box algebra is defined by a \tet{bb_algebra} struct, describing methods
available to handle algebra elements:
\bprog
struct bb_algebra
{
GEN (*red)(void *E, GEN x);
GEN (*add)(void *E, GEN x, GEN y);
GEN (*sub)(void *E, GEN x, GEN y);
GEN (*mul)(void *E, GEN x, GEN y);
GEN (*sqr)(void *E, GEN x);
GEN (*one)(void *E);
GEN (*zero)(void *E);
};
@eprog\noindent In contrast with black box groups, elements can have non
canonical forms, but only \kbd{add} is allowed to return a non canonical
form.
\kbd{red(E,x)} returns the canonical form of $x$.
\kbd{add(E,x,y)} returns the sum $x+y$.
\kbd{sub(E,x,y)} returns the difference $x-y$.
\kbd{mul(E,x,y)} returns the product $x\*y$.
\kbd{sqr(E,x)} returns the square $x^2$.
\kbd{one(E)} returns the unit element.
\kbd{zero(E)} returns the zero element.
\noindent An algebra is thus described by a \kbd{struct bb\_algebra} as above
and auxiliary data typecast to \kbd{void*}. The following functions operate
on black box algebra:
\fun{GEN}{gen_bkeval}{GEN P, long d, GEN x, int use_sqr, void *E,
const struct bb_algebra *ff, GEN cmul(void *E, GEN P, long a, GEN x)}
$x$ being an element of the black box algebra, and $P$ some black box
polynomial of degree $d$ over the base field, returns $P(x)$. The function
\kbd{cmul(E,P,a,y)} must return the coefficient of degree $a$ of $P$
multiplied by $y$. \kbd{cmul} is allowed to return a non canonical form;
it is also allowed to return \kbd{NULL} instead of an exact $0$.
The flag \kbd{use\_sqr} has the same meaning as for \kbd{gen\_powers}. This
implements an algorithm of Brent and Kung (1978).
\fun{GEN}{gen_bkeval_powers}{GEN P, long d, GEN V, void *E,
const struct bb_algebra *ff, GEN cmul(void *E, GEN P, long a, GEN x)}
as \tet{gen_RgX_bkeval} assuming $V$ was output by
\tet{gen_powers}$(x, l, E, \var{ff})$ for some $l\geq 1$. For optimal
performance, $l$ should be computed by \tet{brent_kung_optpow}.
\fun{long}{brent_kung_optpow}{long d, long n, long m} returns the optimal
parameter $l$ for the evaluation of $n/m$ polynomials of degree $d$.
Fractional values can be used if the evaluations are done with different
accuracies, and thus have different weights.
\subsec{Functions returning black box algebras}
\fun{const struct bb_algebra *}{get_FpX_algebra}{void **E, GEN p, long v}
return the algebra of polynomials over $\F_p$ in variable $v$.
\fun{const struct bb_algebra *}{get_FpXQ_algebra}{void **E, GEN T, GEN p}
return the algebra $\F_p[X]/(T(X))$.
\fun{const struct bb_algebra *}{get_FpXQX_algebra}{void **E, GEN T, GEN p, long v}
return the algebra of polynomials over $\F_p[X]/(T(X))$ in variable $v$.
\fun{const struct bb_algebra *}{get_FlxqXQ_algebra}{void **E, GEN S, GEN T, ulong p}
return the algebra $\F_p[X,Y]/(S(X,Y),T(X))$ (for \kbd{ulong} $p$).
\fun{const struct bb_algebra *}{get_FpXQXQ_algebra}{void **E, GEN S, GEN T, GEN p}
return the algebra $\F_p[X,Y]/(S(X,Y),T(X))$.
\fun{const struct bb_algebra *}{get_Rg_algebra}{void}
return the generic algebra.
\section{Black box ring}
A black box ring is defined by a \tet{bb_ring} struct, describing methods
available to handle ring elements:
\bprog
struct bb_ring
{
GEN (*add)(void *E, GEN x, GEN y);
GEN (*mul)(void *E, GEN x, GEN y);
GEN (*sqr)(void *E, GEN x);
};
@eprog
\kbd{add(E,x,y)} returns the sum $x+y$.
\kbd{mul(E,x,y)} returns the product $x\*y$.
\kbd{sqr(E,x)} returns the square $x^2$.
\fun{GEN}{gen_fromdigits}{GEN v, GEN B, void *E, struct bb_ring *r}
where $B$ is a ring element and $v=[c_0,\ldots,c_{n-1}]$ a vector of ring elements,
return $\sum_{i=0}^n c_i\*B^i$ using binary splitting.
\fun{GEN}{gen_digits}{GEN x, GEN B, long n, void *E, struct bb_ring *r,
GEN (*div)(void *E, GEN x, GEN y, GEN *r)}
(Require the ring to be Euclidean)
\kbd{div(E,x,y,\&r)} performs the Euclidean division of $x$ by $y$ in the ring
$R$, returning the quotient $q$ and setting $r$ to the residue so that
$x=q\*y+r$ holds. The residue must belong to a fixed set of representatives of
$R/(y)$.
The argument $x$ being a ring element, \kbd{gen\_digits} returns a vector of
ring elements $[c_0,\ldots,c_{n-1}]$ such that $x = \sum_{i=0}^n c_i\*B^i$.
Furthermore for all $i\ne n-1$, the elements $c_i$ belonging to the fixed set
of representatives of $R/(B)$.
\section{Black box free $\Z_p$-modules}
(Very experimental)
\fun{GEN}{gen_ZpX_Dixon}{GEN F, GEN V, GEN q, GEN p, long N, void *E,
GEN lin(void *E, GEN F, GEN z, GEN q),
GEN invl(void *E, GEN z)}
Let $F$ be a \kbd{ZpXT} representing the coefficients of some abstract
linear mapping $f$ over $\Z_p[X]$ seen as a free $\Z_p$-module, let $V$ be
an element of $\Z_p[X]$ and let $q = p^N$. Return $y\in\Z_p[X]$ such that
$f(y)=V\pmod{p^N}$ assuming the following holds for $n\leq N$:
\item $\kbd{lin}(E, \kbd{FpX\_red}(F, p^n), z, p^n) \equiv f(z) \pmod{p^n}$
\item $f(\kbd{invl}(E, z)) \equiv z \pmod{p}$
The rationale for the argument $F$ being that it allows \kbd{gen\_ZpX\_Dixon}
to reduce it to the required $p$-adic precision.
\fun{GEN}{gen_ZpX_Newton}{GEN x, GEN p, long n, void *E,
GEN eval(void *E, GEN a, GEN q),
GEN invd(void *E, GEN b, GEN v, GEN q, long N)}
Let $x$ be an element of $\Z_p[X]$ seen as a free $\Z_p$-module, and $f$
some differentiable function over $\Z_p[X]$ such that $f(x) \equiv 0
\pmod{p}$. Return $y$ such that $f(y) \equiv 0\pmod{p^n}$, assuming the
following holds for all $a, b\in \Z_p[X]$ and $M\leq N$:
\item $v = \kbd{eval}(E,a,p^N)$ is a vector of elements of $\Z_p[X]$,
\item $w = \kbd{invd}(E,b,v,p^M,M)$ is an element in $\Z_p[X]$,
\item $v[1] \equiv f(a) \pmod{p^N\Z_p[X]}$,
\item $df_a(w) \equiv b \pmod{p^M\Z_p[X]}$
\noindent and $df_a$ denotes the differential of $f$ at $a$. Motivation:
\kbd{eval} allows to evaluate $f$ and \kbd{invd} allows to invert its
differential. Frequently, data useful to compute the differential appear as a
subproduct of computing the function. The vector $v$ allows \kbd{eval} to
provide these to \kbd{invd}. The implementation of \kbd{invd} will generally
involves the use of the function \kbd{gen\_ZpX\_Dixon}.
\newpage
\chapter{Operations on general PARI objects}
\section{Assignment}
It is in general easier to use a direct conversion,
e.g.~\kbd{y = stoi(s)}, than to allocate a target of correct type and
sufficient size, then assign to it:
\bprog
GEN y = cgeti(3); affsi(s, y);
@eprog\noindent
These functions can still be moderately useful in complicated garbage
collecting scenarios but you will be better off not using them.
\fun{void}{gaffsg}{long s, GEN x} assigns the \kbd{long}~\kbd{s} into the
object~\kbd{x}.
\fun{void}{gaffect}{GEN x, GEN y} assigns the object \kbd{x} into the
object~\kbd{y}. Both \kbd{x} and \kbd{y} must be scalar types. Type
conversions (e.g.~from \typ{INT} to \typ{REAL} or \typ{INTMOD}) occur if
legitimate.
\fun{int}{is_universal_constant}{GEN x} returns $1$ if $x$ is a global PARI
constant you should never assign to (such as \kbd{gen\_1}), and $0$
otherwise.
\section{Conversions}
\subsec{Scalars}
\fun{double}{rtodbl}{GEN x} applied to a \typ{REAL}~\kbd{x}, converts \kbd{x}
into a \kbd{double} if possible.
\fun{GEN}{dbltor}{double x} converts the \kbd{double} \kbd{x} into a
\typ{REAL}.
\fun{long}{dblexpo}{double x} returns \kbd{expo(dbltor(x))}, but
faster and without cluttering the stack.
\fun{ulong}{dblmantissa}{double x} returns the most significant word
in the mantissa of \kbd{dbltor(x)}.
\fun{double}{gtodouble}{GEN x} if \kbd{x} is a real number (not necessarily
a~\typ{REAL}), converts \kbd{x} into a \kbd{double} if possible.
\fun{long}{gtos}{GEN x} converts the \typ{INT} \kbd{x} to a small
integer if possible, otherwise raise an exception. This function
is similar to \tet{itos}, slightly slower since it checks the type of \kbd{x}.
\fun{double}{dbllog2r}{GEN x} assuming that \kbd{x} is a non-zero \typ{REAL},
returns an approximation to \kbd{log2(|x|)}.
\fun{double}{dblmodulus}{GEN x} return an approximation to \kbd{|x|}.
\fun{long}{gtolong}{GEN x} if \kbd{x} is an integer (not necessarily
a~\typ{INT}), converts \kbd{x} into a \kbd{long} if possible.
\fun{GEN}{fractor}{GEN x, long l} applied to a \typ{FRAC}~\kbd{x}, converts
\kbd{x} into a \typ{REAL} of length \kbd{prec}.
\fun{GEN}{quadtofp}{GEN x, long l} applied to a \typ{QUAD}~\kbd{x}, converts
\kbd{x} into a \typ{REAL} or \typ{COMPLEX} depending on the sign of the
discriminant of~\kbd{x}, to precision \hbox{\kbd{l} \B-bit} words.
% forbid line brk at hyphen here [GN]
\fun{GEN}{cxtofp}{GEN x, long prec} converts the \typ{COMPLEX}~\kbd{x} to a
a complex whose real and imaginary parts are \typ{REAL} of length \kbd{prec}
(special case of~\kbd{gtofp}.
\fun{GEN}{cxcompotor}{GEN x, long prec} converts the
\typ{INT}, \typ{REAL} or \typ{FRAC} $x$ to a \typ{REAL} of length \kbd{prec}.
These are all the real types which may occur as components of a
\typ{COMPLEX}; special case of~\kbd{gtofp} (introduced so that the latter is
not recursive and can thus be inlined).
\fun{GEN}{gtofp}{GEN x, long prec} converts the complex number~\kbd{x}
(\typ{INT}, \typ{REAL}, \typ{FRAC}, \typ{QUAD} or \typ{COMPLEX}) to either
a \typ{REAL} or \typ{COMPLEX} whose components are \typ{REAL} of precision
\kbd{prec}; not necessarily of \emph{length} \kbd{prec}: a real $0$ may be
given as \kbd{real\_0(...)}). If the result is a \typ{COMPLEX} extra care is
taken so that its modulus really has accuracy \kbd{prec}: there is a problem
if the real part of the input is an exact $0$; indeed, converting it to
\kbd{real\_0(prec)} would be wrong if the imaginary part is tiny, since the
modulus would then become equal to $0$, as in $1.E-100 + 0.E-28 = 0.E-28$.
\fun{GEN}{gtomp}{GEN z, long prec} converts the real number~\kbd{x}
(\typ{INT}, \typ{REAL}, \typ{FRAC}, real \typ{QUAD}) to either
a \typ{INT} or a \typ{REAL} of precision \kbd{prec}. Not memory clean
if $x$ is a \typ{INT}: we return $x$ itself and not a copy.
\fun{GEN}{gcvtop}{GEN x, GEN p, long l} converts $x$ into a \typ{PADIC}
of precision~$l$. Works componentwise on recursive objects,
e.g.~\typ{POL} or \typ{VEC}. Converting $0$ yields $O(p^l)$; converting a
non-zero number yield a result well defined modulo $p^{v_p(x) + l}$.
\fun{GEN}{cvtop}{GEN x, GEN p, long l} as \kbd{gcvtop}, assuming that $x$
is a scalar.
\fun{GEN}{cvtop2}{GEN x, GEN y} $y$ being a $p$-adic, converts the scalar $x$
to a $p$-adic of the same accuracy. Shallow function.
\fun{GEN}{cvstop2}{long s, GEN y} $y$ being a $p$-adic, converts the scalar $s$
to a $p$-adic of the same accuracy. Shallow function.
\fun{GEN}{gprec}{GEN x, long l} returns a copy of $x$ whose precision is
changed to $l$ digits. The precision change is done recursively on all
components of $x$. Digits means \emph{decimal}, $p$-adic and $X$-adic digits
for \typ{REAL}, \typ{SER}, \typ{PADIC} components, respectively.
\fun{GEN}{gprec_w}{GEN x, long l} returns a shallow copy of $x$ whose
\typ{REAL} components have their precision changed to $l$ \emph{words}. This
is often more useful than \kbd{gprec}.
\fun{GEN}{gprec_wtrunc}{GEN x, long l} returns a shallow copy of $x$ whose
\typ{REAL} components have their precision \emph{truncated} to $l$
\emph{words}. Contrary to \kbd{gprec\_w}, this function may never increase
the precision of~$x$.
\subsec{Modular objects / lifts}
\fun{GEN}{gmodulo}{GEN x, GEN y} creates the object \kbd{\key{Mod}(x,y)} on
the PARI stack, where \kbd{x} and \kbd{y} are either both \typ{INT}s, and the
result is a \typ{INTMOD}, or \kbd{x} is a scalar or a \typ{POL} and \kbd{y} a
\typ{POL}, and the result is a \typ{POLMOD}.
\fun{GEN}{gmodulgs}{GEN x, long y} same as \key{gmodulo} except \kbd{y} is a
\kbd{long}.
\fun{GEN}{gmodulsg}{long x, GEN y} same as \key{gmodulo} except \kbd{x} is a
\kbd{long}.
\fun{GEN}{gmodulss}{long x, long y} same as \key{gmodulo} except both
\kbd{x} and \kbd{y} are \kbd{long}s.
\fun{GEN}{lift_shallow}{GEN x} shallow version of \tet{lift}
\fun{GEN}{liftall_shallow}{GEN x} shallow version of \tet{liftall}
\fun{GEN}{liftint_shallow}{GEN x} shallow version of \tet{liftint}
\fun{GEN}{liftpol_shallow}{GEN x} shallow version of \tet{liftpol}
\fun{GEN}{centerlift0}{GEN x,long v} DEPRECATED, kept for backward
compatibility only: use either \tet{lift0}$(x,v)$ or \tet{centerlift}$(x)$.
\subsec{Between polynomials and coefficient arrays}
\fun{GEN}{gtopoly}{GEN x, long v} converts or truncates the object~\kbd{x}
into a \typ{POL} with main variable number~\kbd{v}. A common application
would be the conversion of coefficient vectors (coefficients are given by
decreasing degree). E.g.~\kbd{[2,3]} goes to \kbd{2*v + 3}
\fun{GEN}{gtopolyrev}{GEN x, long v} converts or truncates the object~\kbd{x}
into a \typ{POL} with main variable number~\kbd{v}, but vectors are converted
in reverse order compared to \kbd{gtopoly} (coefficients are given by
increasing degree). E.g.~\kbd{[2,3]} goes to \kbd{3*v + 2}. In other words
the vector represents a polynomial in the basis $(1,v,v^2,v^3,\dots)$.
\fun{GEN}{normalizepol}{GEN x} applied to an unnormalized \typ{POL}~\kbd{x}
(with all coefficients correctly set except that \kbd{leading\_term(x)} might
be zero), normalizes \kbd{x} correctly in place and returns~\kbd{x}. For
internal use. Normalizing means deleting all leading \emph{exact} zeroes
(as per \kbd{isexactzero}), except if the polynomial turns out to be $0$,
in which case we try to find a coefficient $c$ which is a non-rational zero,
and return the constant polynomial $c$. (We do this so that information
about the base ring is not lost.)
\fun{GEN}{normalizepol_lg}{GEN x, long l} applies \kbd{normalizepol} to
\kbd{x}, pretending that \kbd{lg(x)} is $l$, which must be less than
or equal to \kbd{lg(x)}. If equal, the function is equivalent to
\kbd{normalizepol(x)}.
\fun{GEN}{normalizepol_approx}{GEN x, long lx} as \kbd{normalizepol\_lg},
with the difference that we just delete all leading zeroes (as per
\kbd{gequal0}). This rougher normalization is used when we have no other
choice, for instance before attempting a Euclidean division by $x$.
The following routines do \emph{not} copy coefficients on the stack (they
only move pointers around), hence are very fast but not suitable for
\kbd{gerepile} calls. Recall that an \kbd{RgV} (resp.~an \kbd{RgX}, resp.~an
\kbd{RgM}) is a \typ{VEC} or \typ{COL} (resp.~a \typ{POL}, resp.~a \typ{MAT})
with arbitrary components. Similarly, an \kbd{RgXV} is a \typ{VEC} or
\typ{COL} with \kbd{RgX} components, etc.
\fun{GEN}{RgV_to_RgX}{GEN x, long v} converts the \kbd{RgV}~\kbd{x} to a
(normalized) polynomial in variable~\kbd{v} (as \kbd{gtopolyrev}, without
copy).
\fun{GEN}{RgV_to_RgX_reverse}{GEN x, long v} converts the \kbd{RgV}~\kbd{x}
to a (normalized) polynomial in variable~\kbd{v} (as \kbd{gtopoly},
without copy).
\fun{GEN}{RgX_to_RgC}{GEN x, long N} converts the \typ{POL}~\kbd{x} to a
\typ{COL}~\kbd{v} with \kbd{N} components. Coefficients of \kbd{x} are listed
by increasing degree, so that \kbd{y[i]} is the coefficient of the term of
degree $i-1$ in \kbd{x}.
\fun{GEN}{Rg_to_RgC}{GEN x, long N} as \tet{RgX_to_RgV}, except that other
types than \typ{POL} are allowed for \kbd{x}, which is then considered as a
constant polynomial.
\fun{GEN}{RgM_to_RgXV}{GEN x, long v} converts the \kbd{RgM}~\kbd{x} to a
\typ{VEC} of \kbd{RgX}, by repeated calls to \kbd{RgV\_to\_RgX}.
\fun{GEN}{RgV_to_RgM}{GEN v, long N} converts the vector~\kbd{v} to
a~\typ{MAT} with \kbd{N}~rows, by repeated calls to \kbd{Rg\_to\_RgV}.
\fun{GEN}{RgXV_to_RgM}{GEN v, long N} converts the vector of \kbd{RgX}~\kbd{v}
to a~\typ{MAT} with \kbd{N}~rows, by repeated calls to \kbd{RgX\_to\_RgV}.
\fun{GEN}{RgM_to_RgXX}{GEN x, long v,long w} converts the \kbd{RgM}~\kbd{x} into
a \typ{POL} in variable~\kbd{v}, whose coefficients are \typ{POL}s in
variable~\kbd{w}. This is a shortcut for
\bprog
RgV_to_RgX( RgM_to_RgXV(x, w), v );
@eprog\noindent
There are no consistency checks with respect to variable
priorities: the above is an invalid object if $\kbd{varncmp(v, w)} \geq 0$.
\fun{GEN}{RgXX_to_RgM}{GEN x, long N} converts the \typ{POL}~\kbd{x} with
\kbd{RgX} (or constant) coefficients to a matrix with \kbd{N} rows.
\fun{long}{RgXY_degreex}{GEN P} return the degree of $P$ with respect to
the secondary variable.
\fun{GEN}{RgXY_swap}{GEN P, long n, long w} converts the bivariate polynomial
$\kbd{P}(u,v)$ (a \typ{POL} with \typ{POL} or scalar coefficients) to
$P(\kbd{pol\_x[w]},u)$, assuming \kbd{n} is an upper bound for
$\deg_v(\kbd{P})$.
\fun{GEN}{RgXY_swapspec}{GEN C, long n, long w, long lP}
as \kbd{RgXY\_swap} where the coefficients of $P$ are given by
\kbd{gel(C,0),\dots,gel(C,lP-1)}.
\fun{GEN}{RgX_to_ser}{GEN x, long l} applied to a \typ{POL}~\kbd{x}, creates
a \emph{shallow} \typ{SER} of length~$l\geq 2$ starting with~\kbd{x}.
Unless the polynomial is an exact zero, the coefficient of lowest degree
$T^d$ of the result is not an exact zero (as per \kbd{isexactzero}). The
remainder is $O(T^{d+l})$.
\fun{GEN}{RgX_to_ser_inexact}{GEN x, long l} applied to a \typ{POL}~\kbd{x},
creates a \emph{shallow} \typ{SER} of length~\kbd{l} starting with~\kbd{x}.
Unless the polynomial is zero, the coefficient of lowest degree
$T^d$ of the result is not zero (as per \kbd{gequal0}). The
remainder is $O(T^{d+l})$.
\fun{GEN}{rfrac_to_ser}{GEN x, long l} applied to a \typ{RFRAC}~\kbd{x},
creates a \typ{SER} of length~\kbd{l} congruent to $x$. Not memory-clean
but suitable for \kbd{gerepileupto}.
\fun{GEN}{gtoser}{GEN s, long v, long d} converts the object~$s$ into
a \typ{SER} with main variable number~\kbd{v} and $d > 0$ significant terms.
More precisely
\item if $s$ is a scalar, we return a constant power series with $d$
significant terms.
\item if $s$ is a \typ{POL}, it is truncated to $d$ terms if needed.
\item If $s$ is a vector, the coefficients of the vector are understood to
be the coefficients of the power series starting from the constant term (as
in \tet{Polrev}), and the precision $d$ is \emph{ignored}.
\item If $s$ is already a power series in $v$, we retur a copy, and
the precision $d$ is again \emph{ignored}.
\fun{GEN}{gtocol}{GEN x} converts the object~\kbd{x} into a \typ{COL}
\fun{GEN}{gtomat}{GEN x} converts the object~\kbd{x} into a \typ{MAT}.
\fun{GEN}{gtovec}{GEN x} converts the object~\kbd{x} into a \typ{VEC}.
\fun{GEN}{gtovecsmall}{GEN x} converts the object~\kbd{x} into a
\typ{VECSMALL}.
\fun{GEN}{normalize}{GEN x} applied to an unnormalized \typ{SER}~\kbd{x}
(i.e.~type \typ{SER} with all coefficients correctly set except that \kbd{x[2]}
might be zero), normalizes \kbd{x} correctly in place. Returns~\kbd{x}.
For internal use.
\fun{GEN}{serchop0}{GEN s} given a \typ{SER} of the form $x^v s(x)$, with
$s(0)\neq 0$, return $x^v(s - s(0))$. Shallow function.
\section{Constructors}
\subsec{Clean constructors}\label{se:clean}
\fun{GEN}{zeropadic}{GEN p, long n} creates a $0$ \typ{PADIC} equal to
$O(\kbd{p}^\kbd{n})$.
\fun{GEN}{zeroser}{long v, long n} creates a $0$ \typ{SER} in variable
\kbd{v} equal to $O(X^\kbd{n})$.
\fun{GEN}{scalarser}{GEN x, long v, long prec} creates a constant \typ{SER}
in variable \kbd{v} and precision \kbd{prec}, whose constant coefficient is
(a copy of) \kbd{x}, in other words $\kbd{x} + O(\kbd{v}^\kbd{prec})$.
Assumes that $\kbd{prec}\geq 0$.
\fun{GEN}{pol_0}{long v} Returns the constant polynomial $0$ in variable $v$.
\fun{GEN}{pol_1}{long v} Returns the constant polynomial $1$ in variable $v$.
\fun{GEN}{pol_x}{long v} Returns the monomial of degree $1$ in variable $v$.
\fun{GEN}{pol_xn}{long n, long v} Returns the monomial of degree $n$
in variable $v$; assume that $n \geq 0$.
\fun{GEN}{pol_xnall}{long n, long v} Returns the Laurent monomial of degree $n$
in variable $v$; $n < 0$ is allowed.
\fun{GEN}{pol_x_powers}{long N, long v} returns the powers of
\kbd{pol\_x(v)}, of degree $0$ to $N-1$, in a vector with $N$ components.
\fun{GEN}{scalarpol}{GEN x, long v} creates a constant \typ{POL} in variable
\kbd{v}, whose constant coefficient is (a copy of) \kbd{x}.
\fun{GEN}{deg1pol}{GEN a, GEN b,long v} creates the degree 1 \typ{POL}
$a \kbd{pol\_x}(v) + b$
\fun{GEN}{zeropol}{long v} is identical \kbd{pol\_0}.
\fun{GEN}{zerocol}{long n} creates a \typ{COL} with \kbd{n} components set to
\kbd{gen\_0}.
\fun{GEN}{zerovec}{long n} creates a \typ{VEC} with \kbd{n} components set to
\kbd{gen\_0}.
\fun{GEN}{col_ei}{long n, long i} creates a \typ{COL} with \kbd{n} components
set to \kbd{gen\_0}, but for the \kbd{i}-th one which is set to \kbd{gen\_1}
(\kbd{i}-th vector in the canonical basis).
\fun{GEN}{vec_ei}{long n, long i} creates a \typ{VEC} with \kbd{n} components
set to \kbd{gen\_0}, but for the \kbd{i}-th one which is set to \kbd{gen\_1}
(\kbd{i}-th vector in the canonical basis).
\fun{GEN}{trivial_fact}{void} returns the trivial (empty) factorization
\kbd{Mat([]\til,[]\til)}
\fun{GEN}{prime_fact}{GEN x} returns the factorization
\kbd{Mat([x]\til, [1]\til)}
\fun{GEN}{Rg_col_ei}{GEN x, long n, long i} creates a \typ{COL} with \kbd{n}
components set to \kbd{gen\_0}, but for the \kbd{i}-th one which is set to
\kbd{x}.
\fun{GEN}{vecsmall_ei}{long n, long i} creates a \typ{VECSMALL} with \kbd{n}
components set to \kbd{0}, but for the \kbd{i}-th one which is set to
\kbd{1} (\kbd{i}-th vector in the canonical basis).
\fun{GEN}{scalarcol}{GEN x, long n} creates a \typ{COL} with \kbd{n}
components set to \kbd{gen\_0}, but the first one which is set to a copy
of \kbd{x}. (The name comes from \kbd{RgV\_isscalar}.)
\smallskip
\fun{GEN}{mkintmodu}{ulong x, ulong y} creates the \typ{INTMOD} \kbd{Mod(x, y)}.
The inputs must satisfy $x < y$.
\fun{GEN}{zeromat}{long m, long n} creates a \typ{MAT} with \kbd{m} x \kbd{n}
components set to \kbd{gen\_0}. Note that the result allocates a
\emph{single} column, so modifying an entry in one column modifies it in
all columns. To fully allocate a matrix initialized with zero entries,
use \kbd{zeromatcopy}.
\fun{GEN}{zeromatcopy}{long m, long n} creates a \typ{MAT} with \kbd{m} x
\kbd{n} components set to \kbd{gen\_0}.
\fun{GEN}{matid}{long n} identity matrix in dimension \kbd{n} (with
components \kbd{gen\_1} and\kbd{gen\_0}).
\fun{GEN}{scalarmat}{GEN x, long n} scalar matrix, \kbd{x} times the identity.
\fun{GEN}{scalarmat_s}{long x, long n} scalar matrix, \kbd{stoi(x)} times
the identity.
\fun{GEN}{vecrange}{GEN a, GEN b} returns the \typ{VEC} $[a..b]$.
\fun{GEN}{vecrangess}{long a, long b} returns the \typ{VEC} $[a..b]$.
\smallskip
See also next section for analogs of the following functions:
\fun{GEN}{mkfraccopy}{GEN x, GEN y} creates the \typ{FRAC} $x/y$. Assumes that
$y > 1$ and $(x,y) = 1$.
\fun{GEN}{mkrfraccopy}{GEN x, GEN y} creates the \typ{RFRAC} $x/y$.
Assumes that $y$ is a \typ{POL}, $x$ a compatible type whose variable has
lower or same priority, with $(x,y) = 1$.
\fun{GEN}{mkcolcopy}{GEN x} creates a 1-dimensional \typ{COL} containing
\kbd{x}.
\fun{GEN}{mkmatcopy}{GEN x} creates a 1-by-1 \typ{MAT} wrapping the \typ{COL}
\kbd{x}.
\fun{GEN}{mkveccopy}{GEN x} creates a 1-dimensional \typ{VEC} containing
\kbd{x}.
\fun{GEN}{mkvec2copy}{GEN x, GEN y} creates a 2-dimensional \typ{VEC} equal
to \kbd{[x,y]}.
\fun{GEN}{mkcols}{long x} creates a 1-dimensional \typ{COL}
containing \kbd{stoi(x)}.
\fun{GEN}{mkcol2s}{long x, long y} creates a 2-dimensional \typ{COL}
containing \kbd{[stoi(x), stoi(y)]~}.
\fun{GEN}{mkcol3s}{long x, long y, long z} creates a 3-dimensional \typ{COL}
containing \kbd{[stoi(x), stoi(y), stoi(z)]~}.
\fun{GEN}{mkcol4s}{long x, long y, long z, long t} creates a 4-dimensional
\typ{COL} containing \kbd{[stoi(x), stoi(y), stoi(z), stoi(t)]~}.
\fun{GEN}{mkvecs}{long x} creates a 1-dimensional \typ{VEC}
containing \kbd{stoi(x)}.
\fun{GEN}{mkvec2s}{long x, long y} creates a 2-dimensional \typ{VEC}
containing \kbd{[stoi(x), stoi(y)]}.
\fun{GEN}{mkvec3s}{long x, long y, long z} creates a 3-dimensional \typ{VEC}
containing \kbd{[stoi(x), stoi(y), stoi(z)]}.
\fun{GEN}{mkvec4s}{long x, long y, long z, long t} creates a 4-dimensional
\typ{VEC} containing \kbd{[stoi(x), stoi(y), stoi(z), stoi(t)]}.
\fun{GEN}{mkvecsmall}{long x} creates a 1-dimensional \typ{VECSMALL}
containing \kbd{x}.
\fun{GEN}{mkvecsmall2}{long x, long y} creates a 2-dimensional \typ{VECSMALL}
containing \kbd{[x, y]}.
\fun{GEN}{mkvecsmall3}{long x, long y, long z} creates a 3-dimensional
\typ{VECSMALL} containing \kbd{[x, y, z]}.
\fun{GEN}{mkvecsmall4}{long x, long y, long z, long t} creates a 4-dimensional
\typ{VECSMALL} containing \kbd{[x, y, z, t]}.
\fun{GEN}{mkvecsmalln}{long n, ...} returns the \typ{VECSMALL} whose $n$
coefficients (\kbd{long}) follow.
\emph{Warning:} since this is a variadic function, C type promotion is not
performed on the arguments by the compiler, thus you have to make sure that all
the arguments are of type \kbd{long}, in particular integer constants need to
be written with the \kbd{L} suffix: \kbd{mkvecsmalln(2, 1L, 2L)} is correct,
but \kbd{mkvecsmalln(2, 1, 2)} is not.
\subsec{Unclean constructors}\label{se:unclean}
Contrary to the policy of general PARI functions, the functions in this
subsection do \emph{not} copy their arguments, nor do they produce an object
a priori suitable for \tet{gerepileupto}. In particular, they are
faster than their clean equivalent (which may not exist). \emph{If} you
restrict their arguments to universal objects (e.g \kbd{gen\_0}),
then the above warning does not apply.
\fun{GEN}{mkcomplex}{GEN x, GEN y} creates the \typ{COMPLEX} $x + iy$.
\fun{GEN}{mulcxI}{GEN x} creates the \typ{COMPLEX} $ix$. The result in
general contains data pointing back to the original $x$. Use \kbd{gcopy} if
this is a problem. But in most cases, the result is to be used immediately,
before $x$ is subject to garbage collection.
\fun{GEN}{mulcxmI}{GEN x}, as \tet{mulcxI}, but returns the \typ{COMPLEX}
$-ix$.
\fun{GEN}{mkquad}{GEN n, GEN x, GEN y} creates the \typ{QUAD} $x + yw$,
where $w$ is a root of $n$, which is of the form \kbd{quadpoly(D)}.
\fun{GEN}{mkfrac}{GEN x, GEN y} creates the \typ{FRAC} $x/y$. Assumes that
$y > 1$ and $(x,y) = 1$.
\fun{GEN}{mkrfrac}{GEN x, GEN y} creates the \typ{RFRAC} $x/y$. Assumes
that $y$ is a \typ{POL}, $x$ a compatible type whose variable has lower
or same priority, with $(x,y) = 1$.
\fun{GEN}{mkcol}{GEN x} creates a 1-dimensional \typ{COL} containing \kbd{x}.
\fun{GEN}{mkcol2}{GEN x, GEN y} creates a 2-dimensional \typ{COL} equal to
\kbd{[x,y]}.
\fun{GEN}{mkcol3}{GEN x, GEN y, GEN z} creates a 3-dimensional \typ{COL}
equal to \kbd{[x,y,z]}.
\fun{GEN}{mkcol4}{GEN x, GEN y, GEN z, GEN t} creates a 4-dimensional \typ{COL}
equal to \kbd{[x,y,z,t]}.
\fun{GEN}{mkcol5}{GEN a1, GEN a2, GEN a3, GEN a4, GEN a5} creates the
5-dimensional \typ{COL} equal to $[a_1,a_2,a_3,a_4,a_5]$.
\fun{GEN}{mkcol6}{GEN x, GEN y, GEN z, GEN t, GEN u, GEN v}
creates the $6$-dimensional column vector \kbd{[x,y,z,t,u,v]~}.
\fun{GEN}{mkintmod}{GEN x, GEN y} creates the \typ{INTMOD} \kbd{Mod(x, y)}.
The inputs must be \typ{INT}s satisfying $0 \leq x < y$.
\fun{GEN}{mkpolmod}{GEN x, GEN y} creates the \typ{POLMOD} \kbd{Mod(x, y)}.
The input must satisfy $\deg x < \deg y$ with respect to the main variable of
the \typ{POL} $y$. $x$ may be a scalar.
\fun{GEN}{mkmat}{GEN x} creates a 1-column \typ{MAT} with column $x$
(a \typ{COL}).
\fun{GEN}{mkmat2}{GEN x, GEN y} creates a 2-column \typ{MAT} with columns
$x$, $y$ (\typ{COL}s of the same length).
\fun{GEN}{mkmat3}{GEN x, GEN y, GEN z} creates a 3-column \typ{MAT} with columns
$x$, $y$, $z$ (\typ{COL}s of the same length).
\fun{GEN}{mkmat4}{GEN x, GEN y, GEN z, GEN t} creates a 4-column \typ{MAT}
with columns $x$, $y$, $z$, $t$ (\typ{COL}s of the same length).
\fun{GEN}{mkmat5}{GEN x, GEN y, GEN z, GEN t, GEN u} creates a 5-column
\typ{MAT} with columns $x$, $y$, $z$, $t$, $u$ (\typ{COL}s of the same
length).
\fun{GEN}{mkvec}{GEN x} creates a 1-dimensional \typ{VEC} containing \kbd{x}.
\fun{GEN}{mkvec2}{GEN x, GEN y} creates a 2-dimensional \typ{VEC} equal to
\kbd{[x,y]}.
\fun{GEN}{mkvec3}{GEN x, GEN y, GEN z} creates a 3-dimensional \typ{VEC}
equal to \kbd{[x,y,z]}.
\fun{GEN}{mkvec4}{GEN x, GEN y, GEN z, GEN t} creates a 4-dimensional \typ{VEC}
equal to \kbd{[x,y,z,t]}.
\fun{GEN}{mkvec5}{GEN a1, GEN a2, GEN a3, GEN a4, GEN a5} creates the
5-dimensional \typ{VEC} equal to $[a_1,a_2,a_3,a_4,a_5]$.
\fun{GEN}{mkqfi}{GEN x, GEN y, GEN z} creates \typ{QFI} equal
to \kbd{Qfb(x,y,z)}, assuming that $y^2 - 4xz < 0$.
\fun{GEN}{mkerr}{long n} returns a \typ{ERROR} with error code $n$
(\kbd{enum err\_list}).
\smallskip
It is sometimes useful to return such a container whose entries are not
universal objects, but nonetheless suitable for \tet{gerepileupto}.
If the entries can be computed at the time the result is returned, the
following macros achieve this effect:
\fun{GEN}{retmkvec}{GEN x} returns a vector containing the single entry $x$,
where the vector root is created just before the function argument $x$ is
evaluated. Expands to
\bprog
{
GEN res = cgetg(2, t_VEC);
gel(res, 1) = x; /* @Ccom or rather, the \emph{expansion} of $x$ */
return res;
}
@eprog\noindent For instance, the \kbd{retmkvec(gcopy(x))} returns a clean
object, just like \kbd{return mkveccopy(x)} would.
\fun{GEN}{retmkvec2}{GEN x, GEN y}
returns the $2$-dimensional \typ{VEC} \kbd{[x,y]}.
\fun{GEN}{retmkvec3}{GEN x, GEN y, GEN z}
returns the $3$-dimensional \typ{VEC} \kbd{[x,y,z]}.
\fun{GEN}{retmkvec4}{GEN x, GEN y, GEN z, GEN t}
returns the $4$-dimensional \typ{VEC} \kbd{[x,y,z,t]}.
\fun{GEN}{retmkvec5}{GEN x, GEN y, GEN z, GEN t, GEN u}
returns the $5$-dimensional row vector \kbd{[x,y,z,t,u]}.
\fun{GEN}{retconst_vec}{long n, GEN x}
returns the $n$-dimensional \typ{VEC} whose entries are constant and all
equal to $x$.
\fun{GEN}{retmkcol}{GEN x}
returns the $1$-dimensional \typ{COL} \kbd{[x]~}.
\fun{GEN}{retmkcol2}{GEN x, GEN y}
returns the $2$-dimensional \typ{COL} \kbd{[x,y]~}.
\fun{GEN}{retmkcol3}{GEN x, GEN y, GEN z}
returns the $3$-dimensional \typ{COL} \kbd{[x,y,z]~}.
\fun{GEN}{retmkcol4}{GEN x, GEN y, GEN z, GEN t}
returns the $4$-dimensional \typ{COL} \kbd{[x,y,z,t]~}.
\fun{GEN}{retmkcol5}{GEN x, GEN y, GEN z, GEN t, GEN u}
returns the $5$-dimensional column vector \kbd{[x,y,z,t,u]~}.
\fun{GEN}{retmkcol6}{GEN x, GEN y, GEN z, GEN t, GEN u, GEN v}
returns the $6$-dimensional column vector \kbd{[x,y,z,t,u,v]~}.
\fun{GEN}{retconst_col}{long n, GEN x}
returns the $n$-dimensional \typ{COL} whose entries are constant and all
equal to $x$.
\fun{GEN}{retmkmat}{GEN x}
returns the $1$-column \typ{MAT} with colum \kbd{x}.
\fun{GEN}{retmkmat2}{GEN x, GEN y}
returns the $2$-column \typ{MAT} with columns \kbd{x}, \kbd{y}.
\fun{GEN}{retmkmat3}{GEN x, GEN y, GEN z}
returns the $3$-dimensional \typ{MAT} with columns
\kbd{x}, \kbd{y}, \kbd{z}.
\fun{GEN}{retmkmat4}{GEN x, GEN y, GEN z, GEN t}
returns the $4$-dimensional \typ{MAT} with columns
\kbd{x}, \kbd{y}, \kbd{z}, \kbd{t}.
\fun{GEN}{retmkmat5}{GEN x, GEN y, GEN z, GEN t, GEN u}
returns the $5$-dimensional \typ{MAT} with columns
\kbd{x}, \kbd{y}, \kbd{z}, \kbd{t}, \kbd{u}.
\fun{GEN}{retmkcomplex}{GEN x, GEN y}
returns the \typ{COMPLEX} \kbd{x + I*y}.
\fun{GEN}{retmkfrac}{GEN x, GEN y}
returns the \typ{FRAC} \kbd{x / y}. Assume $x$ and $y$ are coprime and $y > 1$.
\fun{GEN}{retmkrfrac}{GEN x, GEN y}
returns the \typ{RFRAC} \kbd{x / y}. Assume $x$ and $y$ are coprime and more
generally that the rational function cannot be simplified.
\fun{GEN}{retmkintmod}{GEN x, GEN y}
returns the \typ{INTMOD} \kbd{Mod(x, y)}.
\fun{GEN}{retmkqfi}{GEN a, GEN b, GEN c}.
\fun{GEN}{retmkqfr}{GEN a, GEN b, GEN c, GEN d}.
\fun{GEN}{retmkquad}{GEN n, GEN a, GEN b}.
\fun{GEN}{retmkpolmod}{GEN x, GEN y}
returns the \typ{POLMOD} \kbd{Mod(x, y)}.
\smallskip
\fun{GEN}{mkintn}{long n, ...} returns the non-negative \typ{INT} whose
development in base $2^{32}$ is given by the following $n$ 32bit-words
(\kbd{unsigned int}).
\bprog
mkintn(3, a2, a1, a0);
@eprog
\noindent returns $a_2 2^{64} + a_1 2^{32} + a_0$.
\fun{GEN}{mkpoln}{long n, ...} Returns the \typ{POL} whose $n$
coefficients (\kbd{GEN}) follow, in order of decreasing degree.
\bprog
mkpoln(3, gen_1, gen_2, gen_0);
@eprog
\noindent returns the polynomial $X^2 + 2X$ (in variable $0$, use
\tet{setvarn} if you want other variable numbers). Beware that $n$ is the
number of coefficients, hence \emph{one more} than the degree.
\fun{GEN}{mkvecn}{long n, ...} returns the \typ{VEC} whose $n$
coefficients (\kbd{GEN}) follow.
\fun{GEN}{mkcoln}{long n, ...} returns the \typ{COL} whose $n$
coefficients (\kbd{GEN}) follow.
\fun{GEN}{scalarcol_shallow}{GEN x, long n} creates a \typ{COL} with \kbd{n}
components set to \kbd{gen\_0}, but the first one which is set to a shallow
copy of \kbd{x}. (The name comes from \kbd{RgV\_isscalar}.)
\fun{GEN}{scalarmat_shallow}{GEN x, long n} creates an $n\times n$
scalar matrix whose diagonal is set to shallow copies of the scalar \kbd{x}.
\fun{GEN}{diagonal_shallow}{GEN x} returns a diagonal matrix whose diagonal
is given by the vector $x$. Shallow function.
\fun{GEN}{scalarpol_shallow}{GEN a, long v} returns the degree 0
\typ{POL} $a \kbd{pol\_x}(v)^0$.
\fun{GEN}{deg1pol_shallow}{GEN a, GEN b,long v} returns the degree 1
\typ{POL} $a\kbd{pol\_x}(v) + b$
\fun{GEN}{zeropadic_shallow}{GEN p, long n} returns a (shallow) $0$
\typ{PADIC} equal to $O(\kbd{p}^\kbd{n})$.
\subsec{From roots to polynomials}
\fun{GEN}{deg1_from_roots}{GEN L, long v} given a vector $L$ of scalars,
returns the vector of monic linear polynomials in variable $v$ whose roots
are the $L[i]$, i.e. the $x - L[i]$.
\fun{GEN}{roots_from_deg1}{GEN L} given a vector $L$ of monic linear
polynomials, return their roots, i.e. the $- L[i](0)$.
\fun{GEN}{roots_to_pol}{GEN L, long v} given a vector of scalars $L$,
returns the monic polynomial in variable $v$ whose roots are the $L[i]$.
Leaves some garbage on stack, but suitable for \kbd{gerepileupto}.
\fun{GEN}{roots_to_pol_r1}{GEN L, long v, long r1} as \kbd{roots\_to\_pol}
assuming the first $r_1$ roots are ``real'', and the following ones are
representatives of conjugate pairs of ``complex'' roots. So if $L$ has $r_1 +
r_2$ elements, we obtain a polynomial of degree $r_1 + 2r_2$. In most
applications, the roots are indeed real and complex, but the implementation
assumes only that each ``complex'' root $z$ introduces a quadratic
factor $X^2 - \kbd{trace}(z) X + \kbd{norm}(z)$.
Leaves some garbage on stack, but suitable for \kbd{gerepileupto}.
\section{Integer parts}
\fun{GEN}{gfloor}{GEN x} creates the floor of~\kbd{x}, i.e.\ the (true)
integral part.
\fun{GEN}{gfrac}{GEN x} creates the fractional part of~\kbd{x}, i.e.\ \kbd{x}
minus the floor of~\kbd{x}.
\fun{GEN}{gceil}{GEN x} creates the ceiling of~\kbd{x}.
\fun{GEN}{ground}{GEN x} rounds towards~$+\infty$ the components of \kbd{x}
to the nearest integers.
\fun{GEN}{grndtoi}{GEN x, long *e} same as \kbd{ground}, but in addition sets
\kbd{*e} to the binary exponent of $x - \kbd{ground}(x)$. If this is
positive, all significant bits are lost. This kind of situation raises an
error message in \key{ground} but not in \key{grndtoi}.
\fun{GEN}{gtrunc}{GEN x} truncates~\kbd{x}. This is the false integer part
if \kbd{x} is a real number (i.e.~the unique integer closest to \kbd{x} among
those between 0 and~\kbd{x}). If \kbd{x} is a \typ{SER}, it is truncated
to a \typ{POL}; if \kbd{x} is a \typ{RFRAC}, this takes the polynomial part.
\fun{GEN}{gtrunc2n}{GEN x, long n} creates the floor of~$2^n$\kbd{x}, this is
only implemented for \typ{INT}, \typ{REAL}, \typ{FRAC} and \typ{COMPLEX} of
those.
\fun{GEN}{gcvtoi}{GEN x, long *e} analogous to \key{grndtoi} for
\typ{REAL} inputs except that rounding is replaced by truncation. Also applies
componentwise for vector or matrix inputs; otherwise, sets \kbd{*e} to
\kbd{-HIGHEXPOBIT} (infinite real accuracy) and return \kbd{gtrunc(x)}.
\section{Valuation and shift}
\fun{GEN}{gshift[z]}{GEN x, long n[, GEN z]} yields the result of shifting
(the components of) \kbd{x} left by \kbd{n} (if \kbd{n} is non-negative)
or right by $-\kbd{n}$ (if \kbd{n} is negative). Applies only to \typ{INT}
and vectors/matrices of such. For other types, it is simply multiplication
by~$2^{\kbd{n}}$.
\fun{GEN}{gmul2n[z]}{GEN x, long n[, GEN z]} yields the product of \kbd{x}
and~$2^{\kbd{n}}$. This is different from \kbd{gshift} when \kbd{n} is negative
and \kbd{x} is a \typ{INT}: \key{gshift} truncates, while \key{gmul2n}
creates a fraction if necessary.
\fun{long}{gvaluation}{GEN x, GEN p} returns the greatest exponent~$e$ such that
$\kbd{p}^e$ divides~\kbd{x}, when this makes sense.
\fun{long}{gval}{GEN x, long v} returns the highest power of the variable
number \kbd{v} dividing the \typ{POL}~\kbd{x}.
\section{Comparison operators}
\subsec{Generic}
\fun{long}{gcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y}: returns
$1$ ($x > y$), $0$ ($x = y$) or $-1$ ($x < y$). Two \typ{STR}
are compared using the standard lexicographic ordering; a \typ{STR}
is considered strictly larger than any non-string type. If neither
$x$ nor $y$ is a \typ{STR}, their allowed types are \typ{INT}, \typ{REAL}
or \typ{FRAC}. Used \tet{cmp_universal} to compare arbitrary \kbd{GEN}s.
\fun{long}{lexcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y} for the
lexicographic ordering; when comparing objects of different lengths whose
components are all equal up to the smallest of their length, consider that
the longest is largest. Consider scalars as $1$-component vectors. Return
\kbd{gcmp}$(x,y)$ if both arguments are scalars.
\fun{int}{gequalX}{GEN x} return 1 (true) if \kbd{x} is a variable
(monomial of degree $1$ with \typ{INT} coefficients equal to $1$ and $0$),
and $0$ otherwise
\fun{long}{gequal}{GEN x, GEN y} returns 1 (true) if \kbd{x} is equal
to~\kbd{y}, 0~otherwise. A priori, this makes sense only if \kbd{x} and
\kbd{y} have the same type, in which case they are recursively compared
componentwise. When the types are different, a \kbd{true} result
means that \kbd{x - y} was successfully computed and that
\kbd{gequal0} found it equal to $0$. In particular
\bprog
gequal(cgetg(1, t_VEC), gen_0)
@eprog\noindent is true, and the relation is not transitive. E.g.~an empty
\typ{COL} and an empty \typ{VEC} are not equal but are both equal to
\kbd{gen\_0}.
\fun{long}{gidentical}{GEN x, GEN y} returns 1 (true) if \kbd{x} is identical
to~\kbd{y}, 0~otherwise. In particular, the types and length of \kbd{x} and
\kbd{y} must be equal. This test is much stricter than \tet{gequal}, in
particular, \typ{REAL} with different accuracies are tested different. This
relation is transitive.
\subsec{Comparison with a small integer}
\fun{int}{isexactzero}{GEN x} returns 1 (true) if \kbd{x} is exactly equal
to~0 (including \typ{INTMOD}s like \kbd{Mod(0,2)}), and 0~(false) otherwise.
This includes recursive objects, for instance vectors, whose components are $0$.
\fun{GEN}{gisexactzero}{GEN x} returns \kbd{NULL} unless \kbd{x} is exactly
equal to~0 (as per \kbd{isexactzero}). When \kbd{x} is an exact zero
return the attached scalar zero as a \typ{INT} (\kbd{gen\_0}),
a \typ{INTMOD} (\kbd{Mod(0,$N$)} for the largest possible $N$) or a
\typ{FFELT}.
\fun{int}{isrationalzero}{GEN x} returns 1 (true) if \kbd{x} is equal
to an integer~0 (excluding \typ{INTMOD}s like \kbd{Mod(0,2)}), and 0~(false)
otherwise. Contrary to \kbd{isintzero}, this includes recursive objects, for
instance vectors, whose components are $0$.
\fun{int}{ismpzero}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT} or
a \typ{REAL} equal to~0.
\fun{int}{isintzero}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT}
equal to~0.
\fun{int}{isint1}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT}
equal to~1.
\fun{int}{isintm1}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT}
equal to~$-1$.
\fun{int}{equali1}{GEN n}
Assuming that \kbd{x} is a \typ{INT}, return 1 (true) if \kbd{x} is equal to
$1$, and return 0~(false) otherwise.
\fun{int}{equalim1}{GEN n}
Assuming that \kbd{x} is a \typ{INT}, return 1 (true) if \kbd{x} is equal to
$-1$, and return 0~(false) otherwise.
\fun{int}{is_pm1}{GEN x}. Assuming that \kbd{x} is a
\emph{non-zero} \typ{INT}, return 1 (true) if \kbd{x} is equal to $-1$ or
$1$, and return 0~(false) otherwise.
\fun{int}{gequal0}{GEN x} returns 1 (true) if \kbd{x} is equal to~0, 0~(false)
otherwise.
\fun{int}{gequal1}{GEN x} returns 1 (true) if \kbd{x} is equal to~1, 0~(false)
otherwise.
\fun{int}{gequalm1}{GEN x} returns 1 (true) if \kbd{x} is equal to~$-1$,
0~(false) otherwise.
\fun{long}{gcmpsg}{long s, GEN x}
\fun{long}{gcmpgs}{GEN x, long s} comparison of \kbd{x} with the
\kbd{long}~\kbd{s}.
\fun{GEN}{gmaxsg}{long s, GEN x}
\fun{GEN}{gmaxgs}{GEN x, long s} returns the largest of \kbd{x} and
the \kbd{long}~\kbd{s} (converted to \kbd{GEN})
\fun{GEN}{gminsg}{long s, GEN x}
\fun{GEN}{gmings}{GEN x, long s} returns the smallest of \kbd{x} and the
\kbd{long}~\kbd{s} (converted to \kbd{GEN})
\fun{long}{gequalsg}{long s, GEN x}
\fun{long}{gequalgs}{GEN x, long s} returns 1 (true) if \kbd{x} is equal to
the \kbd{long}~\kbd{s}, 0~otherwise.
\section{Miscellaneous Boolean functions}
\fun{int}{isrationalzeroscalar}{GEN x} equivalent to, but faster than,
\bprog
is_scalar_t(typ(x)) && isrationalzero(x)
@eprog
\fun{int}{isinexact}{GEN x} returns 1 (true) if $x$ has an inexact
component, and 0 (false) otherwise.
\fun{int}{isinexactreal}{GEN x} return 1 if $x$ has an inexact
\typ{REAL} component, and 0 otherwise.
\fun{int}{isrealappr}{GEN x, long e} applies (recursively) to complex inputs;
returns $1$ if $x$ is approximately real to the bit accuracy $e$, and 0
otherwise. This means that any \typ{COMPLEX} component must have imaginary part
$t$ satisfying $\kbd{gexpo}(t) < e$.
\fun{int}{isint}{GEN x, GEN *n} returns 0 (false) if \kbd{x} does not round
to an integer. Otherwise, returns 1 (true) and set \kbd{n} to the rounded
value.
\fun{int}{issmall}{GEN x, long *n} returns 0 (false) if \kbd{x} does not
round to a small integer (suitable for \kbd{itos}). Otherwise, returns 1
(true) and set \kbd{n} to the rounded value.
\fun{long}{iscomplex}{GEN x} returns 1 (true) if \kbd{x} is a complex number
(of component types embeddable into the reals) but is not itself real, 0~if
\kbd{x} is a real (not necessarily of type \typ{REAL}), or raises an error if
\kbd{x} is not embeddable into the complex numbers.
\subsec{Obsolete}
The following less convenient comparison functions and Boolean operators were
used by the historical GP interpreter. They are provided for backward
compatibility only and should not be used:
\fun{GEN}{gle}{GEN x, GEN y}
\fun{GEN}{glt}{GEN x, GEN y}
\fun{GEN}{gge}{GEN x, GEN y}
\fun{GEN}{ggt}{GEN x, GEN y}
\fun{GEN}{geq}{GEN x, GEN y}
\fun{GEN}{gne}{GEN x, GEN y}
\fun{GEN}{gor}{GEN x, GEN y}
\fun{GEN}{gand}{GEN x, GEN y}
\fun{GEN}{gnot}{GEN x, GEN y}
\section{Sorting}
\subsec{Basic sort}
\fun{GEN}{sort}{GEN x} sorts the vector \kbd{x} in ascending order using a
mergesort algorithm, and \kbd{gcmp} as the underlying comparison routine
(returns the sorted vector). This routine copies all components of $x$, use
\kbd{gen\_sort\_inplace} for a more memory-efficient function.
\fun{GEN}{lexsort}{GEN x}, as \kbd{sort}, using \kbd{lexcmp} instead of
\kbd{gcmp} as the underlying comparison routine.
\fun{GEN}{vecsort}{GEN x, GEN k}, as \kbd{sort}, but sorts the
vector \kbd{x} in ascending \emph{lexicographic} order, according to the
entries of the \typ{VECSMALL} \kbd{k}. For example, if $\kbd{k} = [2,1,3]$,
sorting will be done with respect to the second component, and when these
are equal, with respect to the first, and when these are equal, with
respect to the third.
\subsec{Indirect sorting}
\fun{GEN}{indexsort}{GEN x} as \kbd{sort}, but only returns the permutation
which, applied to \kbd{x}, would sort the vector. The result is a
\typ{VECSMALL}.
\fun{GEN}{indexlexsort}{GEN x}, as \kbd{indexsort}, using \kbd{lexcmp}
instead of \kbd{gcmp} as the underlying comparison routine.
\fun{GEN}{indexvecsort}{GEN x, GEN k}, as \kbd{vecsort}, but only
returns the permutation that would sort the vector \kbd{x}.
\fun{long}{vecindexmin}{GEN x} returns the index for a maximal element of $x$
(\typ{VEC}, \typ{COL} or \typ{VECSMALL}).
\fun{long}{vecindexmax}{GEN x} returns the index for a maximal element of $x$
(\typ{VEC}, \typ{COL} or \typ{VECSMALL}).
\fun{long}{vecindexmax}{GEN x}
\subsec{Generic sort and search} The following routines allow to use an
arbitrary comparison function \kbd{int (*cmp)(void* data, GEN x, GEN y)},
such that \kbd{cmp(data,x,y)} returns a negative result if $x
< y$, a positive one if $x > y$ and 0 if $x = y$. The \kbd{data} argument is
there in case your \kbd{cmp} requires additional context.
\fun{GEN}{gen_sort}{GEN x, void *data, int (*cmp)(void *,GEN,GEN)}, as
\kbd{sort}, with an explicit comparison routine.
\fun{GEN}{gen_sort_uniq}{GEN x, void *data, int (*cmp)(void *,GEN,GEN)}, as
\kbd{gen\_sort}, removing duplicate entries.
\fun{GEN}{gen_indexsort}{GEN x, void *data, int (*cmp)(void*,GEN,GEN)},
as \kbd{indexsort}.
\fun{GEN}{gen_indexsort_uniq}{GEN x, void *data, int (*cmp)(void*,GEN,GEN)},
as \kbd{indexsort}, removing duplicate entries.
\fun{void}{gen_sort_inplace}{GEN x, void *data, int (*cmp)(void*,GEN,GEN), GEN
*perm} sort \kbd{x} in place, without copying its components. If
\kbd{perm} is non-\kbd{NULL}, it is set to the permutation that would sort
the original \kbd{x}.
\fun{GEN}{gen_setminus}{GEN A, GEN B, int (*cmp)(GEN,GEN)} given two sorted
vectors $A$ and $B$, returns the vector of elements of $A$ not belonging to
$B$.
\fun{GEN}{sort_factor}{GEN y, void *data, int (*cmp)(void *,GEN,GEN)}:
assuming \kbd{y} is a factorization matrix, sorts its rows in place (no copy
is made) according to the comparison function \kbd{cmp} applied to its first
column.
\fun{GEN}{merge_sort_uniq}{GEN x,GEN y, void *data, int (*cmp)(void *,GEN,GEN)}
assuming \kbd{x} and \kbd{y} are sorted vectors, with respect to the \kbd{cmp}
comparison function, return a sorted concatenation, with duplicates removed.
\fun{GEN}{merge_factor}{GEN fx, GEN fy, void *data, int (*cmp)(void *,GEN,GEN)}
let \kbd{fx} and \kbd{fy} be factorization matrices for $X$ and $Y$
sorted with respect to the comparison function \kbd{cmp} (see
\tet{sort_factor}), returns the factorization of $X * Y$.
\fun{long}{gen_search}{GEN v, GEN y, long flag, void *data, int
(*cmp)(void*,GEN,GEN)}.\hfil\break
Let \kbd{v} be a vector sorted according to \kbd{cmp(data,a,b)}; look for an
index $i$ such that \kbd{v[$i$]} is equal to \kbd{y}. \kbd{flag} has the
same meaning as in \kbd{setsearch}: if \kbd{flag} is 0, return $i$ if it
exists and 0 otherwise; if \kbd{flag} is non-zero, return $0$ if $i$ exists
and the index where \kbd{y} should be inserted otherwise.
\fun{long}{tablesearch}{GEN T, GEN x, int (*cmp)(GEN,GEN)} is a faster
implementation for the common case \kbd{gen\_search(T,x,0,cmp,cmp\_nodata)}.
\subsec{Further useful comparison functions}
\fun{int}{cmp_universal}{GEN x, GEN y} a somewhat arbitrary universal
comparison function, devoid of sensible mathematical meaning. It is
transitive, and returns 0 if and only if \kbd{gidentical(x,y)} is true.
Useful to sort and search vectors of arbitrary data.
\fun{int}{cmp_nodata}{void *data, GEN x, GEN y}. This function is a hack
used to pass an existing basic comparison function lacking the \kbd{data}
argument, i.e. with prototype \kbd{int (*cmp)(GEN x, GEN y)}. Instead of
\kbd{gen\_sort(x, NULL, cmp)} which may or may not work depending on how your
compiler handles typecasts between incompatible function pointers, one should
use \kbd{gen\_sort(x, (void*)cmp, cmp\_nodata)}.
Here are a few basic comparison functions, to be used with \kbd{cmp\_nodata}:
\fun{int}{ZV_cmp}{GEN x, GEN y} compare two \kbd{ZV}, which we assume have
the same length (lexicographic order).
\fun{int}{cmp_Flx}{GEN x, GEN y} compare two \kbd{Flx}, which we assume
have the same main variable (lexicographic order).
\fun{int}{cmp_RgX}{GEN x, GEN y} compare two polynomials, which we assume
have the same main variable (lexicographic order). The coefficients are
compared using \kbd{gcmp}.
\fun{int}{cmp_prime_over_p}{GEN x, GEN y} compare two prime ideals, which
we assume divide the same prime number. The comparison is ad hoc but orders
according to increasing residue degrees.
\fun{int}{cmp_prime_ideal}{GEN x, GEN y} compare two prime ideals in the same
\var{nf}. Orders by increasing primes, breaking ties using
\kbd{cmp\_prime\_over\_p}.
\fun{int}{cmp_padic}{GEN x, GEN y} compare two \typ{PADIC} (for the same
prime $p$).
Finally a more elaborate comparison function:
\fun{int}{gen_cmp_RgX}{void *data, GEN x, GEN y} compare two polynomials,
ordering first by increasing degree, then according to the coefficient
comparison function:
\bprog
int (*cmp_coeff)(GEN,GEN) = (int(*)(GEN,GEN)) data;
@eprog
\section{Divisibility, Euclidean division}
\fun{GEN}{gdivexact}{GEN x, GEN y} returns the quotient $\kbd{x} / \kbd{y}$,
assuming $\kbd{y}$ divides $\kbd{x}$. Not stack clean if $y = 1$
(we return $x$, not a copy).
\fun{int}{gdvd}{GEN x, GEN y} returns 1 (true) if \kbd{y} divides~\kbd{x},
0~otherwise.
\fun{GEN}{gdiventres}{GEN x, GEN y} creates a 2-component vertical
vector whose components are the true Euclidean quotient and remainder
of \kbd{x} and~\kbd{y}.
\fun{GEN}{gdivent[z]}{GEN x, GEN y[, GEN z]} yields the true Euclidean
quotient of \kbd{x} and the \typ{INT} or \typ{POL}~\kbd{y}, as per
the \kbd{\bs} GP operator.
\fun{GEN}{gdiventsg}{long s, GEN y[, GEN z]}, as \kbd{gdivent}
except that \kbd{x} is a \kbd{long}.
\fun{GEN}{gdiventgs[z]}{GEN x, long s[, GEN z]}, as \kbd{gdivent}
except that \kbd{y} is a \kbd{long}.
\fun{GEN}{gmod[z]}{GEN x, GEN y[, GEN z]} yields the remainder of \kbd{x}
modulo the \typ{INT} or \typ{POL}~\kbd{y}, as per the \kbd{\%} GP operator.
A \typ{REAL} or \typ{FRAC} \kbd{y} is also allowed, in which case the
remainder is the unique real $r$ such that $0 \leq r < |\kbd{y}|$ and
$\kbd{y} = q\kbd{x} + r$ for some (in fact unique) integer $q$.
\fun{GEN}{gmodsg}{long s, GEN y[, GEN z]} as \kbd{gmod}, except \kbd{x} is
a \kbd{long}.
\fun{GEN}{gmodgs}{GEN x, long s[, GEN z]} as \kbd{gmod}, except \kbd{y} is
a \kbd{long}.
\fun{GEN}{gdivmod}{GEN x, GEN y, GEN *r} If \kbd{r} is not equal to
\kbd{NULL} or \kbd{ONLY\_REM}, creates the (false) Euclidean quotient of
\kbd{x} and~\kbd{y}, and puts (the address of) the remainder into~\kbd{*r}.
If \kbd{r} is equal to \kbd{NULL}, do not create the remainder, and if
\kbd{r} is equal to \kbd{ONLY\_REM}, create and output only the remainder.
The remainder is created after the quotient and can be disposed of
individually with a \kbd{cgiv(r)}.
\fun{GEN}{poldivrem}{GEN x, GEN y, GEN *r} same as \key{gdivmod} but
specifically for \typ{POL}s~\kbd{x} and~\kbd{y}, not necessarily in the same
variable. Either of \kbd{x} and \kbd{y} may also be scalars, treated as
polynomials of degree $0$.
\fun{GEN}{gdeuc}{GEN x, GEN y} creates the Euclidean quotient of the
\typ{POL}s~\kbd{x} and~\kbd{y}. Either of \kbd{x} and \kbd{y} may also be
scalars, treated as polynomials of degree $0$.
\fun{GEN}{grem}{GEN x, GEN y} creates the Euclidean remainder of the
\typ{POL}~\kbd{x} divided by the \typ{POL}~\kbd{y}. Either of \kbd{x} and
\kbd{y} may also be scalars, treated as polynomials of degree $0$.
\fun{GEN}{gdivround}{GEN x, GEN y} if \kbd{x} and \kbd{y} are real
(\typ{INT}, \typ{REAL}, \typ{FRAC}), return the rounded Euclidean quotient of
$x$ and $y$ as per the \kbd{\bs/} GP operator. Operate componentwise if
\kbd{x} is a \typ{COL}, \typ{VEC} or \typ{MAT}. Otherwise as \key{gdivent}.
\fun{GEN}{centermod_i}{GEN x, GEN y, GEN y2}, as \kbd{centermodii},
componentwise.
\fun{GEN}{centermod}{GEN x, GEN y}, as \kbd{centermod\_i}, except that
\kbd{y2} is computed (and left on the stack for efficiency).
\fun{GEN}{ginvmod}{GEN x, GEN y} creates the inverse of \kbd{x} modulo \kbd{y}
when it exists. \kbd{y} must be of type \typ{INT} (in which case \kbd{x} is
of type \typ{INT}) or \typ{POL} (in which case \kbd{x} is either a scalar
type or a \typ{POL}).
\section{GCD, content and primitive part}
\subsec{Generic}
\fun{GEN}{resultant}{GEN x, GEN y} creates the resultant of the \typ{POL}s
\kbd{x} and~\kbd{y} computed using Sylvester's matrix (inexact inputs), a
modular algorithm (inputs in $\Q[X]$) or the subresultant algorithm, as
optimized by Lazard and Ducos. Either of \kbd{x} and \kbd{y} may also be
scalars (treated as polynomials of degree $0$)
\fun{GEN}{ggcd}{GEN x, GEN y} creates the GCD of \kbd{x} and~\kbd{y}.
\fun{GEN}{glcm}{GEN x, GEN y} creates the LCM of \kbd{x} and~\kbd{y}.
\fun{GEN}{gbezout}{GEN x,GEN y, GEN *u,GEN *v} returns the GCD of \kbd{x}
and~\kbd{y}, and puts (the addresses of) objects $u$ and~$v$ such that
$u\kbd{x}+v\kbd{y}=\gcd(\kbd{x},\kbd{y})$ into \kbd{*u} and~\kbd{*v}.
\fun{GEN}{subresext}{GEN x, GEN y, GEN *U, GEN *V} returns the resultant
of \kbd{x} and~\kbd{y}, and puts (the addresses of) polynomials $u$ and~$v$
such that $u\kbd{x}+v\kbd{y}=\text{Res}(\kbd{x},\kbd{y})$ into \kbd{*U}
and~\kbd{*V}.
\fun{GEN}{content}{GEN x} returns the GCD of all the components of~\kbd{x}.
\fun{GEN}{primitive_part}{GEN x, GEN *c} sets \kbd{c} to \kbd{content(x)}
and returns the primitive part \kbd{x} / \kbd{c}. A trivial content is set to
\kbd{NULL}.
\fun{GEN}{primpart}{GEN x} as above but the content is lost.
(For efficiency, the content remains on the stack.)
\subsec{Over the rationals}
\fun{long}{Q_pval}{GEN x, GEN p} valuation at the \typ{INT} \kbd{p}
of the \typ{INT} or \typ{FRAC}~\kbd{x}.
\fun{long}{Q_pvalrem}{GEN x, GEN p, GEN *r} returns the valuation $e$ at the
\typ{INT} \kbd{p} of the \typ{INT} or \typ{FRAC}~\kbd{x}. The quotient
$\kbd{x}/\kbd{p}^{e}$ is returned in~\kbd{*r}.
\fun{GEN}{Q_abs}{GEN x} absolute value of the \typ{INT} or
\typ{FRAC}~\kbd{x}.
\fun{GEN}{Qdivii}{GEN x, GEN y}, assuming $x$ and $y$
are both of type \typ{INT}, return the quotient $x/y$ as a \typ{INT} or
\typ{FRAC}; marginally faster than \kbd{gdiv}.
\fun{GEN}{Q_abs_shallow}{GEN x} $x$ being a \typ{INT} or a \typ{FRAC}, returns
a shallow copy of $|x|$, in particular returns $x$ itself when $x \geq 0$, and
\kbd{gneg($x$)} otherwise.
\fun{GEN}{Q_gcd}{GEN x, GEN y} gcd of the \typ{INT} or \typ{FRAC}~\kbd{x}
and~\kbd{y}.
\smallskip
In the following functions, arguments belong to a $M\otimes_\Z\Q$
for some natural $\Z$-module $M$, e.g. multivariate polynomials with integer
coefficients (or vectors/matrices recursively built from such objects), and
an element of $M$ is said to be \emph{integral}.
We are interested in contents, denominators, etc. with respect to this
canonical integral structure; in particular, contents belong to $\Q$,
denominators to $\Z$. For instance the $\Q$-content of $(1/2)xy$ is $(1/2)$,
and its $\Q$-denominator is $2$, whereas \kbd{content} would return $y/2$ and
\kbd{denom}~1.
\fun{GEN}{Q_content}{GEN x} the $\Q$-content of $x$
\fun{GEN}{Q_denom}{GEN x} the $\Q$-denominator of $x$. Shallow function.
\fun{GEN}{Q_primitive_part}{GEN x, GEN *c} sets \kbd{c} to the $\Q$-content
of \kbd{x} and returns \kbd{x / c}, which is integral.
\fun{GEN}{Q_primpart}{GEN x} as above but the content is lost. (For
efficiency, the content remains on the stack.)
\fun{GEN}{Q_remove_denom}{GEN x, GEN *ptd} sets \kbd{d} to the
$\Q$-denominator of \kbd{x} and returns \kbd{x * d}, which is integral.
Shallow function.
\fun{GEN}{Q_div_to_int}{GEN x, GEN c} returns \kbd{x / c}, assuming $c$
is a rational number (\typ{INT} or \typ{FRAC}) and the result is integral.
\fun{GEN}{Q_mul_to_int}{GEN x, GEN c} returns \kbd{x * c}, assuming $c$
is a rational number (\typ{INT} or \typ{FRAC}) and the result is integral.
\fun{GEN}{Q_muli_to_int}{GEN x, GEN d} returns \kbd{x * c}, assuming $c$
is a \typ{INT} and the result is integral.
\fun{GEN}{mul_content}{GEN cx, GEN cy} \kbd{cx} and \kbd{cy} are
as set by \kbd{primitive\_part}: either a \kbd{GEN} or \kbd{NULL}
representing the trivial content $1$. Returns their product (either a
\kbd{GEN} or \kbd{NULL}).
\fun{GEN}{mul_denom}{GEN dx, GEN dy} \kbd{dx} and \kbd{dy} are
as set by \kbd{Q\_remove\_denom}: either a \typ{INT} or \kbd{NULL} representing
the trivial denominator $1$. Returns their product (either a \typ{INT} or
\kbd{NULL}).
\section{Generic arithmetic operators}
\subsec{Unary operators}
\fun{GEN}{gneg[z]}{GEN x[, GEN z]} yields $-\kbd{x}$.
\fun{GEN}{gneg_i}{GEN x} shallow function yielding $-\kbd{x}$.
\fun{GEN}{gabs[z]}{GEN x[, GEN z]} yields $|\kbd{x}|$.
\fun{GEN}{gsqr}{GEN x} creates the square of~\kbd{x}.
\fun{GEN}{ginv}{GEN x} creates the inverse of~\kbd{x}.
\subsec{Binary operators}
Let ``\op'' be a binary operation among
\op=\key{add}: addition (\kbd{x + y}).
\op=\key{sub}: subtraction (\kbd{x - y}).
\op=\key{mul}: multiplication (\kbd{x * y}).
\op=\key{div}: division (\kbd{x / y}).
\noindent The names and prototypes of the functions corresponding
to \op\ are as follows:
\funno{GEN}{g\op}{GEN x, GEN y}
\funno{GEN}{g\op gs}{GEN x, long s}
\funno{GEN}{g\op sg}{long s, GEN y}
\noindent Explicitly
\fun{GEN}{gadd}{GEN x, GEN y}, \fun{GEN}{gaddgs}{GEN x, long s},
\fun{GEN}{gaddsg}{long s, GEN x}
\fun{GEN}{gmul}{GEN x, GEN y}, \fun{GEN}{gmulgs}{GEN x, long s},
\fun{GEN}{gmulsg}{long s, GEN x}
\fun{GEN}{gsub}{GEN x, GEN y}, \fun{GEN}{gsubgs}{GEN x, long s},
\fun{GEN}{gsubsg}{long s, GEN x}
\fun{GEN}{gdiv}{GEN x, GEN y}, \fun{GEN}{gdivgs}{GEN x, long s},
\fun{GEN}{gdivsg}{long s, GEN x}
\fun{GEN}{gpow}{GEN x, GEN y, long l} creates $\kbd{x}^{\kbd{y}}$. If
\kbd{y} is a \typ{INT}, return \kbd{powgi(x,y)} (the precision \kbd{l} is not
taken into account). Otherwise, the result is $\exp(\kbd{y}*\log(\kbd{x}))$
where exact arguments are converted to floats of precision~\kbd{l} in case of
need; if there is no need, for instance if $x$ is a \typ{REAL}, $l$ is
ignored. Indeed, if $x$ is a \typ{REAL}, the accuracy of $\log x$ is
determined from the accuracy of $x$, it is no problem to multiply by $y$,
even if it is an exact type, and the accuracy of the exponential is
determined, exactly as in the case of the initial $\log x$.
\fun{GEN}{gpowgs}{GEN x, long n} creates $\kbd{x}^{\kbd{n}}$ using
binary powering. To treat the special case $n = 0$, we consider
\kbd{gpowgs} as a series of \kbd{gmul}, so we follow the rule of returning
result which is as exact as possible given the input. More precisely,
we return
\item \kbd{gen\_1} if $x$ has type \typ{INT}, \typ{REAL}, \typ{FRAC}, or
\typ{PADIC}
\item \kbd{Mod(1,N)} if $x$ is a \typ{INTMOD} modulo $N$.
\item \kbd{gen\_1} for \typ{COMPLEX}, \typ{QUAD} unless one component
is a \typ{INTMOD}, in which case we return \kbd{Mod(1, N)} for a suitable
$N$ (the gcd of the moduli that appear).
\item \kbd{FF\_1}$(x)$ for a \typ{FFELT}.
\item \kbd{RgX\_get\_1}$(x)$ for a \typ{POL}.
\item \kbd{qfi\_1}$(x)$ and \kbd{qfr\_1}$(x)$ for \typ{QFI} and \typ{QFR}.
\item the identity permutation for \typ{VECSMALL}.
\item etc.
Of course, the only practical use of this routine for $n = 0$ is
to obtain the multiplicative neutral element in the base ring (or to treat
marginal cases that should be special cased anyway if there is the slightest
doubt about what the result should be).
\fun{GEN}{powgi}{GEN x, GEN y} creates $\kbd{x}^{\kbd{y}}$, where \kbd{y} is a
\typ{INT}, using left-shift binary powering. The case where $y = 0$
(as all cases where $y$ is small) is handled by \kbd{gpowgs(x, 0)}.
\fun{GEN}{gpowers}{GEN x, long n} returns the vector $[1,x,\dots,x^n]$.
\fun{GEN}{grootsof1}{long n, long prec} returns the vector
$[1,x,\dots,x^{n-1}]$, where $x$ is the $n$-th root of unity $\exp(2i\pi/n)$.
\fun{GEN}{gsqrpowers}{GEN x, long n} returns the vector $[x,x^4,\dots,x^{n^2}]$.
In addition we also have the obsolete forms:
\fun{void}{gaddz}{GEN x, GEN y, GEN z}
\fun{void}{gsubz}{GEN x, GEN y, GEN z}
\fun{void}{gmulz}{GEN x, GEN y, GEN z}
\fun{void}{gdivz}{GEN x, GEN y, GEN z}
\section{Generic operators: product, powering, factorback}
To describe the following functions, we use the following private typedefs
to simplify the description:
\bprog
typedef (*F0)(void *);
typedef (*F1)(void *, GEN);
typedef (*F2)(void *, GEN, GEN);
@eprog
\noindent They correspond to generic functions with one and two arguments
respectively (the \kbd{void*} argument provides some arbitrary evaluation
context).
\fun{GEN}{gen_product}{GEN v, void *D, F2 op}
Given two objects $x,y$, assume that \kbd{op(D, $x$, $y$)} implements an
associative binary operator. If $v$ has $k$ entries, return
$$v[1]~\var{op}~v[2]~\var{op}~\ldots ~\var{op}~v[k];$$
returns \kbd{gen\_1} if $k = 0$ and a copy of $v[1]$ if $k = 1$.
Use divide and conquer strategy. Leave some garbage on stack, but suitable for
\kbd{gerepileupto} if \kbd{mul} is.
\fun{GEN}{gen_pow}{GEN x, GEN n, void *D, F1 sqr, F2 mul} $n > 0$ a
\typ{INT}, returns $x^n$; \kbd{mul(D, $x$, $y$)} implements the multiplication
in the underlying monoid; \kbd{sqr} is a (presumably optimized) shortcut for
\kbd{mul(D, $x$, $x$)}.
\fun{GEN}{gen_powu}{GEN x, ulong n, void *D, F1 sqr, F2 mul} $n > 0$,
returns $x^n$. See \tet{gen_pow}.
\fun{GEN}{gen_pow_i}{GEN x, GEN n, void *E, F1 sqr, F2 mul}
internal variant of \tet{gen_pow}, not memory-clean.
\fun{GEN}{gen_powu_i}{GEN x, ulong n, void *E, F1 sqr, F2 mul}
internal variant of \tet{gen_powu}, not memory-clean.
\fun{GEN}{gen_pow_fold}{GEN x, GEN n, void *D, F1 sqr, F1 msqr} variant
of \tet{gen_pow}, where \kbd{mul} is replaced by \kbd{msqr}, with
\kbd{msqr(D, $y$)} returning $xy^2$. In particular \kbd{D} must implicitly
contain $x$.
\fun{GEN}{gen_pow_fold_i}{GEN x, GEN n, void *E, F1 sqr, F1 msqr}
internal variant of the function \tet{gen_pow_fold}, not memory-clean.
\fun{GEN}{gen_powu_fold}{GEN x, ulong n, void *D, F1 sqr, F1 msqr}, see
\tet{gen_pow_fold}.
\fun{GEN}{gen_powu_fold_i}{GEN x, ulong n, void *E, F1 sqr, F1 msqr}
see \tet{gen_pow_fold_i}.
\fun{GEN}{gen_powers}{GEN x, long n, long usesqr, void *D, F1 sqr, F2 mul, F0 one}
returns $[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC}; \kbd{mul(D,
$x$, $y$)} implements the multiplication in the underlying monoid; \kbd{sqr}
is a (presumably optimized) shortcut for \kbd{mul(D, $x$, $x$)}; \kbd{one}
returns the monoid unit. The flag \kbd{usesqr} should be set to $1$ if
squaring are faster than multiplication by $x$.
\fun{GEN}{gen_factorback}{GEN L, GEN e, F2 mul, F2 pow, void *D} generic form
of \tet{factorback}. The pair $[L,e]$ is of the form
\item \kbd{[fa, NULL]}, \kbd{fa} a two-column factorization matrix: expand it.
\item \kbd{[v, NULL]}, $v$ a vector of objects: return their
product.
\item or \kbd{[v, e]}, $v$ a vector of objects, $e$ a vector of integral
exponents: return the product of the $v[i]^{e[i]}$.
\noindent \kbd{mul(D, $x$, $y$)} and \kbd{pow(D, $x$, $n$)}
return $xy$ and $x^n$ respectively.
\section{Matrix and polynomial norms} This section concerns only standard norms
of $\R$ and $\C$ vector spaces, not algebraic norms given by the determinant of
some multiplication operator. We have already seen type-specific functions like
\tet{ZM_supnorm} or \tet{RgM_fpnorml2} and limit ourselves to generic functions
assuming nothing about their \kbd{GEN} argument; these functions allow
the following scalar types: \typ{INT}, \typ{FRAC}, \typ{REAL}, \typ{COMPLEX},
\typ{QUAD} and are defined recursively (in terms of norms of their components)
for the following ``container'' types: \typ{POL}, \typ{VEC}, \typ{COL} and
\typ{MAT}. They raise an error if some other type appears in the argument.
\fun{GEN}{gnorml2}{GEN x} The norm of a scalar is the square of its complex
modulus, the norm of a recursive type is the sum of the norms of its components.
For polynomials, vectors or matrices of complex numbers one recovers the
\emph{square} of the usual $L^2$ norm. In most applications, the missing square
root computation can be skipped.
\fun{GEN}{gnorml1}{GEN x, long prec} The norm of a scalar is its complex
modulus, the norm of a recursive type is the sum of the norms of its components.
For polynomials, vectors or matrices of complex numbers one recovers
the usual $L^1$ norm. One must include a real precision \kbd{prec} in case
the inputs include \typ{COMPLEX} or \typ{QUAD} with exact rational components:
a square root must be computed and we must choose an accuracy.
\fun{GEN}{gnorml1_fake}{GEN x} as \tet{gnorml1}, except that the norm
of a \typ{QUAD} $x + wy$ or \typ{COMPLEX} $x + Iy$ is defined as
$|x| + |y|$, where we use the ordinary real absolute value. This is still a norm
of $\R$ vector spaces, which is easier to compute than
\kbd{gnorml1} and can often be used in its place.
\fun{GEN}{gsupnorm}{GEN x, long prec} The norm of a scalar is its complex
modulus, the norm of a recursive type is the max of the norms of its
components. A precision \kbd{prec} must be included for the same reason as in
\kbd{gnorml1}.
\fun{void}{gsupnorm_aux}{GEN x, GEN *m, GEN *m2, long prec}
is the low-level function underlying
\kbd{gsupnorm}, used as follows:
\bprog
GEN m = NULL, m2 = NULL;
gsupnorm_aux(x, &m, &m2);
@eprog
After the call, the sup norm of $x$ is the min of \kbd{m} and the square root
of \kbd{m2}; one or both of \kbd{m}, \kbd{m2} may be \kbd{NULL}, in
which case it must be omitted. You may initially set \kbd{m} and \kbd{m2} to
non-\kbd{NULL} values, in which case, the above procedure yields the max of
(the initial) \kbd{m}, the square root of (the initial) \kbd{m2}, and the sup
norm of $x$.
The strange interface is due to the fact that $|z|^2$ is easier to compute
than $|z|$ for a \typ{QUAD} or \typ{COMPLEX} $z$: \kbd{m2} is the max of
those $|z|^2$, and \kbd{m} is the max of the other $|z|$.
\section{Substitution and evaluation}
\fun{GEN}{gsubst}{GEN x, long v, GEN y} substitutes the object \kbd{y}
into~\kbd{x} for the variable number~\kbd{v}.
\fun{GEN}{poleval}{GEN q, GEN x} evaluates the \typ{POL} or \typ{RFRAC}
$q$ at $x$. For convenience, a \typ{VEC} or \typ{COL} is also recognized as
the \typ{POL} \kbd{gtovecrev(q)}.
\fun{GEN}{RgX_cxeval}{GEN T, GEN x, GEN xi} evaluate the \typ{POL} $T$
at $x$ via Horner's scheme. If \var{xi} is not \kbd{NULL} it must be equal to
$1/x$ and we evaluate $x^{\deg T}T(1/x)$ instead. This is useful when
$|x| > 1$ is a \typ{REAL} or an inexact \typ{COMPLEX} and $T$ has
``balanced'' coefficients, since the evaluation becomes numerically stable.
\fun{GEN}{RgX_RgM_eval}{GEN q, GEN x} evaluates the \typ{POL} $q$ at the
square matrix $x$.
\fun{GEN}{RgX_RgMV_eval}{GEN f, GEN V} returns
the evaluation $\kbd{f}(\kbd{x})$, assuming that \kbd{V} was computed by
$\kbd{FpXQ\_powers}(\kbd{x}, n)$ for some $n>1$.
\fun{GEN}{qfeval}{GEN q, GEN x} evaluates the quadratic form
$q$ (symmetric matrix) at $x$ (column vector of compatible dimensions).
\fun{GEN}{qfevalb}{GEN q, GEN x, GEN y} evaluates the polar bilinear form
attached to the quadratic form $q$ (symmetric matrix) at $x$, $y$ (column
vectors of compatible dimensions).
\fun{GEN}{hqfeval}{GEN q, GEN x} evaluates the Hermitian form $q$
(a Hermitian complex matrix) at $x$.
\fun{GEN}{qf_apply_RgM}{GEN q, GEN M} $q$ is a symmetric $n\times n$ matrix,
$M$ an $n\times k$ matrix, return $M' q M$.
\fun{GEN}{qf_apply_ZM}{GEN q, GEN M} as above assuming that both
$q$ and $M$ have integer entries.
\newpage
\chapter{Miscellaneous mathematical functions}
\section{Fractions}
\fun{GEN}{absfrac}{GEN x} returns the absolute value of the \typ{FRAC} $x$.
\fun{GEN}{absfrac_shallow}{GEN x} $x$ being a \typ{FRAC}, returns a shallow
copy of $|x|$, in particular returns $x$ itself when $x \geq 0$, and
\kbd{gneg($x$)} otherwise.
\fun{GEN}{sqrfrac}{GEN x} returns the square of the \typ{FRAC} $x$.
\section{Real numbers}
\fun{GEN}{R_abs}{GEN x} $x$ being a \typ{INT}, a \typ{REAL} or a
\typ{FRAC}, returns $|x|$.
\fun{GEN}{R_abs_shallow}{GEN x} $x$ being a \typ{INT}, a \typ{REAL} or a
\typ{FRAC}, returns a shallow copy of $|x|$, in particular returns $x$ itself
when $x \geq 0$, and \kbd{gneg($x$)} otherwise.
\fun{GEN}{modRr_safe}{GEN x, GEN y} let $x$ be a \typ{INT}, a \typ{REAL} or
\typ{FRAC} and let $y$ be a \typ{REAL}. Return $x\% y$ unless the input
accuracy is unsufficient to compute the floor or $x/y$ in which case we
return \kbd{NULL}.
\section{Complex numbers}
\fun{GEN}{imag}{GEN x} returns a copy of the imaginary part of \kbd{x}.
\fun{GEN}{real}{GEN x} returns a copy of the real part of \kbd{x}. If \kbd{x}
is a \typ{QUAD}, returns the coefficient of $1$ in the ``canonical'' integral
basis $(1,\omega)$.
The last two functions are shallow, and not suitable for \tet{gerepileupto}:
\fun{GEN}{imag_i}{GEN x} as \kbd{gimag}, returns a pointer to the imaginary
part.
\fun{GEN}{real_i}{GEN x} as \kbd{greal}, returns a pointer to the real part.
\fun{GEN}{mulreal}{GEN x, GEN} returns the real part of $xy$;
$x,y$ have type \typ{INT}, \typ{FRAC}, \typ{REAL} or \typ{COMPLEX}. See also
\kbd{RgM\_mulreal}.
\fun{GEN}{cxnorm}{GEN x} norm of the \typ{COMPLEX} $x$ (modulus squared).
\fun{GEN}{cxexpm1}{GEN x} returns $\exp(x)-1$, for a \typ{COMPLEX} $x$.
\section{Quadratic numbers and binary quadratic forms}
\fun{GEN}{quad_disc}{GEN x} returns the discriminant of the \typ{QUAD} $x$.
\fun{GEN}{quadnorm}{GEN x} norm of the \typ{QUAD} $x$.
\fun{GEN}{qfb_disc}{GEN x} returns the discriminant of the \typ{QFI}
or \typ{QFR} \kbd{x}.
\fun{GEN}{qfb_disc3}{GEN x, GEN y, GEN z} returns $y^2 - 4xz$ assuming all
inputs are \typ{INT}s. Not stack-clean.
\fun{GEN}{qfb_apply_ZM}{GEN q, GEN g} returns $q \circ g$.
\fun{GEN}{qfbforms}{GEN D} given a discriminant $D < 0$, return the list
of reduced forms of discriminant $D$ as \typ{VECSMALL} with 3 components.
The primitive forms in the list enumerate the class group of the quadratic
order of discriminant $D$; if $D$ is fundamental, all returned forms
are automatically primitive.
\section{Polynomials}\label{se:polynomials}
\fun{GEN}{truecoeff}{GEN x, long n} returns \kbd{polcoeff0(x,n, -1)}, i.e.
the coefficient of the term of degree \kbd{n} in the main variable.
\fun{GEN}{polcoeff_i}{GEN x, long n, long v} internal shallow function. Rewrite
$x$ as a Laurent polynomial in the variable $v$ and returns its coefficient
of degree $n$ (\kbd{gen\_0} if this falls outside the coefficient array).
Allow \typ{POL}, \typ{SER}, \typ{RFRAC} and scalars.
\fun{long}{degree}{GEN x} returns \kbd{poldegree(x, -1)}, the degree of
\kbd{x} with respect to its main variable, with the usual meaning if the
leading coefficient of $x$ is non-zero. If the sign of $x$ is $0$, this
function always returns $-1$. Otherwise, we return the index of the leading
coefficient of $x$, i.e. the coefficient of largest index stored in $x$.
For instance the ``degrees'' of
\bprog
0. E-38 * x^4 + 0.E-19 * x + 1
Mod(0,2) * x^0 \\ sign is 0 !
@eprog\noindent are $4$ and $-1$ respectively.
\fun{long}{degpol}{GEN x} is a simple macro returning \kbd{lg(x) - 3}.
This is the degree of the \typ{POL}~\kbd{x} with respect to its main
variable, \emph{if} its leading coefficient is non-zero (a rational $0$ is
impossible, but an inexact $0$ is allowed, as well as an exact modular $0$,
e.g. \kbd{Mod(0,2)}). If $x$ has no coefficients (rational $0$ polynomial),
its length is $2$ and we return the expected $-1$.
\fun{GEN}{characteristic}{GEN x} returns the characteristic of the
base ring over which the polynomial is defined (as defined by \typ{INTMOD}
and \typ{FFELT} components). The function raises an exception if incompatible
primes arise from \typ{FFELT} and \typ{PADIC} components. Shallow function.
\fun{GEN}{residual_characteristic}{GEN x} returns a kind of ``residual
characteristic'' of the base ring over which the polynomial is defined. This
is defined as the gcd of all moduli \typ{INTMOD}s occurring in the structure,
as well as primes $p$ arising from \typ{PADIC}s or \typ{FFELT}s. The function
raises an exception if incompatible primes arise from \typ{FFELT} and
\typ{PADIC} components. Shallow function.
\fun{GEN}{resultant}{GEN x,GEN y} resultant of \kbd{x} and \kbd{y}, with respect
to the main variable of highest priority. Uses either
the subresultant algorithm (generic case), a modular algorithm (inputs in
$\Q[X]$) or Sylvester's matrix (inexact inputs).
\fun{GEN}{resultant2}{GEN x, GEN y} resultant of \kbd{x} and \kbd{y}, with
respect to the main variable of highest priority. Computes the determinant
of Sylvester's matrix.
\fun{GEN}{resultant_all}{GEN u, GEN v, GEN *sol} returns
\kbd{resultant(x,y)}. If \kbd{sol} is not \kbd{NULL}, sets it to the last
non-constant remainder in the polynomial remainder sequence if such a sequence
was computed, and to \kbd{gen\_0} otherwise (e.g. polynomials of degree 0,
$u,v$ in $\Q[X]$).
\fun{GEN}{cleanroots}{GEN x, long prec} returns the complex roots of
the complex polynomial $x$ (with coefficients \typ{INT}, \typ{FRAC},
\typ{REAL} or \typ{COMPLEX} of the above). The roots are returned
as \typ{REAL} or \typ{COMPLEX} of \typ{REAL}s of precision \kbd{prec}
(guaranteeing a non-$0$ imaginary part). See \tet{QX_complex_roots}.
\fun{double}{fujiwara_bound}{GEN x} return a quick upper bound for the
logarithm in base $2$ of the modulus of the largest complex roots of
the polynomial $x$ (complex coefficients).
\fun{double}{fujiwara_bound_real}{GEN x, long sign} return a quick upper
bound for the logarithm in base $2$ of the absolute value of the largest
real root of sign \var{sign} ($1$ or $-1$), for the polynomial $x$ (real
coefficients).
\fun{GEN}{polmod_to_embed}{GEN x, long prec} return the vector of complex
embeddings of the \typ{POLMOD} $x$ (with complex coefficients). Shallow
function, simple complex variant of \tet{conjvec}.
\section{Power series}
\fun{GEN}{sertoser}{GEN x, long prec} return the \typ{SER} $x$ truncated
or extended (with zeros) to \kbd{prec} terms. Shallow function, assume
that $\kbd{prec} \geq 0$.
\fun{GEN}{derivser}{GEN x} returns the derivative of the \typ{SER} \kbd{x}
with respect to its main variable.
\fun{GEN}{integser}{GEN x} returns the primitive of the \typ{SER} \kbd{x}
with respect to its main variable.
\fun{GEN}{truecoeff}{GEN x, long n} returns \kbd{polcoeff0(x,n, -1)}, i.e.
the coefficient of the term of degree \kbd{n} in the main variable.
\fun{GEN}{ser_unscale}{GEN P, GEN h} return $P(h x)$, not memory clean.
\fun{GEN}{ser_normalize}{GEN x} divide $x$ by its ``leading term'' so that
the series is either $0$ or equal to $t^v(1+O(t))$. Shallow function if the
``leading term'' is $1$.
\fun{int}{ser_isexactzero}{GEN x} return $1$ if $x$ is a zero series, all
of whose known coefficients are exact zeroes; this implies that
$\kbd{sign}(x) = 0$ and $\kbd{lg}(x) \leq 3$.
\fun{GEN}{ser_inv}{GEN x} return the inverse of the \typ{SER} $x$ using
Newton iteration. This is in general slower than \kbd{ginv} unless the
precision is huge (hundreds of terms, where the threshold depends strongly
on the base field).
\section{Functions to handle \typ{FFELT}}
These functions define the public interface of the \typ{FFELT} type to use in
generic functions. However, in specific functions, it is better to use the
functions class \kbd{FpXQ} and/or \kbd{Flxq} as appropriate.
\fun{GEN}{FF_p}{GEN a} returns the characteristic of the definition field of the
\typ{FFELT} element \kbd{a}.
\fun{long}{FF_f}{GEN a} returns the dimension of the definition field over
its prime field; the cardinality of the dimension field is thus $p^f$.
\fun{GEN}{FF_p_i}{GEN a} shallow version of \kbd{FF\_p}.
\fun{GEN}{FF_q}{GEN a} returns the cardinality of the definition field of the
\typ{FFELT} element \kbd{a}.
\fun{GEN}{FF_mod}{GEN a} returns the polynomial (with reduced \typ{INT}
coefficients) defining the finite field, in the variable used to display $a$.
\fun{GEN}{FF_to_FpXQ}{GEN a} converts the \typ{FFELT} \kbd{a} to a polynomial
$P$ with reduced \typ{INT} coefficients such that $a=P(g)$ where $g$ is the
generator of the finite field returned by \kbd{ffgen}, in the variable used to
display $g$.
\fun{GEN}{FF_to_FpXQ_i}{GEN a} shallow version of \kbd{FF\_to\_FpXQ}.
\fun{GEN}{FF_to_F2xq}{GEN a} converts the \typ{FFELT} \kbd{a} to a \kbd{F2x}
$P$ such that $a=P(g)$ where $g$ is the generator of the finite field returned
by \kbd{ffgen}, in the variable used to display $g$. This only work if the
characteristic is $2$.
\fun{GEN}{FF_to_F2xq_i}{GEN a} shallow version of \kbd{FF\_to\_F2xq}.
\fun{GEN}{FF_to_Flxq}{GEN a} converts the \typ{FFELT} \kbd{a} to a \kbd{Flx}
$P$ such that $a=P(g)$ where $g$ is the generator of the finite field returned
by \kbd{ffgen}, in the variable used to display $g$. This only work if the
characteristic is small enough.
\fun{GEN}{FF_to_Flxq_i}{GEN a} shallow version of \kbd{FF\_to\_Flxq}.
\fun{GEN}{p_to_FF}{GEN p, long v} returns a \typ{FFELT} equal to $1$ in the
finite field $\Z/p\Z$. Useful for generic code that wants to handle
(inefficiently) $\Z/p\Z$ as if it were not a prime field.
\fun{GEN}{Tp_to_FF}{GEN T, GEN p} returns a \typ{FFELT} equal to $1$ in the
finite field $\F_p/(T)$, where $T$ is a \kbd{ZX}, assumed to be irreducible
modulo $p$, or \kbd{NULL} in which case the routine acts as \tet{p_to_FF(p,0)}.
No checks.
\fun{GEN}{Fq_to_FF}{GEN x, GEN ff} returns a \typ{FFELT} equal to $x$
in the finite field defined by the \typ{FFELT} \kbd{ff}, where
$x$ is an \kbd{Fq} (either a \typ{INT} or a \kbd{ZX}: a \typ{POL} with
\typ{INT} coefficients). No checks.
\fun{GEN}{FqX_to_FFX}{GEN x, GEN ff} given an \kbd{FqX} $x$,
return the polynomial with \typ{FFELT} coefficients obtained by
applying \tet{Fq_to_FF} coefficientwise. No checks, and no normalization
if the leading coefficient maps to $0$.
\fun{GEN}{FF_1}{GEN a} returns the unity in the definition field of the
\typ{FFELT} element \kbd{a}.
\fun{GEN}{FF_zero}{GEN a} returns the zero element of the definition field of
the \typ{FFELT} element \kbd{a}.
\fun{int}{FF_equal0}{GEN a} returns $1$ if the \typ{FFELT} \kbd{a} is equal
to $0$ else returns $0$.
\fun{int}{FF_equal1}{GEN a} returns $1$ if the \typ{FFELT} \kbd{a} is equal
to $1$ else returns $0$.
\fun{int}{FF_equalm1}{GEN a} returns $-1$ if the \typ{FFELT} \kbd{a} is equal
to $1$ else returns $0$.
\fun{int}{FF_equal}{GEN a, GEN b} return $1$ if the \typ{FFELT} \kbd{a} and
\kbd{b} have the same definition field and are equal, else $0$.
\fun{int}{FF_samefield}{GEN a, GEN b} return $1$ if the \typ{FFELT} \kbd{a} and
\kbd{b} have the same definition field, else $0$.
\fun{int}{Rg_is_FF}{GEN c, GEN *ff} to be called successively on many objects,
setting \kbd{*ff = NULL} (unset) initially. Returns $1$ as long as $c$ is a
\typ{FFELT} defined over the same field as \kbd{*ff} (setting \kbd{*ff = c}
if unset), and $0$ otherwise.
\fun{int}{RgC_is_FFC}{GEN x, GEN *ff} apply \tet{Rg_is_FF} successively to all
components of the \typ{VEC} or \typ{COL} $x$. Return $0$ if one call fails,
and $1$ otherwise.
\fun{int}{RgM_is_FFM}{GEN x, GEN *ff} apply \tet{Rg_is_FF} to all components
of the \typ{MAT}. Return $0$ if one call fails, and $1$ otherwise.
\fun{GEN}{FF_add}{GEN a, GEN b} returns $a+b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.
\fun{GEN}{FF_Z_add}{GEN a, GEN x} returns $a+x$, where \kbd{a} is a
\typ{FFELT}, and \kbd{x} is a \typ{INT}, the computation being
performed in the definition field of \kbd{a}.
\fun{GEN}{FF_Q_add}{GEN a, GEN x} returns $a+x$, where \kbd{a} is a
\typ{FFELT}, and \kbd{x} is a \typ{RFRAC}, the computation being
performed in the definition field of \kbd{a}.
\fun{GEN}{FF_sub}{GEN a, GEN b} returns $a-b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.
\fun{GEN}{FF_mul}{GEN a, GEN b} returns $a\*b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.
\fun{GEN}{FF_Z_mul}{GEN a, GEN b} returns $a\*b$, where \kbd{a} is a
\typ{FFELT}, and \kbd{b} is a \typ{INT}, the computation being
performed in the definition field of \kbd{a}.
\fun{GEN}{FF_div}{GEN a, GEN b} returns $a/b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.
\fun{GEN}{FF_neg}{GEN a} returns $-a$ where \kbd{a} is a \typ{FFELT}.
\fun{GEN}{FF_neg_i}{GEN a} shallow function returning $-a$ where \kbd{a} is a
\typ{FFELT}.
\fun{GEN}{FF_inv}{GEN a} returns $a^{-1}$ where \kbd{a} is a \typ{FFELT}.
\fun{GEN}{FF_sqr}{GEN a} returns $a^2$ where \kbd{a} is a \typ{FFELT}.
\fun{GEN}{FF_mul2n}{GEN a, long n} returns $a\*2^n$ where \kbd{a} is a
\typ{FFELT}.
\fun{GEN}{FF_pow}{GEN a, GEN n} returns $a^n$ where \kbd{a} is a \typ{FFELT}
and \kbd{n} is a \typ{INT}.
\fun{GEN}{FF_Z_Z_muldiv}{GEN a, GEN x, GEN y} returns $a\*y/z$, where \kbd{a}
is a \typ{FFELT}, and \kbd{x} and \kbd{y} are \typ{INT}, the computation being
performed in the definition field of \kbd{a}.
\fun{GEN}{Z_FF_div}{GEN x, GEN a} return $x/a$ where \kbd{a} is a
\typ{FFELT}, and \kbd{x} is a \typ{INT}, the computation being
performed in the definition field of \kbd{a}.
\fun{GEN}{FF_norm}{GEN a} returns the norm of the \typ{FFELT} \kbd{a} with
respect to its definition field.
\fun{GEN}{FF_trace}{GEN a} returns the trace of the \typ{FFELT} \kbd{a} with
respect to its definition field.
\fun{GEN}{FF_conjvec}{GEN a} returns the vector of conjugates
$[a,a^p,a^{p^2},\ldots,a^{p^{n-1}}]$ where the \typ{FFELT} \kbd{a} belong to a
field with $p^n$ elements.
\fun{GEN}{FF_charpoly}{GEN a} returns the characteristic polynomial) of the
\typ{FFELT} \kbd{a} with respect to its definition field.
\fun{GEN}{FF_minpoly}{GEN a} returns the minimal polynomial of
the \typ{FFELT} \kbd{a}.
\fun{GEN}{FF_sqrt}{GEN a} returns an \typ{FFELT} $b$ such that $a=b^2$ if
it exist, where \kbd{a} is a \typ{FFELT}.
\fun{long}{FF_issquareall}{GEN x, GEN *pt} returns $1$ if \kbd{x} is a
square, and $0$ otherwise. If \kbd{x} is indeed a square, set \kbd{pt} to its
square root.
\fun{long}{FF_issquare}{GEN x} returns $1$ if \kbd{x} is a square and $0$
otherwise.
\fun{long}{FF_ispower}{GEN x, GEN K, GEN *pt} Given $K$ a positive integer,
returns $1$ if \kbd{x} is a $K$-th power, and $0$ otherwise. If \kbd{x} is
indeed a $K$-th power, set \kbd{pt} to its $K$-th root.
\fun{GEN}{FF_sqrtn}{GEN a, GEN n, GEN *zn} returns an \kbd{n}-th root of
$\kbd{a}$ if it exist. If \kbd{zn} is non-\kbd{NULL} set it to a primitive
\kbd{n}-th root of the unity.
\fun{GEN}{FF_log}{GEN a, GEN g, GEN o} the \typ{FFELT} \kbd{g} being a
generator for the definition field of the \typ{FFELT} \kbd{a}, returns a
\typ{INT} $e$ such that $a^e=g$. If $e$ does not exists, the result is
currently undefined. If \kbd{o} is not \kbd{NULL} it is assumed to be a
factorization of the multiplicative order of \kbd{g} (as set by
\tet{FF_primroot})
\fun{GEN}{FF_order}{GEN a, GEN o} returns the order of the \typ{FFELT} \kbd{a}.
If \kbd{o} is non-\kbd{NULL}, it is assumed that \kbd{o} is a multiple of the
order of \kbd{a}.
\fun{GEN}{FF_primroot}{GEN a, GEN *o} returns a generator of the
multiplicative group of the definition field of the \typ{FFELT} \kbd{a}.
If \kbd{o} is not \kbd{NULL}, set it to the factorization of the order
of the primitive root (to speed up \tet{FF_log}).
\fun{GEN}{FFX_factor}{GEN f, GEN a} returns the factorization of the univariate
polynomial \kbd{f} over the definition field of the \typ{FFELT} \kbd{a}. The
coefficients of \kbd{f} must be of type \typ{INT}, \typ{INTMOD} or \typ{FFELT}
and compatible with \kbd{a}.
\fun{GEN}{FFX_roots}{GEN f, GEN a} returns the roots (\typ{FFELT})
of the univariate polynomial \kbd{f} over the definition field of the
\typ{FFELT} \kbd{a}. The coefficients of \kbd{f} must be of type \typ{INT},
\typ{INTMOD} or \typ{FFELT} and compatible with \kbd{a}.
\fun{GEN}{FFM_FFC_mul}{GEN M, GEN C, GEN ff} returns the product of
the matrix~\kbd{M} (\typ{MAT}) and the column vector~\kbd{C}
(\typ{COL}) over the finite field given by \kbd{ff} (\typ{FFELT}).
\fun{GEN}{FFM_ker}{GEN M, GEN ff} returns the kernel of the \typ{MAT} \kbd{M}
defined over the finite field given by the \typ{FFELT} \kbd{ff} (obtained
by \tet{RgM_is_FFM(M,\&ff)}).
\fun{GEN}{FFM_det}{GEN M, GEN ff}
\fun{GEN}{FFM_image}{GEN M, GEN ff}
\fun{GEN}{FFM_inv}{GEN M, GEN ff}
\fun{GEN}{FFM_mul}{GEN M, GEN N, GEN ff} returns the product of the
matrices \kbd{M} and~\kbd{N} (\typ{MAT}) over the finite field given
by \kbd{ff} (\typ{FFELT}).
\fun{long}{FFM_rank}{GEN M, GEN ff}
\section{Transcendental functions}
The following two functions are only useful when interacting with \kbd{gp},
to manipulate its internal default precision (expressed as a number of
decimal digits, not in words as used everywhere else):
\fun{long}{getrealprecision}{void} returns \kbd{realprecision}.
\fun{long}{setrealprecision}{long n, long *prec} sets the new
\kbd{realprecision} to $n$, which is returned. As a side effect, set
\kbd{prec} to the corresponding number of words \kbd{ndec2prec(n)}.
\subsec{Transcendental functions with \typ{REAL} arguments}
In the following routines, $x$ is assumed to be a \typ{REAL} and the result
is a \typ{REAL} (sometimes a \typ{COMPLEX} with \typ{REAL} components), with
the largest accuracy which can be deduced from the input. The naming scheme
is inconsistent here, since we sometimes use the prefix \kbd{mp} even though
\typ{INT} inputs are forbidden:
\fun{GEN}{sqrtr}{GEN x} returns the square root of $x$.
\fun{GEN}{cbrtr}{GEN x} returns the real cube root of $x$.
\fun{GEN}{sqrtnr}{GEN x, long n} returns the $n$-th root of $x$, assuming
$n\geq 1$ and $x > 0$. Not stack clean.
\fun{GEN}{mpcos[z]}{GEN x[, GEN z]} returns $\cos(x)$.
\fun{GEN}{mpsin[z]}{GEN x[, GEN z]} returns $\sin(x)$.
\fun{GEN}{mplog[z]}{GEN x[, GEN z]} returns $\log(x)$. We must have $x > 0$
since the result must be a \typ{REAL}. Use \kbd{glog} for the general case,
where you want such computations as $\log(-1) = I$.
\fun{GEN}{mpexp[z]}{GEN x[, GEN z]} returns $\exp(x)$.
\fun{GEN}{mpexpm1}{GEN x} returns $\exp(x)-1$, but is more accurate than
\kbd{subrs(mpexp(x), 1)}, which suffers from catastrophic cancellation if
$|x|$ is very small.
\fun{void}{mpsincosm1}{GEN x, GEN *s, GEN *c} sets $s$ and $c$ to
$\sin(x)$ and $\cos(x)-1$ respectively, where $x$ is a \typ{REAL}; the latter
is more accurate than \kbd{subrs(mpcos(y), 1)}, which suffers from
catastrophic cancellation if $|x|$ is very small.
\fun{GEN}{mpveceint1}{GEN C, GEN eC, long n} as \kbd{veceint1}; assumes
that $C > 0$ is a \typ{REAL} and that \kbd{eC} is \kbd{NULL} or \kbd{mpexp(C)}.
\fun{GEN}{mpeint1}{GEN x, GEN expx} returns \kbd{eint1}$(x)$, for a \typ{REAL}
$x\geq 0$, assuming that \kbd{expx} is \kbd{mpexp}$(x)$.
\fun{GEN}{mplambertW}{GEN y} solution $x$ of the implicit equation
$x \exp(x) = y$, for $y > 0$ a \typ{REAL}.
\noindent Useful low-level functions which \emph{disregard} the sign of $x$:
\fun{GEN}{sqrtr_abs}{GEN x} returns $\sqrt{|x|}$ assuming $x\neq 0$.
\fun{GEN}{cbrtr_abs}{GEN x} returns $|x|^{1/3}$ assuming $x\neq 0$.
\fun{GEN}{exp1r_abs}{GEN x} returns $\exp(|x|) - 1$, assuming $x \neq 0$.
\fun{GEN}{logr_abs}{GEN x} returns $\log(|x|)$, assuming $x \neq 0$.
\subsec{Other complex transcendental functions}
\fun{GEN}{szeta}{long s, long prec} returns the value of Riemann's zeta
function at the (possibly negative) integer $s\neq 1$, in relative accuracy
\kbd{prec}.
\fun{GEN}{veczeta}{GEN a, GEN b, long N, long prec} returns in a vector
all the $\zeta(aj + b)$, where $j = 0, 1, \dots, N-1$, where $a$ and $b$ are
real numbers (of arbitrary type, although \typ{INT} is treated more
efficiently) and $b > 1$.
\fun{GEN}{ggamma1m1}{GEN x, long prec} return $\Gamma(1+x) - 1$ assuming
$|x| < 1$. Guard against cancellation when $x$ is small.
\noindent A few variants on sin and cos:
\fun{void}{mpsincos}{GEN x, GEN *s, GEN *c} sets $s$ and $c$ to
$\sin(x)$ and $\cos(x)$ respectively, where $x$ is a \typ{REAL}
\fun{GEN}{expIr}{GEN x} returns $\exp(ix)$, where $x$ is a \typ{REAL}.
The return type is \typ{COMPLEX} unless the imaginary part is equal to $0$
to the current accuracy (its sign is $0$).
\fun{GEN}{expIxy}{GEN x, GEN y, long prec} returns $\exp(ixy)$. Efficient
when $x$ is real and $y$ pure imaginary.
\fun{void}{gsincos}{GEN x, GEN *s, GEN *c, long prec} general case.
\fun{GEN}{rootsof1_cx}{GEN d, long prec} return $e(1/d)$ at precision
\kbd{prec}, $e(x) = \exp(2i\pi x)$.
\fun{GEN}{rootsof1u_cx}{ulong d, long prec} return $e(1/d)$ at
precision \kbd{prec}.
\noindent A generalization of \tet{affrr_fixlg}
\fun{GEN}{affc_fixlg}{GEN x, GEN res} assume \kbd{res} was allocated using
\tet{cgetc}, and that $x$ is either a \typ{REAL} or a \typ{COMPLEX}
with \typ{REAL} components. Assign $x$ to \kbd{res}, first shortening
the components of \kbd{res} if needed (in a \kbd{gerepile}-safe way). Further
convert \kbd{res} to a \typ{REAL} if $x$ is a \typ{REAL}.
\fun{GEN}{trans_eval}{const char *fun, GEN (*f) (GEN, long), GEN x, long prec}
evaluate the transcendental function $f$ (named \kbd{"fun"} at the argument
$x$ and precision \kbd{prec}. This is a quick way to implement a transcendental
function to be made available under GP, starting from a $C$ function
handling only \typ{REAL} and \typ{COMPLEX} arguments. This routine first
converts $x$ to a suitable type:
\item \typ{INT}/\typ{FRAC} to \typ{REAL} of precision \kbd{prec}, \typ{QUAD} to
\typ{REAL} or \typ{COMPLEX} of precision \kbd{prec}.
\item \typ{POLMOD} to a \typ{COL} of complex embeddings (as in \tet{conjvec})
Then evaluates the function at \typ{VEC}, \typ{COL}, \typ{MAT} arguments
coefficientwise.
\subsec{Transcendental functions with \typ{PADIC} arguments}
\fun{GEN}{Qp_exp}{GEN x} shortcut for \kbd{gexp(x, /*ignored*/prec)}
\fun{GEN}{Qp_gamma}{GEN x} shortcut for \kbd{ggamma(x, /*ignored*/prec)}
\fun{GEN}{Qp_log}{GEN x} shortcut for \kbd{glog(x, /*ignored*/prec)}
\fun{GEN}{Qp_sqrt}{GEN x} shortcut for \kbd{gsqrt(x, /*ignored*/prec)}
Return \kbd{NULL} if $x$ is not a square.
\fun{GEN}{Qp_sqrtn}{GEN x, GEN n, GEN *z} shortcut for \kbd{gsqrtn(x, n, z,
/*ignored*/prec)}. Return \kbd{NULL} if $x$ is not an $n$-th power.
\subsec{Cached constants}
The cached constant is returned at its current precision, which may be larger
than \kbd{prec}. One should always use the \kbd{mp\var{xxx}} variant:
\kbd{mppi}, \kbd{mpeuler}, or \kbd{mplog2}.
\fun{GEN}{consteuler}{long prec} precomputes Euler-Mascheroni's constant
at precision \kbd{prec}.
\fun{GEN}{constcatalan}{long prec} precomputes Catalan's constant at precision
\kbd{prec}.
\fun{GEN}{constpi}{long prec} precomputes $\pi$ at precision \kbd{prec}.
\fun{GEN}{constlog2}{long prec} precomputes $\log(2)$ at precision
\kbd{prec}.
\fun{void}{mpbern}{long n, long prec} precomputes the $n$ even
\idx{Bernoulli} numbers $B_2,\dots,B_{2n}$ as \typ{FRAC} or \typ{REAL}s of
precision \kbd{prec}. For any $2 \leq k \leq 2n$, if a floating point
approximation of $B_k$ to accuracy \kbd{prec} is enough to reconstruct it
exactly, a \typ{FRAC} is stored; otherwise a \typ{REAL} at the requested
accuracy. No more than $n$ Bernoulli numbers will ever be stored (by
\tet{bernfrac} or \tet{bernreal}), unless a subsequent call to \kbd{mpbern}
increases the cache. If \kbd{prec} is $0$, the $B_k$ are computed exactly.
The following functions use cached data if \kbd{prec} is smaller than the
precision of the cached value; otherwise the newly computed data replaces the
old cache.
\fun{GEN}{mppi}{long prec} returns $\pi$ at precision \kbd{prec}.
\fun{GEN}{Pi2n}{long n, long prec} returns $2^n\pi$ at precision \kbd{prec}.
\fun{GEN}{PiI2}{long n, long prec} returns the complex number $2\pi i$ at
precision \kbd{prec}.
\fun{GEN}{PiI2n}{long n, long prec} returns the complex number $2^n\pi i$ at
precision \kbd{prec}.
\fun{GEN}{mpeuler}{long prec} returns Euler-Mascheroni's constant at
precision \kbd{prec}.
\fun{GEN}{mpeuler}{long prec} returns Catalan's number at precision \kbd{prec}.
\fun{GEN}{mplog2}{long prec} returns $\log 2$ at precision \kbd{prec}.
\fun{GEN}{bernreal}{long i, long prec} returns the \idx{Bernoulli} number
$B_i$ as a \typ{REAL} at precision \kbd{prec}. If \kbd{mpbern(n,
p)} was called previously with $n \geq i$ and $p \geq \kbd{prec}$, then
the cached value is (converted to a \typ{REAL} of accuracy \kbd{prec} then)
returned. Otherwise, the missing value is computed. In the latter case,
if $n \geq i$, the cached table is updated.
\fun{GEN}{bernfrac}{long i} returns the \idx{Bernoulli} number $B_i$ as a
rational number (\typ{FRAC} or \typ{INT}). If a cached table includes $B_i$
as a rational number, the latter is returned. Otherwise, the missing value is
computed. In the latter case, the cached Bernoulli table may be updated.
\section{Permutations }
\noindent Permutation are represented in two different ways
\item (\kbd{perm}) a \typ{VECSMALL} $p$ representing the bijection $i\mapsto
p[i]$; unless mentioned otherwise, this is the form used in the functions
below for both input and output,
\item (\kbd{cyc}) a \typ{VEC} of \typ{VECSMALL}s representing a product of
disjoint cycles.
\fun{GEN}{identity_perm}{long n} return the identity permutation on $n$
symbols.
\fun{GEN}{cyclic_perm}{long n, long d} return the cyclic permutation mapping
$i$ to $i+d$ (mod $n$) in $S_n$. Assume that $d \leq n$.
\fun{GEN}{perm_mul}{GEN s, GEN t} multiply $s$ and $t$ (composition $s\circ t$)
\fun{GEN}{perm_conj}{GEN s, GEN t} return $sts^{-1}$.
\fun{int}{perm_commute}{GEN p, GEN q} return $1$ if $p$ and $q$ commute, 0
otherwise.
\fun{GEN}{perm_inv}{GEN p} returns the inverse of $p$.
\fun{GEN}{perm_pow}{GEN p, long n} returns $p^n$
\fun{GEN}{cyc_pow_perm}{GEN p, long n} the permutation $p$ is given as
a product of disjoint cycles (\kbd{cyc}); return $p^n$ (as a \kbd{perm}).
\fun{GEN}{cyc_pow}{GEN p, long n} the permutation $p$ is given as
a product of disjoint cycles (\kbd{cyc}); return $p^n$ (as a \kbd{cyc}).
\fun{GEN}{perm_cycles}{GEN p} return the cyclic decomposition of $p$.
\fun{long}{perm_order}{GEN p} returns the order of the permutation $p$
(as the lcm of its cycle lengths).
\fun{GEN}{vecperm_orbits}{GEN p, long n} the permutation $p\in S_n$ being
given as a product of disjoint cycles, return the orbits of the subgroup
generated by $p$ on $\{1,2,\ldots,n\}$.
\fun{GEN}{Z_to_perm}{long n, GEN x} as \kbd{numtoperm}, returning a
\typ{VECSMALL}.
\fun{GEN}{perm_to_Z}{GEN v} as \kbd{permtonum} for a \typ{VECSMALL} input.
\section{Small groups}
The small (finite) groups facility is meant to deal with subgroups of Galois
groups obtained by \tet{galoisinit} and thus is currently limited to weakly
super-solvable groups.
A group \var{grp} of order $n$ is represented by its regular representation
(for an arbitrary ordering of its element) in $S_n$. A subgroup of such group
is represented by the restriction of the representation to the subgroup.
A \emph{small group} can be either a group or a subgroup. Thus it is embedded
in some $S_n$, where $n$ is the multiple of the order. Such an $n$ is called
the \emph{domain} of the small group. The domain of a trivial subgroup cannot
be derived from the subgroup data, so some functions require the subgroup
domain as argument.
The small group \var{grp} is represented by a \typ{VEC} with two
components:
$\var{grp}[1]$ is a generating subset $[s_1,\ldots,s_g]$ of \var{grp}
expressed as a vector of permutations of length~$n$.
$\var{grp}[2]$ contains the relative orders $[o_1,\ldots,o_g]$ of
the generators $\var{grp}[1]$.
See \tet{galoisinit} for the technical details.
\fun{GEN}{checkgroup}{GEN gal, GEN *elts} checks whether \var{gal} is a
small group or a Galois group. Returns the underlying small
group and set \var{elts} to the list of elements or to \kbd{NULL} if it is not
known.
\fun{GEN}{galois_group}{GEN gal} return the underlying small group of the
Galois group \var{gal}.
\fun{GEN}{cyclicgroup}{GEN g, long s} returns the cyclic group with generator
$g$ of order $s$.
\fun{GEN}{trivialgroup}{void} returns the trivial group.
\fun{GEN}{dicyclicgroup}{GEN g1, GEN g2, long s1, long s2} returns the group
with generators \var{g1}, \var{g2} with respecting relative orders \var{s1},
\var{s2}.
\fun{GEN}{abelian_group}{GEN v} let v be a \typ{VECSMALL} seen as the SNF of
a small abelian group, return its regular representation.
\fun{long}{group_domain}{GEN grp} returns the \kbd{domain} of the
\emph{non-trivial} small group \var{grp}. Return an error if \var{grp} is
trivial.
\fun{GEN}{group_elts}{GEN grp, long n} returns the list of elements of the
small group \var{grp} of domain \var{n} as permutations.
\fun{GEN}{group_set}{GEN grp, long n} returns a \var{F2v} $b$ such that
$b[i]$ is set if and only if the small group \var{grp} of domain \var{n}
contains a permutation sending $1$ to $i$.
\fun{GEN}{groupelts_set}{GEN elts, long n}, where \var{elts} is the list of
elements of a small group of domain \var{n}, returns a \var{F2v} $b$ such that
$b[i]$ is set if and only if the small group contains a permutation sending $1$
to $i$.
\fun{long}{group_order}{GEN grp} returns the order of the small group
\var{grp} (which is the product of the relative orders).
\fun{long}{group_isabelian}{GEN grp} returns $1$ if the small group
\var{grp} is Abelian, else $0$.
\fun{GEN}{group_abelianHNF}{GEN grp, GEN elts} if \var{grp} is not Abelian,
returns \kbd{NULL}, else returns the HNF matrix of \var{grp} with respect to
the generating family $\var{grp}[1]$. If \var{elts} is no \kbd{NULL}, it must
be the list of elements of \var{grp}.
\fun{GEN}{group_abelianSNF}{GEN grp, GEN elts} if \var{grp} is not Abelian,
returns \kbd{NULL}, else returns its cyclic decomposition. If \var{elts} is no
\kbd{NULL}, it must be the list of elements of \var{grp}.
\fun{long}{group_subgroup_isnormal}{GEN G, GEN H}, $H$ being a subgroup of the
small group $G$, returns $1$ if $H$ is normal in $G$, else $0$.
\fun{long}{group_isA4S4}{GEN grp} returns $1$ if the small group
\var{grp} is isomorphic to $A_4$, $2$ if it is isomorphic to $S_4$ and
$0$ else. This is mainly to deal with the idiosyncrasy of the format.
\fun{GEN}{group_leftcoset}{GEN G, GEN g} where $G$ is a small group and $g$ a
permutation of the same domain, the left coset $gG$ as a vector of
permutations.
\fun{GEN}{group_rightcoset}{GEN G, GEN g} where $G$ is a small group and $g$ a
permutation of the same domain, the right coset $Gg$ as a vector of
permutations.
\fun{long}{group_perm_normalize}{GEN G, GEN g} where $G$ is a small group and
$g$ a permutation of the same domain, return $1$ if $gGg^{-1}=G$, else $0$.
\fun{GEN}{group_quotient}{GEN G, GEN H}, where $G$ is a small group and
$H$ is a subgroup of $G$, returns the quotient map $G\rightarrow G/H$
as an abstract data structure.
\fun{GEN}{quotient_perm}{GEN C, GEN g} where $C$ is the quotient map
$G\rightarrow G/H$ for some subgroup $H$ of $G$ and $g$ an element of $G$,
return the image of $g$ by $C$ (i.e. the coset $gH$).
\fun{GEN}{quotient_group}{GEN C, GEN G} where $C$ is the quotient map
$G\rightarrow G/H$ for some \emph{normal} subgroup $H$ of $G$, return the
quotient group $G/H$ as a small group.
\fun{GEN}{quotient_subgroup_lift}{GEN C, GEN H, GEN S} where $C$ is the
quotient map $G\rightarrow G/H$ for some group $G$ normalizing $H$ and $S$ is
a subgroup of $G/H$, return the inverse image of $S$ by $C$.
\fun{GEN}{group_subgroups}{GEN grp} returns the list of subgroups of the
small group \var{grp} as a \typ{VEC}.
\fun{GEN}{subgroups_tableset}{GEN S, long n} where $S$ is a vector of subgroups
of domain $n$, returns a table which matchs the set of elements of the
subgroups against the index of the subgroups.
\fun{long}{tableset_find_index}{GEN tbl, GEN set} searchs the set \kbd{set} in
the table \kbd{tbl} and returns its attached index, or $0$ if not found.
\fun{GEN}{groupelts_abelian_group}{GEN elts} where \var{elts} is the list of
elements of an \emph{Abelian} small group, returns the corresponding
small group.
\fun{GEN}{groupelts_center}{GEN elts} where \var{elts} is the list of elements
of a small group, returns the list of elements of the center of the
group.
\fun{GEN}{group_export}{GEN grp, long format} exports a small group
to another format, see \tet{galoisexport}.
\fun{long}{group_ident}{GEN grp, GEN elts} returns the index of the small group
\var{grp} in the GAP4 Small Group library, see \tet{galoisidentify}. If
\var{elts} is not \kbd{NULL}, it must be the list of elements of \var{grp}.
\fun{long}{group_ident_trans}{GEN grp, GEN elts} returns the index of the
regular representation of the small group \var{grp} in the GAP4 Transitive
Group library, see \tet{polgalois}. If \var{elts} is no \kbd{NULL}, it must be
the list of elements of \var{grp}.
\newpage
\chapter{Standard data structures}
\section{Character strings}
\subsec{Functions returning a \kbd{char *}}
\fun{char*}{pari_strdup}{const char *s} returns a malloc'ed copy of $s$
(uses \kbd{pari\_malloc}).
\fun{char*}{pari_strndup}{const char *s, long n} returns a malloc'ed copy of
at most $n$ chars from $s$ (uses \kbd{pari\_malloc}). If $s$ is longer than
$n$, only $n$ characters are copied and a terminal null byte is added.
\fun{char*}{stack_strdup}{const char *s} returns a copy of $s$, allocated
on the PARI stack (uses \kbd{stack\_malloc}).
\fun{char*}{stack_strcat}{const char *s, const char *t} returns the
concatenation of $s$ and $t$, allocated on the PARI stack (uses
\kbd{stack\_malloc}).
\fun{char*}{stack_sprintf}{const char *fmt, ...} runs \kbd{pari\_sprintf}
on the given arguments, returning a string allocated on the PARI stack.
\fun{char*}{itostr}{GEN x} writes the \typ{INT} $x$ to a \tet{stack_malloc}'ed
string.
\fun{char*}{GENtostr}{GEN x}, using the current default output format
(\kbd{GP\_DATA->fmt}, which contains the output style and the number of
significant digits to print), converts $x$ to a malloc'ed string. Simple
variant of \tet{pari_sprintf}.
\fun{char*}{GENtostr_raw}{GEN x} as \tet{GENtostr} with the following
differences: 1) the output format is \tet{f_RAW}; 2) the result is allocated
on the stack and \emph{must not} be freed.
\fun{char*}{GENtostr_unquoted}{GEN x} as \tet{GENtostr_raw} with the following
additional difference: a \typ{STR} $x$ is printed without enclosing quotes
(to be used by \kbd{print}.
\fun{char*}{GENtoTeXstr}{GEN x}, as \kbd{GENtostr}, except that
\tet{f_TEX} overrides the output format from \kbd{GP\_DATA->fmt}.
\fun{char*}{RgV_to_str}{GEN g, long flag} $g$ being a vector of \kbd{GEN}s,
returns a malloc'ed string, the concatenation of the \kbd{GENtostr} applied
to its elements, except that \typ{STR} are printed without enclosing quotes.
\kbd{flag} determines the output format: \tet{f_RAW}, \tet{f_PRETTYMAT}
or \tet{f_TEX}.
\subsec{Functions returning a \typ{STR}}
\fun{GEN}{strtoGENstr}{const char *s} returns a \typ{STR} with content $s$.
\fun{GEN}{strntoGENstr}{const char *s, long n}
returns a \typ{STR} containing the first $n$ characters of $s$.
\fun{GEN}{chartoGENstr}{char c} returns a \typ{STR} containing the character
$c$.
\fun{GEN}{GENtoGENstr}{GEN x} returns a \typ{STR} containing the printed
form of $x$ (in \tet{raw} format). This is often easier to use that
\tet{GENtostr} (which returns a malloc-ed \kbd{char*}) since there is no need
to free the string after use.
\fun{GEN}{GENtoGENstr_nospace}{GEN x} as \kbd{GENtoGENstr}, removing all
spaces from the output.
\fun{GEN}{Str}{GEN g} as \tet{RgV_to_str} with output format \tet{f_RAW},
but returns a \typ{STR}, not a malloc'ed string.
\fun{GEN}{Strtex}{GEN g} as \tet{RgV_to_str} with output format \tet{f_TEX},
but returns a \typ{STR}, not a malloc'ed string.
\fun{GEN}{Strexpand}{GEN g} as \tet{RgV_to_str} with output format \tet{f_RAW},
performing tilde and environment expansion on the result. Returns a
\typ{STR}, not a malloc'ed string.
\fun{GEN}{gsprintf}{const char *fmt, ...} equivalent to
\kbd{pari\_sprintf(fmt,...}, followed by \tet{strtoGENstr}. Returns a \typ{STR},
not a malloc'ed string.
\fun{GEN}{gvsprintf}{const char *fmt, va_list ap} variadic version of
\tet{gsprintf}
\section{Output}
\subsec{Output contexts}
An output coutext, of type \tet{PariOUT}, is a \kbd{struct}
that models a stream and contains the following function pointers:
\bprog
void (*putch)(char); /* fputc()-alike */
void (*puts)(const char*); /* fputs()-alike */
void (*flush)(void); /* fflush()-alike */
@eprog\noindent
The methods \tet{putch} and \tet{puts} are used to print a character
or a string respectively. The method \tet{flush} is called to finalize a
messages.
The generic functions \tet{pari_putc}, \tet{pari_puts}, \tet{pari_flush} and
\tet{pari_printf} print according to a \emph{default output context}, which
should be sufficient for most purposes. Lower level functions are available,
which take an explicit output context as first argument:
\fun{void}{out_putc}{PariOUT *out, char c} essentially equivalent to
\kbd{out->putc(c)}. In addition, registers whether the last character printed
was a \kbd{\bs n}.
\fun{void}{out_puts}{PariOUT *out, const char *s} essentially equivalent to
\kbd{out->puts(s)}. In addition, registers whether the last character printed
was a \kbd{\bs n}.
\fun{void}{out_printf}{PariOUT *out, const char *fmt, ...}
\fun{void}{out_vprintf}{PariOUT *out, const char *fmt, va_list ap}
\noindent N.B. The function \kbd{out\_flush} does not exist since it would be
identical to \kbd{out->flush()}
\fun{int}{pari_last_was_newline}{void} returns a non-zero value if the last
character printed via \tet{out_putc} or \tet{out_puts} was \kbd{\bs
n}, and $0$ otherwise.
\fun{void}{pari_set_last_newline}{int last} sets the boolean value
to be returned by the function \tet{pari_last_was_newline} to \var{last}.
\subsec{Default output context} They are defined by the global variables
\tet{pariOut} and \tet{pariErr} for normal outputs and warnings/errors, and you
probably do not want to change them. If you \emph{do} change them, diverting
output in non-trivial ways, this probably means that you are rewriting
\kbd{gp}. For completeness, we document in this section what the default
output contexts do.
\misctitle{pariOut} writes output to the \kbd{FILE*} \tet{pari_outfile},
initialized to \tet{stdout}. The low-level methods are actually the standard
\kbd{putc} / \kbd{fputs}, plus some magic to handle a log file if one is
open.
\misctitle{pariErr} prints to the \kbd{FILE*} \tet{pari_errfile}, initialized
to \tet{stderr}. The low-level methods are as above.
You can stick with the default \kbd{pariOut} output context and change PARI's
standard output, redirecting \tet{pari_outfile} to another file, using
\fun{void}{switchout}{const char *name} where \kbd{name} is a character string
giving the name of the file you want to write to; the output is
\emph{appended} at the end of the file. To close the file and revert to
outputting to \kbd{stdout}, call \kbd{switchout(NULL)}.
\subsec{PARI colors}
In this section we describe the low-level functions used to implement GP's
color scheme, attached to the \tet{colors} default. The following symbolic
names are attached to gp's output strings:
\item \tet{c_ERR} an error message
\item \tet{c_HIST} a history number (as in \kbd{\%1 = ...})
\item \tet{c_PROMPT} a prompt
\item \tet{c_INPUT} an input line (minus the prompt part)
\item \tet{c_OUTPUT} an output
\item \tet{c_HELP} a help message
\item \tet{c_TIME} a timer
\item \tet{c_NONE} everything else
\emph{If} the \tet{colors} default is set to a non-empty value, before gp
outputs a string, it first outputs an ANSI colors escape sequence ---
understood by most terminals ---, according to the \kbd{colors}
specifications. As long as this is in effect, the following strings are
rendered in color, possibly in bold or underlined.
\fun{void}{term_color}{long c} prints (as if using \tet{pari_puts}) the ANSI
color escape sequence attached to output object \kbd{c}. If \kbd{c} is
\tet{c_NONE}, revert to default printing style.
\fun{void}{out_term_color}{PariOUT *out, long c} as \tet{term_color},
using output context \kbd{out}.
\fun{char*}{term_get_color}{char *s, long c} returns as a character
string the ANSI color escape sequence attached to output object \kbd{c}.
If \kbd{c} is \tet{c_NONE}, the value used to revert to default printing
style is returned. The argument \kbd{s} is either \kbd{NULL} (string
allocated on the PARI stack), or preallocated storage (in which case, it must
be able to hold at least 16 chars, including the final \kbd{\bs 0}).
\subsec{Obsolete output functions}
These variants of \fun{void}{output}{GEN x}, which prints \kbd{x}, followed by
a newline and a buffer flush are complicated to use and less flexible
than what we saw above, or than the \tet{pari_printf} variants. They are
provided for backward compatibility and are scheduled to disappear.
\fun{void}{brute}{GEN x, char format, long dec}
\fun{void}{matbrute}{GEN x, char format, long dec}
\fun{void}{texe}{GEN x, char format, long dec}
\section{Files}
The following routines are trivial wrappers around system functions
(possibly around one of several functions depending on availability).
They are usually integrated within PARI's diagnostics system, printing
messages if \kbd{DEBUGFILES} is high enough.
\fun{int}{pari_is_dir}{const char *name} returns $1$ if \kbd{name} points to
a directory, $0$ otherwise.
\fun{int}{pari_is_file}{const char *name} returns $1$ if \kbd{name} points to
a directory, $0$ otherwise.
\fun{int}{file_is_binary}{FILE *f} returns $1$ if the file $f$ is a binary
file (in the \tet{writebin} sense), $0$ otherwise.
\fun{void}{pari_unlink}{const char *s} deletes the file named $s$. Warn
if the operation fails.
\fun{void}{pari_fread_chars}{void *b, size_t n, FILE *f} read $n$ chars from
stream $f$, storing the result in pre-allocated buffer $b$ (assumed to be
large enough).
\fun{char*}{path_expand}{const char *s} perform tilde and environment expansion
on $s$. Returns a \kbd{malloc}'ed buffer.
\fun{void}{strftime_expand}{const char *s, char *buf, long max} perform
time expansion on $s$, storing the result (at most \kbd{max} chars) in
buffer \kbd{buf}. Trivial wrapper around
\bprog
time_t t = time(NULL);
strftime(but, max, s, localtime(&t);
@eprog
\fun{char*}{pari_get_homedir}{const char *user} expands \kbd{\til user}
constructs, returning the home directory of user \kbd{user}, or \kbd{NULL} if
it could not be determined (in particular if the operating system has no such
concept). The return value may point to static area and may be overwritten
by subsequent system calls: use immediately or \kbd{strdup} it.
\fun{int}{pari_stdin_isatty}{void} returns $1$ if our standard input
\kbd{stdin} is attached to a terminal. Trivial wrapper around \kbd{isatty}.
\subsec{pariFILE}
PARI maintains a linked list of open files, to reclaim resources
(file descriptors) on error or interrupts. The corresponding data structure
is a \kbd{pariFILE}, which is a wrapper around a standard \kbd{FILE*},
containing further the file name, its type (regular file, pipe, input or
output file, etc.). The following functions create and manipulate this
structure; they are integrated within PARI's diagnostics system, printing
messages if \kbd{DEBUGFILES} is high enough.
\fun{pariFILE*}{pari_fopen}{const char *s, const char *mode} wrapper
around \kbd{fopen(s, mode)}, return \kbd{NULL} on failure.
\fun{pariFILE*}{pari_fopen_or_fail}{const char *s, const char *mode}
simple wrapper around \kbd{fopen(s, mode)}; error on failure.
\fun{pariFILE*}{pari_fopengz}{const char *s} opens the file whose name is
$s$, and associates a (read-only) \kbd{pariFILE} with it. If $s$ is a
compressed file (\kbd{.gz} suffix), it is uncompressed on the fly.
If $s$ cannot be opened, also try to open \kbd{$s$.gz}. Returns \kbd{NULL}
on failure.
\fun{void}{pari_fclose}{pariFILE *f} closes
the underlying file descriptor and deletes the \kbd{pariFILE} struct.
\fun{pariFILE*}{pari_safefopen}{const char *s, const char *mode}
creates a \emph{new} file $s$ (a priori for writing) with \kbd{600}
permissions. Error if the file already exists. To avoid symlink attacks,
a symbolic link exists, regardless of where it points to.
\subsec{Temporary files}
PARI has its own idea of the system temp directory derived from an
environment variable (\kbd{\$GPTMPDIR}, else \kbd{\$TMPDIR}), or the first
writable directory among \kbd{/tmp}, \kbd{/var/tmp} and \kbd{.}.
\fun{char*}{pari_unique_dir}{const char *s} creates a ``unique directory''
and return its name built from the string $s$, the user id and process pid
(on Unix systems). This directory is itself located in the temp
directory mentioned above. The name returned is \tet{malloc}'ed.
\fun{char*}{pari_unique_filename}{const char *s} creates a \emph{new} empty
file in the temp directory, whose name contains the id-string $s$ (truncated
to its first $8$ chars), followed by a system-dependent suffix (incorporating
the ids of both the user and the running process, for instance). The function
returns the tempfile name. The name returned is \tet{malloc}'ed.
\section{Errors}\label{se:errors}
This section documents the various error classes, and the corresponding
arguments to \tet{pari_err}. The general syntax is
\fun{void}{pari_err}{numerr,...}
\noindent In the sequel, we mostly use sequences of arguments of the form
\bprog
const char *s
const char *fmt, ...
@eprog\noindent where \kbd{fmt} is a PARI
format, producing a string $s$ from the remaining arguments. Since
providing the correct arguments to \tet{pari_err} is quite error-prone, we
also provide specialized routines \kbd{pari\_err\_\var{ERRORCLASS}(\dots)}
instead of \kbd{pari\_err(e\_\var{ERRORCLASS}, \dots)} so that the C compiler
can check their arguments.
\noindent We now inspect the list of valid keywords (error classes) for
\kbd{numerr}, and the corresponding required arguments.
\subsec{Internal errors, ``system'' errors}
\subsubsec{e\_ARCH} A requested feature $s$ is not available on this
architecture or operating system.
\bprog
pari_err(e_ARCH)
@eprog\noindent prints the error message: \kbd{sorry, '$s$' not available on
this system}.
\subsubsec{e\_BUG} A bug in the PARI library, in function $s$.
\bprog
pari_err(e_BUG, const char *s)
pari_err_BUG(const char *s)
@eprog\noindent prints the error message: \kbd{Bug in $s$, please report}.
\subsubsec{e\_FILE} Error while trying to open a file.
\bprog
pari_err(e_FILE, const char *what, const char *name)
pari_err_FILE(const char *what, const char *name)
@eprog\noindent prints the error message: \kbd{error opening
\emph{what}: `\emph{name}'}.
\subsubsec{e\_IMPL} A requested feature $s$ is not implemented.
\bprog
pari_err(e_IMPL, const char *s)
pari_err_IMPL(const char *s)
@eprog\noindent prints the error message: \kbd{sorry, $s$ is not yet
implemented}.
\subsubsec{e\_PACKAGE} Missing optional package $s$.
\bprog
pari_err(e_PACKAGE, const char *s)
pari_err_PACKAGE(const char *s)
@eprog\noindent prints the error message: \kbd{package $s$ is required,
please install it}
\subsec{Syntax errors, type errors}
\subsubsec{e\_DIM} arguments submitted to function $s$ have inconsistent
dimensions. E.g., when solving a linear system, or trying to compute the
determinant of a non-square matrix.
\bprog
pari_err(e_DIM, const char *s)
pari_err_DIM(const char *s)
@eprog\noindent prints the error message: \kbd{inconsistent dimensions in $s$}.
\subsubsec{e\_FLAG} A flag argument is out of bounds in function $s$.
\bprog
pari_err(e_FLAG, const char *s)
pari_err_FLAG(const char *s)
@eprog\noindent prints the error message: \kbd{invalid flag in $s$}.
\subsubsec{e\_NOTFUNC} Generated by the PARI evaluator; tried to use a
\kbd{GEN} which is not a \typ{CLOSURE} in a function call syntax (as in
\kbd{f = 1; f(2);}).
\bprog
pari_err(e_NOTFUNC, GEN fun)
@eprog\noindent prints the error message: \kbd{not a function in a function
call}.
\subsubsec{e\_OP} Impossible operation between two objects than cannot be
typecast to a sensible common domain for deeper reasons than a type mismatch,
usually for arithmetic reasons. As in \kbd{O(2) + O(3)}: it is valid to add
two \typ{PADIC}s, provided the underlying prime is the same; so the addition
is not forbidden a priori for type reasons, it only becomes so when
inspecting the objects and trying to perform the operation.
\bprog
pari_err(e_OP, const char *op, GEN x, GEN y)
pari_err_OP(const char *op, GEN x, GEN y)
@eprog\noindent As \kbd{e\_TYPE2}, replacing \kbd{forbidden} by
\kbd{inconsistent}.
\subsubsec{e\_PRIORITY} object $o$ in function $s$ contains
variables whose priority is incompatible with the expected operation.
E.g.~\kbd{Pol([x,1], 'y)}: this raises an error because it's not possible to
create a polynomial whose coefficients involve variables with higher priority
than the main variable.
\bprog
pari_err(e_PRIORITY, const char *s, GEN o, const char *op, long v)
pari_err_PRIORITY(const char *s, GEN o, const char *op, long v)
@eprog\noindent prints the error message: \kbd{incorrect priority
in $s$, variable $v_o$ \var{op} $v$}, were $v_o$ is \kbd{gvar(o)}.
\subsubsec{e\_SYNTAX} Syntax error, generated by the PARI parser.
\bprog
pari_err(e_SYNTAX, const char *msg, const char *e, const char *entry)
@eprog\noindent where \kbd{msg} is a complete error message, and \kbd{e} and
\kbd{entry} point into the \emph{same} character string, which is the input
that was incorrectly parsed: \kbd{e} points to the character where the parser
failed, and $\kbd{entry}\leq \kbd{e}$ points somewhat before.
\noindent Prints the error message: \kbd{msg}, followed by a colon, then
a part of the input character string (in general \kbd{entry} itself, but an
initial segment may be truncated if $\kbd{e}-\kbd{entry}$ is large); a caret
points at \kbd{e}, indicating where the error took place.
\subsubsec{e\_TYPE} An argument $x$ of function $s$ had an unexpected type.
(As in \kbd{factor("blah")}.)
\bprog
pari_err(e_TYPE, const char *s, GEN x)
pari_err_TYPE(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{incorrect type in $s$
(\typ{$x$})}, where \typ{$x$} is the type of $x$.
\subsubsec{e\_TYPE2} Forbidden operation between two objects than cannot be
typecast to a sensible common domain, because their types do not match up.
(As in \kbd{Mod(1,2) + Pi}.)
\bprog
pari_err(e_TYPE2, const char *op, GEN x, GEN y)
pari_err_TYPE2(const char *op, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{forbidden} $s$
\typ{$x$} \var{op} \typ{$y$}, where \typ{$z$} denotes the type of $z$.
Here, $s$ denotes the spelled out name of the operator
$\var{op}\in\{\kbd{+}, \kbd{*}, \kbd{/}, \kbd{\%}, \kbd{=}\}$, e.g.
\emph{addition} for \kbd{"+"} or \emph{assignment} for \kbd{"="}. If \var{op}
is not in the above operator, list, it is taken to be the already spelled out
name of a function, e.g. \kbd{"gcd"}, and the error message becomes
\kbd{forbidden} \var{op} \typ{$x$}, \typ{$y$}.
\subsubsec{e\_VAR} polynomials $x$ and $y$ submitted to function $s$ have
inconsistent variables. E.g., considering the algebraic number
\kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(x\pow2+1)}.
\bprog
pari_err(e_VAR, const char *s, GEN x, GEN y)
pari_err_VAR(const char *s, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{inconsistent variables in $s$
$X$ != $Y$}, where $X$ and $Y$ are the names of the variables of $x$ and $y$,
respectively.
\subsec{Overflows}
\subsubsec{e\_COMPONENT} Trying to access an inexistent component in a
vector/matrix/list in a function: the index is less than $1$ or greater
than the allowed length.
\bprog
pari_err(e_COMPONENT, const char *f, const char *op, GEN lim, GEN x)
pari_err_COMPONENT(const char *f, const char *op, GEN lim, GEN x)
@eprog\noindent prints the error message: \kbd{non-existent component in $f$:
index \var{op} \var{lim}}. Special case: if $f$ is the empty string (no
meaningful public function name can be used), we ignore it and print the
message: \kbd{non-existent component: index \var{op} \var{lim}}.
\subsubsec{e\_DOMAIN} An argument $x$ is not in the function's domain (as in
\kbd{moebius(0)} or \kbd{zeta(1)}).
\bprog
pari_err(e_DOMAIN, char *f, char *v, char *op, GEN lim, GEN x)
pari_err_DOMAIN(char *f, char *v, char *op, GEN lim, GEN x)
@eprog\noindent prints the error message: \kbd{domain error in $f$: $v$
\var{op} \var{lim}}. Special case: if \var{op} is the empty string, we ignore
\var{lim} and print the error message: \kbd{domain error in $f$: $v$ out of
range}.
\subsubsec{e\_MAXPRIME} A function using the precomputed list of prime numbers
ran out of primes.
\bprog
pari_err(e_MAXPRIME, ulong c)
pari_err_MAXPRIME(ulong c)
@eprog\noindent prints the error message: \kbd{not enough precomputed primes,
need primelimit \til $c$} if $c$ is non-zero. And simply \kbd{not enough
precomputed primes} otherwise.
\subsubsec{e\_MEM} A call to \tet{pari_malloc} or \tet{pari_realloc} failed.
\bprog
pari_err(e_MEM)
@eprog\noindent prints the error message: \kbd{not enough memory}.
\subsubsec{e\_OVERFLOW} An object in function $s$ becomes too large to be
represented within PARI's hardcoded limits. (As in \kbd{2\pow2\pow2\pow10}
or \kbd{exp(1e100)}, which overflow in \kbd{lg} and \kbd{expo}.)
\bprog
pari_err(e_OVERFLOW, const char *s)
pari_err_OVERFLOW(const char *s)
@eprog\noindent prints the error message: \kbd{overflow in $s$}.
\subsubsec{e\_PREC} Function $s$ fails because input accuracy is too low.
(As in \kbd{floor(1e100)} at default accuracy.)
\bprog
pari_err(e_PREC, const char *s)
pari_err_PREC(const char *s)
@eprog\noindent prints the error message: \kbd{precision too low in $s$}.
\subsubsec{e\_STACK} The PARI stack overflows.
\bprog
pari_err(e_STACK)
@eprog\noindent prints the error message: \kbd{the PARI stack overflows !}
as well as some statistics concerning stack usage.
\subsec{Errors triggered intentionally}
\subsubsec{e\_ALARM} A timeout, generated by the \tet{alarm} function.
\bprog
pari_err(e_ALARM, const char *fmt, ...)
@eprog\noindent prints the error message: $s$.
\subsubsec{e\_USER} A user error, as triggered by \tet{error}($g_1,\dots,g_n)$
in GP.
\bprog
pari_err(e_USER, GEN g)
@eprog\noindent prints the error message: \kbd{user error:}, then the
entries of the vector $g$.
\subsec{Mathematical errors}
\subsubsec{e\_CONSTPOL} An argument of function $s$ is a constant polynomial,
which does not make sense. (As in \kbd{galoisinit(Pol(1))}.)
\bprog
pari_err(e_CONSTPOL, const char *s)
pari_err_CONSTPOL(const char *s)
@eprog\noindent prints the error message: \kbd{constant polynomial in $s$}.
\subsubsec{e\_COPRIME} Function $s$ expected two coprime arguments, and did
receive $x$, $y$ which were not.
\bprog
pari_err(e_COPRIME, const char *s, GEN x, GEN y)
pari_err_COPRIME(const char *s, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{elements not coprime in $s$:
$x, y$}.
\subsubsec{e\_INV} Tried to invert a non-invertible object $x$.
\bprog
pari_err(e_INV, const char *s, GEN x)
pari_err_INV(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{impossible inverse in $s$: $x$}.
If $x = \kbd{Mod}(a,b)$ is a \typ{INTMOD} and $a$ is not $0$ mod $b$, this
allows to factor the modulus, as \kbd{gcd}$(a,b)$ is a non-trivial divisor of
$b$.
\subsubsec{e\_IRREDPOL} Function $s$ expected an irreducible polynomial,
and did not receive one. (As in \kbd{nfinit(x\pow2-1)}.)
\bprog
pari_err(e_IRREDPOL, const char *s, GEN x)
pari_err_IRREDPOL(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{not an irreducible polynomial
in $s$: $x$}.
\subsubsec{e\_MISC} Generic uncategorized error.
\bprog
pari_err(e_MISC, const char *fmt, ...)
@eprog\noindent prints the error message: $s$.
\subsubsec{e\_MODULUS} moduli $x$ and $y$ submitted to function $s$ are
inconsistent. E.g., considering the algebraic number
\kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(t\pow3-2)}.
\bprog
pari_err(e_MODULUS, const char *s, GEN x, GEN y)
pari_err_MODULUS(const char *s, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{inconsistent moduli in $s$},
then the moduli.
\subsubsec{e\_PRIME} Function $s$ expected a prime number, and did receive $p$,
which was not. (As in \kbd{idealprimedec(nf, 4)}.)
\bprog
pari_err(e_PRIME, const char *s, GEN x)
pari_err_PRIME(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{not a prime in $s$: $x$}.
\subsubsec{e\_ROOTS0} An argument of function $s$ is a zero polynomial, and
we need to consider its roots. (As in \kbd{polroots(0)}.)
\bprog
pari_err(e_ROOTS0, const char *s)
pari_err_ROOTS0(const char *s)
@eprog\noindent prints the error message: \kbd{zero polynomial in $s$}.
\subsubsec{e\_SQRTN} Tried to compute an $n$-th root of $x$, which does not
exist, in function $s$.
(As in \kbd{sqrt(Mod(-1,3))}.)
\bprog
pari_err(e_SQRTN, GEN x)
pari_err_SQRTN(GEN x)
@eprog\noindent prints the error message: \kbd{not an n-th power residue in
$s$: $x$}.
\subsec{Miscellaneous functions}
\fun{long}{name_numerr}{const char *s} return the error number corresponding to
an error name. E.g. \kbd{name\_numerr("e\_DIM")} returns \kbd{e\_DIM}.
\fun{const char*}{numerr_name}{long errnum} returns the error name
corresponding to an error number. E.g. \kbd{name\_numerr(e\_DIM)} returns
\kbd{"e\_DIM"}.
\fun{char*}{pari_err2str}{GEN err} returns the error message that would be
printed on \typ{ERROR} \kbd{err}. The name is allocated on the PARI stack and
must not be freed.
\section{Hashtables}
A \tet{hashtable}, or associative array, is a set of pairs $(k,v)$ of keys
and values. PARI implements general extensible hashtables for fast data
retrieval: when creating a table, we may either choose to use the PARI stack,
or \kbd{malloc} so as to be stack-independent. A hashtable is implemented as
a table of linked lists, each list containing all entries sharing the same
hash value. The table length is a prime number, which roughly doubles as the
table overflows by gaining new entries; both the current number of entries
and the threshold before the table grows are stored in the table. Finally the
table remembers the functions used to hash the entries's keys and to test for
equality two entries hashed to the same value.
An entry, or \tet{hashentry}, contains
\item a key/value pair $(k,v)$, both of type \kbd{void*} for maximal
flexibility,
\item the hash value of the key, for the table hash function. This hash is
mapped to a table index (by reduction modulo the table length), but it
contains more information, and is used to bypass costly general equality
tests if possible,
\item a link pointer to the next entry sharing the same table cell.
\bprog
typedef struct {
void *key, *val;
ulong hash; /* hash(key) */
struct hashentry *next;
} hashentry;
typedef struct {
ulong len; /* table length */
hashentry **table; /* the table */
ulong nb, maxnb; /* number of entries stored and max nb before enlarging */
ulong pindex; /* prime index */
ulong (*hash) (void *k); /* hash function */
int (*eq) (void *k1, void *k2); /* equality test */
int use_stack; /* use the PARI stack, resp. malloc */
} hashtable;
@eprog\noindent
\fun{hashtable*}{hash_create}{size, hash, eq, use_stack}
\vskip -0.5em % switch to K&R style to avoid atrocious line break
\bprog
ulong size;
ulong (*hash)(void*);
int (*eq)(void*,void*);
int use_stack;
@eprog\noindent
creates a hashtable with enough room to contain
\kbd{size} entries. The functions \kbd{hash} and \kbd{eq} compute the hash
value of keys and test keys for equality, respectively. If \kbd{use\_stack}
is non zero, the resulting table will use the PARI stack; otherwise, we use
\kbd{malloc}.
\fun{hashtable*}{hash_create_ulong}{ulong size, long stack} special case
when the keys are \kbd{ulongs} with ordinary equality test.
\fun{hashtable*}{hash_create_str}{ulong size, long stack} special case
when the keys are character strings with string equality test (and
\tet{hash_str} hash function).
\fun{void}{hash_insert}{hashtable *h, void *k, void *v} inserts $(k,v)$
in hashtable $h$. No copy is made: $k$ and $v$ themselves are stored. The
implementation does not prevent one to insert two entries with equal
keys $k$, but which of the two is affected by later commands is undefined.
\fun{void}{hash_insert2}{hashtable *h, void *k, void *v, ulong hash}
as \kbd{hash\_insert}, assuming \kbd{h->hash(k)} is \kbd{hash}.
\fun{hashentry*}{hash_search}{hashtable *h, void *k} look for an entry
with key $k$ in $h$. Return it if it one exists, and \kbd{NULL} if not.
\fun{hashentry*}{hash_search2}{hashtable *h, void *k, ulong hash} as
\kbd{hash\_search} assuming \kbd{h->hash(k)} is \kbd{hash}.
\fun{hashentry *}{hash_select}{hashtable *h, void *k, void *E, int (*select)(void *, hashentry *)} variant of \tet{hash_search}, useful when entries
with identical keys are inserted: among the entries attached to
key $k$, return one satisfying the selection criterion (such that
\kbd{select(E,e)} is non-zero), or \kbd{NULL} if none exist.
\fun{hashentry*}{hash_remove}{hashtable *h, void *k} deletes an entry $(k,v)$
with key $k$ from $h$ and return it. (Return \kbd{NULL} if none was found.)
Only the linking structures are freed, memory attached to $k$ and $v$
is not reclaimed.
\fun{hashentry*}{hash_remove_select}{hashtable *h, void *k, void *E, int(*select)(void*, hashentry *)}
a variant of \tet{hash_remove}, useful when entries with identical keys are
inserted: among the entries attached to key $k$, return one satisfying the
selection criterion (such that \kbd{select(E,e)} is non-zero) and delete it,
or \kbd{NULL} if none exist. Only the linking structures are freed, memory
attached to $k$ and $v$ is not reclaimed.
\fun{GEN}{hash_keys}{hashtable *h} return in a \typ{VECSMALL} the keys
stored in hashtable $h$.
\fun{GEN}{hash_values}{hashtable *h} return in a \typ{VECSMALL}
the values stored in hashtable $h$.
\fun{void}{hash_destroy}{hashtable *h} deletes the hashtable, by removing all
entries.
\fun{void}{hash_dbg}{hashtable *h} print statistics for hashtable $h$, allows
to evaluate the attached hash function performance on actual data.
Some interesting hash functions are available:
\fun{ulong}{hash_str}{const char *s}
\fun{ulong}{hash_str2}{const char *s} is the historical PARI string hashing
function and seems to be generally inferior to \kbd{hash\_str}.
\fun{ulong}{hash_GEN}{GEN x}
\section{Dynamic arrays}
A \teb{dynamic array} is a generic way to manage stacks of data that need
to grow dynamically. It allocates memory using \kbd{pari\_malloc}, and is
independent of the PARI stack; it even works before the \kbd{pari\_init} call.
\subsec{Initialization}
To create a stack of objects of type \kbd{foo}, we proceed as follows:
\bprog
foo *t_foo;
pari_stack s_foo;
pari_stack_init(&s_foo, sizeof(*t_foo), (void**)t_foo);
@eprog\noindent Think of \kbd{s\_foo} as the controlling interface, and
\kbd{t\_foo} as the (dynamic) array tied to it. The value of \kbd{t\_foo}
may be changed as you add more elements.
\subsec{Adding elements}
The following function pushes an element on the stack.
\bprog
/* access globals t_foo and s_foo */
void push_foo(foo x)
{
long n = pari_stack_new(&s_foo);
t_foo[n] = x;
}
@eprog
\subsec{Accessing elements}
Elements are accessed naturally through the \kbd{t\_foo} pointer.
For example this function swaps two elements:
\bprog
void swapfoo(long a, long b)
{
foo x;
if (a > s_foo.n || b > s_foo.n) pari_err_BUG("swapfoo");
x = t_foo[a];
t_foo[a] = t_foo[b];
t_foo[b] = x;
}
@eprog
\subsec{Stack of stacks}
Changing the address of \kbd{t\_foo} is not supported in general.
In particular \kbd{realloc()}'ed array of stacks and stack of stacks are not
supported.
\subsec{Public interface}
Let \kbd{s} be a \kbd{pari\_stack} and \kbd{data} the data linked to it. The
following public fields are defined:
\item \kbd{s.alloc} is the number of elements allocated for \kbd{data}.
\item \kbd{s.n} is the number of elements in the stack and \kbd{data[s.n-1]} is
the topmost element of the stack. \kbd{s.n} can be changed as long as
$0\leq\kbd{s.n}\leq\kbd{s.alloc}$ holds.
\fun{void}{pari_stack_init}{pari_stack *s, size_t size, void **data} links
\kbd{*s} to the data pointer \kbd{*data}, where \kbd{size} is the size of
data element. The pointer \kbd{*data} is set to \kbd{NULL}, \kbd{s->n} and
\kbd{s->alloc} are set to $0$: the array is empty.
\fun{void}{pari_stack_alloc}{pari_stack *s, long nb} makes room for \kbd{nb}
more elements, i.e.~makes sure that $\kbd{s.alloc}\geq\kbd{s.n} + \kbd{nb}$,
possibly reallocating \kbd{data}.
\fun{long}{pari_stack_new}{pari_stack *s} increases \kbd{s.n} by one unit,
possibly reallocating \kbd{data}, and returns $\kbd{s.n}-1$.
\misctitle{Caveat} The following construction is incorrect because
\kbd{stack\_new} can change the value of \kbd{t\_foo}:
\bprog
t_foo[ pari_stack_new(&s_foo) ] = x;
@eprog
\fun{void}{pari_stack_delete}{pari_stack *s} frees \kbd{data} and resets the
stack to the state immediately following \kbd{stack\_init} (\kbd{s->n} and
\kbd{s->alloc} are set to $0$).
\fun{void *}{pari_stack_pushp}{pari_stack *s, void *u} This function assumes
that \kbd{*data} is of pointer type. Pushes the element \kbd{u} on the stack
\kbd{s}.
\fun{void **}{pari_stack_base}{pari_stack *s} returns the address of \kbd{data},
typecast to a \kbd{void **}.
\section{Vectors and Matrices}
\subsec{Access and extract}
See~\secref{se:clean} and~\secref{se:unclean} for various useful constructors.
Coefficients are accessed and set using \tet{gel}, \tet{gcoeff},
see~\secref{se:accessors}. There are many internal functions to extract or
manipulate subvectors or submatrices but, like the accessors above, none of
them are suitable for \tet{gerepileupto}. Worse, there are no type
verification, nor bound checking, so use at your own risk.
\fun{GEN}{shallowcopy}{GEN x} returns a \kbd{GEN} whose components are the
components of $x$ (no copy is made). The result may now be used to compute in
place without destroying $x$. This is essentially equivalent to
\bprog
GEN y = cgetg(lg(x), typ(x));
for (i = 1; i < lg(x); i++) y[i] = x[i];
return y;
@eprog\noindent
except that \typ{MAT} is treated specially since shallow copies of all columns
are made. The function also works for non-recursive types, but is useless
in that case since it makes a deep copy. If $x$ is known to be a \typ{MAT}, you
may call \tet{RgM_shallowcopy} directly; if $x$ is known not to be a \typ{MAT},
you may call \tet{leafcopy} directly.
\fun{GEN}{RgM_shallowcopy}{GEN x} returns \kbd{shallowcopy(x)}, where $x$
is a \typ{MAT}.
\fun{GEN}{shallowtrans}{GEN x} returns the transpose of $x$, \emph{without}
copying its components, i.~e.,~it returns a \kbd{GEN} whose components are
(physically) the components of $x$. This is the internal function underlying
\tet{gtrans}.
\fun{GEN}{shallowconcat}{GEN x, GEN y} concatenate $x$ and $y$, \emph{without}
copying components, i.~e.,~it returns a \kbd{GEN} whose components are
(physically) the components of $x$ and $y$.
\fun{GEN}{shallowconcat1}{GEN x}
$x$ must be \typ{VEC} or \typ{LIST}, concatenate
its elements from left to right. Shallow version of \kbd{gconcat1}.
\fun{GEN}{shallowmatconcat}{GEN v} shallow version of \kbd{matconcat}.
\fun{GEN}{shallowextract}{GEN x, GEN y} extract components
of the vector or matrix $x$ according to the selection parameter $y$.
This is the shallow analog of \kbd{extract0(x, y, NULL)}, see \tet{vecextract}.
\kbdsidx{extract0}
\fun{GEN}{RgM_minor}{GEN A, long i, long j} given a square \typ{MAT} A,
return the matrix with $i$-th row and $j$-th column removed.
\fun{GEN}{vconcat}{GEN A, GEN B} concatenate vertically the two \typ{MAT} $A$
and $B$ of compatible dimensions. A \kbd{NULL} pointer is accepted for an
empty matrix. See \tet{shallowconcat}.
\fun{GEN}{matslice}{GEN A, long a, long b, long c, long d}
returns the submatrix $A[a..b,c..d]$. Assume $a \leq b$ and $c \leq d$.
\fun{GEN}{row}{GEN A, long i} return $A[i,]$, the $i$-th row of the \typ{MAT}
$A$.
\fun{GEN}{row_i}{GEN A, long i, long j1, long j2} return part of the $i$-th
row of \typ{MAT}~$A$: $A[i,j_1]$, $A[i,j_1+1]\dots,A[i,j_2]$. Assume $j_1
\leq j_2$.
\fun{GEN}{rowcopy}{GEN A, long i} return the row $A[i,]$ of
the~\typ{MAT}~$A$. This function is memory clean and suitable for
\kbd{gerepileupto}. See \kbd{row} for the shallow equivalent.
\fun{GEN}{rowslice}{GEN A, long i1, long i2} return the \typ{MAT}
formed by the $i_1$-th through $i_2$-th rows of \typ{MAT} $A$. Assume $i_1
\leq i_2$.
\fun{GEN}{rowsplice}{GEN A, long i} return the \typ{MAT} formed from the
coefficients of \typ{MAT} $A$ with $j$-th row removed.
\fun{GEN}{rowpermute}{GEN A, GEN p}, $p$ being a \typ{VECSMALL}
representing a list $[p_1,\dots,p_n]$ of rows of \typ{MAT} $A$, returns the
matrix whose rows are $A[p_1,],\dots, A[p_n,]$.
\fun{GEN}{rowslicepermute}{GEN A, GEN p, long x1, long x2}, short for
\bprog
rowslice(rowpermute(A,p), x1, x2)
@eprog\noindent
(more efficient).
\fun{GEN}{vecslice}{GEN A, long j1, long j2}, return $A[j_1], \dots,
A[j_2]$. If $A$ is a \typ{MAT}, these correspond to \emph{columns} of $A$.
The object returned has the same type as $A$ (\typ{VEC}, \typ{COL} or
\typ{MAT}). Assume $j_1 \leq j_2$.
\fun{GEN}{vecsplice}{GEN A, long j} return $A$ with $j$-th entry removed
(\typ{VEC}, \typ{COL}) or $j$-th column removed (\typ{MAT}).
\fun{GEN}{vecreverse}{GEN A}. Returns a \kbd{GEN} which has the same
type as $A$ (\typ{VEC}, \typ{COL} or \typ{MAT}), and whose components
are the $A[n],\dots,A[1]$. If $A$ is a \typ{MAT}, these are the
\emph{columns} of $A$.
\fun{void}{vecreverse_inplace}{GEN A} as \kbd{vecreverse}, but reverse
$A$ in place.
\fun{GEN}{vecpermute}{GEN A, GEN p} $p$ is a \typ{VECSMALL} representing
a list $[p_1,\dots,p_n]$ of indices. Returns a \kbd{GEN} which has the same
type as $A$ (\typ{VEC}, \typ{COL} or \typ{MAT}), and whose components
are $A[p_1],\dots,A[p_n]$. If $A$ is a \typ{MAT}, these are the
\emph{columns} of $A$.
\fun{GEN}{vecsmallpermute}{GEN A, GEN p} as \kbd{vecpermute} when \kbd{A} is a
\typ{VECSMALL}.
\fun{GEN}{vecslicepermute}{GEN A, GEN p, long y1, long y2} short for
\bprog
vecslice(vecpermute(A,p), y1, y2)
@eprog\noindent
(more efficient).
\subsec{Componentwise operations}
The following convenience routines automate trivial loops of the form
\bprog
for (i = 1; i < lg(a); i++) gel(v,i) = f(gel(a,i), gel(b,i))
@eprog\noindent
for suitable $f$:
\fun{GEN}{vecinv}{GEN a}. Given a vector $a$,
returns the vector whose $i$-th component is \kbd{ginv}$(a[i])$.
\fun{GEN}{vecmul}{GEN a, GEN b}. Given $a$ and $b$ two vectors of the same
length, returns the vector whose $i$-th component is \kbd{gmul}$(a[i], b[i])$.
\fun{GEN}{vecdiv}{GEN a, GEN b}. Given $a$ and $b$ two vectors of the same
length, returns the vector whose $i$-th component is \kbd{gdiv}$(a[i], b[i])$.
\fun{GEN}{vecpow}{GEN a, GEN n}. Given $n$ a \typ{INT}, returns
the vector whose $i$-th component is $a[i]^n$.
\fun{GEN}{vecmodii}{GEN a, GEN b}. Assuming $a$ and $b$ are two \kbd{ZV}
of the same length, returns the vector whose $i$-th component
is \kbd{modii}$(a[i], b[i])$.
Note that \kbd{vecadd} or \kbd{vecsub} do not exist since \kbd{gadd}
and \kbd{gsub} have the expected behavior. On the other hand,
\kbd{ginv} does not accept vector types, hence \kbd{vecinv}.
\subsec{Low-level vectors and columns functions}
These functions handle \typ{VEC} as an abstract container type of
\kbd{GEN}s. No specific meaning is attached to the content. They accept both
\typ{VEC} and \typ{COL} as input, but \kbd{col} functions always return
\typ{COL} and \kbd{vec} functions always return \typ{VEC}.
\misctitle{Note} All the functions below are shallow.
\fun{GEN}{const_col}{long n, GEN x} returns a \typ{COL} of \kbd{n} components
equal to \kbd{x}.
\fun{GEN}{const_vec}{long n, GEN x} returns a \typ{VEC} of \kbd{n} components
equal to \kbd{x}.
\fun{int}{vec_isconst}{GEN v} Returns 1 if all the components of \kbd{v} are
equal, else returns 0.
\fun{void}{vec_setconst}{GEN v, GEN x} $v$ a pre-existing vector. Set all its
components to $x$.
\fun{int}{vec_is1to1}{GEN v} Returns 1 if the components of \kbd{v} are
pair-wise distinct, i.e. if $i\mapsto v[i]$ is a 1-to-1 mapping, else returns
0.
\fun{GEN}{vec_append}{GEN V, GEN s} append \kbd{s} to the vector \kbd{V}.
\fun{GEN}{vec_shorten}{GEN v, long n} shortens the vector \kbd{v} to \kbd{n}
components.
\fun{GEN}{vec_lengthen}{GEN v, long n} lengthens the vector \kbd{v}
to \kbd{n} components. The extra components are not initialized.
\fun{GEN}{vec_insert}{GEN v, long n, GEN x} inserts $x$ at position $n$ in the vector
$v$.
\section{Vectors of small integers}
\subsec{\typ{VECSMALL}}
These functions handle \typ{VECSMALL} as an abstract container type
of small signed integers. No specific meaning is attached to the content.
\fun{GEN}{const_vecsmall}{long n, long c} returns a \typ{VECSMALL}
of \kbd{n} components equal to \kbd{c}.
\fun{GEN}{vec_to_vecsmall}{GEN z} identical to \kbd{ZV\_to\_zv(z)}.
\fun{GEN}{vecsmall_to_vec}{GEN z} identical to \kbd{zv\_to\_ZV(z)}.
\fun{GEN}{vecsmall_to_col}{GEN z} identical to \kbd{zv\_to\_ZC(z)}.
\fun{GEN}{vecsmall_copy}{GEN x} makes a copy of \kbd{x} on the stack.
\fun{GEN}{vecsmall_shorten}{GEN v, long n} shortens the \typ{VECSMALL} \kbd{v}
to \kbd{n} components.
\fun{GEN}{vecsmall_lengthen}{GEN v, long n} lengthens the \typ{VECSMALL}
\kbd{v} to \kbd{n} components. The extra components are not initialized.
\fun{GEN}{vecsmall_indexsort}{GEN x} performs an indirect sort of the
components of the \typ{VECSMALL} \kbd{x} and return a permutation stored in a
\typ{VECSMALL}.
\fun{void}{vecsmall_sort}{GEN v} sorts the \typ{VECSMALL} \kbd{v} in place.
\fun{void}{vecsmall_reverse}{GEN v} as \kbd{vecreverse} for a \typ{VECSMALL}
\kbd{v}.
\fun{long}{vecsmall_max}{GEN v} returns the maximum of the elements of
\typ{VECSMALL} \kbd{v}, assumed non-empty.
\fun{long}{vecsmall_indexmax}{GEN v} returns the index of the largest
element of \typ{VECSMALL} \kbd{v}, assumed non-empty.
\fun{long}{vecsmall_min}{GEN v} returns the minimum of the elements of
\typ{VECSMALL} \kbd{v}, assumed non-empty.
\fun{long}{vecsmall_indexmin}{GEN v} returns the index of the smallest
element of \typ{VECSMALL} \kbd{v}, assumed non-empty.
\fun{long}{vecsmall_isin}{GEN v, long x} returns the first index $i$
such that \kbd{v[$i$]} is equal to \kbd{x}. Naive search in linear time, does
not assume that \kbd{v} is sorted.
\fun{GEN}{vecsmall_uniq}{GEN v} given a \typ{VECSMALL} \kbd{v}, return
the vector of unique occurrences.
\fun{GEN}{vecsmall_uniq_sorted}{GEN v} same as \kbd{vecsmall\_uniq}, but assumes
\kbd{v} sorted.
\fun{long}{vecsmall_duplicate}{GEN v} given a \typ{VECSMALL} \kbd{v}, return
$0$ if there is no duplicates, or the index of the first duplicate
(\kbd{vecsmall\_duplicate([1,1])} returns $2$).
\fun{long}{vecsmall_duplicate_sorted}{GEN v} same as
\kbd{vecsmall\_duplicate}, but assume \kbd{v} sorted.
\fun{int}{vecsmall_lexcmp}{GEN x, GEN y} compares two \typ{VECSMALL} lexically.
\fun{int}{vecsmall_prefixcmp}{GEN x, GEN y} truncate the longest \typ{VECSMALL}
to the length of the shortest and compares them lexicographically.
\fun{GEN}{vecsmall_prepend}{GEN V, long s} prepend \kbd{s} to the
\typ{VECSMALL} \kbd{V}.
\fun{GEN}{vecsmall_append}{GEN V, long s} append \kbd{s} to the
\typ{VECSMALL} \kbd{V}.
\fun{GEN}{vecsmall_concat}{GEN u, GEN v} concat the \typ{VECSMALL} \kbd{u}
and \kbd{v}.
\fun{long}{vecsmall_coincidence}{GEN u, GEN v} returns the numbers of indices
where \kbd{u} and \kbd{v} agree.
\fun{long}{vecsmall_pack}{GEN v, long base, long mod} handles the
\typ{VECSMALL} \kbd{v} as the digit of a number in base \kbd{base} and return
this number modulo \kbd{mod}. This can be used as an hash function.
\subsec{Vectors of \typ{VECSMALL}}
These functions manipulate vectors of \typ{VECSMALL} (vecvecsmall).
\fun{GEN}{vecvecsmall_sort}{GEN x} sorts lexicographically the components of
the vector \kbd{x}.
\fun{GEN}{vecvecsmall_sort_uniq}{GEN x} sorts lexicographically the components of
the vector \kbd{x}, removing duplicates entries.
\fun{GEN}{vecvecsmall_indexsort}{GEN x} performs an indirect lexicographic
sorting of the components of the vector \kbd{x} and return a permutation
stored in a \typ{VECSMALL}.
\fun{long}{vecvecsmall_search}{GEN x, GEN y, long flag} \kbd{x} being a sorted
vecvecsmall and \kbd{y} a \typ{VECSMALL}, search \kbd{y} inside \kbd{x}.
\kbd{flag} has the same meaning as for \kbd{setsearch}.
\newpage
\chapter{Functions related to the GP interpreter}
\section{Handling closures}\label{se:closure}
\subsec{Functions to evaluate \typ{CLOSURE}}
\fun{void}{closure_disassemble}{GEN C} print the \typ{CLOSURE} \kbd{C} in
GP assembly format.
\fun{GEN}{closure_callgenall}{GEN C, long n, ...} evaluate the \typ{CLOSURE}
\kbd{C} with the \kbd{n} arguments (of type \kbd{GEN}) following \kbd{n} in
the function call. Assumes \kbd{C} has arity $\geq \kbd{n}$.
\fun{GEN}{closure_callgenvec}{GEN C, GEN args} evaluate the \typ{CLOSURE}
\kbd{C} with the arguments supplied in the vector \kbd{args}. Assumes \kbd{C}
has arity $\geq \kbd{lg(args)-1}$.
\fun{GEN}{closure_callgenvecprec}{GEN C, GEN args, long prec} as
\kbd{closure\_callgenvec} but set the precision locally to \kbd{prec}.
\fun{GEN}{closure_callgen1}{GEN C, GEN x} evaluate the \typ{CLOSURE}
\kbd{C} with argument \kbd{x}. Assumes \kbd{C} has arity $\geq 1$.
\fun{GEN}{closure_callgen1prec}{GEN C, GEN x, long prec} as
\kbd{closure\_callgen1}, but set the precision locally to \kbd{prec}.
\fun{GEN}{closure_callgen2}{GEN C, GEN x, GEN y} evaluate the \typ{CLOSURE}
\kbd{C} with argument \kbd{x}, \kbd{y}. Assumes \kbd{C} has arity $\geq 2$.
\fun{void}{closure_callvoid1}{GEN C, GEN x} evaluate the \typ{CLOSURE}
\kbd{C} with argument \kbd{x} and discard the result. Assumes \kbd{C}
has arity $\geq 1$.
The following technical functions are used to evaluate \emph{inline}
closures and closures of arity 0.
The control flow statements (break, next and return) will cause the
evaluation of the closure to be interrupted; this is called below a
\emph{flow change}. When that occurs, the functions below generally
return \kbd{NULL}. The caller can then adopt three positions:
\item raises an exception (\kbd{closure\_evalnobrk}).
\item passes through (by returning NULL itself).
\item handles the flow change.
\fun{GEN}{closure_evalgen}{GEN code} evaluates a closure and returns the result,
or \kbd{NULL} if a flow change occurred.
\fun{GEN}{closure_evalnobrk}{GEN code} as \kbd{closure\_evalgen} but raise
an exception if a flow change occurs. Meant for iterators where
interrupting the closure is meaningless, e.g.~\kbd{intnum} or \kbd{sumnum}.
\fun{void}{closure_evalvoid}{GEN code} evaluates a closure whose return
value is ignored. The caller has to deal with eventual flow changes by
calling \kbd{loop\_break}.
The remaining functions below are for exceptional situations:
\fun{GEN}{closure_evalres}{GEN code} evaluates a closure and returns the result.
The difference with \kbd{closure\_evalgen} being that, if the flow end by a
\kbd{return} statement, the result will be the returned value instead of
\kbd{NULL}. Used by the main GP loop.
\fun{GEN}{closure_evalbrk}{GEN code, long *status} as \kbd{closure\_evalres}
but set \kbd{status} to a non-zero value if a flow change occurred. This
variant is not stack clean. Used by the break loop.
\fun{GEN}{closure_trapgen}{long numerr, GEN code} evaluates closure, while
trapping error \kbd{numerr}. Return \kbd{(GEN)1L} if error trapped, and the
result otherwise, or \kbd{NULL} if a flow change occurred. Used by trap.
\subsec{Functions to handle control flow changes}
\fun{long}{loop_break}{void} processes an eventual flow changes inside an
iterator. If this function return $1$, the iterator should stop.
\subsec{Functions to deal with lexical local variables}\label{se:pushlex}
Function using the prototype code \kbd{`V'} need to manually create and delete a
lexical variable for each code \kbd{`V'}, which will be given a number $-1, -2,
\ldots$.
\fun{void}{push_lex}{GEN a, GEN code} creates a new lexical variable whose
initial value is $a$ on the top of the stack. This variable get the number
$-1$, and the number of the other variables is decreased by one unit. When
the first variable of a closure is created, the argument \kbd{code} must be the
closure that references this lexical variable. The argument \kbd{code} must be
\kbd{NULL} for all subsequent variables (if any). (The closure contains the
debugging data for the variable).
\fun{void}{pop_lex}{long n} deletes the $n$ topmost lexical variables,
increasing the number of other variables by $n$. The argument $n$ must match
the number of variables allocated through \kbd{push\_lex}.
\fun{GEN}{get_lex}{long vn} get the value of the variable with number \kbd{vn}.
\fun{void}{set_lex}{long vn, GEN x} set the value of the variable with number
\kbd{vn}.
\subsec{Functions returning new closures}
\fun{GEN}{compile_str}{const char *s} returns the closure corresponding to the
GP expression $s$.
\fun{GEN}{closure_deriv}{GEN code} returns a closure corresponding to the
numerical derivative of the closure \kbd{code}.
\fun{GEN}{snm_closure}{entree *ep, GEN data}
Let \kbd{data} be a vector of length $m$, \kbd{ep} be an \kbd{entree}
pointing to a C function $f$ of arity $n+m$, returns a \typ{CLOSURE} object
$g$ of arity $n$ such that
$g(x_1,\ldots,x_n)=f(x_1,\ldots,x_n,gel(data,1),...,gel(data,m))$. If
\kbd{data} is \kbd{NULL}, then $m=0$ is assumed. This function has a low
overhead since it does not copy \kbd{data}.
\fun{GEN}{strtofunction}{char *str} returns a closure corresponding to the
built-in or install'ed function named \kbd{str}.
\fun{GEN}{strtoclosure}{char *str, long n, ...} returns a closure
corresponding to the built-in or install'ed function named \kbd{str} with the
$n$ last parameters set to the $n$ \kbd{GEN}s following $n$, see
\tet{snm_closure}. This function has an higher overhead since it copies the
parameters and does more input validation.
In the example code below, \kbd{agm1} is set to the function
\kbd{x->agm(x,1)} and \kbd{res} is set to \kbd{agm(2,1)}.
\bprog
GEN agm1 = strtoclosure("agm",1, gen_1);
GEN res = closure_callgen1(agm1, gen_2);
@eprog
\subsec{Functions used by the gp debugger (break loop)}
\fun{long}{closure_context}{long s} restores the compilation context starting
at frame \kbd{s+1}, and returns the index of the topmost frame. This allow to
compile expressions in the topmost lexical scope.
\fun{void}{closure_err}{void} prints a backtrace of the last $20$ stack frames.
\subsec{Standard wrappers for iterators}
Two families of standard wrappers are provided to interface iterators like
\kbd{intnum} or \kbd{sumnum} with GP.
\subsubsec{Standard wrappers for inline closures}
Theses wrappers are used to implement GP functions taking inline closures as
input. The object \kbd{(GEN)E} must be an inline closure which is evaluated
with the lexical variable number $-1$ set to $x$.
\fun{GEN}{gp_eval}{void *E, GEN x} is used for the prototype code \kbd{`E'}.
\fun{GEN}{gp_evalprec}{void *E, GEN x, long prec} as \kbd{gp\_eval}, but
set the precision locally to \kbd{prec}.
\fun{long}{gp_evalvoid}{void *E, GEN x} is used for the prototype code
\kbd{`I'}. The resulting value is discarded. Return a non-zero value if a
control-flow instruction request the iterator to terminate immediately.
\fun{long}{gp_evalbool}{void *E, GEN x} returns the boolean
\kbd{gp\_eval(E, x)} evaluates to (i.e. true iff the value is non-zero).
\fun{GEN}{gp_evalupto}{void *E, GEN x} memory-safe version of \kbd{gp\_eval},
\kbd{gcopy}-ing the result, when the evaluator returns components of
previously allocated objects (e.g. member functions).
\subsubsec{Standard wrappers for true closures}
These wrappers are used to implement GP functions taking true closures as
input.
\fun{GEN}{gp_call}{void *E, GEN x} evaluates the closure \kbd{(GEN)E} on $x$.
\fun{GEN}{gp_callprec}{void *E, GEN x, long prec} as \kbd{gp\_call},
but set the precision locally to \kbd{prec}.
\fun{GEN}{gp_call2}{void *E, GEN x, GEN y} evaluates the closure \kbd{(GEN)E}
on $(x,y)$.
\fun{long}{gp_callbool}{void *E, GEN x} evaluates the closure \kbd{(GEN)E} on
$x$, returns \kbd{1} if its result is non-zero, and \kbd{0} otherwise.
\fun{long}{gp_callvoid}{void *E, GEN x} evaluates the closure \kbd{(GEN)E} on
$x$, discarding the result. Return a non-zero value if a control-flow
instruction request the iterator to terminate immediately.
\section{Defaults}
\fun{entree*}{pari_is_default}{const char *s} return the \kbd{entree}
structure attached to $s$ if it is the name of a default, \kbd{NULL}
otherwise.
\fun{GEN}{setdefault}{const char *s, const char *v, long flag} is the
low-level function underlying \kbd{default0}. If $s$ is \kbd{NULL}, call all
default setting functions with string argument \kbd{NULL} and flag
\tet{d_ACKNOWLEDGE}. Otherwise, check whether $s$ corresponds to a default
and call the corresponding default setting function with arguments $v$ and
\fl.
We shall describe these functions below: if $v$ is \kbd{NULL}, we only look
at the default value (and possibly print or return it, depending on
\kbd{flag}); otherwise the value of the default to $v$, possibly after some
translation work. The flag is one of
\item \tet{d_INITRC} called while reading the \kbd{gprc}: print and return
\kbd{gnil}, possibly defer until \kbd{gp} actually starts.
\item \tet{d_RETURN} return the current value, as a \typ{INT} if possible, as
a \typ{STR} otherwise.
\item \tet{d_ACKNOWLEDGE} print the current value, return \kbd{gnil}.
\item \tet{d_SILENT} print nothing, return \kbd{gnil}.
\noindent Low-level functions called by \kbd{setdefault}:
\fun{GEN}{sd_TeXstyle}{const char *v, long flag}
\fun{GEN}{sd_breakloop}{const char *v, long flag}
\fun{GEN}{sd_colors}{const char *v, long flag}
\fun{GEN}{sd_compatible}{const char *v, long flag}
\fun{GEN}{sd_datadir}{const char *v, long flag}
\fun{GEN}{sd_debug}{const char *v, long flag}
\fun{GEN}{sd_debugfiles}{const char *v, long flag}
\fun{GEN}{sd_debugmem}{const char *v, long flag}
\fun{GEN}{sd_echo}{const char *v, long flag}
\fun{GEN}{sd_factor_add_primes}{const char *v, long flag}
\fun{GEN}{sd_factor_proven}{const char *v, long flag}
\fun{GEN}{sd_format}{const char *v, long flag}
\fun{GEN}{sd_graphcolormap}{const char *v, long flag}
\fun{GEN}{sd_graphcolors}{const char *v, long flag}
\fun{GEN}{sd_help}{const char *v, long flag}
\fun{GEN}{sd_histfile}{const char *v, long flag}
\fun{GEN}{sd_histsize}{const char *v, long flag}
\fun{GEN}{sd_lines}{const char *v, long flag}
\fun{GEN}{sd_linewrap}{const char *v, long flag}
\fun{GEN}{sd_log}{const char *v, long flag}
\fun{GEN}{sd_logfile}{const char *v, long flag}
\fun{GEN}{sd_nbthreads}{const char *v, long flag}
\fun{GEN}{sd_new_galois_format}{const char *v, long flag}
\fun{GEN}{sd_output}{const char *v, long flag}
\fun{GEN}{sd_parisize}{const char *v, long flag}
\fun{GEN}{sd_parisizemax}{const char *v, long flag}
\fun{GEN}{sd_path}{const char *v, long flag}
\fun{GEN}{sd_prettyprinter}{const char *v, long flag}
\fun{GEN}{sd_primelimit}{const char *v, long flag}
\fun{GEN}{sd_prompt}{const char *v, long flag}
\fun{GEN}{sd_prompt_cont}{const char *v, long flag}
\fun{GEN}{sd_psfile}{const char *v, long flag}
\fun{GEN}{sd_readline}{const char *v, long flag}
\fun{GEN}{sd_realbitprecision}{const char *v, long flag}
\fun{GEN}{sd_realprecision}{const char *v, long flag}
\fun{GEN}{sd_recover}{const char *v, long flag}
\fun{GEN}{sd_secure}{const char *v, long flag}
\fun{GEN}{sd_seriesprecision}{const char *v, long flag}
\fun{GEN}{sd_simplify}{const char *v, long flag}
\fun{GEN}{sd_sopath}{const char *v, int flag}
\fun{GEN}{sd_strictargs}{const char *v, long flag}
\fun{GEN}{sd_strictmatch}{const char *v, long flag}
\fun{GEN}{sd_timer}{const char *v, long flag}
\fun{GEN}{sd_threadsize}{const char *v, long flag}
\fun{GEN}{sd_threadsizemax}{const char *v, long flag}
\noindent Generic functions used to implement defaults: most of the above
routines are implemented in terms of the following generic ones. In all
routines below
\item \kbd{v} and \kbd{flag} are the arguments passed to \kbd{default}:
\kbd{v} is a new value (or the empty string: no change), and \kbd{flag} is one
of \tet{d_INITRC}, \tet{d_RETURN}, etc.
\item \kbd{s} is the name of the default being changed, used to display error
messages or acknowledgements.
\fun{GEN}{sd_toggle}{const char *v, long flag, const char *s, int *ptn}
\item if \kbd{v} is neither \kbd{"0"} nor \kbd{"1"}, an error is raised using
\tet{pari_err}.
\item \kbd{ptn} points to the current numerical value of the toggle (1 or 0),
and is set to the new value (when \kbd{v} is non-empty).
For instance, here is how the timer default is implemented internally:
\bprog
GEN
sd_timer(const char *v, long flag)
{ return sd_toggle(v,flag,"timer", &(GP_DATA->chrono)); }
@eprog
The exact behavior and return value depends on \kbd{flag}:
\item \tet{d_RETURN}: returns the new toggle value, as a \kbd{GEN}.
\item \tet{d_ACKNOWLEDGE}: prints a message indicating the new toggle value
and return \kbd{gnil}.
\item other cases: print nothing and return \kbd{gnil}.
\fun{GEN}{sd_ulong}{const char *v, long flag, const char *s, ulong *ptn,
ulong Min, ulong Max, const char **msg}\hbadness 10000
\item \kbd{ptn} points to the current numerical value of the toggle, and is set
to the new value (when \kbd{v} is non-empty).
\item \kbd{Min} and \kbd{Max} point to the minimum and maximum values allowed
for the default.
\item \kbd{v} must translate to an integer in the allowed ranger, a suffix
among
\kbd{k}/\kbd{K} ($\times 10^3$),
\kbd{m}/\kbd{M} ($\times 10^6$),
or
\kbd{g}/\kbd{G} ($\times 10^9$) is allowed, but no arithmetic expression.
\item \kbd{msg} is a \kbd[NULL]-terminated array of messages or \kbd{NULL}
(ignored). If \kbd{msg} is not \kbd{NULL}, \kbd{msg}$[i]$ contains
a message attached to the value $i$ of the default. The last entry in the
\kbd{msg} array is used as a message attached to all subsequent ones.
The exact behavior and return value depends on \kbd{flag}:
\item \tet{d_RETURN}: returns the new toggle value, as a \kbd{GEN}.
\item \tet{d_ACKNOWLEDGE}: prints a message indicating the new value,
possibly a message attached to it via the \kbd{msg} argument, and return
\kbd{gnil}.
\item other cases: print nothing and return \kbd{gnil}.
\fun{GEN}{sd_string}{const char *v, long flag, const char *s, char **pstr}
\item \kbd{v} is subjet to environment expansion, then time expansion.
\item \kbd{pstr} points to the current string value, and is set to the new
value (when \kbd{v} is non-empty).
\section{Records and Lazy vectors}
The functions in this section are used to implement \kbd{ell} structures and
analogous objects, which are vectors some of whose components are initialized
to dummy values, later computed on demand. We start by initializing the
structure:
\fun{GEN}{obj_init}{long d, long n} returns an \tev{obj} $S$, a \typ{VEC}
with $d$ regular components, accessed as \kbd{gel(S,1)}, \dots,
\kbd{gel(S,d)}; together with a record of $n$ members, all initialized to
$0$. The arguments $d$ and $n$ must be non-negative.
After \kbd{S = obj\_init(d, n)}, the prototype of our other functions are of
the form
\bprog
GEN obj_do(GEN S, long tag, ...)
@eprog\noindent The first argument $S$ holds the structure to be managed.
The second argument \var{tag} is the index of the struct member (from $1$ to
$n$) we operate on. We recommend to define an \kbd{enum} and use descriptive
names instead of hardcoded numbers. For instance, if $n = 3$, after defining
\bprog
enum { TAG_p = 1, TAG_list, TAG_data };
@eprog\noindent one may use \kbd{TAG\_list} or $2$ indifferently as a tag.
The former being preferred, of course.
\misctitle{Technical note}
In the current implementation, $S$ is a \typ{VEC} with $d+1$ entries.
The first $d$ components are ordinary \typ{GEN} entries, which you can
read or assign to in the customary way. But the last component $\kbd{gel(S,
d+1)}$, a \typ{VEC} of length $n$ initialized to \kbd{zerovec}$(n)$, must
be handled in a special way: you should never access or modify its components
directly, only through the API we are about to describe. Indeed, its entries
are meant to contain dynamic data, which will be stored, retrieved and
replaced (for instance by a value computed to a higher accuracy), while
interacting safely with intermediate \kbd{gerepile} calls. This mechanism
allows to simulate C \kbd{struct}s, in a simpler way than with general
hashtables, while remaining compatible with the GP language, which knows
neither structs nor hashtables. It also serialize the structure in an
ordinary \kbd{GEN}, which facilitates copies and garbage collection (use
\kbd{gcopy} or \kbd{gerepile}), rather than having to deal with individual
components of actual C \kbd{struct}s.
\fun{GEN}{obj_reinit}{GEN S} make a shallow copy of $S$, re-initializing
all dynamic components. This allows ``forking'' a lazy vector while
avoiding both a memory leak, and storing pointers to the same data
in different objects (with risks of a double free later).
\fun{GEN}{obj_check}{GEN S, long tag} if the \emph{tag}-component in $S$
is non empty, return it. Otherwise return \kbd{NULL}. The \typ{INT} $0$
(initial value) is used as a sentinel to indicated an empty component.
\fun{GEN}{obj_insert}{GEN S, long tag, GEN O} insert (a clone of) $O$
as \emph{tag}-component of $S$. Any previous value is deleted, and
data pointing to it become invalid.
\fun{GEN}{obj_insert_shallow}{GEN S, long K, GEN O} as \tet{obj_insert},
inserting $O$ as-is, not via a clone.
\fun{GEN}{obj_checkbuild}{GEN S, long tag, GEN (*build)(GEN)} if the
\emph{tag}-component of $S$ is non empty, return it. Otherwise insert
(a clone of) \kbd{build(S)} as \emph{tag}-component in $S$, and return it.
\fun{GEN}{obj_checkbuild_padicprec}{GEN S, long tag, GEN (*build)(GEN,long),
long prec}
if the \emph{tag}-component of $S$ is non empty \emph{and} has relative
$p$-adic precision $\geq \kbd{prec}$, return it. Otherwise insert (a clone
of) \kbd{build(S, prec)} as \emph{tag}-component in $S$, and return it.
\fun{GEN}{obj_checkbuild_realprec}{GEN S, long tag, GEN (*build)(GEN, long),
long prec} if the \emph{tag}-component of $S$ is non empty \emph{and}
satisfies \kbd{gprecision} $\geq \kbd{prec}$, return it. Otherwise insert (a
clone of) \kbd{build(S, prec)} as \emph{tag}-component in $S$, and return it.
\fun{GEN}{obj_checkbuild_prec}{GEN S, long tag, GEN (*build)(GEN,long), GEN
(*gpr)(GEN), long prec} if the \emph{tag}-component of $S$ is non empty
\emph{and} has precision $\kbd{gpr}(x)\geq \kbd{prec}$, return it. Otherwise
insert (a clone of) \kbd{build(S, prec)} as \emph{tag}-component in $S$,
and return it.
\fun{void}{obj_free}{GEN S} destroys all clones stored in the $n$ tagged
components, and replace them by the initial value $0$. The regular entries of
$S$ are unaffected, and $S$ remains a valid object. This is used to
avoid memory leaks.
|