This file is indexed.

/usr/share/pari/doc/usersch5.tex is in pari-doc 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

    1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188
 1189
 1190
 1191
 1192
 1193
 1194
 1195
 1196
 1197
 1198
 1199
 1200
 1201
 1202
 1203
 1204
 1205
 1206
 1207
 1208
 1209
 1210
 1211
 1212
 1213
 1214
 1215
 1216
 1217
 1218
 1219
 1220
 1221
 1222
 1223
 1224
 1225
 1226
 1227
 1228
 1229
 1230
 1231
 1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241
 1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262
 1263
 1264
 1265
 1266
 1267
 1268
 1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295
 1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320
 1321
 1322
 1323
 1324
 1325
 1326
 1327
 1328
 1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349
 1350
 1351
 1352
 1353
 1354
 1355
 1356
 1357
 1358
 1359
 1360
 1361
 1362
 1363
 1364
 1365
 1366
 1367
 1368
 1369
 1370
 1371
 1372
 1373
 1374
 1375
 1376
 1377
 1378
 1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403
 1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511
 1512
 1513
 1514
 1515
 1516
 1517
 1518
 1519
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534
 1535
 1536
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568
 1569
 1570
 1571
 1572
 1573
 1574
 1575
 1576
 1577
 1578
 1579
 1580
 1581
 1582
 1583
 1584
 1585
 1586
 1587
 1588
 1589
 1590
 1591
 1592
 1593
 1594
 1595
 1596
 1597
 1598
 1599
 1600
 1601
 1602
 1603
 1604
 1605
 1606
 1607
 1608
 1609
 1610
 1611
 1612
 1613
 1614
 1615
 1616
 1617
 1618
 1619
 1620
 1621
 1622
 1623
 1624
 1625
 1626
 1627
 1628
 1629
 1630
 1631
 1632
 1633
 1634
 1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673
 1674
 1675
 1676
 1677
 1678
 1679
 1680
 1681
 1682
 1683
 1684
 1685
 1686
 1687
 1688
 1689
 1690
 1691
 1692
 1693
 1694
 1695
 1696
 1697
 1698
 1699
 1700
 1701
 1702
 1703
 1704
 1705
 1706
 1707
 1708
 1709
 1710
 1711
 1712
 1713
 1714
 1715
 1716
 1717
 1718
 1719
 1720
 1721
 1722
 1723
 1724
 1725
 1726
 1727
 1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745
 1746
 1747
 1748
 1749
 1750
 1751
 1752
 1753
 1754
 1755
 1756
 1757
 1758
 1759
 1760
 1761
 1762
 1763
 1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781
 1782
 1783
 1784
 1785
 1786
 1787
 1788
 1789
 1790
 1791
 1792
 1793
 1794
 1795
 1796
 1797
 1798
 1799
 1800
 1801
 1802
 1803
 1804
 1805
 1806
 1807
 1808
 1809
 1810
 1811
 1812
 1813
 1814
 1815
 1816
 1817
 1818
 1819
 1820
 1821
 1822
 1823
 1824
 1825
 1826
 1827
 1828
 1829
 1830
 1831
 1832
 1833
 1834
 1835
 1836
 1837
 1838
 1839
 1840
 1841
 1842
 1843
 1844
 1845
 1846
 1847
 1848
 1849
 1850
 1851
 1852
 1853
 1854
 1855
 1856
 1857
 1858
 1859
 1860
 1861
 1862
 1863
 1864
 1865
 1866
 1867
 1868
 1869
 1870
 1871
 1872
 1873
 1874
 1875
 1876
 1877
 1878
 1879
 1880
 1881
 1882
 1883
 1884
 1885
 1886
 1887
 1888
 1889
 1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943
 1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960
 1961
 1962
 1963
 1964
 1965
 1966
 1967
 1968
 1969
 1970
 1971
 1972
 1973
 1974
 1975
 1976
 1977
 1978
 1979
 1980
 1981
 1982
 1983
 1984
 1985
 1986
 1987
 1988
 1989
 1990
 1991
 1992
 1993
 1994
 1995
 1996
 1997
 1998
 1999
 2000
 2001
 2002
 2003
 2004
 2005
 2006
 2007
 2008
 2009
 2010
 2011
 2012
 2013
 2014
 2015
 2016
 2017
 2018
 2019
 2020
 2021
 2022
 2023
 2024
 2025
 2026
 2027
 2028
 2029
 2030
 2031
 2032
 2033
 2034
 2035
 2036
 2037
 2038
 2039
 2040
 2041
 2042
 2043
 2044
 2045
 2046
 2047
 2048
 2049
 2050
 2051
 2052
 2053
 2054
 2055
 2056
 2057
 2058
 2059
 2060
 2061
 2062
 2063
 2064
 2065
 2066
 2067
 2068
 2069
 2070
 2071
 2072
 2073
 2074
 2075
 2076
 2077
 2078
 2079
 2080
 2081
 2082
 2083
 2084
 2085
 2086
 2087
 2088
 2089
 2090
 2091
 2092
 2093
 2094
 2095
 2096
 2097
 2098
 2099
 2100
 2101
 2102
 2103
 2104
 2105
 2106
 2107
 2108
 2109
 2110
 2111
 2112
 2113
 2114
 2115
 2116
 2117
 2118
 2119
 2120
 2121
 2122
 2123
 2124
 2125
 2126
 2127
 2128
 2129
 2130
 2131
 2132
 2133
 2134
 2135
 2136
 2137
 2138
 2139
 2140
 2141
 2142
 2143
 2144
 2145
 2146
 2147
 2148
 2149
 2150
 2151
 2152
 2153
 2154
 2155
 2156
 2157
 2158
 2159
 2160
 2161
 2162
 2163
 2164
 2165
 2166
 2167
 2168
 2169
 2170
 2171
 2172
 2173
 2174
 2175
 2176
 2177
 2178
 2179
 2180
 2181
 2182
 2183
 2184
 2185
 2186
 2187
 2188
 2189
 2190
 2191
 2192
 2193
 2194
 2195
 2196
 2197
 2198
 2199
 2200
 2201
 2202
 2203
 2204
 2205
 2206
 2207
 2208
 2209
 2210
 2211
 2212
 2213
 2214
 2215
 2216
 2217
 2218
 2219
 2220
 2221
 2222
 2223
 2224
 2225
 2226
 2227
 2228
 2229
 2230
 2231
 2232
 2233
 2234
 2235
 2236
 2237
 2238
 2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267
 2268
 2269
 2270
 2271
 2272
 2273
 2274
 2275
 2276
 2277
 2278
 2279
 2280
 2281
 2282
 2283
 2284
 2285
 2286
 2287
 2288
 2289
 2290
 2291
 2292
 2293
 2294
 2295
 2296
 2297
 2298
 2299
 2300
 2301
 2302
 2303
 2304
 2305
 2306
 2307
 2308
 2309
 2310
 2311
 2312
 2313
 2314
 2315
 2316
 2317
 2318
 2319
 2320
 2321
 2322
 2323
 2324
 2325
 2326
 2327
 2328
 2329
 2330
 2331
 2332
 2333
 2334
 2335
 2336
 2337
 2338
 2339
 2340
 2341
 2342
 2343
 2344
 2345
 2346
 2347
 2348
 2349
 2350
 2351
 2352
 2353
 2354
 2355
 2356
 2357
 2358
 2359
 2360
 2361
 2362
 2363
 2364
 2365
 2366
 2367
 2368
 2369
 2370
 2371
 2372
 2373
 2374
 2375
 2376
 2377
 2378
 2379
 2380
 2381
 2382
 2383
 2384
 2385
 2386
 2387
 2388
 2389
 2390
 2391
 2392
 2393
 2394
 2395
 2396
 2397
 2398
 2399
 2400
 2401
 2402
 2403
 2404
 2405
 2406
 2407
 2408
 2409
 2410
 2411
 2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429
 2430
 2431
 2432
 2433
 2434
 2435
 2436
 2437
 2438
 2439
 2440
 2441
 2442
 2443
 2444
 2445
 2446
 2447
 2448
 2449
 2450
 2451
 2452
 2453
 2454
 2455
 2456
 2457
 2458
 2459
 2460
 2461
 2462
 2463
 2464
 2465
 2466
 2467
 2468
 2469
 2470
 2471
 2472
 2473
 2474
 2475
 2476
 2477
 2478
 2479
 2480
 2481
 2482
 2483
 2484
 2485
 2486
 2487
 2488
 2489
 2490
 2491
 2492
 2493
 2494
 2495
 2496
 2497
 2498
 2499
 2500
 2501
 2502
 2503
 2504
 2505
 2506
 2507
 2508
 2509
 2510
 2511
 2512
 2513
 2514
 2515
 2516
 2517
 2518
 2519
 2520
 2521
 2522
 2523
 2524
 2525
 2526
 2527
 2528
 2529
 2530
 2531
 2532
 2533
 2534
 2535
 2536
 2537
 2538
 2539
 2540
 2541
 2542
 2543
 2544
 2545
 2546
 2547
 2548
 2549
 2550
 2551
 2552
 2553
 2554
 2555
 2556
 2557
 2558
 2559
 2560
 2561
 2562
 2563
 2564
 2565
 2566
 2567
 2568
 2569
 2570
 2571
 2572
 2573
 2574
 2575
 2576
 2577
 2578
 2579
 2580
 2581
 2582
 2583
 2584
 2585
 2586
 2587
 2588
 2589
 2590
 2591
 2592
 2593
 2594
 2595
 2596
 2597
 2598
 2599
 2600
 2601
 2602
 2603
 2604
 2605
 2606
 2607
 2608
 2609
 2610
 2611
 2612
 2613
 2614
 2615
 2616
 2617
 2618
 2619
 2620
 2621
 2622
 2623
 2624
 2625
 2626
 2627
 2628
 2629
 2630
 2631
 2632
 2633
 2634
 2635
 2636
 2637
 2638
 2639
 2640
 2641
 2642
 2643
 2644
 2645
 2646
 2647
 2648
 2649
 2650
 2651
 2652
 2653
 2654
 2655
 2656
 2657
 2658
 2659
 2660
 2661
 2662
 2663
 2664
 2665
 2666
 2667
 2668
 2669
 2670
 2671
 2672
 2673
 2674
 2675
 2676
 2677
 2678
 2679
 2680
 2681
 2682
 2683
 2684
 2685
 2686
 2687
 2688
 2689
 2690
 2691
 2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699
 2700
 2701
 2702
 2703
 2704
 2705
 2706
 2707
 2708
 2709
 2710
 2711
 2712
 2713
 2714
 2715
 2716
 2717
 2718
 2719
 2720
 2721
 2722
 2723
 2724
 2725
 2726
 2727
 2728
 2729
 2730
 2731
 2732
 2733
 2734
 2735
 2736
 2737
 2738
 2739
 2740
 2741
 2742
 2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753
 2754
 2755
 2756
 2757
 2758
 2759
 2760
 2761
 2762
 2763
 2764
 2765
 2766
 2767
 2768
 2769
 2770
 2771
 2772
 2773
 2774
 2775
 2776
 2777
 2778
 2779
 2780
 2781
 2782
 2783
 2784
 2785
 2786
 2787
 2788
 2789
 2790
 2791
 2792
 2793
 2794
 2795
 2796
 2797
 2798
 2799
 2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807
 2808
 2809
 2810
 2811
 2812
 2813
 2814
 2815
 2816
 2817
 2818
 2819
 2820
 2821
 2822
 2823
 2824
 2825
 2826
 2827
 2828
 2829
 2830
 2831
 2832
 2833
 2834
 2835
 2836
 2837
 2838
 2839
 2840
 2841
 2842
 2843
 2844
 2845
 2846
 2847
 2848
 2849
 2850
 2851
 2852
 2853
 2854
 2855
 2856
 2857
 2858
 2859
 2860
 2861
 2862
 2863
 2864
 2865
 2866
 2867
 2868
 2869
 2870
 2871
 2872
 2873
 2874
 2875
 2876
 2877
 2878
 2879
 2880
 2881
 2882
 2883
 2884
 2885
 2886
 2887
 2888
 2889
 2890
 2891
 2892
 2893
 2894
 2895
 2896
 2897
 2898
 2899
 2900
 2901
 2902
 2903
 2904
 2905
 2906
 2907
 2908
 2909
 2910
 2911
 2912
 2913
 2914
 2915
 2916
 2917
 2918
 2919
 2920
 2921
 2922
 2923
 2924
 2925
 2926
 2927
 2928
 2929
 2930
 2931
 2932
 2933
 2934
 2935
 2936
 2937
 2938
 2939
 2940
 2941
 2942
 2943
 2944
 2945
 2946
 2947
 2948
 2949
 2950
 2951
 2952
 2953
 2954
 2955
 2956
 2957
 2958
 2959
 2960
 2961
 2962
 2963
 2964
 2965
 2966
 2967
 2968
 2969
 2970
 2971
 2972
 2973
 2974
 2975
 2976
 2977
 2978
 2979
 2980
 2981
 2982
 2983
 2984
 2985
 2986
 2987
 2988
 2989
 2990
 2991
 2992
 2993
 2994
 2995
 2996
 2997
 2998
 2999
 3000
 3001
 3002
 3003
 3004
 3005
 3006
 3007
 3008
 3009
 3010
 3011
 3012
 3013
 3014
 3015
 3016
 3017
 3018
 3019
 3020
 3021
 3022
 3023
 3024
 3025
 3026
 3027
 3028
 3029
 3030
 3031
 3032
 3033
 3034
 3035
 3036
 3037
 3038
 3039
 3040
 3041
 3042
 3043
 3044
 3045
 3046
 3047
 3048
 3049
 3050
 3051
 3052
 3053
 3054
 3055
 3056
 3057
 3058
 3059
 3060
 3061
 3062
 3063
 3064
 3065
 3066
 3067
 3068
 3069
 3070
 3071
 3072
 3073
 3074
 3075
 3076
 3077
 3078
 3079
 3080
 3081
 3082
 3083
 3084
 3085
 3086
 3087
 3088
 3089
 3090
 3091
 3092
 3093
 3094
 3095
 3096
 3097
 3098
 3099
 3100
 3101
 3102
 3103
 3104
 3105
 3106
 3107
 3108
 3109
 3110
 3111
 3112
 3113
 3114
 3115
 3116
 3117
 3118
 3119
 3120
 3121
 3122
 3123
 3124
 3125
 3126
 3127
 3128
 3129
 3130
 3131
 3132
 3133
 3134
 3135
 3136
 3137
 3138
 3139
 3140
 3141
 3142
 3143
 3144
 3145
 3146
 3147
 3148
 3149
 3150
 3151
 3152
 3153
 3154
 3155
 3156
 3157
 3158
 3159
 3160
 3161
 3162
 3163
 3164
 3165
 3166
 3167
 3168
 3169
 3170
 3171
 3172
 3173
 3174
 3175
 3176
 3177
 3178
 3179
 3180
 3181
 3182
 3183
 3184
 3185
 3186
 3187
 3188
 3189
 3190
 3191
 3192
 3193
 3194
 3195
 3196
 3197
 3198
 3199
 3200
 3201
 3202
 3203
 3204
 3205
 3206
 3207
 3208
 3209
 3210
 3211
 3212
 3213
 3214
 3215
 3216
 3217
 3218
 3219
 3220
 3221
 3222
 3223
 3224
 3225
 3226
 3227
 3228
 3229
 3230
 3231
 3232
 3233
 3234
 3235
 3236
 3237
 3238
 3239
 3240
 3241
 3242
 3243
 3244
 3245
 3246
 3247
 3248
 3249
 3250
 3251
 3252
 3253
 3254
 3255
 3256
 3257
 3258
 3259
 3260
 3261
 3262
 3263
 3264
 3265
 3266
 3267
 3268
 3269
 3270
 3271
 3272
 3273
 3274
 3275
 3276
 3277
 3278
 3279
 3280
 3281
 3282
 3283
 3284
 3285
 3286
 3287
 3288
 3289
 3290
 3291
 3292
 3293
 3294
 3295
 3296
 3297
 3298
 3299
 3300
 3301
 3302
 3303
 3304
 3305
 3306
 3307
 3308
 3309
 3310
 3311
 3312
 3313
 3314
 3315
 3316
 3317
 3318
 3319
 3320
 3321
 3322
 3323
 3324
 3325
 3326
 3327
 3328
 3329
 3330
 3331
 3332
 3333
 3334
 3335
 3336
 3337
 3338
 3339
 3340
 3341
 3342
 3343
 3344
 3345
 3346
 3347
 3348
 3349
 3350
 3351
 3352
 3353
 3354
 3355
 3356
 3357
 3358
 3359
 3360
 3361
 3362
 3363
 3364
 3365
 3366
 3367
 3368
 3369
 3370
 3371
 3372
 3373
 3374
 3375
 3376
 3377
 3378
 3379
 3380
 3381
 3382
 3383
 3384
 3385
 3386
 3387
 3388
 3389
 3390
 3391
 3392
 3393
 3394
 3395
 3396
 3397
 3398
 3399
 3400
 3401
 3402
 3403
 3404
 3405
 3406
 3407
 3408
 3409
 3410
 3411
 3412
 3413
 3414
 3415
 3416
 3417
 3418
 3419
 3420
 3421
 3422
 3423
 3424
 3425
 3426
 3427
 3428
 3429
 3430
 3431
 3432
 3433
 3434
 3435
 3436
 3437
 3438
 3439
 3440
 3441
 3442
 3443
 3444
 3445
 3446
 3447
 3448
 3449
 3450
 3451
 3452
 3453
 3454
 3455
 3456
 3457
 3458
 3459
 3460
 3461
 3462
 3463
 3464
 3465
 3466
 3467
 3468
 3469
 3470
 3471
 3472
 3473
 3474
 3475
 3476
 3477
 3478
 3479
 3480
 3481
 3482
 3483
 3484
 3485
 3486
 3487
 3488
 3489
 3490
 3491
 3492
 3493
 3494
 3495
 3496
 3497
 3498
 3499
 3500
 3501
 3502
 3503
 3504
 3505
 3506
 3507
 3508
 3509
 3510
 3511
 3512
 3513
 3514
 3515
 3516
 3517
 3518
 3519
 3520
 3521
 3522
 3523
 3524
 3525
 3526
 3527
 3528
 3529
 3530
 3531
 3532
 3533
 3534
 3535
 3536
 3537
 3538
 3539
 3540
 3541
 3542
 3543
 3544
 3545
 3546
 3547
 3548
 3549
 3550
 3551
 3552
 3553
 3554
 3555
 3556
 3557
 3558
 3559
 3560
 3561
 3562
 3563
 3564
 3565
 3566
 3567
 3568
 3569
 3570
 3571
 3572
 3573
 3574
 3575
 3576
 3577
 3578
 3579
 3580
 3581
 3582
 3583
 3584
 3585
 3586
 3587
 3588
 3589
 3590
 3591
 3592
 3593
 3594
 3595
 3596
 3597
 3598
 3599
 3600
 3601
 3602
 3603
 3604
 3605
 3606
 3607
 3608
 3609
 3610
 3611
 3612
 3613
 3614
 3615
 3616
 3617
 3618
 3619
 3620
 3621
 3622
 3623
 3624
 3625
 3626
 3627
 3628
 3629
 3630
 3631
 3632
 3633
 3634
 3635
 3636
 3637
 3638
 3639
 3640
 3641
 3642
 3643
 3644
 3645
 3646
 3647
 3648
 3649
 3650
 3651
 3652
 3653
 3654
 3655
 3656
 3657
 3658
 3659
 3660
 3661
 3662
 3663
 3664
 3665
 3666
 3667
 3668
 3669
 3670
 3671
 3672
 3673
 3674
 3675
 3676
 3677
 3678
 3679
 3680
 3681
 3682
 3683
 3684
 3685
 3686
 3687
 3688
 3689
 3690
 3691
 3692
 3693
 3694
 3695
 3696
 3697
 3698
 3699
 3700
 3701
 3702
 3703
 3704
 3705
 3706
 3707
 3708
 3709
 3710
 3711
 3712
 3713
 3714
 3715
 3716
 3717
 3718
 3719
 3720
 3721
 3722
 3723
 3724
 3725
 3726
 3727
 3728
 3729
 3730
 3731
 3732
 3733
 3734
 3735
 3736
 3737
 3738
 3739
 3740
 3741
 3742
 3743
 3744
 3745
 3746
 3747
 3748
 3749
 3750
 3751
 3752
 3753
 3754
 3755
 3756
 3757
 3758
 3759
 3760
 3761
 3762
 3763
 3764
 3765
 3766
 3767
 3768
 3769
 3770
 3771
 3772
 3773
 3774
 3775
 3776
 3777
 3778
 3779
 3780
 3781
 3782
 3783
 3784
 3785
 3786
 3787
 3788
 3789
 3790
 3791
 3792
 3793
 3794
 3795
 3796
 3797
 3798
 3799
 3800
 3801
 3802
 3803
 3804
 3805
 3806
 3807
 3808
 3809
 3810
 3811
 3812
 3813
 3814
 3815
 3816
 3817
 3818
 3819
 3820
 3821
 3822
 3823
 3824
 3825
 3826
 3827
 3828
 3829
 3830
 3831
 3832
 3833
 3834
 3835
 3836
 3837
 3838
 3839
 3840
 3841
 3842
 3843
 3844
 3845
 3846
 3847
 3848
 3849
 3850
 3851
 3852
 3853
 3854
 3855
 3856
 3857
 3858
 3859
 3860
 3861
 3862
 3863
 3864
 3865
 3866
 3867
 3868
 3869
 3870
 3871
 3872
 3873
 3874
 3875
 3876
 3877
 3878
 3879
 3880
 3881
 3882
 3883
 3884
 3885
 3886
 3887
 3888
 3889
 3890
 3891
 3892
 3893
 3894
 3895
 3896
 3897
 3898
 3899
 3900
 3901
 3902
 3903
 3904
 3905
 3906
 3907
 3908
 3909
 3910
 3911
 3912
 3913
 3914
 3915
 3916
 3917
 3918
 3919
 3920
 3921
 3922
 3923
 3924
 3925
 3926
 3927
 3928
 3929
 3930
 3931
 3932
 3933
 3934
 3935
 3936
 3937
 3938
 3939
 3940
 3941
 3942
 3943
 3944
 3945
 3946
 3947
 3948
 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964
 3965
 3966
 3967
 3968
 3969
 3970
 3971
 3972
 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987
 3988
 3989
 3990
 3991
 3992
 3993
 3994
 3995
 3996
 3997
 3998
 3999
 4000
 4001
 4002
 4003
 4004
 4005
 4006
 4007
 4008
 4009
 4010
 4011
 4012
 4013
 4014
 4015
 4016
 4017
 4018
 4019
 4020
 4021
 4022
 4023
 4024
 4025
 4026
 4027
 4028
 4029
 4030
 4031
 4032
 4033
 4034
 4035
 4036
 4037
 4038
 4039
 4040
 4041
 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052
 4053
 4054
 4055
 4056
 4057
 4058
 4059
 4060
 4061
 4062
 4063
 4064
 4065
 4066
 4067
 4068
 4069
 4070
 4071
 4072
 4073
 4074
 4075
 4076
 4077
 4078
 4079
 4080
 4081
 4082
 4083
 4084
 4085
 4086
 4087
 4088
 4089
 4090
 4091
 4092
 4093
 4094
 4095
 4096
 4097
 4098
 4099
 4100
 4101
 4102
 4103
 4104
 4105
 4106
 4107
 4108
 4109
 4110
 4111
 4112
 4113
 4114
 4115
 4116
 4117
 4118
 4119
 4120
 4121
 4122
 4123
 4124
 4125
 4126
 4127
 4128
 4129
 4130
 4131
 4132
 4133
 4134
 4135
 4136
 4137
 4138
 4139
 4140
 4141
 4142
 4143
 4144
 4145
 4146
 4147
 4148
 4149
 4150
 4151
 4152
 4153
 4154
 4155
 4156
 4157
 4158
 4159
 4160
 4161
 4162
 4163
 4164
 4165
 4166
 4167
 4168
 4169
 4170
 4171
 4172
 4173
 4174
 4175
 4176
 4177
 4178
 4179
 4180
 4181
 4182
 4183
 4184
 4185
 4186
 4187
 4188
 4189
 4190
 4191
 4192
 4193
 4194
 4195
 4196
 4197
 4198
 4199
 4200
 4201
 4202
 4203
 4204
 4205
 4206
 4207
 4208
 4209
 4210
 4211
 4212
 4213
 4214
 4215
 4216
 4217
 4218
 4219
 4220
 4221
 4222
 4223
 4224
 4225
 4226
 4227
 4228
 4229
 4230
 4231
 4232
 4233
 4234
 4235
 4236
 4237
 4238
 4239
 4240
 4241
 4242
 4243
 4244
 4245
 4246
 4247
 4248
 4249
 4250
 4251
 4252
 4253
 4254
 4255
 4256
 4257
 4258
 4259
 4260
 4261
 4262
 4263
 4264
 4265
 4266
 4267
 4268
 4269
 4270
 4271
 4272
 4273
 4274
 4275
 4276
 4277
 4278
 4279
 4280
 4281
 4282
 4283
 4284
 4285
 4286
 4287
 4288
 4289
 4290
 4291
 4292
 4293
 4294
 4295
 4296
 4297
 4298
 4299
 4300
 4301
 4302
 4303
 4304
 4305
 4306
 4307
 4308
 4309
 4310
 4311
 4312
 4313
 4314
 4315
 4316
 4317
 4318
 4319
 4320
 4321
 4322
 4323
 4324
 4325
 4326
 4327
 4328
 4329
 4330
 4331
 4332
 4333
 4334
 4335
 4336
 4337
 4338
 4339
 4340
 4341
 4342
 4343
 4344
 4345
 4346
 4347
 4348
 4349
 4350
 4351
 4352
 4353
 4354
 4355
 4356
 4357
 4358
 4359
 4360
 4361
 4362
 4363
 4364
 4365
 4366
 4367
 4368
 4369
 4370
 4371
 4372
 4373
 4374
 4375
 4376
 4377
 4378
 4379
 4380
 4381
 4382
 4383
 4384
 4385
 4386
 4387
 4388
 4389
 4390
 4391
 4392
 4393
 4394
 4395
 4396
 4397
 4398
 4399
 4400
 4401
 4402
 4403
 4404
 4405
 4406
 4407
 4408
 4409
 4410
 4411
 4412
 4413
 4414
 4415
 4416
 4417
 4418
 4419
 4420
 4421
 4422
 4423
 4424
 4425
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438
 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450
 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460
 4461
 4462
 4463
 4464
 4465
 4466
 4467
 4468
 4469
 4470
 4471
 4472
 4473
 4474
 4475
 4476
 4477
 4478
 4479
 4480
 4481
 4482
 4483
 4484
 4485
 4486
 4487
 4488
 4489
 4490
 4491
 4492
 4493
 4494
 4495
 4496
 4497
 4498
 4499
 4500
 4501
 4502
 4503
 4504
 4505
 4506
 4507
 4508
 4509
 4510
 4511
 4512
 4513
 4514
 4515
 4516
 4517
 4518
 4519
 4520
 4521
 4522
 4523
 4524
 4525
 4526
 4527
 4528
 4529
 4530
 4531
 4532
 4533
 4534
 4535
 4536
 4537
 4538
 4539
 4540
 4541
 4542
 4543
 4544
 4545
 4546
 4547
 4548
 4549
 4550
 4551
 4552
 4553
 4554
 4555
 4556
 4557
 4558
 4559
 4560
 4561
 4562
 4563
 4564
 4565
 4566
 4567
 4568
 4569
 4570
 4571
 4572
 4573
 4574
 4575
 4576
 4577
 4578
 4579
 4580
 4581
 4582
 4583
 4584
 4585
 4586
 4587
 4588
 4589
 4590
 4591
 4592
 4593
 4594
 4595
 4596
 4597
 4598
 4599
 4600
 4601
 4602
 4603
 4604
 4605
 4606
 4607
 4608
 4609
 4610
 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618
 4619
 4620
 4621
 4622
 4623
 4624
 4625
 4626
 4627
 4628
 4629
 4630
 4631
 4632
 4633
 4634
 4635
 4636
 4637
 4638
 4639
 4640
 4641
 4642
 4643
 4644
 4645
 4646
 4647
 4648
 4649
 4650
 4651
 4652
 4653
 4654
 4655
 4656
 4657
 4658
 4659
 4660
 4661
 4662
 4663
 4664
 4665
 4666
 4667
 4668
 4669
 4670
 4671
 4672
 4673
 4674
 4675
 4676
 4677
 4678
 4679
 4680
 4681
 4682
 4683
 4684
 4685
 4686
 4687
 4688
 4689
 4690
 4691
 4692
 4693
 4694
 4695
 4696
 4697
 4698
 4699
 4700
 4701
 4702
 4703
 4704
 4705
 4706
 4707
 4708
 4709
 4710
 4711
 4712
 4713
 4714
 4715
 4716
 4717
 4718
 4719
 4720
 4721
 4722
 4723
 4724
 4725
 4726
 4727
 4728
 4729
 4730
 4731
 4732
 4733
 4734
 4735
 4736
 4737
 4738
 4739
 4740
 4741
 4742
 4743
 4744
 4745
 4746
 4747
 4748
 4749
 4750
 4751
 4752
 4753
 4754
 4755
 4756
 4757
 4758
 4759
 4760
 4761
 4762
 4763
 4764
 4765
 4766
 4767
 4768
 4769
 4770
 4771
 4772
 4773
 4774
 4775
 4776
 4777
 4778
 4779
 4780
 4781
 4782
 4783
 4784
 4785
 4786
 4787
 4788
 4789
 4790
 4791
 4792
 4793
 4794
 4795
 4796
 4797
 4798
 4799
 4800
 4801
 4802
 4803
 4804
 4805
 4806
 4807
 4808
 4809
 4810
 4811
 4812
 4813
 4814
 4815
 4816
 4817
 4818
 4819
 4820
 4821
 4822
 4823
 4824
 4825
 4826
 4827
 4828
 4829
 4830
 4831
 4832
 4833
 4834
 4835
 4836
 4837
 4838
 4839
 4840
 4841
 4842
 4843
 4844
 4845
 4846
 4847
 4848
 4849
 4850
 4851
 4852
 4853
 4854
 4855
 4856
 4857
 4858
 4859
 4860
 4861
 4862
 4863
 4864
 4865
 4866
 4867
 4868
 4869
 4870
 4871
 4872
 4873
 4874
 4875
 4876
 4877
 4878
 4879
 4880
 4881
 4882
 4883
 4884
 4885
 4886
 4887
 4888
 4889
 4890
 4891
 4892
 4893
 4894
 4895
 4896
 4897
 4898
 4899
 4900
 4901
 4902
 4903
 4904
 4905
 4906
 4907
 4908
 4909
 4910
 4911
 4912
 4913
 4914
 4915
 4916
 4917
 4918
 4919
 4920
 4921
 4922
 4923
 4924
 4925
 4926
 4927
 4928
 4929
 4930
 4931
 4932
 4933
 4934
 4935
 4936
 4937
 4938
 4939
 4940
 4941
 4942
 4943
 4944
 4945
 4946
 4947
 4948
 4949
 4950
 4951
 4952
 4953
 4954
 4955
 4956
 4957
 4958
 4959
 4960
 4961
 4962
 4963
 4964
 4965
 4966
 4967
 4968
 4969
 4970
 4971
 4972
 4973
 4974
 4975
 4976
 4977
 4978
 4979
 4980
 4981
 4982
 4983
 4984
 4985
 4986
 4987
 4988
 4989
 4990
 4991
 4992
 4993
 4994
 4995
 4996
 4997
 4998
 4999
 5000
 5001
 5002
 5003
 5004
 5005
 5006
 5007
 5008
 5009
 5010
 5011
 5012
 5013
 5014
 5015
 5016
 5017
 5018
 5019
 5020
 5021
 5022
 5023
 5024
 5025
 5026
 5027
 5028
 5029
 5030
 5031
 5032
 5033
 5034
 5035
 5036
 5037
 5038
 5039
 5040
 5041
 5042
 5043
 5044
 5045
 5046
 5047
 5048
 5049
 5050
 5051
 5052
 5053
 5054
 5055
 5056
 5057
 5058
 5059
 5060
 5061
 5062
 5063
 5064
 5065
 5066
 5067
 5068
 5069
 5070
 5071
 5072
 5073
 5074
 5075
 5076
 5077
 5078
 5079
 5080
 5081
 5082
 5083
 5084
 5085
 5086
 5087
 5088
 5089
 5090
 5091
 5092
 5093
 5094
 5095
 5096
 5097
 5098
 5099
 5100
 5101
 5102
 5103
 5104
 5105
 5106
 5107
 5108
 5109
 5110
 5111
 5112
 5113
 5114
 5115
 5116
 5117
 5118
 5119
 5120
 5121
 5122
 5123
 5124
 5125
 5126
 5127
 5128
 5129
 5130
 5131
 5132
 5133
 5134
 5135
 5136
 5137
 5138
 5139
 5140
 5141
 5142
 5143
 5144
 5145
 5146
 5147
 5148
 5149
 5150
 5151
 5152
 5153
 5154
 5155
 5156
 5157
 5158
 5159
 5160
 5161
 5162
 5163
 5164
 5165
 5166
 5167
 5168
 5169
 5170
 5171
 5172
 5173
 5174
 5175
 5176
 5177
 5178
 5179
 5180
 5181
 5182
 5183
 5184
 5185
 5186
 5187
 5188
 5189
 5190
 5191
 5192
 5193
 5194
 5195
 5196
 5197
 5198
 5199
 5200
 5201
 5202
 5203
 5204
 5205
 5206
 5207
 5208
 5209
 5210
 5211
 5212
 5213
 5214
 5215
 5216
 5217
 5218
 5219
 5220
 5221
 5222
 5223
 5224
 5225
 5226
 5227
 5228
 5229
 5230
 5231
 5232
 5233
 5234
 5235
 5236
 5237
 5238
 5239
 5240
 5241
 5242
 5243
 5244
 5245
 5246
 5247
 5248
 5249
 5250
 5251
 5252
 5253
 5254
 5255
 5256
 5257
 5258
 5259
 5260
 5261
 5262
 5263
 5264
 5265
 5266
 5267
 5268
 5269
 5270
 5271
 5272
 5273
 5274
 5275
 5276
 5277
 5278
 5279
 5280
 5281
 5282
 5283
 5284
 5285
 5286
 5287
 5288
 5289
 5290
 5291
 5292
 5293
 5294
 5295
 5296
 5297
 5298
 5299
 5300
 5301
 5302
 5303
 5304
 5305
 5306
 5307
 5308
 5309
 5310
 5311
 5312
 5313
 5314
 5315
 5316
 5317
 5318
 5319
 5320
 5321
 5322
 5323
 5324
 5325
 5326
 5327
 5328
 5329
 5330
 5331
 5332
 5333
 5334
 5335
 5336
 5337
 5338
 5339
 5340
 5341
 5342
 5343
 5344
 5345
 5346
 5347
 5348
 5349
 5350
 5351
 5352
 5353
 5354
 5355
 5356
 5357
 5358
 5359
 5360
 5361
 5362
 5363
 5364
 5365
 5366
 5367
 5368
 5369
 5370
 5371
 5372
 5373
 5374
 5375
 5376
 5377
 5378
 5379
 5380
 5381
 5382
 5383
 5384
 5385
 5386
 5387
 5388
 5389
 5390
 5391
 5392
 5393
 5394
 5395
 5396
 5397
 5398
 5399
 5400
 5401
 5402
 5403
 5404
 5405
 5406
 5407
 5408
 5409
 5410
 5411
 5412
 5413
 5414
 5415
 5416
 5417
 5418
 5419
 5420
 5421
 5422
 5423
 5424
 5425
 5426
 5427
 5428
 5429
 5430
 5431
 5432
 5433
 5434
 5435
 5436
 5437
 5438
 5439
 5440
 5441
 5442
 5443
 5444
 5445
 5446
 5447
 5448
 5449
 5450
 5451
 5452
 5453
 5454
 5455
 5456
 5457
 5458
 5459
 5460
 5461
 5462
 5463
 5464
 5465
 5466
 5467
 5468
 5469
 5470
 5471
 5472
 5473
 5474
 5475
 5476
 5477
 5478
 5479
 5480
 5481
 5482
 5483
 5484
 5485
 5486
 5487
 5488
 5489
 5490
 5491
 5492
 5493
 5494
 5495
 5496
 5497
 5498
 5499
 5500
 5501
 5502
 5503
 5504
 5505
 5506
 5507
 5508
 5509
 5510
 5511
 5512
 5513
 5514
 5515
 5516
 5517
 5518
 5519
 5520
 5521
 5522
 5523
 5524
 5525
 5526
 5527
 5528
 5529
 5530
 5531
 5532
 5533
 5534
 5535
 5536
 5537
 5538
 5539
 5540
 5541
 5542
 5543
 5544
 5545
 5546
 5547
 5548
 5549
 5550
 5551
 5552
 5553
 5554
 5555
 5556
 5557
 5558
 5559
 5560
 5561
 5562
 5563
 5564
 5565
 5566
 5567
 5568
 5569
 5570
 5571
 5572
 5573
 5574
 5575
 5576
 5577
 5578
 5579
 5580
 5581
 5582
 5583
 5584
 5585
 5586
 5587
 5588
 5589
 5590
 5591
 5592
 5593
 5594
 5595
 5596
 5597
 5598
 5599
 5600
 5601
 5602
 5603
 5604
 5605
 5606
 5607
 5608
 5609
 5610
 5611
 5612
 5613
 5614
 5615
 5616
 5617
 5618
 5619
 5620
 5621
 5622
 5623
 5624
 5625
 5626
 5627
 5628
 5629
 5630
 5631
 5632
 5633
 5634
 5635
 5636
 5637
 5638
 5639
 5640
 5641
 5642
 5643
 5644
 5645
 5646
 5647
 5648
 5649
 5650
 5651
 5652
 5653
 5654
 5655
 5656
 5657
 5658
 5659
 5660
 5661
 5662
 5663
 5664
 5665
 5666
 5667
 5668
 5669
 5670
 5671
 5672
 5673
 5674
 5675
 5676
 5677
 5678
 5679
 5680
 5681
 5682
 5683
 5684
 5685
 5686
 5687
 5688
 5689
 5690
 5691
 5692
 5693
 5694
 5695
 5696
 5697
 5698
 5699
 5700
 5701
 5702
 5703
 5704
 5705
 5706
 5707
 5708
 5709
 5710
 5711
 5712
 5713
 5714
 5715
 5716
 5717
 5718
 5719
 5720
 5721
 5722
 5723
 5724
 5725
 5726
 5727
 5728
 5729
 5730
 5731
 5732
 5733
 5734
 5735
 5736
 5737
 5738
 5739
 5740
 5741
 5742
 5743
 5744
 5745
 5746
 5747
 5748
 5749
 5750
 5751
 5752
 5753
 5754
 5755
 5756
 5757
 5758
 5759
 5760
 5761
 5762
 5763
 5764
 5765
 5766
 5767
 5768
 5769
 5770
 5771
 5772
 5773
 5774
 5775
 5776
 5777
 5778
 5779
 5780
 5781
 5782
 5783
 5784
 5785
 5786
 5787
 5788
 5789
 5790
 5791
 5792
 5793
 5794
 5795
 5796
 5797
 5798
 5799
 5800
 5801
 5802
 5803
 5804
 5805
 5806
 5807
 5808
 5809
 5810
 5811
 5812
 5813
 5814
 5815
 5816
 5817
 5818
 5819
 5820
 5821
 5822
 5823
 5824
 5825
 5826
 5827
 5828
 5829
 5830
 5831
 5832
 5833
 5834
 5835
 5836
 5837
 5838
 5839
 5840
 5841
 5842
 5843
 5844
 5845
 5846
 5847
 5848
 5849
 5850
 5851
 5852
 5853
 5854
 5855
 5856
 5857
 5858
 5859
 5860
 5861
 5862
 5863
 5864
 5865
 5866
 5867
 5868
 5869
 5870
 5871
 5872
 5873
 5874
 5875
 5876
 5877
 5878
 5879
 5880
 5881
 5882
 5883
 5884
 5885
 5886
 5887
 5888
 5889
 5890
 5891
 5892
 5893
 5894
 5895
 5896
 5897
 5898
 5899
 5900
 5901
 5902
 5903
 5904
 5905
 5906
 5907
 5908
 5909
 5910
 5911
 5912
 5913
 5914
 5915
 5916
 5917
 5918
 5919
 5920
 5921
 5922
 5923
 5924
 5925
 5926
 5927
 5928
 5929
 5930
 5931
 5932
 5933
 5934
 5935
 5936
 5937
 5938
 5939
 5940
 5941
 5942
 5943
 5944
 5945
 5946
 5947
 5948
 5949
 5950
 5951
 5952
 5953
 5954
 5955
 5956
 5957
 5958
 5959
 5960
 5961
 5962
 5963
 5964
 5965
 5966
 5967
 5968
 5969
 5970
 5971
 5972
 5973
 5974
 5975
 5976
 5977
 5978
 5979
 5980
 5981
 5982
 5983
 5984
 5985
 5986
 5987
 5988
 5989
 5990
 5991
 5992
 5993
 5994
 5995
 5996
 5997
 5998
 5999
 6000
 6001
 6002
 6003
 6004
 6005
 6006
 6007
 6008
 6009
 6010
 6011
 6012
 6013
 6014
 6015
 6016
 6017
 6018
 6019
 6020
 6021
 6022
 6023
 6024
 6025
 6026
 6027
 6028
 6029
 6030
 6031
 6032
 6033
 6034
 6035
 6036
 6037
 6038
 6039
 6040
 6041
 6042
 6043
 6044
 6045
 6046
 6047
 6048
 6049
 6050
 6051
 6052
 6053
 6054
 6055
 6056
 6057
 6058
 6059
 6060
 6061
 6062
 6063
 6064
 6065
 6066
 6067
 6068
 6069
 6070
 6071
 6072
 6073
 6074
 6075
 6076
 6077
 6078
 6079
 6080
 6081
 6082
 6083
 6084
 6085
 6086
 6087
 6088
 6089
 6090
 6091
 6092
 6093
 6094
 6095
 6096
 6097
 6098
 6099
 6100
 6101
 6102
 6103
 6104
 6105
 6106
 6107
 6108
 6109
 6110
 6111
 6112
 6113
 6114
 6115
 6116
 6117
 6118
 6119
 6120
 6121
 6122
 6123
 6124
 6125
 6126
 6127
 6128
 6129
 6130
 6131
 6132
 6133
 6134
 6135
 6136
 6137
 6138
 6139
 6140
 6141
 6142
 6143
 6144
 6145
 6146
 6147
 6148
 6149
 6150
 6151
 6152
 6153
 6154
 6155
 6156
 6157
 6158
 6159
 6160
 6161
 6162
 6163
 6164
 6165
 6166
 6167
 6168
 6169
 6170
 6171
 6172
 6173
 6174
 6175
 6176
 6177
 6178
 6179
 6180
 6181
 6182
 6183
 6184
 6185
 6186
 6187
 6188
 6189
 6190
 6191
 6192
 6193
 6194
 6195
 6196
 6197
 6198
 6199
 6200
 6201
 6202
 6203
 6204
 6205
 6206
 6207
 6208
 6209
 6210
 6211
 6212
 6213
 6214
 6215
 6216
 6217
 6218
 6219
 6220
 6221
 6222
 6223
 6224
 6225
 6226
 6227
 6228
 6229
 6230
 6231
 6232
 6233
 6234
 6235
 6236
 6237
 6238
 6239
 6240
 6241
 6242
 6243
 6244
 6245
 6246
 6247
 6248
 6249
 6250
 6251
 6252
 6253
 6254
 6255
 6256
 6257
 6258
 6259
 6260
 6261
 6262
 6263
 6264
 6265
 6266
 6267
 6268
 6269
 6270
 6271
 6272
 6273
 6274
 6275
 6276
 6277
 6278
 6279
 6280
 6281
 6282
 6283
 6284
 6285
 6286
 6287
 6288
 6289
 6290
 6291
 6292
 6293
 6294
 6295
 6296
 6297
 6298
 6299
 6300
 6301
 6302
 6303
 6304
 6305
 6306
 6307
 6308
 6309
 6310
 6311
 6312
 6313
 6314
 6315
 6316
 6317
 6318
 6319
 6320
 6321
 6322
 6323
 6324
 6325
 6326
 6327
 6328
 6329
 6330
 6331
 6332
 6333
 6334
 6335
 6336
 6337
 6338
 6339
 6340
 6341
 6342
 6343
 6344
 6345
 6346
 6347
 6348
 6349
 6350
 6351
 6352
 6353
 6354
 6355
 6356
 6357
 6358
 6359
 6360
 6361
 6362
 6363
 6364
 6365
 6366
 6367
 6368
 6369
 6370
 6371
 6372
 6373
 6374
 6375
 6376
 6377
 6378
 6379
 6380
 6381
 6382
 6383
 6384
 6385
 6386
 6387
 6388
 6389
 6390
 6391
 6392
 6393
 6394
 6395
 6396
 6397
 6398
 6399
 6400
 6401
 6402
 6403
 6404
 6405
 6406
 6407
 6408
 6409
 6410
 6411
 6412
 6413
 6414
 6415
 6416
 6417
 6418
 6419
 6420
 6421
 6422
 6423
 6424
 6425
 6426
 6427
 6428
 6429
 6430
 6431
 6432
 6433
 6434
 6435
 6436
 6437
 6438
 6439
 6440
 6441
 6442
 6443
 6444
 6445
 6446
 6447
 6448
 6449
 6450
 6451
 6452
 6453
 6454
 6455
 6456
 6457
 6458
 6459
 6460
 6461
 6462
 6463
 6464
 6465
 6466
 6467
 6468
 6469
 6470
 6471
 6472
 6473
 6474
 6475
 6476
 6477
 6478
 6479
 6480
 6481
 6482
 6483
 6484
 6485
 6486
 6487
 6488
 6489
 6490
 6491
 6492
 6493
 6494
 6495
 6496
 6497
 6498
 6499
 6500
 6501
 6502
 6503
 6504
 6505
 6506
 6507
 6508
 6509
 6510
 6511
 6512
 6513
 6514
 6515
 6516
 6517
 6518
 6519
 6520
 6521
 6522
 6523
 6524
 6525
 6526
 6527
 6528
 6529
 6530
 6531
 6532
 6533
 6534
 6535
 6536
 6537
 6538
 6539
 6540
 6541
 6542
 6543
 6544
 6545
 6546
 6547
 6548
 6549
 6550
 6551
 6552
 6553
 6554
 6555
 6556
 6557
 6558
 6559
 6560
 6561
 6562
 6563
 6564
 6565
 6566
 6567
 6568
 6569
 6570
 6571
 6572
 6573
 6574
 6575
 6576
 6577
 6578
 6579
 6580
 6581
 6582
 6583
 6584
 6585
 6586
 6587
 6588
 6589
 6590
 6591
 6592
 6593
 6594
 6595
 6596
 6597
 6598
 6599
 6600
 6601
 6602
 6603
 6604
 6605
 6606
 6607
 6608
 6609
 6610
 6611
 6612
 6613
 6614
 6615
 6616
 6617
 6618
 6619
 6620
 6621
 6622
 6623
 6624
 6625
 6626
 6627
 6628
 6629
 6630
 6631
 6632
 6633
 6634
 6635
 6636
 6637
 6638
 6639
 6640
 6641
 6642
 6643
 6644
 6645
 6646
 6647
 6648
 6649
 6650
 6651
 6652
 6653
 6654
 6655
 6656
 6657
 6658
 6659
 6660
 6661
 6662
 6663
 6664
 6665
 6666
 6667
 6668
 6669
 6670
 6671
 6672
 6673
 6674
 6675
 6676
 6677
 6678
 6679
 6680
 6681
 6682
 6683
 6684
 6685
 6686
 6687
 6688
 6689
 6690
 6691
 6692
 6693
 6694
 6695
 6696
 6697
 6698
 6699
 6700
 6701
 6702
 6703
 6704
 6705
 6706
 6707
 6708
 6709
 6710
 6711
 6712
 6713
 6714
 6715
 6716
 6717
 6718
 6719
 6720
 6721
 6722
 6723
 6724
 6725
 6726
 6727
 6728
 6729
 6730
 6731
 6732
 6733
 6734
 6735
 6736
 6737
 6738
 6739
 6740
 6741
 6742
 6743
 6744
 6745
 6746
 6747
 6748
 6749
 6750
 6751
 6752
 6753
 6754
 6755
 6756
 6757
 6758
 6759
 6760
 6761
 6762
 6763
 6764
 6765
 6766
 6767
 6768
 6769
 6770
 6771
 6772
 6773
 6774
 6775
 6776
 6777
 6778
 6779
 6780
 6781
 6782
 6783
 6784
 6785
 6786
 6787
 6788
 6789
 6790
 6791
 6792
 6793
 6794
 6795
 6796
 6797
 6798
 6799
 6800
 6801
 6802
 6803
 6804
 6805
 6806
 6807
 6808
 6809
 6810
 6811
 6812
 6813
 6814
 6815
 6816
 6817
 6818
 6819
 6820
 6821
 6822
 6823
 6824
 6825
 6826
 6827
 6828
 6829
 6830
 6831
 6832
 6833
 6834
 6835
 6836
 6837
 6838
 6839
 6840
 6841
 6842
 6843
 6844
 6845
 6846
 6847
 6848
 6849
 6850
 6851
 6852
 6853
 6854
 6855
 6856
 6857
 6858
 6859
 6860
 6861
 6862
 6863
 6864
 6865
 6866
 6867
 6868
 6869
 6870
 6871
 6872
 6873
 6874
 6875
 6876
 6877
 6878
 6879
 6880
 6881
 6882
 6883
 6884
 6885
 6886
 6887
 6888
 6889
 6890
 6891
 6892
 6893
 6894
 6895
 6896
 6897
 6898
 6899
 6900
 6901
 6902
 6903
 6904
 6905
 6906
 6907
 6908
 6909
 6910
 6911
 6912
 6913
 6914
 6915
 6916
 6917
 6918
 6919
 6920
 6921
 6922
 6923
 6924
 6925
 6926
 6927
 6928
 6929
 6930
 6931
 6932
 6933
 6934
 6935
 6936
 6937
 6938
 6939
 6940
 6941
 6942
 6943
 6944
 6945
 6946
 6947
 6948
 6949
 6950
 6951
 6952
 6953
 6954
 6955
 6956
 6957
 6958
 6959
 6960
 6961
 6962
 6963
 6964
 6965
 6966
 6967
 6968
 6969
 6970
 6971
 6972
 6973
 6974
 6975
 6976
 6977
 6978
 6979
 6980
 6981
 6982
 6983
 6984
 6985
 6986
 6987
 6988
 6989
 6990
 6991
 6992
 6993
 6994
 6995
 6996
 6997
 6998
 6999
 7000
 7001
 7002
 7003
 7004
 7005
 7006
 7007
 7008
 7009
 7010
 7011
 7012
 7013
 7014
 7015
 7016
 7017
 7018
 7019
 7020
 7021
 7022
 7023
 7024
 7025
 7026
 7027
 7028
 7029
 7030
 7031
 7032
 7033
 7034
 7035
 7036
 7037
 7038
 7039
 7040
 7041
 7042
 7043
 7044
 7045
 7046
 7047
 7048
 7049
 7050
 7051
 7052
 7053
 7054
 7055
 7056
 7057
 7058
 7059
 7060
 7061
 7062
 7063
 7064
 7065
 7066
 7067
 7068
 7069
 7070
 7071
 7072
 7073
 7074
 7075
 7076
 7077
 7078
 7079
 7080
 7081
 7082
 7083
 7084
 7085
 7086
 7087
 7088
 7089
 7090
 7091
 7092
 7093
 7094
 7095
 7096
 7097
 7098
 7099
 7100
 7101
 7102
 7103
 7104
 7105
 7106
 7107
 7108
 7109
 7110
 7111
 7112
 7113
 7114
 7115
 7116
 7117
 7118
 7119
 7120
 7121
 7122
 7123
 7124
 7125
 7126
 7127
 7128
 7129
 7130
 7131
 7132
 7133
 7134
 7135
 7136
 7137
 7138
 7139
 7140
 7141
 7142
 7143
 7144
 7145
 7146
 7147
 7148
 7149
 7150
 7151
 7152
 7153
 7154
 7155
 7156
 7157
 7158
 7159
 7160
 7161
 7162
 7163
 7164
 7165
 7166
 7167
 7168
 7169
 7170
 7171
 7172
 7173
 7174
 7175
 7176
 7177
 7178
 7179
 7180
 7181
 7182
 7183
 7184
 7185
 7186
 7187
 7188
 7189
 7190
 7191
 7192
 7193
 7194
 7195
 7196
 7197
 7198
 7199
 7200
 7201
 7202
 7203
 7204
 7205
 7206
 7207
 7208
 7209
 7210
 7211
 7212
 7213
 7214
 7215
 7216
 7217
 7218
 7219
 7220
 7221
 7222
 7223
 7224
 7225
 7226
 7227
 7228
 7229
 7230
 7231
 7232
 7233
 7234
 7235
 7236
 7237
 7238
 7239
 7240
 7241
 7242
 7243
 7244
 7245
 7246
 7247
 7248
 7249
 7250
 7251
 7252
 7253
 7254
 7255
 7256
 7257
 7258
 7259
 7260
 7261
 7262
 7263
 7264
 7265
 7266
 7267
 7268
 7269
 7270
 7271
 7272
 7273
 7274
 7275
 7276
 7277
 7278
 7279
 7280
 7281
 7282
 7283
 7284
 7285
 7286
 7287
 7288
 7289
 7290
 7291
 7292
 7293
 7294
 7295
 7296
 7297
 7298
 7299
 7300
 7301
 7302
 7303
 7304
 7305
 7306
 7307
 7308
 7309
 7310
 7311
 7312
 7313
 7314
 7315
 7316
 7317
 7318
 7319
 7320
 7321
 7322
 7323
 7324
 7325
 7326
 7327
 7328
 7329
 7330
 7331
 7332
 7333
 7334
 7335
 7336
 7337
 7338
 7339
 7340
 7341
 7342
 7343
 7344
 7345
 7346
 7347
 7348
 7349
 7350
 7351
 7352
 7353
 7354
 7355
 7356
 7357
 7358
 7359
 7360
 7361
 7362
 7363
 7364
 7365
 7366
 7367
 7368
 7369
 7370
 7371
 7372
 7373
 7374
 7375
 7376
 7377
 7378
 7379
 7380
 7381
 7382
 7383
 7384
 7385
 7386
 7387
 7388
 7389
 7390
 7391
 7392
 7393
 7394
 7395
 7396
 7397
 7398
 7399
 7400
 7401
 7402
 7403
 7404
 7405
 7406
 7407
 7408
 7409
 7410
 7411
 7412
 7413
 7414
 7415
 7416
 7417
 7418
 7419
 7420
 7421
 7422
 7423
 7424
 7425
 7426
 7427
 7428
 7429
 7430
 7431
 7432
 7433
 7434
 7435
 7436
 7437
 7438
 7439
 7440
 7441
 7442
 7443
 7444
 7445
 7446
 7447
 7448
 7449
 7450
 7451
 7452
 7453
 7454
 7455
 7456
 7457
 7458
 7459
 7460
 7461
 7462
 7463
 7464
 7465
 7466
 7467
 7468
 7469
 7470
 7471
 7472
 7473
 7474
 7475
 7476
 7477
 7478
 7479
 7480
 7481
 7482
 7483
 7484
 7485
 7486
 7487
 7488
 7489
 7490
 7491
 7492
 7493
 7494
 7495
 7496
 7497
 7498
 7499
 7500
 7501
 7502
 7503
 7504
 7505
 7506
 7507
 7508
 7509
 7510
 7511
 7512
 7513
 7514
 7515
 7516
 7517
 7518
 7519
 7520
 7521
 7522
 7523
 7524
 7525
 7526
 7527
 7528
 7529
 7530
 7531
 7532
 7533
 7534
 7535
 7536
 7537
 7538
 7539
 7540
 7541
 7542
 7543
 7544
 7545
 7546
 7547
 7548
 7549
 7550
 7551
 7552
 7553
 7554
 7555
 7556
 7557
 7558
 7559
 7560
 7561
 7562
 7563
 7564
 7565
 7566
 7567
 7568
 7569
 7570
 7571
 7572
 7573
 7574
 7575
 7576
 7577
 7578
 7579
 7580
 7581
 7582
 7583
 7584
 7585
 7586
 7587
 7588
 7589
 7590
 7591
 7592
 7593
 7594
 7595
 7596
 7597
 7598
 7599
 7600
 7601
 7602
 7603
 7604
 7605
 7606
 7607
 7608
 7609
 7610
 7611
 7612
 7613
 7614
 7615
 7616
 7617
 7618
 7619
 7620
 7621
 7622
 7623
 7624
 7625
 7626
 7627
 7628
 7629
 7630
 7631
 7632
 7633
 7634
 7635
 7636
 7637
 7638
 7639
 7640
 7641
 7642
 7643
 7644
 7645
 7646
 7647
 7648
 7649
 7650
 7651
 7652
 7653
 7654
 7655
 7656
 7657
 7658
 7659
 7660
 7661
 7662
 7663
 7664
 7665
 7666
 7667
 7668
 7669
 7670
 7671
 7672
 7673
 7674
 7675
 7676
 7677
 7678
 7679
 7680
 7681
 7682
 7683
 7684
 7685
 7686
 7687
 7688
 7689
 7690
 7691
 7692
 7693
 7694
 7695
 7696
 7697
 7698
 7699
 7700
 7701
 7702
 7703
 7704
 7705
 7706
 7707
 7708
 7709
 7710
 7711
 7712
 7713
 7714
 7715
 7716
 7717
 7718
 7719
 7720
 7721
 7722
 7723
 7724
 7725
 7726
 7727
 7728
 7729
 7730
 7731
 7732
 7733
 7734
 7735
 7736
 7737
 7738
 7739
 7740
 7741
 7742
 7743
 7744
 7745
 7746
 7747
 7748
 7749
 7750
 7751
 7752
 7753
 7754
 7755
 7756
 7757
 7758
 7759
 7760
 7761
 7762
 7763
 7764
 7765
 7766
 7767
 7768
 7769
 7770
 7771
 7772
 7773
 7774
 7775
 7776
 7777
 7778
 7779
 7780
 7781
 7782
 7783
 7784
 7785
 7786
 7787
 7788
 7789
 7790
 7791
 7792
 7793
 7794
 7795
 7796
 7797
 7798
 7799
 7800
 7801
 7802
 7803
 7804
 7805
 7806
 7807
 7808
 7809
 7810
 7811
 7812
 7813
 7814
 7815
 7816
 7817
 7818
 7819
 7820
 7821
 7822
 7823
 7824
 7825
 7826
 7827
 7828
 7829
 7830
 7831
 7832
 7833
 7834
 7835
 7836
 7837
 7838
 7839
 7840
 7841
 7842
 7843
 7844
 7845
 7846
 7847
 7848
 7849
 7850
 7851
 7852
 7853
 7854
 7855
 7856
 7857
 7858
 7859
 7860
 7861
 7862
 7863
 7864
 7865
 7866
 7867
 7868
 7869
 7870
 7871
 7872
 7873
 7874
 7875
 7876
 7877
 7878
 7879
 7880
 7881
 7882
 7883
 7884
 7885
 7886
 7887
 7888
 7889
 7890
 7891
 7892
 7893
 7894
 7895
 7896
 7897
 7898
 7899
 7900
 7901
 7902
 7903
 7904
 7905
 7906
 7907
 7908
 7909
 7910
 7911
 7912
 7913
 7914
 7915
 7916
 7917
 7918
 7919
 7920
 7921
 7922
 7923
 7924
 7925
 7926
 7927
 7928
 7929
 7930
 7931
 7932
 7933
 7934
 7935
 7936
 7937
 7938
 7939
 7940
 7941
 7942
 7943
 7944
 7945
 7946
 7947
 7948
 7949
 7950
 7951
 7952
 7953
 7954
 7955
 7956
 7957
 7958
 7959
 7960
 7961
 7962
 7963
 7964
 7965
 7966
 7967
 7968
 7969
 7970
 7971
 7972
 7973
 7974
 7975
 7976
 7977
 7978
 7979
 7980
 7981
 7982
 7983
 7984
 7985
 7986
 7987
 7988
 7989
 7990
 7991
 7992
 7993
 7994
 7995
 7996
 7997
 7998
 7999
 8000
 8001
 8002
 8003
 8004
 8005
 8006
 8007
 8008
 8009
 8010
 8011
 8012
 8013
 8014
 8015
 8016
 8017
 8018
 8019
 8020
 8021
 8022
 8023
 8024
 8025
 8026
 8027
 8028
 8029
 8030
 8031
 8032
 8033
 8034
 8035
 8036
 8037
 8038
 8039
 8040
 8041
 8042
 8043
 8044
 8045
 8046
 8047
 8048
 8049
 8050
 8051
 8052
 8053
 8054
 8055
 8056
 8057
 8058
 8059
 8060
 8061
 8062
 8063
 8064
 8065
 8066
 8067
 8068
 8069
 8070
 8071
 8072
 8073
 8074
 8075
 8076
 8077
 8078
 8079
 8080
 8081
 8082
 8083
 8084
 8085
 8086
 8087
 8088
 8089
 8090
 8091
 8092
 8093
 8094
 8095
 8096
 8097
 8098
 8099
 8100
 8101
 8102
 8103
 8104
 8105
 8106
 8107
 8108
 8109
 8110
 8111
 8112
 8113
 8114
 8115
 8116
 8117
 8118
 8119
 8120
 8121
 8122
 8123
 8124
 8125
 8126
 8127
 8128
 8129
 8130
 8131
 8132
 8133
 8134
 8135
 8136
 8137
 8138
 8139
 8140
 8141
 8142
 8143
 8144
 8145
 8146
 8147
 8148
 8149
 8150
 8151
 8152
 8153
 8154
 8155
 8156
 8157
 8158
 8159
 8160
 8161
 8162
 8163
 8164
 8165
 8166
 8167
 8168
 8169
 8170
 8171
 8172
 8173
 8174
 8175
 8176
 8177
 8178
 8179
 8180
 8181
 8182
 8183
 8184
 8185
 8186
 8187
 8188
 8189
 8190
 8191
 8192
 8193
 8194
 8195
 8196
 8197
 8198
 8199
 8200
 8201
 8202
 8203
 8204
 8205
 8206
 8207
 8208
 8209
 8210
 8211
 8212
 8213
 8214
 8215
 8216
 8217
 8218
 8219
 8220
 8221
 8222
 8223
 8224
 8225
 8226
 8227
 8228
 8229
 8230
 8231
 8232
 8233
 8234
 8235
 8236
 8237
 8238
 8239
 8240
 8241
 8242
 8243
 8244
 8245
 8246
 8247
 8248
 8249
 8250
 8251
 8252
 8253
 8254
 8255
 8256
 8257
 8258
 8259
 8260
 8261
 8262
 8263
 8264
 8265
 8266
 8267
 8268
 8269
 8270
 8271
 8272
 8273
 8274
 8275
 8276
 8277
 8278
 8279
 8280
 8281
 8282
 8283
 8284
 8285
 8286
 8287
 8288
 8289
 8290
 8291
 8292
 8293
 8294
 8295
 8296
 8297
 8298
 8299
 8300
 8301
 8302
 8303
 8304
 8305
 8306
 8307
 8308
 8309
 8310
 8311
 8312
 8313
 8314
 8315
 8316
 8317
 8318
 8319
 8320
 8321
 8322
 8323
 8324
 8325
 8326
 8327
 8328
 8329
 8330
 8331
 8332
 8333
 8334
 8335
 8336
 8337
 8338
 8339
 8340
 8341
 8342
 8343
 8344
 8345
 8346
 8347
 8348
 8349
 8350
 8351
 8352
 8353
 8354
 8355
 8356
 8357
 8358
 8359
 8360
 8361
 8362
 8363
 8364
 8365
 8366
 8367
 8368
 8369
 8370
 8371
 8372
 8373
 8374
 8375
 8376
 8377
 8378
 8379
 8380
 8381
 8382
 8383
 8384
 8385
 8386
 8387
 8388
 8389
 8390
 8391
 8392
 8393
 8394
 8395
 8396
 8397
 8398
 8399
 8400
 8401
 8402
 8403
 8404
 8405
 8406
 8407
 8408
 8409
 8410
 8411
 8412
 8413
 8414
 8415
 8416
 8417
 8418
 8419
 8420
 8421
 8422
 8423
 8424
 8425
 8426
 8427
 8428
 8429
 8430
 8431
 8432
 8433
 8434
 8435
 8436
 8437
 8438
 8439
 8440
 8441
 8442
 8443
 8444
 8445
 8446
 8447
 8448
 8449
 8450
 8451
 8452
 8453
 8454
 8455
 8456
 8457
 8458
 8459
 8460
 8461
 8462
 8463
 8464
 8465
 8466
 8467
 8468
 8469
 8470
 8471
 8472
 8473
 8474
 8475
 8476
 8477
 8478
 8479
 8480
 8481
 8482
 8483
 8484
 8485
 8486
 8487
 8488
 8489
 8490
 8491
 8492
 8493
 8494
 8495
 8496
 8497
 8498
 8499
 8500
 8501
 8502
 8503
 8504
 8505
 8506
 8507
 8508
 8509
 8510
 8511
 8512
 8513
 8514
 8515
 8516
 8517
 8518
 8519
 8520
 8521
 8522
 8523
 8524
 8525
 8526
 8527
 8528
 8529
 8530
 8531
 8532
 8533
 8534
 8535
 8536
 8537
 8538
 8539
 8540
 8541
 8542
 8543
 8544
 8545
 8546
 8547
 8548
 8549
 8550
 8551
 8552
 8553
 8554
 8555
 8556
 8557
 8558
 8559
 8560
 8561
 8562
 8563
 8564
 8565
 8566
 8567
 8568
 8569
 8570
 8571
 8572
 8573
 8574
 8575
 8576
 8577
 8578
 8579
 8580
 8581
 8582
 8583
 8584
 8585
 8586
 8587
 8588
 8589
 8590
 8591
 8592
 8593
 8594
 8595
 8596
 8597
 8598
 8599
 8600
 8601
 8602
 8603
 8604
 8605
 8606
 8607
 8608
 8609
 8610
 8611
 8612
 8613
 8614
 8615
 8616
 8617
 8618
 8619
 8620
 8621
 8622
 8623
 8624
 8625
 8626
 8627
 8628
 8629
 8630
 8631
 8632
 8633
 8634
 8635
 8636
 8637
 8638
 8639
 8640
 8641
 8642
 8643
 8644
 8645
 8646
 8647
 8648
 8649
 8650
 8651
 8652
 8653
 8654
 8655
 8656
 8657
 8658
 8659
 8660
 8661
 8662
 8663
 8664
 8665
 8666
 8667
 8668
 8669
 8670
 8671
 8672
 8673
 8674
 8675
 8676
 8677
 8678
 8679
 8680
 8681
 8682
 8683
 8684
 8685
 8686
 8687
 8688
 8689
 8690
 8691
 8692
 8693
 8694
 8695
 8696
 8697
 8698
 8699
 8700
 8701
 8702
 8703
 8704
 8705
 8706
 8707
 8708
 8709
 8710
 8711
 8712
 8713
 8714
 8715
 8716
 8717
 8718
 8719
 8720
 8721
 8722
 8723
 8724
 8725
 8726
 8727
 8728
 8729
 8730
 8731
 8732
 8733
 8734
 8735
 8736
 8737
 8738
 8739
 8740
 8741
 8742
 8743
 8744
 8745
 8746
 8747
 8748
 8749
 8750
 8751
 8752
 8753
 8754
 8755
 8756
 8757
 8758
 8759
 8760
 8761
 8762
 8763
 8764
 8765
 8766
 8767
 8768
 8769
 8770
 8771
 8772
 8773
 8774
 8775
 8776
 8777
 8778
 8779
 8780
 8781
 8782
 8783
 8784
 8785
 8786
 8787
 8788
 8789
 8790
 8791
 8792
 8793
 8794
 8795
 8796
 8797
 8798
 8799
 8800
 8801
 8802
 8803
 8804
 8805
 8806
 8807
 8808
 8809
 8810
 8811
 8812
 8813
 8814
 8815
 8816
 8817
 8818
 8819
 8820
 8821
 8822
 8823
 8824
 8825
 8826
 8827
 8828
 8829
 8830
 8831
 8832
 8833
 8834
 8835
 8836
 8837
 8838
 8839
 8840
 8841
 8842
 8843
 8844
 8845
 8846
 8847
 8848
 8849
 8850
 8851
 8852
 8853
 8854
 8855
 8856
 8857
 8858
 8859
 8860
 8861
 8862
 8863
 8864
 8865
 8866
 8867
 8868
 8869
 8870
 8871
 8872
 8873
 8874
 8875
 8876
 8877
 8878
 8879
 8880
 8881
 8882
 8883
 8884
 8885
 8886
 8887
 8888
 8889
 8890
 8891
 8892
 8893
 8894
 8895
 8896
 8897
 8898
 8899
 8900
 8901
 8902
 8903
 8904
 8905
 8906
 8907
 8908
 8909
 8910
 8911
 8912
 8913
 8914
 8915
 8916
 8917
 8918
 8919
 8920
 8921
 8922
 8923
 8924
 8925
 8926
 8927
 8928
 8929
 8930
 8931
 8932
 8933
 8934
 8935
 8936
 8937
 8938
 8939
 8940
 8941
 8942
 8943
 8944
 8945
 8946
 8947
 8948
 8949
 8950
 8951
 8952
 8953
 8954
 8955
 8956
 8957
 8958
 8959
 8960
 8961
 8962
 8963
 8964
 8965
 8966
 8967
 8968
 8969
 8970
 8971
 8972
 8973
 8974
 8975
 8976
 8977
 8978
 8979
 8980
 8981
 8982
 8983
 8984
 8985
 8986
 8987
 8988
 8989
 8990
 8991
 8992
 8993
 8994
 8995
 8996
 8997
 8998
 8999
 9000
 9001
 9002
 9003
 9004
 9005
 9006
 9007
 9008
 9009
 9010
 9011
 9012
 9013
 9014
 9015
 9016
 9017
 9018
 9019
 9020
 9021
 9022
 9023
 9024
 9025
 9026
 9027
 9028
 9029
 9030
 9031
 9032
 9033
 9034
 9035
 9036
 9037
 9038
 9039
 9040
 9041
 9042
 9043
 9044
 9045
 9046
 9047
 9048
 9049
 9050
 9051
 9052
 9053
 9054
 9055
 9056
 9057
 9058
 9059
 9060
 9061
 9062
 9063
 9064
 9065
 9066
 9067
 9068
 9069
 9070
 9071
 9072
 9073
 9074
 9075
 9076
 9077
 9078
 9079
 9080
 9081
 9082
 9083
 9084
 9085
 9086
 9087
 9088
 9089
 9090
 9091
 9092
 9093
 9094
 9095
 9096
 9097
 9098
 9099
 9100
 9101
 9102
 9103
 9104
 9105
 9106
 9107
 9108
 9109
 9110
 9111
 9112
 9113
 9114
 9115
 9116
 9117
 9118
 9119
 9120
 9121
 9122
 9123
 9124
 9125
 9126
 9127
 9128
 9129
 9130
 9131
 9132
 9133
 9134
 9135
 9136
 9137
 9138
 9139
 9140
 9141
 9142
 9143
 9144
 9145
 9146
 9147
 9148
 9149
 9150
 9151
 9152
 9153
 9154
 9155
 9156
 9157
 9158
 9159
 9160
 9161
 9162
 9163
 9164
 9165
 9166
 9167
 9168
 9169
 9170
 9171
 9172
 9173
 9174
 9175
 9176
 9177
 9178
 9179
 9180
 9181
 9182
 9183
 9184
 9185
 9186
 9187
 9188
 9189
 9190
 9191
 9192
 9193
 9194
 9195
 9196
 9197
 9198
 9199
 9200
 9201
 9202
 9203
 9204
 9205
 9206
 9207
 9208
 9209
 9210
 9211
 9212
 9213
 9214
 9215
 9216
 9217
 9218
 9219
 9220
 9221
 9222
 9223
 9224
 9225
 9226
 9227
 9228
 9229
 9230
 9231
 9232
 9233
 9234
 9235
 9236
 9237
 9238
 9239
 9240
 9241
 9242
 9243
 9244
 9245
 9246
 9247
 9248
 9249
 9250
 9251
 9252
 9253
 9254
 9255
 9256
 9257
 9258
 9259
 9260
 9261
 9262
 9263
 9264
 9265
 9266
 9267
 9268
 9269
 9270
 9271
 9272
 9273
 9274
 9275
 9276
 9277
 9278
 9279
 9280
 9281
 9282
 9283
 9284
 9285
 9286
 9287
 9288
 9289
 9290
 9291
 9292
 9293
 9294
 9295
 9296
 9297
 9298
 9299
 9300
 9301
 9302
 9303
 9304
 9305
 9306
 9307
 9308
 9309
 9310
 9311
 9312
 9313
 9314
 9315
 9316
 9317
 9318
 9319
 9320
 9321
 9322
 9323
 9324
 9325
 9326
 9327
 9328
 9329
 9330
 9331
 9332
 9333
 9334
 9335
 9336
 9337
 9338
 9339
 9340
 9341
 9342
 9343
 9344
 9345
 9346
 9347
 9348
 9349
 9350
 9351
 9352
 9353
 9354
 9355
 9356
 9357
 9358
 9359
 9360
 9361
 9362
 9363
 9364
 9365
 9366
 9367
 9368
 9369
 9370
 9371
 9372
 9373
 9374
 9375
 9376
 9377
 9378
 9379
 9380
 9381
 9382
 9383
 9384
 9385
 9386
 9387
 9388
 9389
 9390
 9391
 9392
 9393
 9394
 9395
 9396
 9397
 9398
 9399
 9400
 9401
 9402
 9403
 9404
 9405
 9406
 9407
 9408
 9409
 9410
 9411
 9412
 9413
 9414
 9415
 9416
 9417
 9418
 9419
 9420
 9421
 9422
 9423
 9424
 9425
 9426
 9427
 9428
 9429
 9430
 9431
 9432
 9433
 9434
 9435
 9436
 9437
 9438
 9439
 9440
 9441
 9442
 9443
 9444
 9445
 9446
 9447
 9448
 9449
 9450
 9451
 9452
 9453
 9454
 9455
 9456
 9457
 9458
 9459
 9460
 9461
 9462
 9463
 9464
 9465
 9466
 9467
 9468
 9469
 9470
 9471
 9472
 9473
 9474
 9475
 9476
 9477
 9478
 9479
 9480
 9481
 9482
 9483
 9484
 9485
 9486
 9487
 9488
 9489
 9490
 9491
 9492
 9493
 9494
 9495
 9496
 9497
 9498
 9499
 9500
 9501
 9502
 9503
 9504
 9505
 9506
 9507
 9508
 9509
 9510
 9511
 9512
 9513
 9514
 9515
 9516
 9517
 9518
 9519
 9520
 9521
 9522
 9523
 9524
 9525
 9526
 9527
 9528
 9529
 9530
 9531
 9532
 9533
 9534
 9535
 9536
 9537
 9538
 9539
 9540
 9541
 9542
 9543
 9544
 9545
 9546
 9547
 9548
 9549
 9550
 9551
 9552
 9553
 9554
 9555
 9556
 9557
 9558
 9559
 9560
 9561
 9562
 9563
 9564
 9565
 9566
 9567
 9568
 9569
 9570
 9571
 9572
 9573
 9574
 9575
 9576
 9577
 9578
 9579
 9580
 9581
 9582
 9583
 9584
 9585
 9586
 9587
 9588
 9589
 9590
 9591
 9592
 9593
 9594
 9595
 9596
 9597
 9598
 9599
 9600
 9601
 9602
 9603
 9604
 9605
 9606
 9607
 9608
 9609
 9610
 9611
 9612
 9613
 9614
 9615
 9616
 9617
 9618
 9619
 9620
 9621
 9622
 9623
 9624
 9625
 9626
 9627
 9628
 9629
 9630
 9631
 9632
 9633
 9634
 9635
 9636
 9637
 9638
 9639
 9640
 9641
 9642
 9643
 9644
 9645
 9646
 9647
 9648
 9649
 9650
 9651
 9652
 9653
 9654
 9655
 9656
 9657
 9658
 9659
 9660
 9661
 9662
 9663
 9664
 9665
 9666
 9667
 9668
 9669
 9670
 9671
 9672
 9673
 9674
 9675
 9676
 9677
 9678
 9679
 9680
 9681
 9682
 9683
 9684
 9685
 9686
 9687
 9688
 9689
 9690
 9691
 9692
 9693
 9694
 9695
 9696
 9697
 9698
 9699
 9700
 9701
 9702
 9703
 9704
 9705
 9706
 9707
 9708
 9709
 9710
 9711
 9712
 9713
 9714
 9715
 9716
 9717
 9718
 9719
 9720
 9721
 9722
 9723
 9724
 9725
 9726
 9727
 9728
 9729
 9730
 9731
 9732
 9733
 9734
 9735
 9736
 9737
 9738
 9739
 9740
 9741
 9742
 9743
 9744
 9745
 9746
 9747
 9748
 9749
 9750
 9751
 9752
 9753
 9754
 9755
 9756
 9757
 9758
 9759
 9760
 9761
 9762
 9763
 9764
 9765
 9766
 9767
 9768
 9769
 9770
 9771
 9772
 9773
 9774
 9775
 9776
 9777
 9778
 9779
 9780
 9781
 9782
 9783
 9784
 9785
 9786
 9787
 9788
 9789
 9790
 9791
 9792
 9793
 9794
 9795
 9796
 9797
 9798
 9799
 9800
 9801
 9802
 9803
 9804
 9805
 9806
 9807
 9808
 9809
 9810
 9811
 9812
 9813
 9814
 9815
 9816
 9817
 9818
 9819
 9820
 9821
 9822
 9823
 9824
 9825
 9826
 9827
 9828
 9829
 9830
 9831
 9832
 9833
 9834
 9835
 9836
 9837
 9838
 9839
 9840
 9841
 9842
 9843
 9844
 9845
 9846
 9847
 9848
 9849
 9850
 9851
 9852
 9853
 9854
 9855
 9856
 9857
 9858
 9859
 9860
 9861
 9862
 9863
 9864
 9865
 9866
 9867
 9868
 9869
 9870
 9871
 9872
 9873
 9874
 9875
 9876
 9877
 9878
 9879
 9880
 9881
 9882
 9883
 9884
 9885
 9886
 9887
 9888
 9889
 9890
 9891
 9892
 9893
 9894
 9895
 9896
 9897
 9898
 9899
 9900
 9901
 9902
 9903
 9904
 9905
 9906
 9907
 9908
 9909
 9910
 9911
 9912
 9913
 9914
 9915
 9916
 9917
 9918
 9919
 9920
 9921
 9922
 9923
 9924
 9925
 9926
 9927
 9928
 9929
 9930
 9931
 9932
 9933
 9934
 9935
 9936
 9937
 9938
 9939
 9940
 9941
 9942
 9943
 9944
 9945
 9946
 9947
 9948
 9949
 9950
 9951
 9952
 9953
 9954
 9955
 9956
 9957
 9958
 9959
 9960
 9961
 9962
 9963
 9964
 9965
 9966
 9967
 9968
 9969
 9970
 9971
 9972
 9973
 9974
 9975
 9976
 9977
 9978
 9979
 9980
 9981
 9982
 9983
 9984
 9985
 9986
 9987
 9988
 9989
 9990
 9991
 9992
 9993
 9994
 9995
 9996
 9997
 9998
 9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
% Copyright (c) 2000  The PARI Group
%
% This file is part of the PARI/GP documentation
%
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
\chapter{Technical Reference Guide: the basics}

In the following chapters, we describe all public low-level functions of the
PARI library. These include specialized functions for handling all the PARI
types. Simple higher level functions, such as arithmetic or transcendental
functions, are described in Chapter~3 of the GP user's manual; we will
eventually see more general or flexible versions in the chapters to come. A
general introduction to the major concepts of PARI programming can be found
in Chapter~4, which you should really read first.

We shall now study specialized functions, more efficient than the library
wrappers, but sloppier on argument checking and damage control; besides
speed, their main advantage is to give finer control about the inner
workings of generic routines, offering more options to the programmer.

\misctitle{Important advice} Generic routines eventually call lower level
functions. Optimize your algorithms first, not overhead and conversion costs
between PARI routines. For generic operations, use generic routines first;
do not waste time looking for the most specialized one available unless you
identify a genuine bottleneck, or you need some special behavior the generic
routine does not offer. The PARI source code is part of the documentation;
look for inspiration there.\smallskip

The type \kbd{long} denotes a \tet{BITS_IN_LONG}-bit signed long integer (32
or 64 bits). The type \tet{ulong} is defined as \kbd{unsigned long}. The word
\emph{stack} always refer to the PARI stack, allocated through an initial
\kbd{pari\_init} call. Refer to Chapters 1--2 and~4 for general background.
\kbdsidx{BIL}

We shall often refer to the notion of \tev{shallow} function, which means that
some components of the result may point to components of the input, which is
more efficient than a \emph{deep} copy (full recursive copy of the object
tree). Such outputs are not suitable for \kbd{gerepileupto} and particular
care must be taken when garbage collecting objects which have been input to
shallow functions: corresponding outputs also become invalid and should no
longer be accessed.

A function is \emph{not stack clean} if it leaves intermediate data on the
stack besides its output, for efficiency reasons.

\section{Initializing the library}

The following functions enable you to start using the PARI functions
in a program, and cleanup without exiting the whole program.

\subsec{General purpose}

\fun{void}{pari_init}{size_t size, ulong maxprime} initialize the
library, with a stack of \kbd{size} bytes and a prime table
up to the maximum of \kbd{maxprime} and $2^{16}$. Unless otherwise
mentioned, no PARI function will function properly before such an
initialization.

\fun{void}{pari_close}{void} stop using the library (assuming it was
initialized with \kbd{pari\_init}) and frees all allocated objects.

\subsec{Technical functions}\label{se:pari_init_tech}

\fun{void}{pari_init_opts}{size_t size, ulong maxprime, ulong opts} as
\kbd{pari\_init}, more flexible. \kbd{opts} is a mask of flags
among the following:

  \kbd{INIT\_JMPm}: install PARI error handler. When an exception is
raised, the program is terminated with \kbd{exit(1)}.

  \kbd{INIT\_SIGm}: install PARI signal handler.

  \kbd{INIT\_DFTm}: initialize the \kbd{GP\_DATA} environment structure.
This one \emph{must} be enabled once. If you close pari, then restart it,
you need not reinitialize \kbd{GP\_DATA}; if you do not, then old values are
restored.

  \kbd{INIT\_noPRIMEm}: do not compute the prime table (ignore the
  \kbd{maxprime} argument). The user \emph{must} call
  \tet{pari_init_primes} later.

  \kbd{INIT\_noIMTm}: (technical, see \kbd{pari\_mt\_init} in the Developer's
Guide for detail). Do not call \tet{pari_mt_init} to initialize the
multi-thread engine. If this flag is set, \kbd{pari\_mt\_init()} will need to
be called manually. See \kbd{examples/pari-mt.c} for an example.

  \kbd{INIT\_noINTGMPm}: do not install PARI-specific GMP memory functions.
This option is ignored when the GMP library is not in use. You may
install PARI-specific GMP memory functions later by calling

\fun{void}{pari_kernel_init}{void}

\noindent and restore the previous values using

\fun{void}{pari_kernel_close}{void}

This option should not be used without a thorough understanding of the
problem you are trying to solve. The GMP memory functions are global
variables used by the GMP library. If your program is linked with two
libraries that require these variables to be set to different values,
conflict ensues. To avoid a conflict, the proper solution is to record
their values with \kbd{mp\_get\_memory\_functions} and to call
\kbd{mp\_set\_memory\_functions} to restore the expected values each time the
code switches from using one library to the other. Here is an example:
\bprog
void *(*pari_alloc_ptr) (size_t);
void *(*pari_realloc_ptr) (void *, size_t, size_t);
void (*pari_free_ptr) (void *, size_t);
void *(*otherlib_alloc_ptr) (size_t);
void *(*otherlib_realloc_ptr) (void *, size_t, size_t);
void (*otherlib_free_ptr) (void *, size_t);

void init(void)
{
  pari_init(8000000, 500000);
  mp_get_memory_functions(&pari_alloc_ptr,&pari_realloc_ptr,
                          &pari_free_ptr);
  otherlib_init();
  mp_get_memory_functions(&otherlib_alloc_ptr,&otherlib_realloc_ptr,
                          &otherlib_free_ptr);
}
void function_that_use_pari(void)
{
  mp_set_memory_functions(pari_alloc_ptr,pari_realloc_ptr,
                          pari_free_ptr);
  /*use PARI functions*/
}
void function_that_use_otherlib(void)
{
  mp_set_memory_functions(otherlib_alloc_ptr,otherlib_realloc_ptr,
                          otherlib_free_ptr);
  /*use OTHERLIB functions*/
}
@eprog

\fun{void}{pari_close_opts}{ulong init_opts} as \kbd{pari\_close},
for a library initialized with a mask of options using
\kbd{pari\_init\_opts}. \kbd{opts} is a mask of flags among

  \kbd{INIT\_SIGm}: restore \kbd{SIG\_DFL} default action for signals
tampered with by PARI signal handler.

  \kbd{INIT\_DFTm}: frees the \kbd{GP\_DATA} environment structure.

  \kbd{INIT\_noIMTm}: (technical, see \kbd{pari\_mt\_init} in the Developer's
Guide for detail). Do not call \tet{pari_mt_close} to close the multi-thread
engine.
  \kbd{INIT\_noINTGMPm}: do not restore GMP memory functions.

\fun{void}{pari_sig_init}{void (*f)(int)} install the signal handler \kbd{f}
(see \kbd{signal(2)}): the signals \kbd{SIGBUS}, \kbd{SIGFPE}, \kbd{SIGINT},
\kbd{SIGBREAK}, \kbd{SIGPIPE} and \kbd{SIGSEGV} are concerned.

\fun{void}{pari_init_primes}{ulong maxprime} Initialize the PARI
primes. This function is called by \kbd{pari\_init(\dots,maxprime)}.
It is provided for users calling \kbd{pari\_init\_opts} with the
flag \kbd{INIT\_noPRIMEm}.

\fun{void}{pari_sighandler}{int signum} the actual signal handler that
PARI uses. This can be used as argument to \kbd{pari\_sig\_init} or
\kbd{signal(2)}.

\fun{void}{pari_stackcheck_init}{void *stackbase} controls the system stack
exhaustion checking code in the GP interpreter. This should be used when the
system stack base address change or when the address seen by \kbd{pari\_init}
is too far from the base address. If \kbd{stackbase} is \kbd{NULL}, disable the
check, else set the base address to \kbd{stackbase}. It is normally used this
way
\bprog
int thread_start (...)
{
  long first_item_on_the_stack;
  ...
  pari_stackcheck_init(&first_item_on_the_stack);
}
@eprog

\fun{int}{pari_daemon}{void} forks a PARI daemon, detaching from the main
process group. The function returns 1 in the parent, and 0 in the
forked son.

\fun{void}{paristack_setsize}{size_t rsize, size_t vsize}
sets the default \kbd{parisize} to \kbd{rsize} and the
default \kbd{parisizemax} to \kbd{vsize}, and reallocate the
stack to match these value, destroying its content.
Generally used just after \kbd{pari\_init}.

\fun{void}{paristack_resize}{ulong newsize}
changes the current stack size to \kbd{newsize}
(double it if \kbd{newsize} is 0).
The new size is clipped to be at least the current stack size and
at most \kbd{parisizemax}. The stack content is not affected
by this operation.

\fun{void}{parivstack_reset}{void}
resets the current stack to its default size \kbd{parisize},
destroying its content. Used to recover memory after a
computation that enlarged the stack.

\fun{void}{paristack_newrsize}{ulong newsize}
\emph{(does not return)}. Library version of
\bprog
  default(parisize, "newsize")
@eprog\noindent Set the default \kbd{parisize} to \kbd{newsize}, or double
\kbd{parisize} if \kbd{newsize} is equal to 0, then call
\kbd{cb\_pari\_err\_recover(-1)}.

\fun{void}{parivstack_resize}{ulong newsize}
\emph{(does not return)}. Library version of
\bprog
  default(parisizemax, "newsize")
@eprog\noindent Set the default \kbd{parisizemax} to \kbd{newsize} and call
\kbd{cb\_pari\_err\_recover(-1)}.

\subsec{Notions specific to the GP interpreter}

An \kbd{entree} is the generic object attached to an identifier (a name)
in GP's interpreter, be it a built-in or user function, or a variable. For
a function, it has at least the following fields:

  \kbd{char *name}: the name under which the interpreter knows us.

  \kbd{void *value}:  a pointer to the C function to call.

  \kbd{long menu}: a small integer $\geq 1$ (to which group of function
                    help do we belong, for the \kbd{?$n$} help menu).

  \kbd{char *code}: the prototype code.

  \kbd{char *help}: the help text for the function.

A routine in GP is described to the analyzer by an \kbd{entree}
structure. Built-in PARI routines are grouped in \emph{modules}, which
are arrays of \kbd{entree} structs, the last of which satisfy
\kbd{name = NULL} (sentinel). There are currently five modules in PARI/GP:

\item general functions (\tet{functions_basic}, known to \kbd{libpari}),

\item gp-specific functions (\tet{functions_gp}),

\item gp-specific highlevel functions (\tet{functions_highlevel}),

\noindent and two modules of obsolete functions. The function
\kbd{pari\_init} initializes the interpreter and declares all symbols in
\kbd{functions\_basic}. You may declare further functions on a case by case
basis or as a whole module using

\fun{void}{pari_add_function}{entree *ep} adds a single routine to the
table of symbols in the interpreter. It assumes \kbd{pari\_init} has been
called.

\fun{void}{pari_add_module}{entree *mod} adds all the routines in module
\kbd{mod} to the table of symbols in the interpreter. It assumes
\kbd{pari\_init} has been called.

\noindent For instance, gp implements a number of private routines, which
it adds to the default set via the calls
\bprog
  pari_add_module(functions_gp);
  pari_add_module(functions_highlevel);
@eprog

A GP \kbd{default} is likewise attached to a helper routine, that is run
when the value is consulted, or changed by \tet{default0} or \tet{setdefault}.
Such routines are grouped in the module \tet{functions_default}.

\fun{void}{pari_add_defaults_module}{entree *mod} adds all the defaults in
module \kbd{mod} to the interpreter. It assumes that \kbd{pari\_init} has
been called. From this point on, all defaults in module \kbd{mod} are known
to \tet{setdefault} and friends.

\subsec{Public callbacks}

The \kbd{gp} calculator associates elaborate functions (for instance the
break loop handler) to the following callbacks, and so can you:

\doc{cb_pari_ask_confirm}{void (*cb_pari_ask_confirm)(const char *s)}
initialized to \kbd{NULL}. Called with argument $s$ whenever PARI wants
confirmation for action $s$, for instance in \tet{secure} mode.

\doc{cb_pari_init_histfile}{void (*cb_pari_init_histfile)(void)}
initialized to \kbd{NULL}. Called when the \kbd{histfile} default
is changed. The intent is for that callback to read the file content, append
it to history in memory, then dump the expanded history to the new
\kbd{histfile}.

\doc{cb_pari_is_interactive}{int (*cb_pari_is_interactive)(void)};
initialized to \kbd{NULL}.

\doc{cb_pari_quit}{void (*cb_pari_quit)(long)}
initialized to a no-op. Called when \kbd{gp} must evaluate the \kbd{quit}
command.

\doc{cb_pari_start_output}{void (*cb_pari_start_output)(void)}
initialized to \kbd{NULL}.

\doc{cb_pari_handle_exception}{int (*cb_pari_handle_exception)(long)}
initialized to \kbd{NULL}. If not \kbd{NULL}, this routine is called with
argument $-1$ on \kbd{SIGINT}, and argument \kbd{err} on error \kbd{err}. If
it returns a non-zero value, the error or signal handler returns, in effect
further ignoring the error or signal, otherwise it raises a fatal error.
A possible simple-minded handler, used by the \kbd{gp} interpreter, is

\fun{int}{gp_handle_exception}{long err} if the \kbd{breakloop}
default is enabled (set to $1$) and \tet{cb_pari_break_loop} is not
\kbd{NULL}, we call this routine with \kbd{err} argument and return the
result.

\doc{cb_pari_err_handle}{int (*cb_pari_err_handle)(GEN)}
If not \kbd{NULL}, this routine is called with a \typ{ERROR} argument
from \kbd{pari\_err}. If it returns a non-zero value, the error returns, in
effect further ignoring the error, otherwise it raises a fatal error.

The default behaviour is to print a descriptive error
message (display the error), then return 0, thereby raising a fatal error.
This differs from \tet{cb_pari_handle_exception} in that the
function is not called on \kbd{SIGINT} (which do not generate a \typ{ERROR}),
only from \kbd{pari\_err}. Use \tet{cb_pari_sigint} if you need to handle
\kbd{SIGINT} as well.

\doc{cb_pari_break_loop}{int (*cb_pari_break_loop)(int)}
initialized to \kbd{NULL}.

\doc{cb_pari_sigint}{void (*cb_pari_sigint)(void)}.
Function called when we receive \kbd{SIGINT}. By default, raises
\bprog
  pari_err(e_MISC, "user interrupt");
@eprog\noindent A possible simple-minded variant, used by the
\kbd{gp} interpreter, is

\fun{void}{gp_sigint_fun}{void}

\doc{cb_pari_pre_recover}{void (*cb_pari_err_recover)(long)}
initialized to \kbd{NULL}. If not \kbd{NULL}, this routine is called just
before PARI cleans up from an error. It is not required to return.  The error
number is passed as argument, unless the PARI stack has been destroyed
(\kbd{allocatemem}), in which case $-1$ is passed.

\doc{cb_pari_err_recover}{void (*cb_pari_err_recover)(long)}
initialized to \kbd{pari\_exit()}. This callback must not return.
It is called after PARI has cleaned-up from an error. The error number is
passed as argument, unless the PARI stack has been destroyed, in which case
it is called with argument $-1$.

\doc{cb_pari_whatnow}{int (*cb_pari_whatnow)(PariOUT *out, const char *s, int
flag)} initialized to \kbd{NULL}. If not \kbd{NULL}, must check whether $s$
existed in older versions of \kbd{pari} (the \kbd{gp} callback checks against
\kbd{pari-1.39.15}). All output must be done via \kbd{out} methods.

\item $\fl = 0$: should print verbosely the answer, including help text if
available.

\item $\fl = 1$: must return $0$ if the function did not change, and a
non-$0$ result otherwise. May print a help message.

\subsec{Configuration variables}

\tet{pari_library_path}: If set, It should be a path to the libpari library.
It is used by the function \tet{gpinstall} to locate the PARI library when
searching for symbols.  This should only be useful on Windows.

\subsec{Utility functions}

\fun{void}{pari_ask_confirm}{const char *s} raise an error if the
callback \tet{cb_pari_ask_confirm} is \kbd{NULL}. Otherwise
calls
\bprog
  cb_pari_ask_confirm(s);
@eprog

\fun{char*}{gp_filter}{const char *s} pre-processor for the GP
parser: filter out whitespace and GP comments from $s$.

\fun{GEN}{pari_compile_str}{const char *s} low-level form of
\tet{compile_str}: assumes that $s$ does not contain spaces or GP comments and
returns the closure attached to the GP expression $s$. Note
that GP metacommands are not recognized.

\fun{int}{gp_meta}{const char *s, int ismain} low-level component of
\tet{gp_read_str}: assumes that $s$ does not contain spaces or GP comments and
try to interpret $s$ as a GP metacommand (e.g. starting by \kbd{\bs} or
\kbd{?}). If successful, execute the metacommand and return $1$; otherwise
return $0$. The \kbd{ismain} parameter modifies the way \kbd{\bs r} commands
are handled: if non-zero, act as if the file contents were entered via
standard input (i.e. call \tet{switchin} and divert \tet{pari_infile});
otherwise, simply call \tet{gp_read_file}.

\fun{void}{pari_hit_return}{void} wait for the use to enter \kbd{\bs n}
via standard input.

\fun{void}{gp_load_gprc}{void} read and execute the user's \kbd{GPRC} file.

\fun{void}{pari_center}{const char *s} print $s$, centered.

\fun{void}{pari_print_version}{void} print verbose version information.

\fun{const char*}{gp_format_time}{long t} format a delay of $t$ ms
suitable for \kbd{gp} output, with \kbd{timer} set.

\fun{const char*}{gp_format_prompt}{const char *p} format a prompt $p$
suitable for \kbd{gp} prompting (includes colors and protecting ANSI escape
sequences for readline).

\fun{void}{pari_alarm}{long s} set an alarm after $s$ seconds (raise an
\tet{e_ALARM} exception).

\fun{void}{gp_help}{const char *s, long flag} print help for $s$, depending
on the value of \fl:

\item \tet{h_REGULAR}, basic help (\kbd{?});

\item \tet{h_LONG}, extended help (\kbd{??});

\item \tet{h_APROPOS}, a propos help (\kbd{??}).

\fun{const char **}{gphelp_keyword_list}{void} return a
\kbd{NULL}-terminated array a strings, containing keywords known to
\kbd{gphelp} besides GP functions (e.g. \kbd{modulus} or \kbd{operator}).
Used by the online help system and the contextual completion engine.

\fun{void}{gp_echo_and_log}{const char *p, const char *s} given a prompt
$p$ and attached input command $s$, update logfile and possibly
print on standard output if \tet{echo} is set and we are not in interactive
mode. The callback \tet{cb_pari_is_interactive} must be set to a sensible
value.

\fun{void}{gp_alarm_handler}{int sig} the \kbd{SIGALRM} handler
set by the \kbd{gp} interpreter.

\fun{void}{print_fun_list}{char **list, long n}
print all elements of \kbd{list} in columns, pausing (hit return)
every $n$ lines. \kbd{list} is \kbd{NULL} terminated.

\subsec{Saving and restoring the GP context}

\fun{void}{gp_context_save}{struct gp_context* rec} save the current GP
context.

\fun{void}{gp_context_restore}{struct gp_context* rec} restore a GP context.
The new context must be an ancestor of the current context.

\subsec{GP history}

These functions allow to control the GP history (the \kbd{\%} operator).

\fun{void}{pari_add_hist}{GEN x, long t} adds \kbd{x} as the last history
entry; $t$ is the time we used to compute it.

\fun{GEN}{pari_get_hist}{long p}, if $p>0$ returns entry of index $p$
(i.e. \kbd{\%p}), else returns entry of index $n+p$ where $n$ is the
index of the last entry (used for \kbd{\%}, \kbd{\%`}, \kbd{\%``}, etc.).

\fun{long}{pari_get_histtime}{long p} as \tet{pari_get_hist},
returning the time used to compute the history entry, instead of the entry
itself.

\fun{ulong}{pari_nb_hist}{void} return the index of the last entry.

\section{Handling \kbd{GEN}s}
\noindent Almost all these functions are either macros or inlined. Unless
mentioned otherwise, they do not evaluate their arguments twice. Most of them
are specific to a set of types, although no consistency checks are made:
e.g.~one may access the \kbd{sign} of a \typ{PADIC}, but the result is
meaningless.

\subsec{Allocation}

\fun{GEN}{cgetg}{long l, long t} allocates (the root of) a \kbd{GEN}
of type $t$ and length $l$. Sets $z[0]$.

\fun{GEN}{cgeti}{long l} allocates a \typ{INT} of length $l$ (including the
2 codewords). Sets $z[0]$ only.

\fun{GEN}{cgetr}{long l} allocates a \typ{REAL} of length $l$ (including the
2 codewords). Sets $z[0]$ only.

\fun{GEN}{cgetc}{long prec} allocates a \typ{COMPLEX} whose real and
imaginary parts are \typ{REAL}s of length \kbd{prec}.

\fun{GEN}{cgetg_copy}{GEN x, long *lx} fast version of \kbd{cgetg}:
allocate a \kbd{GEN} with the same type and length as $x$, setting \kbd{*lx}
to \kbd{lg(x)} as a side-effect. (Only sets the first codeword.) This is
a little faster than \kbd{cgetg} since we may reuse the bitmask in
$x[0]$ instead of recomputing it, and we do not need to check that the
length does not overflow the possibilities of the
implementation (since an object with that length already exists). Note that
\kbd{cgetg} with arguments known at compile time, as in
\bprog
  cgetg(3, t_INTMOD)
@eprog\noindent will be even faster since the compiler will directly perform
all computations and checks.

\fun{GEN}{vectrunc_init}{long l} perform \kbd{cgetg(l,t\_VEC)}, then
set the length to $1$ and return the result. This is used to  implement
vectors whose final length is easily bounded at creation time, that we intend
to fill gradually using:

\fun{void}{vectrunc_append}{GEN x, GEN y} assuming $x$ was allocated using
\tet{vectrunc_init}, appends $y$ as the last element of $x$, which
grows in the process. The function is shallow: we append $y$, not a copy;
it is equivalent to
\bprog
  long lx = lg(x); gel(x,lx) = y; setlg(x, lx+1);
@eprog\noindent
Beware that the maximal size of $x$ (the $l$ argument to \tet{vectrunc_init})
is unknown, hence unchecked, and stack corruption will occur if we append
more than $l-1$ elements to $x$. Use the safer (but slower)
\kbd{shallowconcat} when $l$ is not easy to bound in advance.

An other possibility is simply to allocate using \kbd{cgetg(l, t)} then fill
the components as they become available: this time the downside is that we do
not obtain a correct \kbd{GEN} until the vector is complete. Almost no PARI
function will be able to operate on it.

\fun{void}{vectrunc_append_batch}{GEN x, GEN y} successively apply
\bprog
  vectrunc_append(x, gel(y, i))
@eprog
for all elements of the vector $y$.

\fun{GEN}{vecsmalltrunc_init}{long l}

\fun{void}{vecsmalltrunc_append}{GEN x, long t} analog to the above for a
\typ{VECSMALL} container.

\subsec{Length conversions}

These routines convert a non-negative length to different units. Their
behavior is undefined at negative integers.

\fun{long}{ndec2nlong}{long x} converts a number of decimal digits to a number
of words. Returns $ 1 + \kbd{floor}(x \times \B \log_2 10)$.

\fun{long}{ndec2prec}{long x} converts a number of decimal digits to a number
of codewords. This is equal to 2 + \kbd{ndec2nlong(x)}.

\fun{long}{ndec2nbits}{long x} convers a number of decimal digits to a
number of bits.

\fun{long}{prec2ndec}{long x} converts a number of codewords to a
number of decimal digits.

\fun{long}{nbits2nlong}{long x} converts a number of bits to a number of
words. Returns the smallest word count containing $x$ bits, i.e $
\kbd{ceil}(x / \B)$.

\fun{long}{nbits2ndec}{long x} converts a number of bits to a number of
decimal digits.

\fun{long}{nbits2lg}{long x} converts a number of bits to a length
in code words. Currently  an alias for \kbd{nbits2nlong}.

\fun{long}{nbits2prec}{long x} converts a number of bits to a number of
codewords. This is equal to 2 + \kbd{nbits2nlong(x)}.

\fun{long}{nbits2extraprec}{long x} converts a number of bits to the mantissa
length of a \typ{REAL} in codewords. This is currently an alias to
\kbd{nbits2nlong(x)}.

\fun{long}{nchar2nlong}{long x} converts a number of bytes to number of
words. Returns the smallest word count containing $x$ bytes, i.e
$\kbd{ceil}(x / \kbd{sizeof(long)})$.

\fun{long}{prec2nbits}{long x} converts a \typ{REAL} length into a number
of significant bits; returns $(x - 2)\B$.

\fun{double}{prec2nbits_mul}{long x, double y} returns
\kbd{prec2nbits}$(x)\times y$.

\fun{long}{bit_accuracy}{long x} converts a length into a number
of significant bits; currently an alias for \kbd{prec2nbits}.

\fun{double}{bit_accuracy_mul}{long x, double y} returns
\kbd{bit\_accuracy}$(x)\times y$.

\fun{long}{realprec}{GEN x} length of a \typ{REAL} in words; currently an alias
for \kbd{lg}.

\fun{long}{bit_prec}{GEN x} length of a \typ{REAL} in bits.

\fun{long}{precdbl}{long prec} given a length in words corresponding to a
\typ{REAL} precision, return the length corresponding to doubling the
precision. Due to the presence of 2 code words, this is
 $2(\kbd{prec} - 2) + 2$.

\subsec{Read type-dependent information}

\fun{long}{typ}{GEN x} returns the type number of~\kbd{x}. The header files
included through \kbd{pari.h} define symbolic constants for the \kbd{GEN}
types: \typ{INT} etc. Never use their actual numerical values. E.g to determine
whether \kbd{x} is a \typ{INT}, simply check
\bprog
  if (typ(x) == t_INT) { }
@eprog\noindent
The types are internally ordered and this simplifies the implementation of
commutative binary operations (e.g addition, gcd). Avoid using the ordering
directly, as it may change in the future; use type grouping functions
instead (\secref{se:typegroup}).

\fun{const char*}{type_name}{long t} given a type number \kbd{t} this routine
returns a string containing its symbolic name. E.g \kbd{type\_name(\typ{INT})}
returns \kbd{"\typ{INT}"}. The return value is read-only.

\fun{long}{lg}{GEN x} returns the length of~\kbd{x} in \B-bit words.

\fun{long}{lgefint}{GEN x} returns the effective length of the \typ{INT}
\kbd{x} in \B-bit words.

\fun{long}{signe}{GEN x} returns the sign ($-1$, 0 or 1) of~\kbd{x}. Can be
used for \typ{INT}, \typ{REAL}, \typ{POL} and \typ{SER} (for the last two
types, only 0 or 1 are possible).

\fun{long}{gsigne}{GEN x} returns the sign of a real number $x$,
valid for \typ{INT}, \typ{REAL} as \kbd{signe}, but also for \typ{FRAC}
and \typ{QUAD} of positive discriminants. Raise a type error if \kbd{typ(x)}
is not among those.

\fun{long}{expi}{GEN x} returns the binary exponent of the real number equal
to the \typ{INT}~\kbd{x}. This is a special case of \kbd{gexpo}.

\fun{long}{expo}{GEN x} returns the binary exponent of the
\typ{REAL}~\kbd{x}.

\fun{long}{mpexpo}{GEN x} returns the binary exponent of the \typ{INT}
or \typ{REAL}~\kbd{x}.

\fun{long}{gexpo}{GEN x} same as \kbd{expo}, but also valid when \kbd{x}
is not a \typ{REAL} (returns the largest exponent found among the components
of \kbd{x}). When \kbd{x} is an exact~0, this returns
\hbox{\kbd{-HIGHEXPOBIT}}, which is lower than any valid exponent.

\fun{long}{valp}{GEN x} returns the $p$-adic valuation (for
a \typ{PADIC}) or $X$-adic valuation (for a \typ{SER}, taken with respect to
the main variable) of~\kbd{x}.

\fun{long}{precp}{GEN x} returns the precision of the \typ{PADIC}~\kbd{x}.

\fun{long}{varn}{GEN x} returns the variable number of the
\typ{POL} or \typ{SER}~\kbd{x} (between 0 and \kbd{MAXVARN}).

\fun{long}{gvar}{GEN x} returns the main variable number when any variable
at all occurs in the composite object~\kbd{x} (the smallest variable number
which occurs), and \tet{NO_VARIABLE} otherwise.

\fun{long}{gvar2}{GEN x} returns the variable number for the ring over which
$x$ is defined, e.g. if $x\in \Z[a][b]$ return (the variable number for)
$a$. Return \tet{NO_VARIABLE} if $x$ has no variable or is not defined over a
polynomial ring.

\fun{long}{degpol}{GEN x} is a simple macro returning \kbd{lg(x) - 3}.
This is the degree of the \typ{POL}~\kbd{x} with respect to its main
variable, \emph{if} its leading coefficient is non-zero (a rational $0$ is
impossible, but an inexact $0$ is allowed, as well as an exact modular $0$,
e.g. \kbd{Mod(0,2)}). If $x$ has no coefficients (rational $0$ polynomial),
its length is $2$ and we return the expected $-1$.

\fun{long}{lgpol}{GEN x} is equal to \kbd{degpol(x) + 1}. Used to loop over
the coefficients of a \typ{POL} in the following situation:
\bprog
    GEN xd = x + 2;
    long i, l = lgpol(x);
    for (i = 0; i < l; i++) foo( xd[i] ).
@eprog

\fun{long}{precision}{GEN x} If \kbd{x} is of type \typ{REAL}, returns the
precision of~\kbd{x}, namely the length of \kbd{x} in \B-bit words if \kbd{x}
is not zero, and a reasonable quantity obtained from the exponent of \kbd{x}
if \kbd{x} is numerically equal to zero. If \kbd{x} is of type
\typ{COMPLEX}, returns the minimum of the precisions of the real and
imaginary part. Otherwise, returns~0 (which stands for infinite precision).

\fun{long}{lgcols}{GEN x} is equal to \kbd{lg(gel(x,1))}. This is the length
of the columns of a \typ{MAT} with at least one column.

\fun{long}{nbrows}{GEN x} is equal to \kbd{lg(gel(x,1))-1}. This is the number
of rows of a \typ{MAT} with at least one column.

\fun{long}{gprecision}{GEN x} as \kbd{precision} for scalars. Returns the
lowest precision encountered among the components otherwise.

\fun{long}{sizedigit}{GEN x} returns 0 if \kbd{x} is exactly~0. Otherwise,
returns \kbd{\key{gexpo}(x)} multiplied by $\log_{10}(2)$. This gives a crude
estimate for the maximal number of decimal digits of the components
of~\kbd{x}.

\subsec{Eval type-dependent information}
These routines convert type-dependent information to bitmask to fill the
codewords of \kbd{GEN} objects (see \secref{se:impl}). E.g for a
\typ{REAL}~\kbd{z}:
\bprog
  z[1] = evalsigne(-1) | evalexpo(2)
@eprog
Compatible components of a codeword for a given type can be OR-ed as above.

\fun{ulong}{evaltyp}{long x} convert type~\kbd{x} to bitmask (first
codeword of all \kbd{GEN}s)

\fun{long}{evallg}{long x} convert length~\kbd{x} to bitmask (first
codeword of all \kbd{GEN}s). Raise overflow error if \kbd{x} is so large that
the corresponding length cannot be represented

\fun{long}{_evallg}{long x} as \kbd{evallg} \emph{without} the overflow
check.

\fun{ulong}{evalvarn}{long x} convert variable number~\kbd{x} to bitmask
(second codeword of \typ{POL} and \typ{SER})

\fun{long}{evalsigne}{long x} convert sign~\kbd{x} (in $-1,0,1$) to bitmask
(second codeword of \typ{INT}, \typ{REAL}, \typ{POL}, \typ{SER})

\fun{long}{evalprecp}{long x} convert $p$-adic ($X$-adic) precision~\kbd{x}
to bitmask (second codeword of \typ{PADIC}, \typ{SER}). Raise overflow error
if \kbd{x} is so large that the corresponding precision cannot be
represented.

\fun{long}{_evalprecp}{long x} same as \kbd{evalprecp} \emph{without} the
overflow check.

\fun{long}{evalvalp}{long x} convert $p$-adic ($X$-adic) valuation~\kbd{x} to
bitmask (second codeword of \typ{PADIC}, \typ{SER}). Raise overflow error if
\kbd{x} is so large that the corresponding valuation cannot be represented.

\fun{long}{_evalvalp}{long x} same as \kbd{evalvalp} \emph{without} the
overflow check.

\fun{long}{evalexpo}{long x} convert exponent~\kbd{x} to bitmask (second
codeword of \typ{REAL}). Raise overflow error if \kbd{x} is so
large that the corresponding exponent cannot be represented

\fun{long}{_evalexpo}{long x} same as \kbd{evalexpo} \emph{without} the
overflow check.

\fun{long}{evallgefint}{long x} convert effective length~\kbd{x} to bitmask
(second codeword \typ{INT}). This should be less or equal than the length
of the \typ{INT}, hence there is no overflow check for the effective length.

\subsec{Set type-dependent information}
Use these functions and macros with extreme care since usually the
corresponding information is set otherwise, and the components and further
codeword fields (which are left unchanged) may not be compatible with the new
information.

\fun{void}{settyp}{GEN x, long s} sets the type number of~\kbd{x} to~\kbd{s}.

\fun{void}{setlg}{GEN x, long s} sets the length of~\kbd{x} to~\kbd{s}. This
is an efficient way of truncating vectors, matrices or polynomials.

\fun{void}{setlgefint}{GEN x, long s} sets the effective length
of the \typ{INT} \kbd{x} to~\kbd{s}. The number \kbd{s} must be less than or
equal to the length of~\kbd{x}.

\fun{void}{setsigne}{GEN x, long s} sets the sign of~\kbd{x} to~\kbd{s}.
If \kbd{x} is a \typ{INT} or \typ{REAL}, \kbd{s} must be equal to $-1$, 0
or~1, and if \kbd{x} is a \typ{POL} or \typ{SER}, \kbd{s} must be equal to 0
or~1. No sanity check is made; in particular, setting the sign of a
$0$ \typ{INT} to $\pm1$ creates an invalid object.

\fun{void}{togglesign}{GEN x} sets the sign $s$ of~\kbd{x} to $-s$, in place.

\fun{void}{togglesign_safe}{GEN *x} sets the $s$ sign of~\kbd{*x} to $-s$, in
place, unless \kbd{*x} is one of the integer universal constants in which case
replace \kbd{*x} by its negation (e.g.~replace \kbd{gen\_1} by \kbd{gen\_m1}).

\fun{void}{setabssign}{GEN x} sets the sign $s$ of~\kbd{x} to $|s|$, in place.

\fun{void}{affectsign}{GEN x, GEN y} shortcut for \kbd{setsigne(y, signe(x))}.
No sanity check is made; in particular, setting the sign of a
$0$ \typ{INT} to $\pm1$ creates an invalid object.

\fun{void}{affectsign_safe}{GEN x, GEN *y} sets the sign of~\kbd{*y} to that
of~\kbd{x}, in place, unless \kbd{*y} is one of the integer universal
constants in which case replace \kbd{*y} by its negation if needed
(e.g.~replace \kbd{gen\_1} by \kbd{gen\_m1} if \kbd{x} is negative). No other
sanity check is made; in particular, setting the sign of a $0$
\typ{INT} to $\pm1$ creates an invalid object.

\fun{void}{normalize_frac}{GEN z} assuming $z$ is of the form \kbd{mkfrac(a,b)}
with $b\neq 0$, make sure that $b > 0$ by changing the sign of $a$ in place if
needed (use \kbd{togglesign}).

\fun{void}{setexpo}{GEN x, long s} sets the binary exponent of the
\typ{REAL}~\kbd{x} to \kbd{s}. The value \kbd{s} must be a 24-bit signed
number.

\fun{void}{setvalp}{GEN x, long s} sets the $p$-adic or $X$-adic valuation
of~\kbd{x} to~\kbd{s}, if \kbd{x} is a \typ{PADIC} or a \typ{SER},
respectively.

\fun{void}{setprecp}{GEN x, long s} sets the $p$-adic precision of the
\typ{PADIC}~\kbd{x} to~\kbd{s}.

\fun{void}{setvarn}{GEN x, long s} sets the variable number of the \typ{POL}
or \typ{SER}~\kbd{x} to~\kbd{s} (where $0\le \kbd{s}\le\kbd{MAXVARN}$).

\subsec{Type groups}\label{se:typegroup}
In the following functions, \kbd{t} denotes the type of a \kbd{GEN}.
They used to be implemented as macros, which could evaluate their argument
twice; \emph{no longer}: it is not inefficient to write
\bprog
  is_intreal_t(typ(x))
@eprog

\fun{int}{is_recursive_t}{long t} \kbd{true} iff \kbd{t} is a recursive
type (the non-recursive types are \typ{INT}, \typ{REAL},
\typ{STR}, \typ{VECSMALL}). Somewhat contrary to intuition, \typ{LIST} is
also non-recursive, ; see the Developer's guide for details.

\fun{int}{is_intreal_t}{long t} \kbd{true} iff \kbd{t} is \typ{INT}
or \typ{REAL}.

\fun{int}{is_rational_t}{long t} \kbd{true} iff \kbd{t} is \typ{INT}
or \typ{FRAC}.

\fun{int}{is_real_t}{long t} \kbd{true} iff \kbd{t} is \typ{INT}
or \typ{REAL} or \typ{FRAC}.

\fun{int}{is_vec_t}{long t} \kbd{true} iff \kbd{t} is \typ{VEC}
or \typ{COL}.

\fun{int}{is_matvec_t}{long t} \kbd{true} iff \kbd{t} is \typ{MAT}, \typ{VEC}
or \typ{COL}.

\fun{int}{is_scalar_t}{long t} \kbd{true} iff \kbd{t} is a scalar, i.e
a \typ{INT},
a \typ{REAL},
a \typ{INTMOD},
a \typ{FRAC},
a \typ{COMPLEX},
a \typ{PADIC},
a \typ{QUAD},
or
a \typ{POLMOD}.

\fun{int}{is_extscalar_t}{long t} \kbd{true} iff \kbd{t} is a scalar (see
\kbd{is\_scalar\_t}) or \kbd{t} is \typ{POL}.

\fun{int}{is_const_t}{long t} \kbd{true} iff \kbd{t} is a scalar which is not
\typ{POLMOD}.

\fun{int}{is_noncalc_t}{long t} true if generic operations (\kbd{gadd},
\kbd{gmul}) do not make sense for $t$: corresponds to types
\typ{LIST}, \typ{STR}, \typ{VECSMALL}, \typ{CLOSURE}

\subsec{Accessors and components}\label{se:accessors}
The first two functions return \kbd{GEN} components as copies on the stack:

\fun{GEN}{compo}{GEN x, long n} creates a copy of the \kbd{n}-th true
component (i.e.\ not counting the codewords) of the object~\kbd{x}.

\fun{GEN}{truecoeff}{GEN x, long n} creates a copy of the coefficient of
degree~\kbd{n} of~\kbd{x} if \kbd{x} is a scalar, \typ{POL} or \typ{SER},
and otherwise of the \kbd{n}-th component of~\kbd{x}.
\smallskip

\noindent On the contrary, the following routines return the address of a
\kbd{GEN} component. No copy is made on the stack:

\fun{GEN}{constant_coeff}{GEN x} returns the address of the constant
coefficient of \typ{POL}~\kbd{x}. By convention, a $0$ polynomial (whose
\kbd{sign} is $0$) has \kbd{gen\_0} constant term.

\fun{GEN}{leading_coeff}{GEN x} returns the address of the leading coefficient
of \typ{POL}~\kbd{x}, i.e. the coefficient of largest index stored in the
array representing $x$. This may be an inexact $0$. By convention, return
\kbd{gen\_0} if the coefficient array is empty.

\fun{GEN}{gel}{GEN x, long i} returns the address of the
\kbd{x[i]} entry of~\kbd{x}. (\kbd{el} stands for element.)

\fun{GEN}{gcoeff}{GEN x, long i, long j} returns the address of the
\kbd{x[i,j]} entry of \typ{MAT}~\kbd{x}, i.e.~the coefficient at row~\kbd{i}
and column~\kbd{j}.

\fun{GEN}{gmael}{GEN x, long i, long j} returns the address of the
\kbd{x[i][j]} entry of~\kbd{x}. (\kbd{mael} stands for multidimensional array
element.)

\fun{GEN}{gmael2}{GEN A, long x1, long x2} is an alias for \kbd{gmael}.
Similar macros \tet{gmael3}, \tet{gmael4}, \tet{gmael5} are available.

\section{Global numerical constants}
These are defined in the various public PARI headers.

\subsec{Constants related to word size}

\noindent \kbd{long} $\tet{BITS_IN_LONG} = 2^{\tet{TWOPOTBITS_IN_LONG}}$:
number of bits in a \kbd{long} (32 or 64).

\noindent \kbd{long} \tet{BITS_IN_HALFULONG}: \kbd{BITS\_IN\_LONG} divided by
$2$.

\noindent \kbd{long} \tet{LONG_MAX}: the largest positive \kbd{long}.

\noindent \kbd{ulong} \tet{ULONG_MAX}: the largest \kbd{ulong}.

\noindent \kbd{long} \tet{DEFAULTPREC}:    the length (\kbd{lg}) of a
\typ{REAL} with 64 bits of accuracy

\noindent \kbd{long} \tet{MEDDEFAULTPREC}: the length (\kbd{lg}) of a
\typ{REAL} with 128 bits of accuracy

\noindent \kbd{long} \tet{BIGDEFAULTPREC}: the length (\kbd{lg}) of a
\typ{REAL} with 192 bits of accuracy

\noindent \kbd{ulong} \tet{HIGHBIT}: the largest power of $2$ fitting in an
\kbd{ulong}.

\noindent \kbd{ulong} \tet{LOWMASK}: bitmask yielding the least significant
bits.

\noindent \kbd{ulong} \tet{HIGHMASK}: bitmask yielding the most significant
bits.

\noindent The last two are used to implement the following convenience macros,
returning half the bits of their operand:

\fun{ulong}{LOWWORD}{ulong a} returns least significant bits.

\fun{ulong}{HIGHWORD}{ulong a} returns most significant bits.

\noindent Finally

\fun{long}{divsBIL}{long n} returns the Euclidean quotient of $n$ by
\kbd{BITS\_IN\_LONG} (with non-negative remainder).

\fun{long}{remsBIL}{n} returns the (non-negative) Euclidean remainder of $n$
by \kbd{BITS\_IN\_LONG}

\fun{long}{dvmdsBIL}{long n, long *r}

\fun{ulong}{dvmduBIL}{ulong n, ulong *r} sets $r$ to \kbd{remsBIL(n)}
and returns \kbd{divsBIL(n)}.

\subsec{Masks used to implement the \kbd{GEN} type}

These constants are used by higher level macros, like \kbd{typ} or \kbd{lg}:

\noindent \tet{EXPOnumBITS},
\tet{LGnumBITS},
\tet{SIGNnumBITS},
\tet{TYPnumBITS},
\tet{VALPnumBITS},
\tet{VARNnumBITS}:
number of bits used to encode \kbd{expo}, \kbd{lg}, \kbd{signe},
\kbd{typ}, \kbd{valp}, \kbd{varn}.

\noindent \tet{PRECPSHIFT},
\tet{SIGNSHIFT},
\tet{TYPSHIFT},
\tet{VARNSHIFT}: shifts used to recover or encode \kbd{precp}, \kbd{varn},
\kbd{typ}, \kbd{signe}

\noindent \tet{CLONEBIT},
\tet{EXPOBITS},
\tet{LGBITS},
\tet{PRECPBITS},
\tet{SIGNBITS},
\tet{TYPBITS},
\tet{VALPBITS},
\tet{VARNBITS}: bitmasks used to extract \kbd{isclone}, \kbd{expo}, \kbd{lg},
\kbd{precp}, \kbd{signe}, \kbd{typ}, \kbd{valp}, \kbd{varn} from \kbd{GEN}
codewords.

\noindent \tet{MAXVARN}: the largest possible variable number.

\noindent \tet{NO_VARIABLE}:  sentinel returned by \kbd{gvar(x)} when \kbd{x}
does not contain any polynomial; has a lower priority than any valid variable
number.

\noindent \tet{HIGHEXPOBIT}: a power of $2$, one more that the largest possible
exponent for a \typ{REAL}.

\noindent \tet{HIGHVALPBIT}: a power of $2$, one more that the largest possible
valuation for a \typ{PADIC} or a \typ{SER}.

\subsec{$\log 2$, $\pi$}

These are \kbd{double} approximations to useful constants:

\noindent \tet{LOG2}: $\log 2$.

\noindent \tet{LOG10_2}: $\log 2 / \log 10$.

\noindent \tet{LOG2_10}: $\log 10 / \log 2$.

\noindent \tet{M_PI}: $\pi$.

\section{Iterating over small primes, low-level interface}
\label{se:primetable}

One of the methods used by the high-level prime iterator (see
\secref{se:primeiter}), is a precomputed table. Its direct use is deprecated,
but documented here.

After \kbd{pari\_init(size, maxprime)}, a ``prime table'' is
initialized with the successive \emph{differences} of primes up to (possibly
just a little beyond) \kbd{maxprime}. The prime table occupies roughly
$\kbd{maxprime}/\log(\kbd{maxprime})$ bytes in memory, so be sensible when
choosing \kbd{maxprime}; it is $500000$ by default under \kbd{gp} and there
is no real benefit in choosing a much larger value: the high-level
iterator provide \emph{fast} access to primes up to the \emph{square}
of \kbd{maxprime}. In any case, the implementation requires that
$\tet{maxprime} < 2^{\B} - 2048$, whatever memory is available.

PARI currently guarantees that the first 6547 primes, up to and including
65557, are present in the table, even if you set \kbd{maxprime} to zero.
in the \kbd{pari\_init} call.

\noindent Some convenience functions:

\fun{ulong}{maxprime}{} the largest prime computable using our prime table.

\fun{void}{maxprime_check}{ulong B} raise an error if \kbd{maxprime()} is $< B$.

After the following initializations (the names $p$ and \var{ptr} are
arbitrary of course)
\bprog
byteptr ptr = diffptr;
ulong p = 0;
@eprog
\noindent calling the macro \tet{NEXT_PRIME_VIADIFF_CHECK}$(p, \var{ptr})$
repeatedly will assign the successive prime numbers to $p$. Overrunning the
prime table boundary will raise the error \tet{e_MAXPRIME}, which just
prints the error message:

\kbd{*** not enough precomputed primes, need primelimit \til $c$}

\noindent (for some numerical value $c$), then the macro aborts the
computation. The alternative macro \tet{NEXT_PRIME_VIADIFF} operates in the
same way, but will omit that check, and is slightly faster. It should be used
in the following way:
%
\bprog
byteptr ptr = diffptr;
ulong p = 0;

if (maxprime() < goal) pari_err_MAXPRIME(goal); /*@Ccom not enough primes */
while (p <= goal) /*@Ccom run through all primes up to \kbd{goal} */
{
  NEXT_PRIME_VIADIFF(p, ptr);
  ...
}
@eprog\noindent
Here, we use the general error handling function \kbd{pari\_err} (see
\secref{se:err}), with the codeword \kbd{e\_MAXPRIME}, raising the ``not enough
primes'' error. This could be rewritten as
\bprog
maxprime_check(goal);
while (p <= goal) /*@Ccom run through all primes up to \kbd{goal} */
{
  NEXT_PRIME_VIADIFF(p, ptr);
  ...
}
@eprog

\fun{bytepr}{initprimes}{ulong maxprime, long *L, ulong *lastp}
computes a (malloc'ed) ``prime table'', in fact a table of all prime
differences for $p < \kbd{maxprime}$ (and possibly a little beyond). Set $L$
to the table length (argument to \kbd{malloc}), and \var{lastp} to the last
prime in the table.

\fun{void}{initprimetable}{ulong maxprime} computes a prime table (of all prime
differences for $p < \kbd{maxprime}$) and assign it to the global variable
\kbd{diffptr}. Don't change \kbd{diffptr} directly, call this function
instead. This calls \kbd{initprimes} and updates internal data recording the
table size.

\fun{ulong}{init_primepointer_geq}{ulong a, byteptr *pd}
returns the smallest prime $p \geq a$, and sets \kbd{*pd} to the proper offset
of \kbd{diffptr} so that \kbd{NEXT\_PRIME\_VIADIFF(p, *pd)} correctly
returns \kbd{unextprime(p + 1)}.

\fun{ulong}{init_primepointer_gt}{ulong a, byteptr *pd} returns the smallest
prime $p > a$.

\fun{ulong}{init_primepointer_leq}{ulong a, byteptr *pd} returns the largest
prime $p \leq a$.

\fun{ulong}{init_primepointer_lt}{ulong a, byteptr *pd} returns the largest
prime $p < a$.

\section{Handling the PARI stack}

\subsec{Allocating memory on the stack}

\fun{GEN}{cgetg}{long n, long t} allocates memory on the stack for
an object of length \kbd{n} and type~\kbd{t}, and initializes its first
codeword.

\fun{GEN}{cgeti}{long n} allocates memory on the stack for a \typ{INT}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{INT})}.

\fun{GEN}{cgetr}{long n} allocates memory on the stack for a \typ{REAL}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{REAL})}.

\fun{GEN}{cgetc}{long n} allocates memory on the stack for a
\typ{COMPLEX}, whose real and imaginary parts are \typ{REAL}s
of length~\kbd{n}.

\fun{GEN}{cgetp}{GEN x} creates space sufficient to hold the
\typ{PADIC}~\kbd{x}, and sets the prime $p$ and the $p$-adic precision to
those of~\kbd{x}, but does not copy (the $p$-adic unit or zero representative
and the modulus of)~\kbd{x}.

\fun{GEN}{new_chunk}{size_t n} allocates a \kbd{GEN} with $n$ components,
\emph{without} filling the required code words. This is the low-level
constructor underlying \kbd{cgetg}, which calls \kbd{new\_chunk} then sets
the first code word. It works by simply returning the address
\kbd{((GEN)avma) - n}, after checking that it is larger than \kbd{(GEN)bot}.

\fun{void}{new_chunk_resize}{size_t x} this function is called by
\kbd{new\_chunk} when the PARI stack overflows. There is no need to call it
manually. It will either extend the stack or report an \kbd{e\_STACK} error.

\fun{char*}{stack_malloc}{size_t n} allocates memory on the stack for $n$
chars (\emph{not} $n$ \kbd{GEN}s). This is faster than using \kbd{malloc},
and easier to use in most situations when temporary storage is needed. In
particular there is no need to \kbd{free} individually all variables thus
allocated: a simple \kbd{avma = oldavma} might be enough. On the other hand,
beware that this is not permanent independent storage, but part of the stack.

\fun{char*}{stack_calloc}{size_t n} as \kbd{stack\_malloc}, setting the memory
to zero.

\noindent Objects allocated through these last three functions cannot be
\kbd{gerepile}'d, since they are not yet valid \kbd{GEN}s: their codewords
must be filled first.

\fun{GEN}{cgetalloc}{long t, size_t l}, same as \kbd{cgetg(t, l)}, except
that the result is allocated using \tet{pari_malloc} instead of the PARI
stack. The resulting \kbd{GEN} is now impervious to garbage collecting
routines, but should be freed using \tet{pari_free}.

\subsec{Stack-independent binary objects}

\fun{GENbin*}{copy_bin}{GEN x} copies $x$ into a malloc'ed structure suitable
for stack-independent binary transmission or storage. The object obtained
is architecture independent provided, \kbd{sizeof(long)} remains the same
on all PARI instances involved, as well as the multiprecision kernel (either
native or GMP).

\fun{GENbin*}{copy_bin_canon}{GEN x} as \kbd{copy\_bin}, ensuring furthermore
that the binary object is independent of the multiprecision kernel. Slower
than \kbd{copy\_bin}.

\fun{GEN}{bin_copy}{GENbin *p} assuming $p$ was created by \kbd{copy\_bin(x)}
(not necessarily by the same PARI instance: transmission or external storage
may be involved), restores $x$ on the PARI stack.

\noindent The routine \kbd{bin\_copy} transparently encapsulate the following
functions:

\fun{GEN}{GENbinbase}{GENbin *p} the \kbd{GEN} data actually stored in $p$.
All addresses are stored as offsets with respect to a common reference point,
so the resulting \kbd{GEN} is unusable unless it is a non-recursive type;
private low-level routines must be called first to restore absolute addresses.

\fun{void}{shiftaddress}{GEN x, long dec} converts relative addresses to
absolute ones.

\fun{void}{shiftaddress_canon}{GEN x, long dec} converts relative addresses to
absolute ones, and converts leaves from a canonical form to the one
specific to the multiprecision kernel in use. The \kbd{GENbin} type stores
whether leaves are stored in canonical form, so \kbd{bin\_copy} can call
the right variant.

\noindent Objects containing closures are harder to e.g. copy and save to disk,
since closures contain pointers to libpari functions that will not be valid in
another gp instance: there is little chance for them to be loaded at the exact
same address in memory. Such objects must be saved along with a linking table.

\fun{GEN}{copybin_unlink}{GEN C} returns a linking table allowing to safely
store and transmit \typ{CLOSURE} objects in $C$.  If $C = \kbd{NULL}$ return a
linking table corresponding to the content of all gp variables. $C$ may then be
dumped to disk in binary form, for instance.

\fun{void}{bincopy_relink}{GEN C, GEN V} given a binary object $C$, as dumped
by writebin and read back into a session, and a linking table $V$, restore all
closures contained in $C$ (function pointers are translated to their current
value).

\subsec{Garbage collection}
See \secref{se:garbage} for a detailed explanation and many examples.

\fun{void}{cgiv}{GEN x} frees object \kbd{x}, assuming it is the last created
on the stack.

\fun{GEN}{gerepile}{pari_sp p, pari_sp q, GEN x} general garbage collector
for the stack.

\fun{void}{gerepileall}{pari_sp av, int n, ...} cleans up the stack from
\kbd{av} on (i.e from \kbd{avma} to \kbd{av}), preserving the \kbd{n} objects
which follow in the argument list (of type \kbd{GEN*}). For instance,
\kbd{gerepileall(av, 2, \&x, \&y)} preserves \kbd{x} and \kbd{y}.

\fun{void}{gerepileallsp}{pari_sp av, pari_sp ltop, int n, ...}
cleans up the stack between \kbd{av} and \kbd{ltop}, updating
the \kbd{n} elements which follow \kbd{n} in the argument list (of type
\kbd{GEN*}). Check that the elements of \kbd{g} have no component between
\kbd{av} and \kbd{ltop}, and assumes that no garbage is present between
\kbd{avma} and \kbd{ltop}. Analogous to (but faster than) \kbd{gerepileall}
otherwise.

\fun{GEN}{gerepilecopy}{pari_sp av, GEN x} cleans up the stack  from
\kbd{av} on, preserving the object \kbd{x}. Special case of \kbd{gerepileall}
(case $\kbd{n} = 1$), except that the routine returns the preserved \kbd{GEN}
instead of updating its address through a pointer.

\fun{void}{gerepilemany}{pari_sp av, GEN* g[], int n} alternative interface
to \kbd{gerepileall}. The preserved \kbd{GEN}s are the elements of the array
\kbd{g} of length $n$: \kbd{g[0]}, \kbd{g[1]}, \dots,
\kbd{g[$n$-1]}. Obsolete: no more efficient than \kbd{gerepileall},
error-prone, and clumsy (need to declare an extra \kbd{GEN *g}).

\fun{void}{gerepilemanysp}{pari_sp av, pari_sp ltop, GEN* g[], int n}
alternative interface to \kbd{gerepileallsp}. Obsolete.

\fun{void}{gerepilecoeffs}{pari_sp av, GEN x, int n} cleans up the stack
from \kbd{av} on, preserving \kbd{x[0]}, \dots, \kbd{x[n-1]} (which are
\kbd{GEN}s).

\fun{void}{gerepilecoeffssp}{pari_sp av, pari_sp ltop, GEN x, int n}
cleans up the stack from \kbd{av} to \kbd{ltop}, preserving \kbd{x[0]},
\dots, \kbd{x[n-1]} (which are \kbd{GEN}s). Same assumptions as in
\kbd{gerepilemanysp}, of which this is a variant. For instance
\bprog
  z = cgetg(3, t_COMPLEX);
  av = avma; garbage(); ltop = avma;
  z[1] = fun1();
  z[2] = fun2();
  gerepilecoeffssp(av, ltop, z + 1, 2);
  return z;
@eprog\noindent
cleans up the garbage between \kbd{av} and \kbd{ltop}, and connects \kbd{z}
and its two components. This is marginally more efficient than the standard
\bprog
  av = avma; garbage(); ltop = avma;
  z = cgetg(3, t_COMPLEX);
  z[1] = fun1();
  z[2] = fun2(); return gerepile(av, ltop, z);
@eprog\noindent

\fun{GEN}{gerepileupto}{pari_sp av, GEN q} analogous to (but faster than)
\kbd{gerepilecopy}. Assumes that \kbd{q} is connected and that its root was
created before any component. If \kbd{q} is not on the stack, this is
equivalent to \kbd{avma = av}; in particular, sentinels which are not even
proper \kbd{GEN}s such as \kbd{q = NULL} are allowed.

\fun{GEN}{gerepileuptoint}{pari_sp av, GEN q} analogous to (but faster than)
\kbd{gerepileupto}. Assumes further that \kbd{q} is a \typ{INT}. The
length and effective length of the resulting \typ{INT} are equal.

\fun{GEN}{gerepileuptoleaf}{pari_sp av, GEN q} analogous to (but faster than)
\kbd{gerepileupto}. Assumes further that \kbd{q} is a leaf, i.e a
non-recursive type (\kbd{is\_recursive\_t(typ(q))} is non-zero). Contrary to
\kbd{gerepileuptoint} and \kbd{gerepileupto}, \kbd{gerepileuptoleaf} leaves
length and effective length of a \typ{INT} unchanged.

\subsec{Garbage collection: advanced use}

\fun{void}{stackdummy}{pari_sp av, pari_sp ltop} inhibits the memory area
between \kbd{av} \emph{included} and \kbd{ltop} \emph{excluded} with respect to
\kbd{gerepile}, in order to avoid a call to \kbd{gerepile(av, ltop,...)}.
The stack space is not reclaimed though.

More precisely, this routine assumes that \kbd{av} is recorded earlier
than \kbd{ltop}, then marks the specified stack segment as a
non-recursive type of the correct length. Thus gerepile will not inspect
the zone, at most copy it. To be used in the following situation:
\bprog
  av0 = avma; z = cgetg(t_VEC, 3);
  gel(z,1) = HUGE(); av = avma; garbage(); ltop = avma;
  gel(z,2) = HUGE(); stackdummy(av, ltop);
@eprog\noindent
Compared to the orthodox
\bprog
  gel(z,2) = gerepile(av, ltop, gel(z,2));
@eprog\noindent
or even more wasteful
\bprog
  z = gerepilecopy(av0, z);
@eprog\noindent
we temporarily lose $(\kbd{av} - \kbd{ltop})$ words but save a costly
\kbd{gerepile}. In principle, a garbage collection higher up the call
chain should reclaim this later anyway.

Without the \kbd{stackdummy}, if the $[\kbd{av}, \kbd{ltop}]$ zone is
arbitrary (not even valid \kbd{GEN}s as could happen after direct
truncation via \kbd{setlg}), we would leave dangerous data in the middle
of~\kbd{z}, which would be a problem for a later
\bprog
  gerepile(..., ... , z);
@eprog\noindent
And even if it were made of valid \kbd{GEN}s, inhibiting the area makes sure
\kbd{gerepile} will not inspect their components, saving time.

Another natural use in low-level routines is to ``shorten'' an existing
\kbd{GEN} \kbd{z} to its first $\kbd{n}-1$ components:
\bprog
  setlg(z, n);
  stackdummy((pari_sp)(z + lg(z)), (pari_sp)(z + n));
@eprog\noindent
or to its last \kbd{n} components:
\bprog
  long L = lg(z) - n, tz = typ(z);
  stackdummy((pari_sp)(z + L), (pari_sp)z);
  z += L; z[0] = evaltyp(tz) | evallg(L);
@eprog

The first scenario (safe shortening an existing \kbd{GEN}) is in fact so
common, that we provide a function for this:

\fun{void}{fixlg}{GEN z, long ly} a safe variant of \kbd{setlg(z, ly)}. If
\kbd{ly} is larger than \kbd{lg(z)} do nothing. Otherwise, shorten $z$ in
place, using \kbd{stackdummy} to avoid later \kbd{gerepile} problems.

\fun{GEN}{gcopy_avma}{GEN x, pari_sp *AVMA} return a copy of $x$ as from
\kbd{gcopy}, except that we pretend that initially \kbd{avma} is \kbd{*AVMA},
and that \kbd{*AVMA} is updated accordingly (so that the total size of $x$ is
the difference between the two successive values of \kbd{*AVMA}). It is not
necessary for \kbd{*AVMA} to initially point on the stack: \tet{gclone} is
implemented using this mechanism.

\fun{GEN}{icopy_avma}{GEN x, pari_sp av} analogous to \kbd{gcopy\_avma} but
simpler: assume $x$ is a \typ{INT} and return a copy allocated as if
initially we had \kbd{avma} equal to \kbd{av}. There is no need to pass a
pointer and update the value of the second argument: the new (fictitious)
\kbd{avma} is just the return value (typecast to \kbd{pari\_sp}).

\subsec{Debugging the PARI stack}

\fun{int}{chk_gerepileupto}{GEN x} returns 1 if \kbd{x} is suitable for
\kbd{gerepileupto}, and 0 otherwise. In the latter case, print a warning
explaining the problem.

\fun{void}{dbg_gerepile}{pari_sp ltop} outputs the list of all objects on the
stack between \kbd{avma} and \kbd{ltop}, i.e. the ones that would be inspected
in a call to \kbd{gerepile(...,ltop,...)}.

\fun{void}{dbg_gerepileupto}{GEN q} outputs the list of all objects on the
stack that would be inspected in a call to \kbd{gerepileupto(...,q)}.

\subsec{Copies}

\fun{GEN}{gcopy}{GEN x} creates a new copy of $x$ on the stack.

\fun{GEN}{gcopy_lg}{GEN x, long l} creates a new copy of $x$
on the stack, pretending that \kbd{lg(x)} is $l$, which must be less than or
equal to \kbd{lg(x)}. If equal, the function is equivalent to \kbd{gcopy(x)}.

\fun{int}{isonstack}{GEN x} \kbd{true} iff $x$ belongs to the stack.

\fun{void}{copyifstack}{GEN x, GEN y} sets \kbd{y = gcopy(x)} if
$x$ belongs to the stack, and \kbd{y = x} otherwise. This macro evaluates
its arguments once, contrary to
\bprog
  y = isonstack(x)? gcopy(x): x;
@eprog

\fun{void}{icopyifstack}{GEN x, GEN y} as \kbd{copyifstack} assuming \kbd{x}
is a \typ{INT}.

\subsec{Simplify}

\fun{GEN}{simplify}{GEN x} you should not need that function in library mode.
One rather uses:

\fun{GEN}{simplify_shallow}{GEN x} shallow, faster, version of \tet{simplify}.

\section{The PARI heap}
\subsec{Introduction}

It is implemented as a doubly-linked list of \kbd{malloc}'ed blocks of
memory, equipped with reference counts. Each block has type \kbd{GEN} but need
not be a valid \kbd{GEN}: it is a chunk of data preceded by a hidden header
(meaning that we allocate $x$ and return $x + \kbd{header size}$). A
\tev{clone}, created by \tet{gclone}, is a block which is a valid \kbd{GEN}
and whose \emph{clone bit} is set.

\subsec{Public interface}

\fun{GEN}{newblock}{size_t n} allocates a block of $n$ \emph{words} (not bytes).

\fun{void}{killblock}{GEN x} deletes the block~$x$ created by \kbd{newblock}.
Fatal error if $x$ not a block.

\fun{GEN}{gclone}{GEN x} creates a new permanent copy of $x$ on the heap
(allocated using \kbd{newblock}). The \emph{clone bit} of the result is set.

\fun{GEN}{gcloneref}{GEN x} if $x$ is not a clone, clone it and return the
result; otherwise, increase the clone reference count and return $x$.

\fun{void}{gunclone}{GEN x} deletes a clone. Deletion at first only decreases
the reference count by $1$. If the count remains positive, no further action is
taken; if the count becomes zero, then the clone is actually deleted. In the
current implementation, this is an alias for \kbd{killblock}, but it is cleaner
to kill clones (valid \kbd{GEN}s) using this function, and other blocks using
\kbd{killblock}.

\fun{void}{gunclone_deep}{GEN x} is only useful in the context of the GP
interpreter which may replace arbitrary components of container types
(\typ{VEC}, \typ{COL}, \typ{MAT}, \typ{LIST}) by clones. If $x$ is such
a container, the function recursively deletes all clones among the components
of $x$, then unclones $x$. Useless in library mode: simply use
\kbd{gunclone}.

\fun{void}{traverseheap}{void(*f)(GEN, void *), void *data} this applies
\kbd{f($x$, data)} to each object $x$ on the PARI heap, most recent
first. Mostly for debugging purposes.

\fun{GEN}{getheap}{} a simple wrapper around \kbd{traverseheap}. Returns  a
two-component row vector giving the number of objects on the heap and the
amount of memory they occupy in long words.

\fun{GEN}{cgetg_block}{long x, long y} as \kbd{cgetg(x,y)}, creating the return
value as a \kbd{block}, not on the PARI stack.

\fun{GEN}{cgetr_block}{long prec} as \kbd{cgetr(prec)}, creating the return
value as a \kbd{block}, not on the PARI stack.

\subsec{Implementation note} The hidden block header is manipulated using the
following private functions:

\fun{void*}{bl_base}{GEN x} returns the pointer that was actually allocated
by \kbd{malloc} (can be freed).

\fun{long}{bl_refc}{GEN x} the reference count of $x$: the number of pointers
to this block. Decremented in \kbd{killblock}, incremented by the private
function \fun{void}{gclone_refc}{GEN x}; block is freed when the reference
count reaches $0$.

\fun{long}{bl_num}{GEN x} the index of this block in the list of all blocks
allocated so far (including freed blocks). Uniquely identifies a block until
$2^\B$ blocks have been allocated and this wraps around.

\fun{GEN}{bl_next}{GEN x} the block \emph{after} $x$ in the linked list of
blocks (\kbd{NULL} if $x$ is the last block allocated not yet killed).

\fun{GEN}{bl_prev}{GEN x} the block allocated \emph{before} $x$ (never
\kbd{NULL}).

We documented the last four routines as functions for clarity (and type
checking) but they are actually macros yielding valid lvalues. It is allowed
to write \kbd{bl\_refc(x)++} for instance.

\section{Handling user and temp variables}
Low-level implementation of user / temporary variables is liable to change. We
describe it nevertheless for completeness. Currently variables are
implemented by a single array of values divided in 3 zones: 0--\kbd{nvar}
(user variables), \kbd{max\_avail}--\kbd{MAXVARN} (temporary variables),
and \kbd{nvar+1}--\kbd{max\_avail-1} (pool of free variable numbers).

\subsec{Low-level}

\fun{void}{pari_var_init}{}: a small part of \kbd{pari\_init}. Resets
variable counters \kbd{nvar} and \kbd{max\_avail}, notwithstanding existing
variables! In effect, this even deletes \kbd{x}. Don't use it.

\fun{void}{pari_var_close}{void} attached destructor, called by
\kbd{pari\_close}.

\fun{long}{pari_var_next}{}: returns \kbd{nvar}, the number of the next user
variable we can create.

\fun{long}{pari_var_next_temp}{} returns \kbd{max\_avail}, the number of the
next temp variable we can create.

\fun{long}{pari_var_create}{entree *ep} low-level initialization of an
\kbd{EpVAR}. Return the attached (new) variable number.

\fun{GEN}{vars_sort_inplace}{GEN z} given a \typ{VECSMALL} $z$ of variable
numbers, sort $z$ in place according to variable priorities (highest priority
comes first).

\fun{GEN}{vars_to_RgXV}{GEN h} given a \typ{VECSMALL} $z$ of variable numbers,
return the \typ{VEC} of \kbd{pol\_x}$(z[i])$.

\subsec{User variables}

\fun{long}{fetch_user_var}{char *s} returns a user variable whose name
is \kbd{s}, creating it is needed (and using an existing variable otherwise).
Returns its variable number.

\fun{GEN}{fetch_var_value}{long v} returns a shallow copy of the
current value of the variable numbered $v$. Return \kbd{NULL} for a temporary
variable.

\fun{entree*}{is_entry}{const char *s} returns the \kbd{entree*} attached
to an identifier \kbd{s} (variable or function), from the interpreter
hashtables. Return \kbd{NULL} is the identifier is unknown.

\subsec{Temporary variables}

\fun{long}{fetch_var}{void} returns the number of a new temporary variable
(decreasing \kbd{max\_avail}).

\fun{long}{delete_var}{void} delete latest temp variable created and return
the number of previous one.

\fun{void}{name_var}{long n, char *s} rename temporary variable number
\kbd{n} to \kbd{s}; mostly useful for nicer printout. Error when trying to
rename a user variable.

\section{Adding functions to PARI}
\subsec{Nota Bene}
%
As mentioned in the \kbd{COPYING} file, modified versions of the PARI package
can be distributed under the conditions of the GNU General Public License. If
you do modify PARI, however, it is certainly for a good reason, and we
would like to know about it, so that everyone can benefit from your changes.
There is then a good chance that your improvements are incorporated into the
next release.

We classify changes to PARI into four rough classes, where changes of the
first three types are almost certain to be accepted. The first type includes
all improvements to the documentation, in a broad sense. This includes
correcting typos or inaccuracies of course, but also items which are not
really covered in this document, e.g.~if you happen to write a tutorial,
or pieces of code exemplifying fine points unduly omitted in the present
manual.

The second type is to expand or modify the configuration routines and skeleton
files (the \kbd{Configure} script and anything in the \kbd{config/}
subdirectory) so that compilation is possible (or easier, or more efficient)
on an operating system previously not catered for. This includes discovering
and removing idiosyncrasies in the code that would hinder its portability.

The third type is to modify existing (mathematical) code, either to correct
bugs, to add new functionality to existing functions, or to improve their
efficiency.

Finally the last type is to add new functions to PARI. We explain here how
to do this, so that in particular the new function can be called from \kbd{gp}.

\subsec{Coding guidelines}\label{se:coding_guidelines}
\noindent
Code your function in a file of its own, using as a guide other functions
in the PARI sources. One important thing to remember is to clean the stack
before exiting your main function, since otherwise successive calls to
the function clutters the stack with unnecessary garbage, and stack
overflow occurs sooner. Also, if it returns a \kbd{GEN} and you want it
to be accessible to \kbd{gp}, you have to make sure this \kbd{GEN} is
suitable for \kbd{gerepileupto} (see \secref{se:garbage}).

If error messages or warnings are to be generated in your function, use
\kbd{pari\_err} and \kbd{pari\_warn} respectively.
Recall that \kbd{pari\_err} does not return but ends with a \kbd{longjmp}
statement. As well, instead of explicit \kbd{printf}~/ \kbd{fprintf}
statements, use the following encapsulated variants:

\fun{void}{pari_putc}{char c}: write character \kbd{c} to the output stream.

\fun{void}{pari_puts}{char *s}: write \kbd{s} to the output stream.

\fun{void}{pari_printf}{const char *fmt, ...}: write following arguments to the
output stream, according to the conversion specifications in format \kbd{fmt}
(see \tet{printf}).

\fun{void}{err_printf}{const char *fmt, ...}: as \tet{pari_printf}, writing to
PARI's current error stream.

\fun{void}{err_flush}{void} flush error stream.

Declare all public functions in an appropriate header file, if you
want to access them from C. The other functions should be declared
\kbd{static} in your file.

Your function is now ready to be used in library mode after compilation and
creation of the library. If possible, compile it as a shared library (see
the \kbd{Makefile} coming with the \kbd{extgcd} example in the
distribution). It is however still inaccessible from \kbd{gp}.\smallskip

\subsec{GP prototypes, parser codes}
\label{se:gp.interface}
A \tev{GP prototype} is a character string describing all the GP parser needs
to know about the function prototype. It contains a sequence of the following
atoms:

\settabs\+\indent&\kbd{Dxxx}\quad&\cr

\noindent\item Return type: \kbd{GEN} by default (must be valid for
\kbd{gerepileupto}), otherwise the following can appear as the \emph{first}
char of the code string:
%
\+& \kbd{i} & return \kbd{int}\cr
\+& \kbd{l} & return \kbd{long}\cr
\+& \kbd{u} & return \kbd{ulong}\cr
\+& \kbd{v} & return \kbd{void}\cr
\+& \kbd{m} & return a \kbd{GEN} which is not \kbd{gerepile}-safe.\cr

The \kbd{m} code is used for member functions, to avoid unnecessary copies. A
copy opcode is generated by the compiler if the result needs to be kept safe
for later use.

\noindent\item Mandatory arguments, appearing in the same order as the
input arguments they describe:
%
\+& \kbd{G} & \kbd{GEN}\cr
\+& \kbd{\&}& \kbd{*GEN}\cr
\+& \kbd{L} & \kbd{long} (we implicitly typecast \kbd{int} to \kbd{long})\cr
\+& \kbd{U} & \kbd{ulong} \cr
\+& \kbd{V} & loop variable\cr
\+& \kbd{n} & variable, expects a \idx{variable number} (a \kbd{long}, not an
\kbd{*entree})\cr
\+& \kbd{W} & a \kbd{GEN} which is a lvalue to be modified in place
(for \typ{LIST})\cr
\+& \kbd{r} & raw input (treated as a string without quotes). Quoted
 args are copied as strings\cr
\+&&\quad Stops at first unquoted \kbd{')'} or \kbd{','}. Special chars can
be quoted using \kbd{'\bs'}\cr
\+&&\quad Example: \kbd{aa"b\bs n)"c} yields the string \kbd{"aab\bs{n})c"}\cr
\+& \kbd{s} & expanded string. Example: \kbd{Pi"x"2} yields \kbd{"3.142x2"}\cr
\+&&\quad Unquoted components can be of any PARI type, converted to string
          following\cr
\+&&\quad current output format\cr
\+& \kbd{I} & closure whose value is ignored, as in \kbd{for} loops,\cr
\+&&\quad to be processed by \fun{void}{closure_evalvoid}{GEN C}\cr
\+& \kbd{E} & closure whose value is used, as in \kbd{sum} loops,\cr
\+&&\quad to be processed by \fun{void}{closure_evalgen}{GEN C}\cr
\+& \kbd{J} & implicit function of arity $1$, as in \kbd{parsum} loops,\cr
\+&&\quad to be processed by \fun{void}{closure_callgen1}{GEN C}\cr

\noindent A \tev{closure} is a GP function in compiled (bytecode) form. It
can be efficiently evaluated using the \kbd{closure\_eval}$xxx$ functions.

\noindent\item Automatic arguments:
%
\+& \kbd{f} &  Fake \kbd{*long}. C function requires a pointer but we
do not use the resulting \kbd{long}\cr
\+& \kbd{b} &  current real precision in bits \cr
\+& \kbd{p} &  current real precision in words \cr
\+& \kbd{P} &  series precision (default \kbd{seriesprecision},
 global variable \kbd{precdl} for the library)\cr
\+& \kbd{C} &  lexical context (internal, for \kbd{eval},
               see \kbd{localvars\_read\_str})\cr

\noindent\item Syntax requirements, used by functions like
 \kbd{for}, \kbd{sum}, etc.:
%
\+& \kbd{=} & separator \kbd{=} required at this point (between two
arguments)\cr

\noindent\item Optional arguments and default values:
%
\+& \kbd{E*} & any number of expressions, possibly 0 (see \kbd{E})\cr
\+& \kbd{s*} & any number of strings, possibly 0 (see \kbd{s})\cr
\+& \kbd{D\var{xxx}} &  argument can be omitted and has a default value\cr

The \kbd{E*} code reads all remaining arguments in closure context and passes
them as a single \typ{VEC}.
The \kbd{s*} code reads all remaining arguments in \tev{string context} and
passes the list of strings as a single \typ{VEC}. The automatic concatenation
rules in string context are implemented so that adjacent strings
are read as different arguments, as if they had been comma-separated. For
instance, if the remaining argument sequence is: \kbd{"xx" 1, "yy"}, the
\kbd{s*} atom sends \kbd{[a, b, c]}, where
$a$, $b$, $c$ are \kbd{GEN}s of type \typ{STR} (content \kbd{"xx"}),
\typ{INT} (equal to $1$) and \typ{STR} (content \kbd{"yy"}).

The format to indicate a default value (atom starts with a \kbd{D}) is
``\kbd{D\var{value},\var{type},}'', where \var{type} is the code for any
mandatory atom (previous group), \var{value} is any valid GP expression
which is converted according to \var{type}, and the ending comma is
mandatory. For instance \kbd{D0,L,} stands for ``this optional argument is
converted to a \kbd{long}, and is \kbd{0} by default''. So if the
user-given argument reads \kbd{1 + 3} at this point, \kbd{4L} is sent to
the function; and \kbd{0L} if the argument is omitted. The following
special notations are available:

\settabs\+\indent\indent&\kbd{Dxxx}\quad& optional \kbd{*GEN},&\cr
\+&\kbd{DG}& optional \kbd{GEN}, & send \kbd{NULL} if argument omitted.\cr

\+&\kbd{D\&}& optional \kbd{*GEN}, send \kbd{NULL} if argument omitted.\cr
\+&&\quad The argument must be prefixed by \kbd{\&}.\cr

\+&\kbd{DI}, \kbd{DE}& optional closure, send \kbd{NULL} if argument omitted.\cr

\+&\kbd{DP}& optional \kbd{long}, send \kbd{precdl} if argument omitted.\cr

\+&\kbd{DV}& optional \kbd{*entree}, send \kbd{NULL} if argument omitted.\cr

\+&\kbd{Dn}& optional variable number, $-1$ if omitted.\cr

\+&\kbd{Dr}& optional raw string, send \kbd{NULL} if argument omitted.\cr

\+&\kbd{Ds}& optional \kbd{char *}, send \kbd{NULL} if argument omitted.\cr

\misctitle{Hardcoded limit} C functions using more than 20 arguments are not
supported. Use vectors if you really need that many parameters.

When the function is called under \kbd{gp}, the prototype is scanned and each
time an atom corresponding to a mandatory argument is met, a user-given
argument is read (\kbd{gp} outputs an error message it the argument was
missing). Each time an optional atom is met, a default value is inserted if the
user omits the argument. The ``automatic'' atoms fill in the argument list
transparently, supplying the current value of the corresponding variable (or a
dummy pointer).

For instance, here is how you would code the following prototypes, which
do not involve default values:
\bprog
GEN f(GEN x, GEN y, long prec)   ----> "GGp"
void f(GEN x, GEN y, long prec)  ----> "vGGp"
void f(GEN x, long y, long prec) ----> "vGLp"
long f(GEN x)                    ----> "lG"
int f(long x)                    ----> "iL"
@eprog\noindent
If you want more examples, \kbd{gp} gives you easy access to the parser codes
attached to all GP functions: just type \kbd{\b{h} \var{function}}. You
can then compare with the C prototypes as they stand in \kbd{paridecl.h}.

\misctitle{Remark} If you need to implement complicated control statements
(probably for some improved summation functions), you need to know
how the parser implements closures and lexicals and how the evaluator lets
you deal with them, in particular the \tet{push_lex} and \tet{pop_lex}
functions. Check their descriptions and adapt the source code in
\kbd{language/sumiter.c} and \kbd{language/intnum.c}.

\subsec{Integration with \kbd{gp} as a shared module}

In this section we assume that your Operating System is supported by
\tet{install}. You have written a function in C following the guidelines is
\secref{se:coding_guidelines}; in case the function returns a \kbd{GEN}, it
must satisfy \kbd{gerepileupto} assumptions (see \secref{se:garbage}).

You then succeeded in building it as part of a shared library and want to
finally tell \kbd{gp} about your function. First, find a name for it. It does
not have to match the one used in library mode, but consistency is nice. It
has to be a valid GP identifier, i.e.~use only alphabetic characters, digits
and the underscore character (\kbd{\_}), the first character being
alphabetic.

Then figure out the correct \idx{parser code} corresponding to the function
prototype (as explained in~\secref{se:gp.interface}) and write a GP script
like the following:
\bprog
install(libname, code, gpname, library)
addhelp(gpname, "some help text")
@eprog
\noindent The \idx{addhelp} part is not mandatory, but very useful if you
want others to use your module. \kbd{libname} is how the function is named in
the library, usually the same name as one visible from C.

Read that file from your \kbd{gp} session, for instance from your
\idx{preferences file} (or \kbd{gprc}), and that's it. You
can now use the new function \var{gpname} under \kbd{gp}, and we would very
much like to hear about it!
\smallskip

\misctitle{Example}
A complete description could look like this:
\bprog
{
  install(bnfinit0, "GD0,L,DGp", ClassGroupInit, "libpari.so");
  addhelp(ClassGroupInit, "ClassGroupInit(P,{flag=0},{data=[]}):
    compute the necessary data for ...");
}
@eprog\noindent which means we have a function \kbd{ClassGroupInit} under
\kbd{gp}, which calls the library function \kbd{bnfinit0} . The function has
one mandatory argument, and possibly two more (two \kbd{'D'} in the code),
plus the current real precision. More precisely, the first argument is a
\kbd{GEN}, the second one is converted to a \kbd{long} using \kbd{itos}
(\kbd{0} is passed if it is omitted), and the third one is also a \kbd{GEN},
but we pass \kbd{NULL} if no argument was supplied by the user. This matches
the C prototype (from \kbd{paridecl.h}):
%
\bprog
  GEN bnfinit0(GEN P, long flag, GEN data, long prec)
@eprog\noindent
This function is in fact coded in \kbd{basemath/buch2.c}, and is in this case
completely identical to the GP function \kbd{bnfinit} but \kbd{gp} does not
need to know about this, only that it can be found somewhere in the shared
library \kbd{libpari.so}.

\misctitle{Important note} You see in this example that it is the
function's responsibility to correctly interpret its operands: \kbd{data =
NULL} is interpreted \emph{by the function} as an empty vector. Note that
since \kbd{NULL} is never a valid \kbd{GEN} pointer, this trick always
enables you to distinguish between a default value and actual input: the
user could explicitly supply an empty vector!

\subsec{Library interface for \kbd{install}}

There is a corresponding library interface for this \kbd{install}
functionality, letting you expand the GP parser/evaluator available in the
library with new functions from your C source code. Functions such as
\tet{gp_read_str} may then evaluate a GP expression sequence involving calls
to these new function!

\fun{entree *}{install}{void *f, const char *gpname, const char *code}

\noindent where \kbd{f} is the (address of the) function (cast to
\kbd{void*}), \kbd{gpname} is the name by which you want to access your
function from within your GP expressions, and \kbd{code} is as above.


\subsec{Integration by patching \kbd{gp}}

If \tet{install} is not available, and installing Linux or a BSD operating
system is not an option (why?), you have to hardcode your function in the
\kbd{gp} binary. Here is what needs to be done:

\item Fetch the complete sources of the PARI distribution.

\item Drop the function source code module in an appropriate directory
(a priori \kbd{src/modules}), and declare all public functions
in \kbd{src/headers/paridecl.h}.

\item Choose a help section and add a file
\kbd{src/functions/\var{section}/\var{gpname}}
containing the following, keeping the notation above:
\bprog
Function:  @com\var{gpname}
Section:   @com\var{section}
C-Name:    @com\var{libname}
Prototype: @com\var{code}
Help:      @com\var{some help text}
@eprog\noindent
(If the help text does not fit on a single line, continuation lines must
start by a whitespace character.) Two GP2C-related fields (\kbd{Description}
and \kbd{Wrapper}) are also available to improve the code GP2C generates when
compiling scripts involving your function. See the GP2C documentation for
details.

\item Launch \kbd{Configure}, which should pick up your C files and build an
appropriate \kbd{Makefile}. At this point you can recompile \kbd{gp}, which
will first rebuild the functions database.

\misctitle{Example} We reuse the \kbd{ClassGroupInit} / \kbd{bnfinit0}
from the preceding section. Since the C source code is already part
of PARI, we only need to add a file

 \kbd{functions/number\_fields/ClassGroupInit}

\noindent containing the following:
\bprog
Function: ClassGroupInit
Section: number_fields
C-Name: bnfinit0
Prototype: GD0,L,DGp
Help: ClassGroupInit(P,{flag=0},{tech=[]}): this routine does @com\dots
@eprog\noindent
and recompile \kbd{gp}.

\section{Globals related to PARI configuration}
\subsec{PARI version numbers}

\noindent \tet{paricfg_version_code} encodes in a single \kbd{long}, the Major
and minor version numbers as well as the patchlevel.

\fun{long}{PARI_VERSION}{long M, long m, long p} produces the version code
attached to release $M.m.p$. Each code identifies a unique PARI release,
and corresponds to the natural total order on the set of releases (bigger
code number means more recent release).

\noindent \tet{PARI_VERSION_SHIFT} is the number of bits used to store each of
the integers $M$, $m$, $p$ in the version code.

\noindent \tet{paricfg_vcsversion} is a version string related to the
revision control system used to handle your sources, if any. For instance
\kbd{git-}\emph{commit hash} if compiled from a git repository.

The two character strings \tet{paricfg_version} and \tet{paricfg_buildinfo},
correspond to the first two lines printed by \kbd{gp} just before the
Copyright message. The character string \tet{paricfg_compiledate} is the
date of compilation which appears on the next line. The character string
\tet{paricfg_mt_engine} is the name of the threading engine on the next line.

\fun{GEN}{pari_version}{} returns the version number as a PARI object, a
\typ{VEC} with three \typ{INT} and one \typ{STR} components.

\subsec{Miscellaneous}

\tet{paricfg_datadir}: character string. The location of PARI's \tet{datadir}.

\newpage
\chapter{Arithmetic kernel: Level 0 and 1}

\section{Level 0 kernel (operations on ulongs)}

\subsec{Micro-kernel}
The Level 0 kernel simulates basic operations of the 68020 processor on which
PARI was originally implemented. They need ``global'' \kbd{ulong} variables
\kbd{overflow} (which will contain only 0 or 1) and \kbd{hiremainder} to
function properly. A routine using one of these lowest-level functions
where the description mentions either \kbd{hiremainder} or \kbd{overflow}
must declare the corresponding
\bprog
  LOCAL_HIREMAINDER;  /* provides 'hiremainder' */
  LOCAL_OVERFLOW;     /* provides 'overflow' */
@eprog\noindent
in a declaration block. Variables \kbd{hiremainder} and \kbd{overflow} then
become available in the enclosing block. For instance a loop over the powers
of an \kbd{ulong}~\kbd{p} protected from overflows could read
\bprog
 while (pk < lim)
 {
   LOCAL_HIREMAINDER;
   ...
   pk = mulll(pk, p); if (hiremainder) break;
 }
@eprog\noindent
For most architectures, the functions mentioned below are really chunks of
inlined assembler code, and the above `global' variables are actually
local register values.

\fun{ulong}{addll}{ulong x, ulong y} adds \kbd{x} and \kbd{y}, returns the
lower \B\ bits and puts the carry bit into \kbd{overflow}.

\fun{ulong}{addllx}{ulong x, ulong y} adds \kbd{overflow} to the sum of the
\kbd{x} and \kbd{y}, returns the lower \B\ bits and puts the carry bit into
\kbd{overflow}.

\fun{ulong}{subll}{ulong x, ulong y} subtracts \kbd{x} and \kbd{y}, returns
the lower \B\ bits and put the carry (borrow) bit into \kbd{overflow}.

\fun{ulong}{subllx}{ulong x, ulong y} subtracts \kbd{overflow} from the
difference of \kbd{x} and \kbd{y}, returns the lower \B\ bits and puts the
carry (borrow) bit into \kbd{overflow}.

\fun{int}{bfffo}{ulong x} returns the number of leading zero bits in \kbd{x}.
That is, the number of bit positions by which it would have to be shifted
left until its leftmost bit first becomes equal to~1, which can be between 0
and $\B-1$ for nonzero \kbd{x}. When \kbd{x} is~0, the result is undefined.

\fun{ulong}{mulll}{ulong x, ulong y} multiplies \kbd{x} by \kbd{y}, returns
the lower \B\ bits and stores the high-order \B\ bits into \kbd{hiremainder}.

\fun{ulong}{addmul}{ulong x, ulong y} adds \kbd{hiremainder} to the product
of \kbd{x} and \kbd{y}, returns the lower \B\ bits and stores the high-order
\B\ bits into \kbd{hiremainder}.

\fun{ulong}{divll}{ulong x, ulong y} returns the quotient of
$  \left(\kbd{hiremainder} * 2^{\B}\right) + \kbd{x} $
by \kbd{y} and stores the remainder into \kbd{hiremainder}. An error occurs
if the quotient cannot be represented by an \kbd{ulong}, i.e.~if initially
$\kbd{hiremainder}\ge\kbd{y}$.

\misctitle{Obsolete routines} Those functions are awkward and no longer used;
they are only provided for backward compatibility:

\fun{ulong}{shiftl}{ulong x, ulong y} returns $x$ shifted left by $y$ bits,
i.e.~\kbd{$x$ << $y$}, where we assume that $0\leq y\leq\B$. The global variable
\kbd{hiremainder} receives the bits that were shifted out,
i.e.~\kbd{$x$ >> $(\B - y)$}.

\fun{ulong}{shiftlr}{ulong x, ulong y} returns $x$ shifted right by $y$ bits,
i.e.~\kbd{$x$ >> $y$}, where we assume that $0\leq y\leq\B$. The global variable
\kbd{hiremainder} receives the bits that were shifted out,
i.e.~\kbd{$x$ << $(\B - y)$}.

\subsec{Modular kernel}
The following routines are not part of the level 0 kernel per se, but
implement modular operations on words in terms of the above. They are written
so that no overflow may occur. Let $m \geq 1$ be the modulus; all operands
representing classes modulo $m$ are assumed to belong to $[0,m-1]$. The
result may be wrong for a number of reasons otherwise: it may not be reduced,
overflow can occur, etc.

\fun{int}{odd}{ulong x} returns 1 if $x$ is odd, and 0 otherwise.

\fun{int}{both_odd}{ulong x, ulong y} returns 1 if $x$ and $y$ are both odd,
and 0 otherwise.

\fun{ulong}{invmod2BIL}{ulong x} returns the smallest
positive representative of $x^{-1}$ mod $2^\B$, assuming $x$ is odd.

\fun{ulong}{Fl_add}{ulong x, ulong y, ulong m} returns the smallest
positive representative of $x + y$ modulo $m$.

\fun{ulong}{Fl_neg}{ulong x, ulong m} returns the smallest
positive representative of $-x$ modulo $m$.

\fun{ulong}{Fl_sub}{ulong x, ulong y, ulong m} returns the smallest
positive representative of $x - y$ modulo $m$.

\fun{long}{Fl_center}{ulong x, ulong m, ulong mo2} returns the representative
in $]-m/2,m/2]$ of $x$ modulo $m$. Assume $0 \leq x < m$ and
$\kbd{mo2}  = m >> 1$.

\fun{ulong}{Fl_mul}{ulong x, ulong y, ulong m} returns the smallest positive
representative of $x y$ modulo $m$.

\fun{ulong}{Fl_double}{ulong x, ulong m} returns $2x$ modulo $m$.

\fun{ulong}{Fl_triple}{ulong x, ulong m} returns $3x$ modulo $m$.

\fun{ulong}{Fl_halve}{ulong x, ulong m} returns $z$ such that $2\*z = x$ modulo
$m$ assuming such $z$ exists.

\fun{ulong}{Fl_sqr}{ulong x, ulong m} returns the smallest positive
representative of $x^2$ modulo $m$.

\fun{ulong}{Fl_inv}{ulong x, ulong m} returns the smallest
positive representative of $x^{-1}$ modulo $m$. If $x$ is not invertible
mod~$m$, raise an exception.

\fun{ulong}{Fl_invsafe}{ulong x, ulong m} returns the smallest
positive representative of $x^{-1}$ modulo $m$. If $x$ is not invertible
mod~$m$, return $0$ (which is ambiguous if $m=1$).

\fun{ulong}{Fl_invgen}{ulong x, ulong m, ulong *pg} set \kbd{*pg} to
$g = \gcd(x,m)$ and return $u$ (invertible) such that $x u = g$ modulo $m$.
We have $g = 1$ if and only if $x$ is invertible, and in this case $u$
is its inverse.

\fun{ulong}{Fl_div}{ulong x, ulong y, ulong m} returns the smallest
positive representative of $x y^{-1}$ modulo $m$. If $y$ is not invertible
mod $m$, raise an exception.

\fun{ulong}{Fl_powu}{ulong x, ulong n, ulong m} returns the smallest
positive representative of $x^n$ modulo $m$.

\fun{GEN}{Fl_powers}{ulong x, long n, ulong p} returns
$[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ modulo $m$, as a \typ{VECSMALL}.

\fun{ulong}{Fl_sqrt}{ulong x, ulong p} returns the square root of \kbd{x}
modulo \kbd{p} (smallest positive representative). Assumes \kbd{p} to be
prime, and \kbd{x} to be a square modulo \kbd{p}.

\fun{ulong}{Fl_sqrtl}{ulong x, ulong l, ulong p} returns a $l$-the root of \kbd{x}
modulo \kbd{p}. Assumes \kbd{p} to be prime and $p \equiv 1 \pmod{l}$, and
\kbd{x} to be a $l$-th power modulo \kbd{p}.

\fun{ulong}{Fl_order}{ulong a, ulong o, ulong p} returns the order of the
\kbd{Fp} \kbd{a}. It is assumed that \kbd{o} is a multiple of the order of
\kbd{a}, $0$ being allowed (no non-trivial information).

\fun{ulong}{random_Fl}{ulong p} returns a pseudo-random integer uniformly
distributed in $0, 1, \dots p-1$.

\fun{ulong}{pgener_Fl}{ulong p} returns the smallest \idx{primitive root}
modulo \kbd{p}, assuming \kbd{p} is prime.

\fun{ulong}{pgener_Zl}{ulong p} returns the smallest primitive root modulo
$p^k$, $k > 1$, assuming $p$ is an odd prime.

\fun{ulong}{pgener_Fl_local}{ulong p, GEN L}, see \kbd{gener\_Fp\_local},
\kbd{L} is an \kbd{Flv}.

\subsec{Modular kernel with ``precomputed inverse''}

This is based on an algorithm by T. Grandlund and N. M\"{o}ller in
``Improved division by invariant integers''
\url{http://gmplib.org/~tege/division-paper.pdf}.

In the following, we set $B=\B$.

\fun{ulong}{get_Fl_red}{ulong p} returns a pseudo inverse \var{pi} for $p$

\fun{ulong}{divll_pre}{ulong x, ulong p, ulong yi}
as divll, where $yi$ is the pseudo inverse of $y$.

\fun{ulong}{remll_pre}{ulong u1, ulong u0, ulong p, ulong pi} returns
the Euclidean remainder of $u_1\*2^B+u_0$ modulo $p$, assuming $pi$ is the
pseudo inverse of $p$.  This function is faster if $u_1 < p$.

\fun{ulong}{remlll_pre}{ulong u2, ulong u1, ulong u0, ulong p, ulong pi}
returns the Euclidean remainder of $u_2\*2^{2\*B}+u_1\*2^{B}+u_0$ modulo $p$,
assuming $pi$ is the pseudo inverse of $p$.

\fun{ulong}{Fl_sqr_pre}{ulong x, ulong p, ulong pi} returns $x^2$ modulo $p$,
assuming $pi$ is the pseudo inverse of $p$.

\fun{ulong}{Fl_mul_pre}{ulong x, ulong y, ulong p, ulong pi} returns $x\*y$
modulo $p$, assuming $pi$ is the pseudo inverse of $p$.

\fun{ulong}{Fl_addmul_pre}{ulong a, ulong b, ulong c, ulong p,  ulong pi}
returns $a\*b+c$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.

\fun{ulong}{Fl_addmulmul_pre}{ulong a,ulong b, ulong c,ulong d, ulong p, ulong pi}
returns $a\*b+c\*d$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.

\fun{ulong}{Fl_powu_pre}{ulong x, ulong n, ulong p, ulong pi} returns
$x^n$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.

\fun{GEN}{Fl_powers_pre}{ulong x, long n, ulong p, ulong pi} returns
the vector (\typ{VECSMALL}) $(x^0, \dots, x^n)$, assuming $pi$ is
the pseudo inverse of $p$.

\fun{ulong}{Fl_sqrt_pre}{ulong x, ulong p, ulong pi} returns a square root
of $x$ modulo $p$, assuming $pi$ is the pseudo inverse of $p$.
See \kbd{Fl\_sqrt}.

\fun{ulong}{Fl_sqrtl_pre}{ulong x, ulong l, ulong p, ulong pi}
returns a $l$-the root of \kbd{x}
modulo \kbd{p}, assuming $pi$ is the pseudo inverse of $p$,
$p$ prime and $p \equiv 1 \pmod{l}$, and \kbd{x} to be a $l$-th power modulo
\kbd{p}.

\subsec{Switching between Fl\_xxx and standard operators}

Even though the \kbd{Fl\_xxx} routines are efficient, they are slower than
ordinary \kbd{long} operations, using the standard \kbd{+}, \kbd{\%}, etc.
operators.
The following macro is used to choose in a portable way the most efficient
functions for given operands:

\fun{int}{SMALL_ULONG}{ulong p} true if $2p^2 <2^\B$. In that case, it is
possible to use ordinary operators efficiently. If $p < 2^\B$, one
may still use the \kbd{Fl\_xxx} routines. Otherwise, one must use generic
routines. For instance, the scalar product of the \kbd{GEN}s $x$ and $y$ mod
$p$ could be computed as follows.
\bprog
    long i, l = lg(x);
    if (lgefint(p) > 3)
    { /* arbitrary */
      GEN s = gen_0;
      for (i = 1; i < l; i++) s = addii(s, mulii(gel(x,i), gel(y,i)));
      return modii(s, p).
    }
    else
    {
      ulong s = 0, pp = itou(p);
      x = ZV_to_Flv(x, pp);
      y = ZV_to_Flv(y, pp);
      if (SMALL_ULONG(pp))
      { /* very small */
        for (i = 1; i < l; i++)
        {
          s += x[i] * y[i];
          if (s & HIGHBIT) s %= pp;
        }
        s %= pp;
      }
      else
      { /* small */
        for (i = 1; i < l; i++)
          s = Fl_add(s, Fl_mul(x[i], y[i], pp), pp);
      }
      return utoi(s);
    }
@eprog\noindent
In effect, we have three versions of the same code: very small, small, and
arbitrary inputs. The very small and arbitrary variants use lazy reduction
and reduce only when it becomes necessary: when overflow might occur (very
small), and at the very end (very small, arbitrary).

\section{Level 1 kernel (operations on longs, integers and reals)}

\misctitle{Note} Some functions consist of an elementary operation,
immediately followed by an assignment statement. They will be introduced as
in the following example:

\fun{GEN}{gadd[z]}{GEN x, GEN y[, GEN z]} followed by the explicit
description of the function

\fun{GEN}{gadd}{GEN x, GEN y}

\noindent which creates its result on the stack, returning a \kbd{GEN} pointer
to it, and the parts in brackets indicate that there exists also a function

\fun{void}{gaddz}{GEN x, GEN y, GEN z}

\noindent which assigns its result to the pre-existing object
\kbd{z}, leaving the stack unchanged. These assignment variants are kept for
backward compatibility but are inefficient: don't use them.

\subsec{Creation}

\fun{GEN}{cgeti}{long n} allocates memory on the PARI stack for a \typ{INT}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{INT})}.

\fun{GEN}{cgetipos}{long n} allocates memory on the PARI stack for a
\typ{INT} of length~\kbd{n}, and initializes its two codewords. The sign
of \kbd{n} is set to $1$.

\fun{GEN}{cgetineg}{long n} allocates memory on the PARI stack for a negative
\typ{INT} of length~\kbd{n}, and initializes its two codewords. The sign
of \kbd{n} is set to $-1$.

\fun{GEN}{cgetr}{long n} allocates memory on the PARI stack for a \typ{REAL}
of length~\kbd{n}, and initializes its first codeword. Identical to
\kbd{cgetg(n,\typ{REAL})}.

\fun{GEN}{cgetc}{long n} allocates memory on the PARI stack for a
\typ{COMPLEX}, whose real and imaginary parts are \typ{REAL}s
of length~\kbd{n}.

\fun{GEN}{real_1}{long prec} create a \typ{REAL} equal to $1$ to \kbd{prec}
words of accuracy.

\fun{GEN}{real_1_bit}{long bitprec} create a \typ{REAL} equal to $1$ to
\kbd{bitprec} bits of accuracy.

\fun{GEN}{real_m1}{long prec} create a \typ{REAL} equal to $-1$ to \kbd{prec}
words of accuracy.

\fun{GEN}{real_0_bit}{long bit} create a \typ{REAL} equal to $0$ with
exponent $-\kbd{bit}$.

\fun{GEN}{real_0}{long prec} is a shorthand for
\bprog
  real_0_bit( -prec2nbits(prec) )
@eprog

\fun{GEN}{int2n}{long n} creates a \typ{INT} equal to \kbd{1<<n} (i.e
$2^n$ if $n \geq 0$, and $0$ otherwise).

\fun{GEN}{int2u}{ulong n} creates a \typ{INT} equal to $2^n$.

\fun{GEN}{real2n}{long n, long prec} create a \typ{REAL} equal to $2^n$
to \kbd{prec} words of accuracy.

\fun{GEN}{real_m2n}{long n, long prec} create a \typ{REAL} equal to $-2^n$
to \kbd{prec} words of accuracy.

\fun{GEN}{strtoi}{char *s} convert the character string \kbd{s} to a
non-negative \typ{INT}.
Decimal numbers, hexadecimal numbers prefixed by \kbd{0x} and binary numbers prefixed
by \kbd{0b} are allowed.  The string \kbd{s} consists exclusively of digits:
no leading sign, no whitespace. Leading zeroes are discarded.

\fun{GEN}{strtor}{char *s, long prec} convert the character string \kbd{s} to
a non-negative \typ{REAL} of precision \kbd{prec}. The string \kbd{s}
consists exclusively of digits and optional decimal point and exponent
(\kbd{e} or \kbd{E}): no leading sign, no whitespace. Leading zeroes are
discarded.

\subsec{Assignment}
In this section, the \kbd{z} argument in the \kbd{z}-functions must be of type
\typ{INT} or~\typ{REAL}.

\fun{void}{mpaff}{GEN x, GEN z} assigns \kbd{x} into~\kbd{z} (where \kbd{x}
and \kbd{z} are \typ{INT} or \typ{REAL}).
Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affii}{GEN x, GEN z} assigns the \typ{INT} \kbd{x} into the
\typ{INT}~\kbd{z}.

\fun{void}{affir}{GEN x, GEN z} assigns the \typ{INT} \kbd{x} into the
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affiz}{GEN x, GEN z} assigns \typ{INT}~\kbd{x} into \typ{INT} or
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affsi}{long s, GEN z} assigns the \kbd{long}~\kbd{s} into the
\typ{INT}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affsr}{long s, GEN z} assigns the \kbd{long}~\kbd{s} into the
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affsz}{long s, GEN z} assigns the \kbd{long}~\kbd{s} into the
\typ{INT} or \typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affui}{ulong u, GEN z} assigns the \kbd{ulong}~\kbd{u} into the
\typ{INT}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affur}{ulong u, GEN z} assigns the \kbd{ulong}~\kbd{u} into the
\typ{REAL}~\kbd{z}. Assumes that $\kbd{lg(z)} > 2$.

\fun{void}{affrr}{GEN x, GEN z} assigns the \typ{REAL}~\kbd{x} into the
\typ{REAL}~\kbd{z}.

\fun{void}{affgr}{GEN x, GEN z} assigns the scalar \kbd{x} into the
\typ{REAL}~\kbd{z}, if possible.

\noindent The function \kbd{affrs} and \kbd{affri} do not exist. So don't use
them.

\fun{void}{affrr_fixlg}{GEN y, GEN z} a variant of \kbd{affrr}. First shorten
$z$ so that it is no longer than $y$, then assigns $y$ to $z$. This is used
in the following scenario: room is reserved for the result but, due to
cancellation, fewer words of accuracy are available than had been
anticipated; instead of appending meaningless $0$s to the mantissa, we store
what was actually computed.

Note that shortening $z$ is not quite straightforward, since \kbd{setlg(z, ly)}
would leave garbage on the stack, which \kbd{gerepile} might later inspect.
It is done using

\fun{void}{fixlg}{GEN z, long ly} see \tet{stackdummy} and the examples that
follow.

\subsec{Copy}

\fun{GEN}{icopy}{GEN x} copy relevant words of the \typ{INT}~\kbd{x} on the
stack: the length and effective length of the copy are equal.

\fun{GEN}{rcopy}{GEN x} copy the \typ{REAL}~\kbd{x} on the stack.

\fun{GEN}{leafcopy}{GEN x} copy the leaf~\kbd{x} on the
stack (works in particular for \typ{INT}s and \typ{REAL}s).
Contrary to \kbd{icopy}, \kbd{leafcopy} preserves the original
length of a \typ{INT}. The obsolete form \fun{GEN}{mpcopy}{GEN x}
is still provided for backward compatibility.

This function also works on recursive types, copying them as if they were
leaves, i.e.~making a shallow copy in that case: the components of the copy
point to the same data as the component of the source; see also
\kbd{shallowcopy}.

\fun{GEN}{leafcopy_avma}{GEN x, pari_sp av} analogous to \kbd{gcopy\_avma}
but simpler: assume $x$ is a leaf and return a copy allocated as if
initially we had \kbd{avma} equal to \kbd{av}. There is no need to pass a
pointer and update the value of the second argument: the new (fictitious)
\kbd{avma} is just the return value (typecast to \kbd{pari\_sp}).

\fun{GEN}{icopyspec}{GEN x, long nx} copy the \kbd{nx} words
\kbd{x[2]}, \dots, \kbd{x[nx+1]} to make up a new \typ{INT}. Set the sign
to $1$.

\subsec{Conversions}

\fun{GEN}{itor}{GEN x, long prec} converts the \typ{INT}~\kbd{x} to a
\typ{REAL} of length \kbd{prec} and return the latter.
Assumes that $\kbd{prec} > 2$.

\fun{long}{itos}{GEN x} converts the \typ{INT}~\kbd{x} to a \kbd{long} if
possible, otherwise raise an exception. We consider the conversion
to be possible if and only if $|x| \leq \kbd{LONG\_MAX}$, i.e. $|x| < 2^{63}$
on a 64-bit architecture. Since the range is symetric, the output of
\kbd{itos} can safely be negated.

\fun{long}{itos_or_0}{GEN x} converts the \typ{INT}~\kbd{x} to a \kbd{long} if
possible, otherwise return $0$.

\fun{int}{is_bigint}{GEN n} true if \kbd{itos(n)} would give an error.

\fun{ulong}{itou}{GEN x} converts the \typ{INT}~\kbd{|x|} to an \kbd{ulong} if
possible, otherwise raise an exception. The conversion is possible if
and only if $\kbd{lgefint}(x) \leq 3$.

\fun{long}{itou_or_0}{GEN x} converts the \typ{INT}~\kbd{|x|} to an
\kbd{ulong} if possible, otherwise return $0$.

\fun{GEN}{stoi}{long s} creates the \typ{INT} corresponding to the
\kbd{long}~\kbd{s}.

\fun{GEN}{stor}{long s, long prec} converts the \kbd{long}~\kbd{s} into a
\typ{REAL} of length \kbd{prec} and return the latter. Assumes that
$\kbd{prec} > 2$.

\fun{GEN}{utoi}{ulong s} converts the \kbd{ulong}~\kbd{s} into a \typ{INT}
and return the latter.

\fun{GEN}{utoipos}{ulong s} converts the \emph{non-zero} \kbd{ulong}~\kbd{s}
into a \typ{INT} and return the latter.

\fun{GEN}{utoineg}{ulong s} converts the \emph{non-zero} \kbd{ulong}~\kbd{s}
into the \typ{INT} $-s$ and return the latter.

\fun{GEN}{utor}{ulong s, long prec} converts the \kbd{ulong}~\kbd{s} into a
\typ{REAL} of length \kbd{prec} and return the latter. Assumes that
$\kbd{prec} > 2$.

\fun{GEN}{rtor}{GEN x, long prec} converts the \typ{REAL}~\kbd{x} to a
\typ{REAL} of length \kbd{prec} and return the latter. If
$\kbd{prec} < \kbd{lg(x)}$, round properly. If $\kbd{prec} > \kbd{lg(x)}$,
pad with zeroes. Assumes that $\kbd{prec} > 2$.

\noindent The following function is also available as a special case of
\tet{mkintn}:

\fun{GEN}{uu32toi}{ulong a, ulong b} returns the \kbd{GEN} equal to $2^{32} a +
b$, \emph{assuming} that $a,b < 2^{32}$. This does not depend on
\kbd{sizeof(long)}: the behavior is as above on both $32$ and $64$-bit
machines.

\fun{GEN}{uutoi}{ulong a, ulong b} returns the \kbd{GEN} equal to
$2^{\B} a + b$.

\fun{GEN}{uutoineg}{ulong a, ulong b} returns the \kbd{GEN} equal to
$-(2^{\B} a + b)$.

\subsec{Integer parts}
The following four functions implement the conversion from \typ{REAL} to
\typ{INT} using standard rounding modes. Contrary to usual semantics
(complement the mantissa with an infinite number of 0), they will raise an
error \emph{precision loss in truncation} if the \typ{REAL} represents a
range containing more than one integer.

\fun{GEN}{ceilr}{GEN x} smallest integer larger or equal
to the \typ{REAL}~\kbd{x} (i.e.~the \kbd{ceil} function).

\fun{GEN}{floorr}{GEN x} largest integer smaller or equal to the
\typ{REAL}~\kbd{x} (i.e.~the \kbd{floor} function).

\fun{GEN}{roundr}{GEN x} rounds the \typ{REAL} \kbd{x} to the nearest integer
(towards~$+\infty$ in case of tie).

\fun{GEN}{truncr}{GEN x} truncates the \typ{REAL}~\kbd{x} (not the same as
\kbd{floorr} if \kbd{x} is negative).

The following four function are analogous, but can also treat the trivial
case when the argument is a \typ{INT}:

\fun{GEN}{mpceil}{GEN x}
as \kbd{ceilr} except that \kbd{x} may be a \typ{INT}.

\fun{GEN}{mpfloor}{GEN x}
as \kbd{floorr} except that \kbd{x} may be a \typ{INT}.

\fun{GEN}{mpround}{GEN x}
as \kbd{roundr} except that \kbd{x} may be a \typ{INT}.

\fun{GEN}{mptrunc}{GEN x}
as \kbd{truncr} except that \kbd{x} may be a \typ{INT}.

\fun{GEN}{diviiround}{GEN x, GEN y} if \kbd{x} and \kbd{y} are \typ{INT}s,
returns the quotient $\kbd{x}/\kbd{y}$ of \kbd{x} and~\kbd{y}, rounded to
the nearest integer. If $\kbd{x}/\kbd{y}$ falls exactly halfway between
two consecutive integers, then it is rounded towards~$+\infty$ (as for
\tet{roundr}).

\fun{GEN}{ceil_safe}{GEN x}, \kbd{x} being a real number (not necessarily a
\typ{REAL}) returns the smallest integer which is larger than any possible
incarnation of \kbd{x}. (Recall that a \typ{REAL} represents an interval of
possible values.) Note that \kbd{gceil} raises an exception if the input
accuracy is too low compared to its magnitude.

\fun{GEN}{floor_safe}{GEN x}, \kbd{x} being a real number (not necessarily a
\typ{REAL}) returns the largest integer which is smaller than any possible
incarnation of \kbd{x}. (Recall that a \typ{REAL} represents an interval of
possible values.) Note that \kbd{gfloor} raises an exception if the input
accuracy is too low compared to its magnitude.

\fun{GEN}{trunc_safe}{GEN x}, \kbd{x} being a real number (not necessarily a
\typ{REAL}) returns the integer with the largest absolute value, which is closer
to $0$ than any possible incarnation of \kbd{x}. (Recall that a \typ{REAL}
represents an interval of possible values.)

\fun{GEN}{roundr_safe}{GEN x} rounds the \typ{REAL} \kbd{x} to the nearest
integer (towards~$+\infty$). Complement the mantissa with an infinite number
of $0$ before rounding, hence never raise an exception.

\subsec{$2$-adic valuations and shifts}

\fun{long}{vals}{long s} 2-adic valuation of the \kbd{long}~\kbd{s}. Returns
$-1$ if \kbd{s} is equal to 0.

\fun{long}{vali}{GEN x} 2-adic valuation of the \typ{INT}~\kbd{x}. Returns $-1$
if \kbd{x} is equal to 0.

\fun{GEN}{mpshift}{GEN x, long n} shifts the~\typ{INT} or
\typ{REAL} \kbd{x} by~\kbd{n}. If \kbd{n} is positive, this is a left shift,
i.e.~multiplication by $2^{\kbd{n}}$. If \kbd{n} is negative, it is a right
shift by~$-\kbd{n}$, which amounts to the truncation of the quotient of \kbd{x}
by~$2^{-\kbd{n}}$.

\fun{GEN}{shifti}{GEN x, long n} shifts the \typ{INT}~$x$ by~$n$.

\fun{GEN}{shiftr}{GEN x, long n} shifts the \typ{REAL}~$x$ by~$n$.

\fun{void}{shiftr_inplace}{GEN x, long n} shifts the \typ{REAL}~$x$ by~$n$,
in place.

\fun{GEN}{trunc2nr}{GEN x, long n} given a \typ{REAL} $x$, returns
\kbd{truncr(shiftr(x,n))}, but faster, without leaving garbage on the stack
and never raising a \emph{precision loss in truncation} error.
Called by \tet{gtrunc2n}.

\fun{GEN}{trunc2nr_lg}{GEN x, long lx, long n} given a \typ{REAL} $x$, returns
\kbd{trunc2nr(x,n)}, pretending that the length of $x$ is \kbd{lx}, which
must be $\leq \kbd{lg}(x)$.

\fun{GEN}{mantissa2nr}{GEN x, long n} given a \typ{REAL} $x$, returns
the mantissa of $x 2^n$ (disregards the exponent of $x$). Equivalent to
\bprog
  trunc2nr(x, n-expo(x)+bit_prec(x)-1)
@eprog

\fun{GEN}{mantissa_real}{GEN z, long *e} returns the mantissa $m$ of $z$, and
sets \kbd{*e} to the exponent $\kbd{bit\_accuracy(lg(z))}-1-\kbd{expo}(z)$,
so that $z = m / 2^e$.

\misctitle{Low-level} In the following two functions, $s$(ource) and $t$(arget)
need not be valid \kbd{GEN}s (in practice, they usually point to some part of a
\typ{REAL} mantissa): they are considered as arrays of words representing some
mantissa, and we shift globally $s$ by $n > 0$ bits, storing the result in
$t$. We assume that $m\leq M$ and only access $s[m], s[m+1],\ldots s[M]$
(read) and likewise for $t$ (write); we may have $s = t$ but more general
overlaps are not allowed. The word $f$ is concatenated to $s$ to supply extra
bits.

\fun{void}{shift_left}{GEN t, GEN s, long m, long M, ulong f, ulong n}
shifts the mantissa
$$s[m], s[m+1],\ldots s[M], f$$
left by $n$ bits.

\fun{void}{shift_right}{GEN t, GEN s, long m, long M, ulong f, ulong n}
shifts the mantissa
$$f, s[m], s[m+1],\ldots s[M]$$
right by $n$ bits.

\subsec{From \typ{INT} to bits or digits in base $2^k$ and back}

\fun{GEN}{binary_zv}{GEN x} given a \typ{INT} $x$, return a \typ{VECSMALL} of
bits, from most significant to least significant.

\fun{GEN}{binary_2k}{GEN x, long k} given a \typ{INT} $x$, and
$k > 0$, return a \typ{VEC} of digits of $x$ in base $2^k$, as \typ{INT}s, from
most significant to least significant.

\fun{GEN}{binary_2k_nv}{GEN x, long k} given a \typ{INT} $x$, and $0 < k <
\tet{BITS_IN_LONG}$, return a \typ{VECSMALL} of digits of $x$ in base $2^k$, as
\kbd{ulong}s, from most significant to least significant.

\fun{GEN}{bits_to_int}{GEN x, long l} given a vector $x$ of $l$ bits (as a
\typ{VECSMALL} or even a pointer to a part of a larger vector, so not a
proper \kbd{GEN}), return the integer $\sum_{i = 1}^l x[i] 2^{l-i}$, as a
\typ{INT}.

\fun{ulong}{bits_to_u}{GEN v, long l} same as \tet{bits_to_int}, where
$l < \tet{BITS_IN_LONG}$, so we can return an \kbd{ulong}.

\fun{GEN}{fromdigitsu}{GEN x, GEN B}
given a \typ{VECSMALL} $x$ of length $l$ and a \typ{INT} $B$,
return the integer $\sum_{i = 1}^l x[i] B^{i-1}$, as a \typ{INT},
where the \kbd{x[i]} are seen as unsigned integers.

\fun{GEN}{fromdigits_2k}{GEN x, long k} converse of \tet{binary_2k};
given a \typ{VEC} $x$ of length $l$ and a positive \kbd{long} $k$,
where each $x[i]$ is a \typ{INT} with $0\leq x[i] < 2^k$, return the
integer $\sum_{i = 1}^l x[i] 2^{k(l-i)}$, as a \typ{INT}.

\fun{GEN}{nv_fromdigits_2k}{GEN x, long k} as \tet{fromdigits_2k}, but
with $x$ being a \typ{VECSMALL} and each $x[i]$ being a \kbd{ulong}
with $0\leq x[i] < 2^{\min\{k,\tet{BITS_IN_LONG}\}}$.  Here $k$ may be
any positive \kbd{long}, and the $x[i]$ are regarded as $k$-bit
integers by truncating or extending with zeroes.

\subsec{Integer valuation}
For integers $x$ and $p$, such that $x\neq 0$ and $|p| > 1$, we define
$v_p(x)$ to be the largest integer exponent $e$ such that $p^e$ divides $x$.
If $p$ is prime, this is the ordinary valuation of $x$ at $p$.

\fun{long}{Z_pvalrem}{GEN x, GEN p, GEN *r} applied to \typ{INT}s
$\kbd{x}\neq 0$ and~\kbd{p}, $|\kbd{p}| > 1$, returns $e := v_p(x)$
The quotient $\kbd{x}/\kbd{p}^e$ is returned in~\kbd{*r}. If
$|\kbd{p}|$ is a prime, \kbd{*r} is the prime-to-\kbd{p} part of~\kbd{x}.

\fun{long}{Z_pval}{GEN x, GEN p} as \kbd{Z\_pvalrem} but only returns
$v_p(x)$.

\fun{long}{Z_lvalrem}{GEN x, ulong p, GEN *r} as \kbd{Z\_pvalrem},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).

\fun{long}{Z_lvalrem_stop}{GEN *x, ulong p, int *stop} returns $e := v_p(x)$
and replaces $x$ by $x / p^e$. Set \kbd{stop} to $1$ if the new value
of $x$ is $ < p^2$ (and $0$ otherwise). To be used when trial dividing $x$
by successive primes: the \kbd{stop} condition is cheaply tested while
testing whether $p$ divides $x$ (is the quotient less than $p$?), and allows
to decide that $n$ is prime if no prime $< p$ divides $n$. Not memory-clean.

\fun{long}{Z_lval}{GEN x, ulong p} as \kbd{Z\_pval},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).

\fun{long}{u_lvalrem}{ulong x, ulong p, ulong *r} as \kbd{Z\_pvalrem},
except the inputs/outputs are now \kbd{ulong}s.

\fun{long}{u_lvalrem_stop}{ulong *n, ulong p, int *stop} as
\kbd{Z\_pvalrem\_stop}.

\fun{long}{u_pvalrem}{ulong x, GEN p, ulong *r} as \kbd{Z\_pvalrem},
except \kbd{x} and \kbd{r} are now \kbd{ulong}s.

\fun{long}{u_lval}{ulong x, ulong p} as \kbd{Z\_pval},
except the inputs are now \kbd{ulong}s.

\fun{long}{u_pval}{ulong x, GEN p} as \kbd{Z\_pval},
except \kbd{x} is now an \kbd{ulong}.

\fun{long}{z_lval}{long x, ulong p} as \kbd{u\_lval}, for signed \kbd{x}.

\fun{long}{z_lvalrem}{long x, ulong p} as \kbd{u\_lvalrem}, for signed \kbd{x}.

\fun{long}{z_pval}{long x, GEN p} as \kbd{Z\_pval},
except \kbd{x} is now a \kbd{long}.

\fun{long}{z_pvalrem}{long x, GEN p} as \kbd{Z\_pvalrem},
except \kbd{x} is now a \kbd{long}.

\fun{long}{Q_pval}{GEN x, GEN p} valuation at the \typ{INT} \kbd{p}
of the \typ{INT} or \typ{FRAC}~\kbd{x}.

\fun{long}{factorial_lval}{ulong n, ulong p} returns $v_p(n!)$, assuming
$p$ is prime.


The following convenience functions generalize \kbd{Z\_pval} and its variants
to ``containers'' (\kbd{ZV} and \kbd{ZX}):


\fun{long}{ZV_pvalrem}{GEN x, GEN p, GEN *r} $x$ being a \kbd{ZV} (a vector
of \typ{INT}s), return the min $v$ of the valuations of its components and
set \kbd{*r} to $x/p^v$. Infinite loop if $x$ is the zero vector.
This function is not stack clean.

\fun{long}{ZV_pval}{GEN x, GEN p} as \kbd{ZV\_pvalrem} but only returns the
``valuation''.

\fun{int}{ZV_Z_dvd}{GEN x, GEN p} returns $1$ if $p$ divides all components
of $x$ and $0$ otherwise. Faster than testing \kbd{ZV\_pval(x,p) >= 1}.

\fun{long}{ZV_lvalrem}{GEN x, ulong p, GEN *px} as \kbd{ZV\_pvalrem},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).
This function is not stack-clean.

\fun{long}{ZV_lval}{GEN x, ulong p} as \kbd{ZV\_pval},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).


\fun{long}{ZX_pvalrem}{GEN x, GEN p, GEN *r} as \kbd{ZV\_pvalrem}, for
a \kbd{ZX} $x$ (a \typ{POL} with \typ{INT} coefficients).
This function is not stack-clean.

\fun{long}{ZX_pval}{GEN x, GEN p} as \kbd{ZV\_pval} for a \kbd{ZX} $x$.

\fun{long}{ZX_lvalrem}{GEN x, ulong p, GEN *px} as \kbd{ZV\_lvalrem},
a \kbd{ZX} $x$.
This function is not stack-clean.

\fun{long}{ZX_lval}{GEN x, ulong p} as \kbd{ZX\_pval},
except that \kbd{p} is an \kbd{ulong} ($\kbd{p} > 1$).

\subsec{Generic unary operators} Let ``\op'' be a unary operation among

\item \key{neg}: negation ($-x$).

\item \key{abs}: absolute value ($|x|$).

\item \key{sqr}: square ($x^2$).

\noindent The names and prototypes of the low-level functions corresponding
to \op\ are as follows. The result is of the same type as~\kbd{x}.

\funno{GEN}{\op i}{GEN x} creates the result of \op\ applied to the
\typ{INT}~\kbd{x}.

\funno{GEN}{\op r}{GEN x} creates the result of \op\ applied to the
\typ{REAL}~\kbd{x}.

\funno{GEN}{mp\op}{GEN x} creates the result of \op\ applied to the
\typ{INT} or \typ{REAL}~\kbd{x}.

\noindent Complete list of available functions:

\fun{GEN}{absi}{GEN x}, \fun{GEN}{absr}{GEN x}, \fun{GEN}{mpabs}{GEN x}

\fun{GEN}{negi}{GEN x}, \fun{GEN}{negr}{GEN x}, \fun{GEN}{mpneg}{GEN x}

\fun{GEN}{sqri}{GEN x}, \fun{GEN}{sqrr}{GEN x}, \fun{GEN}{mpsqr}{GEN x}

\fun{GEN}{absi_shallow}{GEN x} $x$ being a \typ{INT}, returns a shallow copy of
$|x|$, in particular returns $x$ itself when $x \geq 0$, and \kbd{negi($x$)}
otherwise.

\fun{GEN}{mpabs_shallow}{GEN x} $x$ being a \typ{INT} or a \typ{REAL}, returns
a shallow copy of $|x|$, in particular returns $x$ itself when $x \geq 0$, and
\kbd{mpneg($x$)} otherwise.


\noindent Some miscellaneous routines:

\fun{GEN}{sqrs}{long x} returns $x^2$.

\fun{GEN}{sqru}{ulong x} returns $x^2$.

\subsec{Comparison operators}

\fun{long}{minss}{long x, long y}

\fun{ulong}{minuu}{ulong x, ulong y}

\fun{double}{mindd}{double x, double y} returns the \kbd{min} of $x$ and $y$.


\fun{long}{maxss}{long x, long y}

\fun{ulong}{maxuu}{ulong x, ulong y}

\fun{double}{maxdd}{double x, double y} returns the \kbd{max} of $x$ and $y$.

\smallskip

\fun{int}{mpcmp}{GEN x, GEN y} compares the \typ{INT} or \typ{REAL}~\kbd{x}
to the \typ{INT} or \typ{REAL}~\kbd{y}. The result is the sign of
$\kbd{x}-\kbd{y}$.

\fun{int}{cmpii}{GEN x, GEN y} compares the \typ{INT} \kbd{x} to the
\typ{INT}~\kbd{y}.

\fun{int}{cmpir}{GEN x, GEN y} compares the \typ{INT} \kbd{x} to the
\typ{REAL}~\kbd{y}.

\fun{int}{cmpis}{GEN x, long s} compares the \typ{INT}~\kbd{x} to the
\kbd{long}~\kbd{s}.

\fun{int}{cmpsi}{long s, GEN x} compares the \kbd{long}~\kbd{s} to the
\typ{INT}~\kbd{x}.

\fun{int}{cmpsr}{long s, GEN x} compares the \kbd{long}~\kbd{s} to the
\typ{REAL}~\kbd{x}.

\fun{int}{cmpri}{GEN x, GEN y} compares the \typ{REAL}~\kbd{x} to the
\typ{INT}~\kbd{y}.

\fun{int}{cmprr}{GEN x, GEN y} compares the \typ{REAL}~\kbd{x} to the
\typ{REAL}~\kbd{y}.

\fun{int}{cmprs}{GEN x, long s} compares the \typ{REAL}~\kbd{x} to the
\kbd{long}~\kbd{s}.

\fun{int}{equalii}{GEN x, GEN y} compares the \typ{INT}s \kbd{x} and~\kbd{y}.
The result is $1$ if $\kbd{x} = \kbd{y}$, $0$ otherwise.

\fun{int}{equalrr}{GEN x, GEN y} compares the \typ{REAL}s \kbd{x} and~\kbd{y}.
The result is $1$ if $\kbd{x} = \kbd{y}$, $0$ otherwise. Equality is decided
according to the following rules: all real zeroes are equal, and
different from a non-zero real; two non-zero reals are equal if all their
digits coincide up to the length of the shortest of the two, and the
remaining words in the mantissa of the longest are all $0$.

\fun{int}{equalsi}{long s, GEN x}

\fun{int}{equalis}{GEN x, long s} compare the \typ{INT} \kbd{x} and
the \kbd{long}~\kbd{s}. The result is $1$ if $\kbd{x} = \kbd{y}$, $0$ otherwise.

The remaining comparison operators disregard the sign of their operands

\fun{int}{absequaliu}{GEN x, ulong u} compare the absolute value of the
\typ{INT} \kbd{x} and the \kbd{ulong}~\kbd{s}. The result is $1$ if
$|\kbd{x}| = \kbd{y}$, $0$ otherwise. This is marginally more efficient
than \kbd{equalis} even when \kbd{x} is known to be non-negative.

\fun{int}{absequalui}{ulong u, GEN x}

\fun{int}{abscmpiu}{GEN x, ulong u} compare the absolute value of the
\typ{INT} \kbd{x} and the \kbd{ulong}~\kbd{u}.

\fun{int}{abscmpui}{ulong u, GEN x}


\fun{int}{abscmpii}{GEN x, GEN y} compares the \typ{INT}s \kbd{x} and~\kbd{y}.
The result is the sign of $|\kbd{x}| - |\kbd{y}|$.

\fun{int}{absequalii}{GEN x, GEN y} compares the \typ{INT}s \kbd{x}
and~\kbd{y}. The result is $1$ if $|\kbd{x}| = |\kbd{y}|$, $0$ otherwise.

\fun{int}{abscmprr}{GEN x, GEN y} compares the \typ{REAL}s \kbd{x} and~\kbd{y}.
The result is the sign of $|\kbd{x}| - |\kbd{y}|$.

\fun{int}{absrnz_equal2n}{GEN x} tests whether a non-zero \typ{REAL} \kbd{x}
is equal to $\pm 2^e$ for some integer $e$.

\fun{int}{absrnz_equal1}{GEN x} tests whether a non-zero \typ{REAL} \kbd{x}
is equal to $\pm 1$.

\subsec{Generic binary operators}\label{se:genbinop} The operators in this
section have arguments of C-type \kbd{GEN}, \kbd{long}, and \kbd{ulong}, and
only \typ{INT} and \typ{REAL} \kbd{GEN}s are allowed. We say an argument is a
real type if it is a \typ{REAL} \kbd{GEN}, and an integer type otherwise. The
result is always a \typ{REAL} unless both \kbd{x} and \kbd{y} are integer
types.

Let ``\op'' be a binary operation among

\item \key{add}: addition (\kbd{x + y}).

\item \key{sub}: subtraction (\kbd{x - y}).

\item \key{mul}: multiplication (\kbd{x * y}).

\item \key{div}: division (\kbd{x / y}). In the case where \kbd{x} and \kbd{y}
are both integer types, the result is the Euclidean quotient, where the
remainder has the same sign as the dividend~\kbd{x}. It is the ordinary
division otherwise. A division-by-$0$ error occurs if \kbd{y} is equal to
$0$.

The last two generic operations are defined only when arguments have integer
types; and the result is a \typ{INT}:

\item \key{rem}: remainder (``\kbd{x \% y}''). The result is the Euclidean
remainder corresponding to \kbd{div},~i.e. its sign is that of the
dividend~\kbd{x}.

\item \key{mod}: true remainder (\kbd{x \% y}). The result is the true
Euclidean remainder, i.e.~non-negative and less than the absolute value
of~\kbd{y}.

\misctitle{Important technical note} The rules given above fixing the output
type (to \typ{REAL} unless both inputs are integer types) are subtly
incompatible with the general rules obeyed by PARI's generic functions, such
as \kbd{gmul} or \kbd{gdiv} for instance: the latter return a result
containing as much information as could be deduced from the inputs, so it is
not true that if $x$ is a \typ{INT} and $y$ a \typ{REAL}, then
\kbd{gmul(x,y)} is always the same as \kbd{mulir(x,y)}. The exception
is $x = 0$, in that case we can deduce that the result is an exact $0$,
so \kbd{gmul} returns \kbd{gen\_0}, while \kbd{mulir} returns a
\typ{REAL} $0$. Specifically, the one resulting from the conversion of
\kbd{gen\_0} to a \typ{REAL} of precision \kbd{precision(y)}, multiplied by
$y$; this determines the exponent of the real $0$ we obtain.

The reason for the discrepancy between the two rules is that we use the two
sets of functions in different contexts: generic functions allow to write
high-level code forgetting about types, letting PARI return results which are
sensible and as simple as possible; type specific functions are used in
kernel programming, where we do care about types and need to maintain strict
consistency: it is much easier to compute the types of results when they are
determined from the types of the inputs only (without taking into account
further arithmetic properties, like being non-0).
\smallskip

The names and prototypes of the low-level functions corresponding
to \op\ are as follows. In this section, the \kbd{z} argument in the
\kbd{z}-functions must be of type \typ{INT} when no \kbd{r} or \kbd{mp}
appears in the argument code (no \typ{REAL} operand is involved, only integer
types), and of type \typ{REAL} otherwise.

\funno{GEN}{mp\op[z]}{GEN x, GEN y[, GEN z]} applies \op\ to
the \typ{INT} or \typ{REAL} \kbd{x} and~\kbd{y}. The function
\kbd{mpdivz} does not exist (its semantic would change drastically
depending on the type of the \kbd{z} argument), and neither do
\kbd{mprem[z]} nor \kbd{mpmod[z]} (specific to integers).

\funno{GEN}{\op si[z]}{long s, GEN x[, GEN z]} applies \op\ to the
\kbd{long}~\kbd{s} and the \typ{INT}~\kbd{x}.
 These functions always return the global constant
\kbd{gen\_0} (not a copy) when the sign of the result is $0$.

\funno{GEN}{\op sr[z]}{long s, GEN x[, GEN z]} applies \op\ to the
\kbd{long}~\kbd{s} and the \typ{REAL}~\kbd{x}.

\funno{GEN}{\op ss[z]}{long s, long t[, GEN z]} applies \op\ to the longs
\kbd{s} and~\kbd{t}. These functions always return the global constant
\kbd{gen\_0} (not a copy) when the sign of the result is $0$.

\funno{GEN}{\op ii[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{INT}s \kbd{x} and~\kbd{y}. These functions always return the global
constant \kbd{gen\_0} (not a copy) when the sign of the result is $0$.

\funno{GEN}{\op ir[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{INT} \kbd{x} and the \typ{REAL}~\kbd{y}.

\funno{GEN}{\op is[z]}{GEN x, long s[, GEN z]} applies \op\ to the
\typ{INT}~\kbd{x} and the \kbd{long}~\kbd{s}. These functions always return
the global constant \kbd{gen\_0} (not a copy) when the sign of the result
is $0$.

\funno{GEN}{\op ri[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{REAL}~\kbd{x} and the \typ{INT}~\kbd{y}.

\funno{GEN}{\op rr[z]}{GEN x, GEN y[, GEN z]} applies \op\ to the
\typ{REAL}s~\kbd{x} and~\kbd{y}.

\funno{GEN}{\op rs[z]}{GEN x, long s[, GEN z]} applies \op\ to the
\typ{REAL}~\kbd{x} and the \kbd{long}~\kbd{s}.

\noindent Some miscellaneous routines:

\fun{long}{expu}{ulong x} assuming $x > 0$, returns the binary exponent of
the real number equal to $x$. This is a special case of \kbd{gexpo}.

\fun{GEN}{adduu}{ulong x, ulong y}

\fun{GEN}{addiu}{GEN x, ulong y}

\fun{GEN}{addui}{ulong x, GEN y} adds \kbd{x} and \kbd{y}.

\fun{GEN}{subuu}{ulong x, ulong y}

\fun{GEN}{subiu}{GEN x, ulong y}

\fun{GEN}{subui}{ulong x, GEN y} subtracts \kbd{x} by \kbd{y}.

\fun{GEN}{muluu}{ulong x, ulong y} multiplies \kbd{x} by \kbd{y}.

\fun{GEN}{mului}{ulong x, GEN y} multiplies \kbd{x} by \kbd{y}.

\fun{GEN}{muluui}{ulong x, ulong y, GEN z} return $xyz$.

\fun{GEN}{muliu}{GEN x, ulong y} multiplies \kbd{x} by \kbd{y}.

\fun{void}{addumului}{ulong a, ulong b, GEN x} return $a + b|X|$.

\fun{GEN}{addmuliu}{GEN x, GEN y, ulong u} returns $x +yu$.

\fun{GEN}{addmulii}{GEN x, GEN y, GEN z} returns $x + yz$.

\fun{GEN}{addmulii_inplace}{GEN x, GEN y, GEN z} returns $x + yz$, but
returns $x$ itself and not a copy if $yz = 0$. Not suitable for
\tet{gerepile} or \tet{gerepileupto}.

\fun{GEN}{addmuliu_inplace}{GEN x, GEN y, ulong u} returns $x +yu$, but
returns $x$ itself and not a copy if $yu = 0$. Not suitable for
\tet{gerepile} or \tet{gerepileupto}.

\fun{GEN}{submuliu_inplace}{GEN x, GEN y, ulong u} returns $x- yu$, but
returns $x$ itself and not a copy if $yu = 0$. Not suitable for
\tet{gerepile} or \tet{gerepileupto}.

\fun{GEN}{lincombii}{GEN u, GEN v, GEN x, GEN y} returns $ux + vy$.

\fun{GEN}{mulsubii}{GEN y, GEN z, GEN x} returns $yz - x$.

\fun{GEN}{submulii}{GEN x, GEN y, GEN z} returns $x - yz$.

\fun{GEN}{submuliu}{GEN x, GEN y, ulong u} returns $x -yu$.

\fun{GEN}{mulu_interval}{ulong a, ulong b} returns $a(a+1)\cdots b$, assuming
that $a \leq b$.

\fun{GEN}{muls_interval}{long a, long b} returns $a(a+1)\cdots b$, assuming
that $a \leq b$.

\fun{GEN}{invr}{GEN x} returns the inverse of the non-zero \typ{REAL}~$x$.

\fun{GEN}{truedivii}{GEN x, GEN y} returns the true Euclidean quotient
(with non-negative remainder less than $|y|$).

\fun{GEN}{truedivis}{GEN x, long y} returns the true Euclidean quotient
(with non-negative remainder less than $|y|$).

\fun{GEN}{truedivsi}{long x, GEN y} returns the true Euclidean quotient
(with non-negative remainder less than $|y|$).

\fun{GEN}{centermodii}{GEN x, GEN y, GEN y2}, given
\typ{INT}s \kbd{x}, \kbd{y}, returns $z$ congruent to \kbd{x} modulo \kbd{y},
such that $-\kbd{y}/2 \leq z < \kbd{y}/2$. The function requires an extra
argument \kbd{y2}, such that \kbd{y2 = shifti(y, -1)}. (In most cases, \kbd{y}
is constant for many reductions and \kbd{y2} need only be computed once.)

\fun{GEN}{remi2n}{GEN x, long n} returns \kbd{x} mod $2^n$.

\fun{GEN}{addii_sign}{GEN x, long sx, GEN y, long sy} add the \typ{INT}s
$x$ and $y$ as if their signs were \kbd{sx} and \kbd{sy}.

\fun{GEN}{addir_sign}{GEN x, long sx, GEN y, long sy}
add the \typ{INT} $x$ and the \typ{REAL} $y$ as if their signs were \kbd{sx}
and \kbd{sy}.

\fun{GEN}{addrr_sign}{GEN x, long sx, GEN y, long sy} add the \typ{REAL}s $x$
and $y$ as if their signs were \kbd{sx} and \kbd{sy}.

\fun{GEN}{addsi_sign}{long x, GEN y, long sy} add $x$ and the \typ{INT} $y$
as if its sign was \kbd{sy}.

\fun{GEN}{addui_sign}{ulong x, GEN y, long sy} add $x$ and the \typ{INT} $y$
as if its sign was \kbd{sy}.

\subsec{Exact division and divisibility}

\fun{GEN}{diviiexact}{GEN x, GEN y} returns the Euclidean quotient
$\kbd{x} / \kbd{y}$, assuming $\kbd{y}$ divides $\kbd{x}$. Uses Jebelean
algorithm (Jebelean-Krandick bidirectional exact division is not
implemented).

\fun{GEN}{diviuexact}{GEN x, ulong y} returns the Euclidean quotient
$\kbd{x} / \kbd{y}$, assuming $\kbd{y}$ divides
$\kbd{x}$ and $\kbd{y}$ is non-zero.

\fun{GEN}{diviuuexact}{GEN x, ulong y, ulong z} returns the Euclidean
quotient $x/(yz)$, assuming $yz$ divides $x$ and $yz \neq 0$.

The following routines return 1 (true) if \kbd{y} divides \kbd{x}, and
0 otherwise. (Error if $y$ is $0$, even if $x$ is $0$.) All \kbd{GEN} are
assumed to be \typ{INT}s:

\fun{int}{dvdii}{GEN x, GEN y},
\fun{int}{dvdis}{GEN x, long y},
\fun{int}{dvdiu}{GEN x, ulong y},

\fun{int}{dvdsi}{long x, GEN y},
\fun{int}{dvdui}{ulong x, GEN y}.

The following routines return 1 (true) if \kbd{y} divides \kbd{x}, and in
that case assign the quotient to \kbd{z}; otherwise they return 0. All
\kbd{GEN} are assumed to be \typ{INT}s:

\fun{int}{dvdiiz}{GEN x, GEN y, GEN z},
\fun{int}{dvdisz}{GEN x, long y, GEN z}.

\fun{int}{dvdiuz}{GEN x, ulong y, GEN z} if \kbd{y} divides \kbd{x}, assigns
the quotient $|\kbd{x}|/\kbd{y}$ to \kbd{z} and returns 1 (true), otherwise
returns 0 (false).

\subsec{Division with integral operands and \typ{REAL} result}

\fun{GEN}{rdivii}{GEN x, GEN y, long prec}, assuming $x$ and $y$
are both of type \typ{INT}, return the quotient $x/y$ as a \typ{REAL} of
precision \kbd{prec}.

\fun{GEN}{rdiviiz}{GEN x, GEN y, GEN z}, assuming $x$ and $y$
are both of type \typ{INT}, and $z$ is a \typ{REAL},
assign the quotient $x/y$ to $z$.

\fun{GEN}{rdivis}{GEN x, long y, long prec}, assuming \kbd{x}
is of type \typ{INT}, return the quotient x/y as a \typ{REAL} of
precision \kbd{prec}.

\fun{GEN}{rdivsi}{long x, GEN y, long prec}, assuming \kbd{y}
is of type \typ{INT}, return the quotient x/y as a \typ{REAL} of
precision \kbd{prec}.

\fun{GEN}{rdivss}{long x, long y, long prec}, return the quotient x/y as a
\typ{REAL} of precision \kbd{prec}.


\subsec{Division with remainder} The following functions return two objects,
unless specifically asked for only one of them~--- a quotient and a remainder.
The quotient is returned and the remainder is returned through the variable
whose address is passed as the \kbd{r} argument. The term \emph{true
Euclidean remainder} refers to the non-negative one (\kbd{mod}), and
\emph{Euclidean remainder} by itself to the one with the same sign as the
dividend (\kbd{rem}). All \kbd{GEN}s, whether returned directly or through a
pointer, are created on the stack.

\fun{GEN}{dvmdii}{GEN x, GEN y, GEN *r} returns the Euclidean quotient of the
\typ{INT}~\kbd{x} by a \typ{INT}~\kbd{y} and puts the remainder
into~\kbd{*r}. If \kbd{r} is equal to \kbd{NULL}, the remainder is not
created, and if \kbd{r} is equal to  \kbd{ONLY\_REM}, only the remainder is
created and returned. In the generic case, the remainder is created after the
quotient and can be disposed of individually with a \kbd{cgiv(r)}. The
remainder is always of the sign of the dividend~\kbd{x}. If the remainder
is $0$ set \kbd{r = gen\_0}.

\fun{void}{dvmdiiz}{GEN x, GEN y, GEN z, GEN t} assigns the Euclidean
quotient of the \typ{INT}s \kbd{x} and \kbd{y} into the \typ{INT}~\kbd{z},
and the Euclidean remainder into the \typ{INT}~\kbd{t}.

\noindent Analogous routines \tet{dvmdis}\kbd{[z]}, \tet{dvmdsi}\kbd{[z]},
\tet{dvmdss}\kbd{[z]} are available, where \kbd{s} denotes a \kbd{long}
argument. But the following routines are in general more flexible:

\fun{long}{sdivss_rem}{long s, long t, long *r} computes the Euclidean
quotient and remainder of the longs \kbd{s} and~\kbd{t}. Puts the remainder
into \kbd{*r}, and returns the quotient. The remainder is of the sign of the
dividend~\kbd{s}, and has strictly smaller absolute value than~\kbd{t}.

\fun{long}{sdivsi_rem}{long s, GEN x, long *r} computes the Euclidean
quotient and remainder of the \kbd{long}~\kbd{s} by the \typ{INT}~\kbd{x}. As
\kbd{sdivss\_rem} otherwise.

\fun{long}{sdivsi}{long s, GEN x} as \kbd{sdivsi\_rem}, without
remainder.

\fun{GEN}{divis_rem}{GEN x, long s, long *r} computes the Euclidean quotient
and remainder of the \typ{INT}~\kbd{x} by the \kbd{long}~\kbd{s}. As
\kbd{sdivss\_rem} otherwise.

\fun{GEN}{diviu_rem}{GEN x, ulong s, ulong *r} computes the Euclidean quotient
and remainder of \emph{absolute value} of the \typ{INT}~\kbd{x} by the
\kbd{ulong}~\kbd{s}. As \kbd{sdivss\_rem} otherwise.

\fun{ulong}{udiviu_rem}{GEN n, ulong d, ulong *r} as \tet{diviu_rem}, assuming
that $|n|/d$ fits into an \kbd{ulong}.

\fun{ulong}{udivui_rem}{ulong x, GEN y, ulong *rem}
computes the Euclidean quotient and remainder of $x$ by $y$. As
\kbd{sdivss\_rem} otherwise.

\fun{ulong}{udivuu_rem}{ulong x, ulong y, ulong *rem}
computes the Euclidean quotient and remainder of $x$ by $y$. As
\kbd{sdivss\_rem} otherwise.

\fun{ulong}{ceildivuu}{ulong x, ulong y} return the ceiling of $x / y$.

\fun{GEN}{divsi_rem}{long s, GEN y, long *r} computes the Euclidean quotient
and remainder of the \kbd{long}~\kbd{s} by the \kbd{GEN}~\kbd{y}. As
\kbd{sdivss\_rem} otherwise.

\fun{GEN}{divss_rem}{long x, long y, long *r} computes the Euclidean quotient
and remainder of the \kbd{long}~\kbd{x} by the \kbd{long}~\kbd{y}. As
\kbd{sdivss\_rem} otherwise.
\smallskip
\fun{GEN}{truedvmdii}{GEN x, GEN y, GEN *r}, as \kbd{dvmdii} but with a
non-negative remainder.

\fun{GEN}{truedvmdis}{GEN x, long y, GEN *z}, as \kbd{dvmdis} but with a
non-negative remainder.

\fun{GEN}{truedvmdsi}{long x, GEN y, GEN *z}, as \kbd{dvmdsi} but with a
non-negative remainder.

\subsec{Modulo to longs} The following variants of \kbd{modii} do not
clutter the stack:

\fun{long}{smodis}{GEN x, long y} computes the true Euclidean
remainder of the \typ{INT}~\kbd{x} by the \kbd{long}~\kbd{y}. This is the
non-negative remainder, not the one whose sign is the sign of \kbd{x}
as in the \kbd{div} functions.

\fun{long}{smodss}{long x, long y} computes the true Euclidean
remainder of the \kbd{long}~\kbd{x} by a \kbd{long}~\kbd{y}.

\fun{ulong}{umodsu}{long x, ulong y} computes the true Euclidean
remainder of the \kbd{long}~\kbd{x} by a \kbd{ulong}~\kbd{y}.

\fun{ulong}{umodiu}{GEN x, ulong y} computes the true Euclidean
remainder of the \typ{INT}~\kbd{x} by the \kbd{ulong}~\kbd{y}.

\fun{ulong}{umodui}{ulong x, GEN y} computes the true Euclidean
remainder of the \kbd{ulong}~\kbd{x} by the \typ{INT}~\kbd{|y|}.

The routine \tet{smodsi} does not exist, since it would not always be
defined: for a \emph{negative} \kbd{x}, if the quotient is $\pm1$, the result
\kbd{x + |y|} would in general not fit into a \kbd{long}. Use either
\kbd{umodui} or \kbd{modsi}.

These functions directly access the binary data and are thus much faster than
the generic modulo functions:

\fun{int}{mpodd}{GEN x} which is 1 if \kbd{x} is odd, and 0 otherwise.

\fun{ulong}{Mod2}{GEN x}

\fun{ulong}{Mod4}{GEN x}

\fun{ulong}{Mod8}{GEN x}

\fun{ulong}{Mod16}{GEN x}

\fun{ulong}{Mod32}{GEN x}

\fun{ulong}{Mod64}{GEN x} give the residue class of $x$ modulo the
corresponding power of $2$.

\fun{ulong}{umodi2n}{GEN x, long n} give the residue class of $x$ modulo
$2^n$, $0 \leq n < BITS\_IN\_LONG$.

The following functions assume that $x\neq 0$ and in fact disregard the
sign of $x$. There are about $10\%$ faster than the safer variants above:

\fun{long}{mod2}{GEN x}

\fun{long}{mod4}{GEN x}

\fun{long}{mod8}{GEN x}

\fun{long}{mod16}{GEN x}

\fun{long}{mod32}{GEN x}

\fun{long}{mod64}{GEN x} give the residue class of $|x|$ modulo the
corresponding power of 2, for \emph{non-zero}~\kbd{x}. As well,

\fun{ulong}{mod2BIL}{GEN x} returns the least significant word of $|x|$, still
assuming that $x\neq 0$.

\subsec{Powering, Square root}

\fun{GEN}{powii}{GEN x, GEN n}, assumes $x$ and $n$ are \typ{INT}s and
returns $x^n$.

\fun{GEN}{powuu}{ulong x, ulong n}, returns $x^n$.

\fun{GEN}{powiu}{GEN x, ulong n}, assumes $x$ is a \typ{INT} and returns $x^n$.

\fun{GEN}{powis}{GEN x, long n}, assumes $x$ is a \typ{INT} and returns $x^n$
(possibly a \typ{FRAC} if $n < 0$).

\fun{GEN}{powrs}{GEN x, long n}, assumes $x$ is a \typ{REAL} and returns
$x^n$. This is considered as a sequence of \kbd{mulrr}, possibly empty:
as such the result has type \typ{REAL}, even if $n = 0$.
Note that the generic function \kbd{gpowgs(x,0)} would return \kbd{gen\_1},
see the technical note in \secref{se:genbinop}.

\fun{GEN}{powru}{GEN x, ulong n}, assumes $x$ is a \typ{REAL} and returns $x^n$
(always a \typ{REAL}, even if $n = 0$).

\fun{GEN}{powersr}{GEN e, long n}. Given a \typ{REAL} $e$, return the vector
$v$ of all $e^i$, $0 \leq i \leq n$, where $v[i] = e^{i-1}$.

\fun{GEN}{powrshalf}{GEN x, long n}, assumes $x$ is a \typ{REAL} and returns
$x^{n/2}$ (always a \typ{REAL}, even if $n = 0$).

\fun{GEN}{powruhalf}{GEN x, ulong n}, assumes $x$ is a \typ{REAL} and returns
$x^{n/2}$ (always a \typ{REAL}, even if $n = 0$).

\fun{GEN}{powrfrac}{GEN x, long n, long d}, assumes $x$ is a \typ{REAL} and
returns $x^{n/d}$ (always a \typ{REAL}, even if $n = 0$).

\fun{GEN}{powIs}{long n} returns $I^n\in\{1,I,-1,-I\}$ (\typ{INT} for even $n$,
\typ{COMPLEX} otherwise).

\fun{ulong}{upowuu}{ulong x, ulong n}, returns $x^n$ when $< 2^\B$, and $0$
otherwise (overflow).

\fun{GEN}{sqrtremi}{GEN N, GEN *r}, returns the integer square root $S$ of
the non-negative \typ{INT}~\kbd{N} (rounded towards 0) and puts the remainder
$R$ into~\kbd{*r}. Precisely, $N = S^2 + R$ with $0\leq R \leq 2S$. If
\kbd{r} is equal to \kbd{NULL}, the remainder is not created. In the generic
case, the remainder is created after the quotient and can be disposed of
individually with \kbd{cgiv(R)}. If the remainder is $0$ set \kbd{R = gen\_0}.

Uses a divide and conquer algorithm (discrete variant of Newton iteration)
due to Paul Zimmermann (``Karatsuba Square Root'', INRIA Research Report 3805
(1999)).

\fun{GEN}{sqrti}{GEN N}, returns the integer square root $S$ of
the non-negative \typ{INT}~\kbd{N} (rounded towards 0). This is identical
to \kbd{sqrtremi(N, NULL)}.

\fun{long}{logintall}{GEN B, GEN y, GEN *ptq}
returns the floor $e$ of $\log_y B$, where $B > 0$ and $y > 1$ are integers.
If \kbd{ptq} is not \kbd{NULL}, set it to $y^e$. (Analogous to \kbd{logint0},
whithout sanity checks.)

\fun{long}{logint}{GEN B, GEN y} returns the floor $e$ of $\log_y B$, where
$B > 0$ and $y > 1$ are integers.

\subsec{GCD, extended GCD and LCM}

\fun{long}{cgcd}{long x, long y} returns the GCD of \kbd{x} and \kbd{y}.

\fun{ulong}{ugcd}{ulong x, ulong y} returns the GCD of \kbd{x} and \kbd{y}.

\fun{long}{clcm}{long x, long y} returns the LCM of \kbd{x} and \kbd{y},
provided it fits into a \kbd{long}. Silently overflows otherwise.

\fun{GEN}{gcdii}{GEN x, GEN y}, returns the GCD of the \typ{INT}s \kbd{x} and
\kbd{y}.

\fun{GEN}{lcmii}{GEN x, GEN y}, returns the LCM of the \typ{INT}s \kbd{x} and
\kbd{y}.

\fun{GEN}{bezout}{GEN a,GEN b, GEN *u,GEN *v}, returns the GCD $d$ of
\typ{INT}s \kbd{a} and \kbd{b} and sets \kbd{u}, \kbd{v} to the Bezout
coefficients such that $\kbd{au} + \kbd{bv} = d$.

\fun{long}{cbezout}{long a,long b, long *u,long *v}, returns the GCD
$d$ of \kbd{a} and \kbd{b} and sets \kbd{u}, \kbd{v} to the Bezout coefficients
such that $\kbd{au} + \kbd{bv} = d$.

\fun{GEN}{ZV_extgcd}{GEN A} given a vector of $n$ integers $A$, returns $[d,
U]$, where $d$ is the GCD of the $A[i]$ and $U$ is a matrix
in $\text{GL}_n(\Z)$ such that $AU = [0,\dots,0,D]$.

\subsec{Continued fractions and convergents}

\fun{GEN}{ZV_allpnqn}{GEN x} given $x = [a_0, ..., a_n]$ a
continued fraction from \tet{gboundcf}, $n\geq0$, return all
convergents as $[P,Q]$, where $P = [p_0,\dots,p_n]$ and $Q =
[q_0,\dots,q_n]$.

\subsec{Pseudo-random integers}
These routine return pseudo-random integers uniformly distributed in some
interval. The all use the same underlying generator which can be seeded and
restarted using \tet{getrand} and \tet{setrand}.

\fun{void}{setrand}{GEN seed} reseeds the random number generator using the
seed $n$. The seed is either a technical array output by \kbd{getrand}
or a small positive integer, used to generate deterministically a suitable
state array. For instance, running a randomized computation starting by
\kbd{setrand(1)} twice will generate the exact same output.

\fun{GEN}{getrand}{void} returns the current value of the seed used by the
pseudo-random number generator \tet{random}. Useful mainly for debugging
purposes, to reproduce a specific chain of computations. The returned value
is technical (reproduces an internal state array of type \typ{VECSMALL}),
and can only be used as an argument to \tet{setrand}.

\fun{ulong}{pari_rand}{void} returns a random $0 \leq x < 2^\B$.

\fun{long}{random_bits}{long k} returns a random $0 \leq x < 2^k$. Assumes
that $0 \leq k \leq \B$.

\fun{ulong}{random_Fl}{ulong p} returns a pseudo-random integer
in $0, 1, \dots p-1$.

\fun{GEN}{randomi}{GEN n} returns a random \typ{INT} between $0$ and $\kbd{n}
- 1$.

\fun{GEN}{randomr}{long prec} returns a random \typ{REAL} in $[0,1[$, with
precision \kbd{prec}.

\subsec{Modular operations} In this subsection, all \kbd{GEN}s are
\typ{INT}.

\fun{GEN}{Fp_red}{GEN a, GEN m} returns \kbd{a} modulo \kbd{m} (smallest
non-negative residue). (This is identical to modii).

\fun{GEN}{Fp_neg}{GEN a, GEN m} returns $-$\kbd{a} modulo \kbd{m} (smallest
non-negative residue).

\fun{GEN}{Fp_add}{GEN a, GEN b, GEN m} returns the sum of \kbd{a} and
\kbd{b} modulo \kbd{m} (smallest non-negative residue).

\fun{GEN}{Fp_sub}{GEN a, GEN b, GEN m} returns the difference of \kbd{a} and
\kbd{b} modulo \kbd{m} (smallest non-negative residue).

\fun{GEN}{Fp_center}{GEN a, GEN p, GEN pov2} assuming that \kbd{pov2} is
\kbd{shifti(p,-1)} and that \kbd{a} is between $0$ and $\kbd{p} - 1$ and,
returns the representative of \kbd{a} in the symmetric residue system.

\fun{GEN}{Fp_mul}{GEN a, GEN b, GEN m} returns the product of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue).

\fun{GEN}{Fp_addmul}{GEN x, GEN y, GEN z, GEN p} returns $x + yz$.

\fun{GEN}{Fp_mulu}{GEN a, ulong b, GEN m} returns the product of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue).

\fun{GEN}{Fp_muls}{GEN a, long b, GEN m} returns the product of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue).

\fun{GEN}{Fp_halve}{GEN x, GEN m} returns $z$ such that $2\*z = x$ modulo
$m$ assuming such $z$ exists.

\fun{GEN}{Fp_sqr}{GEN a, GEN m} returns $\kbd{a}^2$ modulo \kbd{m} (smallest
non-negative residue).

\fun{ulong}{Fp_powu}{GEN x, ulong n, GEN m} raises \kbd{x} to the \kbd{n}-th
power modulo \kbd{m} (smallest non-negative residue). Not memory-clean, but
suitable for \kbd{gerepileupto}.

\fun{ulong}{Fp_pows}{GEN x, long n, GEN m} raises \kbd{x} to the \kbd{n}-th
power modulo \kbd{m} (smallest non-negative residue). A negative \kbd{n} is
allowed Not memory-clean, but suitable for \kbd{gerepileupto}.

\fun{GEN}{Fp_pow}{GEN x, GEN n, GEN m} returns $\kbd{x}^\kbd{n}$
modulo \kbd{m} (smallest non-negative residue).

\fun{GEN}{Fp_powers}{GEN x, long n, GEN m} returns
$[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ modulo \kbd{m} as a \typ{VEC}
 (smallest non-negative residue).

\fun{GEN}{Fp_inv}{GEN a, GEN m} returns an inverse of \kbd{a} modulo \kbd{m}
(smallest non-negative residue). Raise an error if \kbd{a} is not invertible.

\fun{GEN}{Fp_invsafe}{GEN a, GEN m} as \kbd{Fp\_inv}, but return
\kbd{NULL} if \kbd{a} is not invertible.

\fun{GEN}{FpV_inv}{GEN x, GEN m} $x$ being a vector of \typ{INT}s, return
the vector of inverses of the $x[i]$ mod $m$. The routine uses Montgomery's
trick, and involves a single inversion mod $m$, plus $3(N-1)$ multiplications
for $N$ entries. The routine is not stack-clean: $2N$ integers mod $m$
are left on stack, besides the $N$ in the result.

\fun{GEN}{Fp_div}{GEN a, GEN b, GEN m} returns the quotient of \kbd{a} by
\kbd{b} modulo \kbd{m} (smallest non-negative residue). Raise an error if
\kbd{b} is not invertible.

\fun{int}{invmod}{GEN a, GEN m, GEN *g},  return $1$ if \kbd{a}
modulo \kbd{m} is invertible, else return $0$ and set
$\kbd{g} = \gcd(\kbd{a},\kbd{m})$.

In the following three functions the integer parameter \kbd{ord} can be given
either as a positive \typ{INT} $N$, or as its factorization matrix $\var{faN}$,
 or as a pair $[N,\var{faN}]$. The parameter may be omitted by setting it to
\kbd{NULL} (the value is then $p-1$).

\fun{GEN}{Fp_log}{GEN a, GEN g, GEN ord, GEN p} Let $g$ such that
$g^{ord} \equiv 1 \pmod{p}$. Return an integer $e$ such that
$a^e \equiv g \pmod{p}$. If $e$ does not exist, the result is undefined.

\fun{GEN}{Fp_order}{GEN a, GEN ord, GEN p} returns the order of the
\kbd{Fp} \kbd{a}. Assume that \kbd{ord} is a multiple of the order of
\kbd{a}.

\fun{GEN}{Fp_factored_order}{GEN a, GEN ord, GEN p} returns $[o,F]$, where $o$
is the multiplicative order of the \kbd{Fp} $a$ in $\F_p^*$, and $F$ is the
factorization of $o$. Assume that \kbd{ord} is a multiple of the order of
\kbd{a}.

\fun{int}{Fp_issquare}{GEN x, GEN p} returns $1$ if \kbd{x} is a square
modulo \kbd{p}, and $0$ otherwise.

\fun{int}{Fp_ispower}{GEN x, GEN n, GEN p} returns $1$ if \kbd{x} is an
$n$-th power modulo \kbd{p}, and $0$ otherwise.

\fun{GEN}{Fp_sqrt}{GEN x, GEN p} returns a square root of \kbd{x} modulo
\kbd{p} (the smallest non-negative residue), where \kbd{x}, \kbd{p} are
\typ{INT}s, and \kbd{p} is assumed to be prime. Return \kbd{NULL}
if \kbd{x} is not a quadratic residue modulo \kbd{p}.

\fun{GEN}{Fp_sqrtn}{GEN a, GEN n, GEN p, GEN *zn}
returns \kbd{NULL} if $a$ is not an $n$-th power residue mod $p$.
Otherwise, returns an $n$-th root of $a$; if \kbd{zn} is non-\kbd{NULL}
set it to a primitive $m$-th root of 1, $m = \gcd(p-1,n)$ allowing to compute
all $m$ solutions in $\F_p$ of the equation $x^n = a$.

\fun{GEN}{Zn_sqrt}{GEN x, GEN n} returns one of the square roots of \kbd{x}
modulo \kbd{n} (possibly not prime), where \kbd{x} is a \typ{INT} and \kbd{n}
is either a \typ{INT} or is given by its factorisation matrix.  Return
\kbd{NULL} if no such square root exist.

\fun{long}{kross}{long x, long y} returns the \idx{Kronecker symbol} $(x|y)$,
i.e.$-1$, $0$ or $1$. If \kbd{y} is an odd prime, this is the \idx{Legendre
symbol}. (Contrary to \kbd{krouu}, \kbd{kross} also supports $\kbd{y} = 0$)

\fun{long}{krouu}{ulong x, ulong y} returns the \idx{Kronecker symbol}
$(x|y)$, i.e.~$-1$, $0$ or $1$. Assumes \kbd{y} is non-zero. If \kbd{y} is an
odd prime, this is the \idx{Legendre symbol}.

\fun{long}{krois}{GEN x, long y} returns the \idx{Kronecker symbol} $(x|y)$
of \typ{INT}~x and \kbd{long}~\kbd{y}. As \kbd{kross} otherwise.

\fun{long}{kroiu}{GEN x, ulong y} returns the \idx{Kronecker symbol} $(x|y)$
of \typ{INT}~x and non-zero \kbd{ulong}~\kbd{y}. As \kbd{krouu} otherwise.

\fun{long}{krosi}{long x, GEN y} returns the \idx{Kronecker symbol} $(x|y)$
of \kbd{long}~x and \typ{INT}~\kbd{y}. As \kbd{kross} otherwise.

\fun{long}{kroui}{ulong x, GEN y} returns the \idx{Kronecker symbol} $(x|y)$
of \kbd{long}~x and \typ{INT}~\kbd{y}. As \kbd{kross} otherwise.

\fun{long}{kronecker}{GEN x, GEN y} returns the \idx{Kronecker symbol} $(x|y)$
of \typ{INT}s~x and~\kbd{y}. As \kbd{kross} otherwise.

\fun{GEN}{pgener_Fp}{GEN p} returns the smallest primitive root modulo
\kbd{p}, assuming \kbd{p} is prime.

\fun{GEN}{pgener_Zp}{GEN p} returns the smallest primitive root modulo $p^k$,
$k > 1$, assuming \kbd{p} is an odd prime.

\fun{long}{Zp_issquare}{GEN x, GEN p} returns 1 if the \typ{INT} $x$ is
a $p$-adic square, $0$ otherwise.

\fun{long}{Zn_issquare}{GEN x, GEN n} returns 1 if \typ{INT} $x$ is
a square modulo \kbd{n} (possibly not prime), where $n$ is either a \typ{INT}
or is given by its factorisation matrix. Return $0$ otherwise.

\fun{long}{Zn_ispower}{GEN x, GEN n, GEN K, GEN *py} returns 1 if \typ{INT}
$x$ is a $K$-th power modulo \kbd{n} (possibly not prime), where $n$ is
either a \typ{INT} or is given by its factorisation matrix. Return $0$
otherwise. If \kbd{py} is not \kbd{NULL}, set it to $y$ such that $y^K = x$
modulo $n$.

\fun{GEN}{pgener_Fp_local}{GEN p, GEN L}, \kbd{L} being a vector of
primes dividing $p - 1$, returns the smallest integer $x > 1$ which is a
generator of the $\ell$-Sylow of $\F_p^*$ for every $\ell$ in \kbd{L}. In
other words, $x^{(p-1)/\ell} \neq 1$ for all such $\ell$. In particular,
returns \kbd{pgener\_Fp(p)} if \kbd{L} contains all primes dividing $p - 1$.
It is not necessary, and in fact slightly inefficient, to include $\ell=2$,
since 2 is treated separately in any case, i.e. the generator obtained is
never a square.

\fun{GEN}{rootsof1_Fp}{GEN n, GEN p} returns a primitive $n$-th root modulo
the prime $p$.

\fun{GEN}{rootsof1u_Fp}{ulong n, GEN p} returns a primitive $n$-th root modulo
the prime $p$.

\fun{ulong}{rootsof1_Fl}{ulong n, ulong p} returns a primitive $n$-th root
modulo the prime $p$.

\subsec{Extending functions to vector inputs}

The following functions apply $f$ to the given arguments, recursively
if they are of vector / matrix type:

\fun{GEN}{map_proto_G}{GEN (*f)(GEN), GEN x} For instance, if $x$ is a
\typ{VEC}, return a \typ{VEC} whose components are the $f(x[i])$.

\fun{GEN}{map_proto_lG}{long (*f)(GEN), GEN x} As above, applying the
function \kbd{stoi( f() )}.

\fun{GEN}{map_proto_GL}{GEN (*f)(GEN,long), GEN x, long y}

\fun{GEN}{map_proto_lGL}{long (*f)(GEN,long), GEN x, long y}

In the last function, $f$ implements an associative binary operator, which we
extend naturally to an $n$-ary operator $f_n$ for any $n$: by convention,
$f_0() = 1$, $f_1(x) = x$, and
$$ f_n(x_1,\dots,x_n) = f( f_{n-1}(x_1,\dots,x_{n-1}), x_n)),$$
for $n \geq 2$.

\fun{GEN}{gassoc_proto}{GEN (*f)(GEN,GEN),GEN x, GEN y} If $y$ is not
\kbd{NULL}, return $f(x,y)$. Otherwise, $x$ must be of vector type, and we
return the result of $f$ applied to its components, computed using a
divide-and-conquer algorithm. More precisely, return
$$f( f(x_1,\kbd{NULL}), f(x_2,\kbd{NULL}) ),$$
where $x_1$, $x_2$ are the two halves of $x$.

\subsec{Miscellaneous arithmetic functions}

\fun{long}{bigomegau}{ulong n} returns the number of prime divisors of $n >
0$, counted with multiplicity.

\fun{ulong}{coreu}{ulong n}, unique squarefree integer $d$ dividing $n$ such
that $n/d$ is a square.

\fun{ulong}{corediscs}{long d, ulong *pt_f}, $d$ (possibly negative)
being congruent to $0$ or $1$ modulo $4$, return the fundamental
discriminant $D$ such that $d=D*f^2$ and set \kbd{*pt\_f} to $f$
(if \kbd{*pt\_f} not \kbd{NULL}).

\fun{ulong}{eulerphiu}{ulong n}, Euler's totient function of $n$.

\fun{ulong}{eulerphiu_fact}{GEN fa}, Euler's totient function of the
\kbd{ulong} $n$, where \kbd{fa} is \kbd{factoru(n)}.

\fun{long}{moebiusu}{ulong n}, Moebius $\mu$-function of $n$.

\fun{GEN}{divisorsu}{ulong n}, returns the divisors of $n$ in a
\typ{VECSMALL}, sorted by increasing order.

\fun{ulong}{divisorsu_fact}{GEN fa}, as \kbd{divisorsu(n)}
where \kbd{fa} is \kbd{factoru(n)}.

\fun{long}{omegau}{ulong n} returns the number of prime divisors of $n > 0$.

\fun{long}{uissquarefree}{ulong n} returns $1$ if \kbd{n}
is square-free, and $0$ otherwise.

\fun{ulong}{uissquarefree_fact}{GEN fa} returns \kbd{uissquarefree(n)}, where
\kbd{fa} is \kbd{factoru(n)}.

\fun{long}{uposisfundamental}{ulong x} return $1$ if $x$ is a fundamental
discriminant, and $0$ otherwise.

\fun{long}{unegisfundamental}{ulong x} return $1$ if $-x$ is a fundamental
discriminant, and $0$ otherwise.

\fun{long}{sisfundamental}{long x} return $1$ if $x$ is a fundamental
discriminant, and $0$ otherwise.

\fun{int}{uis_357_power}{ulong x, ulong *pt, ulong *mask} as \tet{is_357_power}
for \kbd{ulong} $x$.

\fun{int}{uis_357_powermod}{ulong x, ulong *mask} as \tet{uis_357_power}, but
only check for 3rd, 5th or 7th powers modulo
$211\times209\times61\times203\times117\times31\times43\times71$.

\fun{long}{uisprimepower}{ulong n, ulong *p} as \tet{isprimepower}, for
\kbd{ulong} $n$.

\fun{int}{uislucaspsp}{ulong n} returns $1$ if the \kbd{ulong} $n$ fails Lucas
compositeness test (it thus may be prime or composite), and $0$ otherwise
(proving that $n$ is composite).

\fun{ulong}{sumdigitsu}{ulong n} returns the sum of decimal digits of $u$.

\fun{GEN}{usumdivkvec}{ulong n, GEN K} $K$ being a \typ{VECSMALL} of
positive integers. Returns the vector of \kbd{sumdivk}$(n, K[i])$.

\fun{GEN}{usumdiv_fact}{GEN fa}, sum of divisors of \kbd{ulong} $n$, where
\kbd{fa} is \kbd{factoru(n)}.

\fun{GEN}{usumdivk_fact}{GEN fa, ulong k}, sum of $k$-th powers of divisors
of \kbd{ulong} $n$, where \kbd{fa} is \kbd{factoru(n)}.

\fun{GEN}{hilbertii}{GEN x, GEN y, GEN p}, returns the Hilbert symbol
$(x,y)$ at the prime $p$ (\kbd{NULL} for the place at infinity); $x$ and $y$
are \typ{INT}s.

\fun{GEN}{sumdedekind}{GEN h, GEN k} returns the Dedekind sum attached to
the \typ{INT} $h$ and $k$, $k > 0$.

\fun{GEN}{sumdedekind_coprime}{GEN h, GEN k} as \kbd{sumdedekind}, except
that $h$ and $k$ are assumed to be coprime \typ{INT}s.

\fun{GEN}{u_sumdedekind_coprime}{long h, long k}
Let $k > 0$, $0 \leq h < k$, $(h,k) = 1$. Returns $[s_1,s_2]$
in a \typ{VECSMALL}, such that $s(h,k) = (s_2 + k s_1) / (12k)$.
Requires $\max(h + k/2, k) < \kbd{LONG\_MAX}$
to avoid overflow, in particular $k \leq (2/3)\kbd{LONG\_MAX}$ is fine.

\newpage
\chapter{Level 2 kernel}

These functions deal with modular arithmetic, linear algebra and polynomials
where assumptions can be made about the types of the coefficients.

\section{Naming scheme}\label{se:level2names}
A function name is built in the following way:
$A_1\kbd{\_}\dots\kbd{\_}A_n\var{fun}$ for an operation \var{fun} with $n$
arguments of class $A_1$,\dots, $A_n$. A class name is given by a base ring
followed by a number of code letters. Base rings are among

  \kbd{Fl}: $\Z/l\Z$ where $l < 2^{\B}$ is not necessarily prime. Implemented
            using \kbd{ulong}s

  \kbd{Fp}: $\Z/p\Z$ where $p$ is a \typ{INT}, not necessarily prime.
Implemented as \typ{INT}s $z$, preferably satisfying $0 \leq z < p$.
More precisely, any \typ{INT} can be used as an \kbd{Fp}, but reduced
inputs are treated more efficiently. Outputs from \kbd{Fp}xxx routines are
reduced.

  \kbd{Fq}: $\Z[X]/(p,T(X))$, $p$ a \typ{INT}, $T$ a \typ{POL} with \kbd{Fp}
coefficients or \kbd{NULL} (in which case no reduction modulo \kbd{T} is
performed). Implemented as \typ{POL}s $z$ with \kbd{Fp} coefficients,
$\deg(z) < \deg \kbd{T}$, although $z$ a \typ{INT} is allowed for elements in
the prime field.

  \kbd{Z}:  the integers $\Z$, implemented as \typ{INT}s.

  \kbd{Zp}: the $p$-adic integers $\Z_p$, implemented as \typ{INT}s, for arbitrary $p$

  \kbd{Zl}: the $p$-adic integers $\Z_p$, implemented as \typ{INT}s, for $p< 2^{\B}$

  \kbd{z}:  the integers $\Z$, implemented using (signed) \kbd{long}s.

  \kbd{Q}:  the rational numbers $\Q$, implemented as \typ{INT}s and
\typ{FRAC}s.

  \kbd{Rg}:  a commutative ring, whose elements can be
\kbd{gadd}-ed, \kbd{gmul}-ed, etc.

\noindent Possible letters are:

  \kbd{X}: polynomial in $X$ (\typ{POL} in a fixed variable), e.g. \kbd{FpX}
           means $\Z/p\Z[X]$

  \kbd{Y}: polynomial in $Y\neq X$. This is used to resolve ambiguities.
           E.g. \kbd{FpXY} means $((\Z/p\Z)[X])[Y]$.

  \kbd{V}: vector (\typ{VEC} or \typ{COL}), treated as a line vector
  (independently of the actual type). E.g. \kbd{ZV} means $\Z^k$ for some $k$.

  \kbd{C}: vector (\typ{VEC} or \typ{COL}), treated as a column vector
  (independently of the actual type). The difference with \kbd{V} is purely
  semantic: if the result is a vector, it will be of type \typ{COL} unless
  mentioned otherwise. For instance the function \kbd{ZC\_add} receives two
  integral vectors (\typ{COL} or \typ{VEC}, possibly different types) of the
  same length and returns a \typ{COL} whose entries are the sums of the input
  coefficients.

  \kbd{M}: matrix (\typ{MAT}). E.g. \kbd{QM} means a matrix with rational
  entries

  \kbd{T}: Trees. Either a leaf or a \typ{VEC} of trees.

  \kbd{E}: point over an elliptic curve, represented
  as two-component vectors \kbd{[x,y]}, except for the  represented by the
  one-component vector \kbd{[0]}. Not all curve models are supported.

  \kbd{Q}: representative (\typ{POL}) of a class in a polynomial quotient ring.
  E.g.~an \kbd{FpXQ} belongs to $(\Z/p\Z)[X]/(T(X))$, \kbd{FpXQV} means a
  vector of such elements, etc.

  \kbd{n}: a polynomial representative (\typ{POL}) for a truncated power
  series modulo $X^n$. E.g.~an \kbd{FpXn} belongs to $(\Z/p\Z)[X]/(X^n)$,
  \kbd{FpXnV} means a vector of such elements, etc.

  \kbd{x}, \kbd{y}, \kbd{m}, \kbd{v}, \kbd{c}, \kbd{q}: as their uppercase
  counterpart, but coefficient arrays are implemented using \typ{VECSMALL}s,
  which coefficient understood as \kbd{ulong}s.

  \kbd{x} and \kbd{y} (and \kbd{q}) are implemented by a \typ{VECSMALL} whose
  first coefficient is used as a code-word and the following are the
  coefficients , similarly to a \typ{POL}. This is known as a 'POLSMALL'.

  \kbd{m} are implemented by a \typ{MAT} whose components (columns) are
  \typ{VECSMALL}s. This is known as a 'MATSMALL'.

  \kbd{v} and \kbd{c} are regular \typ{VECSMALL}s. Difference between the
  two is purely semantic.

\noindent Omitting the letter means the argument is a scalar in the base
ring. Standard functions \var{fun} are

  \kbd{add}: add

  \kbd{sub}: subtract

  \kbd{mul}: multiply

  \kbd{sqr}: square

  \kbd{div}: divide (Euclidean quotient)

  \kbd{rem}: Euclidean remainder

  \kbd{divrem}: return Euclidean quotient, store remainder in a pointer
argument. Three special values of that pointer argument modify the default
behavior: \kbd{NULL} (do not store the remainder, used to implement
\kbd{div}), \tet{ONLY_REM} (return the remainder, used to implement
\kbd{rem}), \tet{ONLY_DIVIDES} (return the quotient if the division is exact,
and \kbd{NULL} otherwise).

  \kbd{gcd}: GCD

  \kbd{extgcd}: return GCD, store Bezout coefficients in pointer arguments

  \kbd{pow}: exponentiate

  \kbd{eval}: evaluation / composition


\section{Modular arithmetic}

\noindent These routines implement univariate polynomial arithmetic and
linear algebra over finite fields, in fact over finite rings of the form
$(\Z/p\Z)[X]/(T)$, where $p$ is not necessarily prime and $T\in(\Z/p\Z)[X]$ is
possibly reducible; and finite extensions thereof. All this can be emulated
with \typ{INTMOD} and \typ{POLMOD} coefficients and using generic routines,
at a considerable loss of efficiency. Also, specialized routines are
available that have no obvious generic equivalent.

\subsec{\kbd{FpC} / \kbd{FpV}, \kbd{FpM}} A \kbd{ZV}
(resp.~a~\kbd{ZM}) is a \typ{VEC} or \typ{COL} (resp.~\typ{MAT}) with
\typ{INT} coefficients. An \kbd{FpV} or \kbd{FpM}, with respect to a given
\typ{INT}~\kbd{p}, is the same with \kbd{Fp} coordinates; operations are
understood over $\Z/p\Z$.

\subsubsec{Conversions}

\fun{int}{Rg_is_Fp}{GEN z, GEN *p}, checks if \kbd{z} can be mapped to
$\Z/p\Z$: a \typ{INT} or a \typ{INTMOD} whose modulus is equal to \kbd{*p},
(if \kbd{*p} not \kbd{NULL}), in that case return $1$, else $0$. If a modulus
is found it is put in \kbd{*p}, else \kbd{*p} is left unchanged.

\fun{int}{RgV_is_FpV}{GEN z, GEN *p}, \kbd{z} a \typ{VEC} (resp. \typ{COL}),
checks if it can be mapped to a \kbd{FpV} (resp. \kbd{FpC}), by checking
\kbd{Rg\_is\_Fp} coefficientwise.

\fun{int}{RgM_is_FpM}{GEN z, GEN *p}, \kbd{z} a \typ{MAT},
checks if it can be mapped to a \kbd{FpM}, by checking \kbd{RgV\_is\_FpV}
columnwise.

\fun{GEN}{Rg_to_Fp}{GEN z, GEN p}, \kbd{z} a scalar which can be mapped to
$\Z/p\Z$: a \typ{INT}, a \typ{INTMOD} whose modulus is divisible by $p$,
a \typ{FRAC} whose denominator is coprime to $p$, or a \typ{PADIC} with
underlying prime $\ell$ satisfying $p = \ell^n$ for some $n$ (less than the
accuracy of the input). Returns \kbd{lift(z * Mod(1,p))}, normalized.

\fun{GEN}{padic_to_Fp}{GEN x, GEN p} special case of \tet{Rg_to_Fp},
for a $x$ a \typ{PADIC}.

\fun{GEN}{RgV_to_FpV}{GEN z, GEN p}, \kbd{z} a \typ{VEC} or \typ{COL},
returns the \kbd{FpV} (as a \typ{VEC}) obtained by applying \kbd{Rg\_to\_Fp}
coefficientwise.

\fun{GEN}{RgC_to_FpC}{GEN z, GEN p}, \kbd{z} a \typ{VEC} or \typ{COL},
returns the \kbd{FpC} (as a \typ{COL}) obtained by applying \kbd{Rg\_to\_Fp}
coefficientwise.

\fun{GEN}{RgM_to_FpM}{GEN z, GEN p}, \kbd{z} a \typ{MAT},
returns the \kbd{FpM} obtained by applying \kbd{RgC\_to\_FpC}
columnwise.

\fun{GEN}{RgM_Fp_init}{GEN z, GEN p, ulong *pp}, given an \kbd{RgM} $z$,
whose entries can be mapped to $\F_p$ (as per \tet{Rg_to_Fp}), and a prime
number $p$. This routine returns a normal form of $z$: either an
\kbd{F2m} ($p = 2$), an \kbd{Flm} ($p$ fits into an \kbd{ulong})
or an \kbd{FpM}. In the first two cases, \kbd{pp} is set to \kbd{itou}$(p)$,
and to $0$ in the last.


The functions above are generally used as follow:
\bprog
GEN add(GEN x, GEN y)
{
  GEN p = NULL;
  if (Rg_is_Fp(x, &p) && Rg_is_Fp(y, &p) && p)
  {
    x = Rg_to_Fp(x, p); y = Rg_to_Fp(y, p);
    z = Fp_add(x, y, p);
    return Fp_to_mod(z);
  }
  else return gadd(x, y);
}
@eprog

\fun{GEN}{FpC_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZC}. Returns \kbd{lift(Col(z) *
Mod(1,p))}, hence a \typ{COL}.

\fun{GEN}{FpV_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZV}. Returns \kbd{lift(Vec(z) *
Mod(1,p))}, hence a \typ{VEC}

\fun{GEN}{FpM_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZM}. Returns \kbd{lift(z *
Mod(1,p))}, which is an \kbd{FpM}.

\subsubsec{Basic operations}

\fun{GEN}{FpC_center}{GEN z, GEN p, GEN pov2} returns a \typ{COL} whose
entries are the \kbd{Fp\_center} of the \kbd{gel(z,i)}.

\fun{GEN}{FpM_center}{GEN z, GEN p, GEN pov2} returns a matrix whose
entries are the \kbd{Fp\_center} of the \kbd{gcoeff(z,i,j)}.

\fun{void}{FpC_center_inplace}{GEN z, GEN p, GEN pov2}
in-place version of \kbd{FpC\_center}, using \kbd{affii}.

\fun{void}{FpM_center_inplace}{GEN z, GEN p, GEN pov2}
in-place version of \kbd{FpM\_center}, using \kbd{affii}.

\fun{GEN}{FpC_add}{GEN x, GEN y, GEN p} adds the \kbd{ZC} $x$ and $y$
and reduce modulo $p$ to obtain an \kbd{FpC}.

\fun{GEN}{FpV_add}{GEN x, GEN y, GEN p} same as \kbd{FpC\_add}, returning and
\kbd{FpV}.

\fun{GEN}{FpM_add}{GEN x, GEN y, GEN p} adds the two \kbd{ZM}s~\kbd{x}
and \kbd{y} (assumed to have compatible dimensions), and reduce modulo
\kbd{p} to obtain an \kbd{FpM}.

\fun{GEN}{FpC_sub}{GEN x, GEN y, GEN p} subtracts the \kbd{ZC} $y$ to
the \kbd{ZC} $x$ and reduce modulo $p$ to obtain an \kbd{FpC}.

\fun{GEN}{FpV_sub}{GEN x, GEN y, GEN p} same as \kbd{FpC\_sub}, returning and
\kbd{FpV}.

\fun{GEN}{FpM_sub}{GEN x, GEN y, GEN p} subtracts the two \kbd{ZM}s~\kbd{x}
and \kbd{y} (assumed to have compatible dimensions), and reduce modulo
\kbd{p} to obtain an \kbd{FpM}.

\fun{GEN}{FpC_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZC}~\kbd{x}
(seen as a column vector) by the \typ{INT}~\kbd{y} and reduce modulo \kbd{p} to
obtain an \kbd{FpC}.

\fun{GEN}{FpM_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZM}~\kbd{x}
(seen as a column vector) by the \typ{INT}~\kbd{y} and reduce modulo \kbd{p} to
obtain an \kbd{FpM}.

\fun{GEN}{FpC_FpV_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZC}~\kbd{x}
(seen as a column vector) by the \kbd{ZV}~\kbd{y} (seen as a row vector,
assumed to have compatible dimensions), and reduce modulo \kbd{p} to obtain
an \kbd{FpM}.

\fun{GEN}{FpM_mul}{GEN x, GEN y, GEN p} multiplies the two \kbd{ZM}s~\kbd{x}
and \kbd{y} (assumed to have compatible dimensions), and reduce modulo
\kbd{p} to obtain an \kbd{FpM}.

\fun{GEN}{FpM_powu}{GEN x, ulong n, GEN p} computes $x^n$ where $x$ is a
square \kbd{FpM}.

\fun{GEN}{FpM_FpC_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZM}~\kbd{x}
by the \kbd{ZC}~\kbd{y} (seen as a column vector, assumed to have compatible
dimensions), and reduce modulo \kbd{p} to obtain an \kbd{FpC}.

\fun{GEN}{FpM_FpC_mul_FpX}{GEN x, GEN y, GEN p, long v} is a memory-clean
version of
\bprog
  GEN tmp = FpM_FpC_mul(x,y,p);
  return RgV_to_RgX(tmp, v);
@eprog

\fun{GEN}{FpV_FpC_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZV}~\kbd{x}
(seen as a row vector) by the \kbd{ZC}~\kbd{y} (seen as a column vector,
assumed to have compatible dimensions), and reduce modulo \kbd{p} to obtain
an \kbd{Fp}.

\fun{GEN}{FpV_dotproduct}{GEN x,GEN y,GEN p} scalar product of
$x$ and $y$ (assumed to have the same length).

\fun{GEN}{FpV_dotsquare}{GEN x, GEN p} scalar product of $x$ with itself.
has \typ{INT} entries.

\fun{GEN}{FpV_factorback}{GEN L, GEN e, GEN p} given an \kbd{FpV} $L$
and a \kbd{ZV} $e$ of the same length, return $\prod_i L_i^{e_i}$ modulo $p$.

\subsubsec{\kbd{Fp}-linear algebra} The implementations are not
asymptotically efficient ($O(n^3)$ standard algorithms).

\fun{GEN}{FpM_deplin}{GEN x, GEN p} returns a non-trivial kernel vector,
or \kbd{NULL} if none exist.

\fun{GEN}{FpM_det}{GEN x, GEN p} as \kbd{det}

\fun{GEN}{FpM_gauss}{GEN a, GEN b, GEN p} as \kbd{gauss}, where $b$ is a
\kbd{FpM}.

\fun{GEN}{FpM_FpC_gauss}{GEN a, GEN b, GEN p} as \kbd{gauss}, where $b$
is a \kbd{FpC}.

\fun{GEN}{FpM_image}{GEN x, GEN p} as \kbd{image}

\fun{GEN}{FpM_intersect}{GEN x, GEN y, GEN p} as \kbd{intersect}

\fun{GEN}{FpM_inv}{GEN x, GEN p} returns a left inverse of \kbd{x}
(the inverse if $x$ is square), or \kbd{NULL} if \kbd{x} is not invertible.

\fun{GEN}{FpM_FpC_invimage}{GEN A, GEN y, GEN p}
 given an \kbd{FpM} $A$ and an \kbd{FpC} $y$, returns an $x$ such that $Ax =
 y$, or \kbd{NULL} if no such vector exist.

\fun{GEN}{FpM_invimage}{GEN A, GEN y, GEN p}
given two \kbd{FpM} $A$ and $y$, returns $x$ such that $Ax = y$, or \kbd{NULL}
if no such matrix exist.

\fun{GEN}{FpM_ker}{GEN x, GEN p} as \kbd{ker}

\fun{long}{FpM_rank}{GEN x, GEN p} as \kbd{rank}

\fun{GEN}{FpM_indexrank}{GEN x, GEN p} as \kbd{indexrank}

\fun{GEN}{FpM_suppl}{GEN x, GEN p} as \kbd{suppl}

\fun{GEN}{FpM_hess}{GEN x, GEN p} upper Hessenberg form of $x$ over $\F_p$.

\fun{GEN}{FpM_charpoly}{GEN x, GEN p} characteristic polynomial of $x$.

\subsubsec{\kbd{FqC}, \kbd{FqM} and \kbd{Fq}-linear algebra}

An \kbd{FqM} (resp. \kbd{FqC}) is a matrix (resp a \typ{COL}) with
\kbd{Fq} coefficients (with respect to given \kbd{T}, \kbd{p}), not necessarily
reduced (i.e arbitrary \typ{INT}s and \kbd{ZX}s in the same variable as
\kbd{T}).

\fun{GEN}{FqC_add}{GEN a, GEN b, GEN T, GEN p}

\fun{GEN}{FqC_sub}{GEN a, GEN b, GEN T, GEN p}

\fun{GEN}{FqC_Fq_mul}{GEN a, GEN b, GEN T, GEN p}

\fun{GEN}{FqM_deplin}{GEN x, GEN T, GEN p} returns a non-trivial kernel vector,
or \kbd{NULL} if none exist.

\fun{GEN}{FqM_gauss}{GEN a, GEN b, GEN T, GEN p}
as \kbd{gauss}, where $b$ is a \kbd{FqM}.

\fun{GEN}{FqM_FqC_gauss}{GEN a, GEN b, GEN T, GEN p}
as \kbd{gauss}, where $b$ is a \kbd{FqC}.

\fun{GEN}{FqM_FqC_mul}{GEN a, GEN b, GEN T, GEN p}

\fun{GEN}{FqM_ker}{GEN x, GEN T, GEN p} as \kbd{ker}

\fun{GEN}{FqM_image}{GEN x, GEN T, GEN p} as \kbd{image}

\fun{GEN}{FqM_inv}{GEN x, GEN T, GEN p} returns the inverse of \kbd{x}, or
\kbd{NULL} if \kbd{x} is not invertible.

\fun{GEN}{FqM_mul}{GEN a, GEN b, GEN T, GEN p}

\fun{long}{FqM_rank}{GEN x, GEN T, GEN p} as \kbd{rank}

\fun{GEN}{FqM_suppl}{GEN x, GEN T, GEN p} as \kbd{suppl}

\fun{GEN}{FqM_det}{GEN x, GEN T, GEN p} as \kbd{det}


\subsec{\kbd{Flc} / \kbd{Flv}, \kbd{Flm}} See \kbd{FpV}, \kbd{FpM}
operations.

\fun{GEN}{Flv_copy}{GEN x} returns a copy of \kbd{x}.

\fun{GEN}{Flv_center}{GEN z, ulong p, ulong ps2}

\fun{GEN}{Flm_copy}{GEN x} returns a copy of \kbd{x}.

\fun{GEN}{matid_Flm}{long n} returns an \kbd{Flm} which is an $n \times n$
identity matrix.

\fun{GEN}{scalar_Flm}{long s, long n} returns an \kbd{Flm} which is $s$ times
the $n \times n$ identity matrix.

\fun{GEN}{Flm_center}{GEN z, ulong p, ulong ps2}

\fun{GEN}{Flm_Fl_add}{GEN x, ulong y, ulong p} returns $x + y*\text{Id}$
($x$ must be square).

\fun{GEN}{Flm_Flc_mul}{GEN x, GEN y, ulong p} multiplies  \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).

\fun{GEN}{Flm_Flc_mul_pre}{GEN x, GEN y, ulong p, ulong pi} multiplies  \kbd{x}
and \kbd{y} (assumed to have compatible dimensions), assuming $pi$ is the
pseudo inverse of $p$.

\fun{GEN}{Flm_Flc_mul_pre_Flx}{GEN x, GEN y, ulong p, ulong pi, long sv}
return \kbd{Flv\_to\_Flx(Flm\_Flc\_mul\_pre(x, y, p, pi), sv)}.

\fun{GEN}{Flm_Fl_mul}{GEN x, ulong y, ulong p} multiplies the \kbd{Flm}
\kbd{x} by \kbd{y}.

\fun{GEN}{Flm_neg}{GEN x, ulong p} negates the \kbd{Flm} \kbd{x}.

\fun{void}{Flm_Fl_mul_inplace}{GEN x, ulong y, ulong p} replaces
the \kbd{Flm} \kbd{x} by $\kbd{x}*\kbd{y}$.

\fun{GEN}{Flv_Fl_mul}{GEN x, ulong y, ulong p} multiplies the \kbd{Flv}
\kbd{x} by \kbd{y}.

\fun{void}{Flv_Fl_mul_inplace}{GEN x, ulong y, ulong p} replaces
the \kbd{Flc} \kbd{x} by $\kbd{x}*\kbd{y}$.

\fun{void}{Flv_Fl_mul_part_inplace}{GEN x, ulong y, ulong p, long l}
multiplies $x[1..l]$ by $y$ modulo $p$. In place.

\fun{GEN}{Flv_Fl_div}{GEN x, ulong y, ulong p} divides the \kbd{Flv}
\kbd{x} by \kbd{y}.

\fun{void}{Flv_Fl_div_inplace}{GEN x, ulong y, ulong p} replaces
the \kbd{Flv} \kbd{x} by $\kbd{x}/\kbd{y}$.

\fun{void}{Flc_lincomb1_inplace}{GEN X, GEN Y, ulong v, ulong q}
sets $X\leftarrow X + vY$, where $X,Y$ are \kbd{Flc}. Memory efficient (e.g.
no-op if $v = 0$), and gerepile-safe.

\fun{GEN}{Flv_add}{GEN x, GEN y, ulong p} adds two \kbd{Flv}.

\fun{void}{Flv_add_inplace}{GEN x, GEN y, ulong p} replaces
$x$ by $x+y$.

\fun{GEN}{Flv_neg}{GEN x, ulong p} returns $-x$.

\fun{void}{Flv_neg_inplace}{GEN x, ulong p} replaces $x$ by $-x$.

\fun{GEN}{Flv_sub}{GEN x, GEN y, ulong p} subtracts \kbd{y} to \kbd{x}.

\fun{void}{Flv_sub_inplace}{GEN x, GEN y, ulong p} replaces $x$ by $x-y$.

\fun{ulong}{Flv_dotproduct}{GEN x, GEN y, ulong p} returns the scalar product
of \kbd{x} and \kbd{y}

\fun{ulong}{Flv_dotproduct_pre}{GEN x, GEN y, ulong p, ulong pi} returns the
scalar product of \kbd{x} and \kbd{y} assuming $pi$ is the pseudo inverse of
$p$.

\fun{ulong}{Flv_sum}{GEN x, ulong p} returns the sum of the components of $x$.

\fun{ulong}{Flv_prod}{GEN x, ulong p} returns the product of the components of
$x$.

\fun{ulong}{Flv_prod_pre}{GEN x, ulong p, ulong pi} as \kbd{Flv\_prod}
assuming $pi$ is the pseudo inverse of $p$.

\fun{GEN}{Flv_inv}{GEN x, ulong p} returns the vector of inverses of the elements
of $x$ (as a \kbd{Flv}). Use Montgomery trick.

\fun{void}{Flv_inv_inplace}{GEN x, ulong p} in place variant of \kbd{Flv\_inv}.

\fun{GEN}{Flv_inv_pre}{GEN x, ulong p, ulong pi} as \kbd{Flv\_inv}
assuming $pi$ is the pseudo inverse of $p$.

\fun{void}{Flv_inv_pre_inplace}{GEN x, ulong p, ulong pi} in place variant of
\kbd{Flv\_inv}.

\fun{GEN}{zero_Flm}{long m, long n} creates a \kbd{Flm} with \kbd{m} x \kbd{n}
components set to $0$. Note that the result allocates a
\emph{single} column, so modifying an entry in one column modifies it in
all columns.

\fun{GEN}{zero_Flm_copy}{long m, long n} creates a \kbd{Flm} with \kbd{m} x
\kbd{n} components set to $0$.

\fun{GEN}{zero_Flv}{long n} creates a \kbd{Flv} with \kbd{n} components set to
$0$.

\fun{GEN}{Flm_row}{GEN A, long x0} return $A[i,]$, the $i$-th row of the
\kbd{Flm} $A$.

\fun{GEN}{Flm_add}{GEN x, GEN y, ulong p} adds \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).

\fun{GEN}{Flm_sub}{GEN x, GEN y, ulong p} subtracts \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).

\fun{GEN}{Flm_mul}{GEN x, GEN y, ulong p} multiplies  \kbd{x} and \kbd{y}
(assumed to have compatible dimensions).

\fun{GEN}{Flm_powu}{GEN x, ulong n, ulong p} computes $x^n$ where $x$ is a
square \kbd{Flm}.

\fun{GEN}{Flm_charpoly}{GEN x, ulong p} return the characteristic polynomial of
the square \kbd{Flm} $x$, as a \kbd{Flx}.

\fun{GEN}{Flm_deplin}{GEN x, ulong p}

\fun{ulong}{Flm_det}{GEN x, ulong p}

\fun{ulong}{Flm_det_sp}{GEN x, ulong p}, as \kbd{Flm\_det}, in place
(destroys~\kbd{x}).

\fun{GEN}{Flm_gauss}{GEN a, GEN b, ulong p} as \kbd{gauss}, where $b$ is a
\kbd{Flm}.

\fun{GEN}{Flm_Flc_gauss}{GEN a, GEN b, ulong p} as \kbd{gauss}, where $b$ is
a \kbd{Flc}.

\fun{GEN}{Flm_indexrank}{GEN x, ulong p}

\fun{GEN}{Flm_inv}{GEN x, ulong p}

\fun{GEN}{Flm_Flc_invimage}{GEN A, GEN y, ulong p} given an \kbd{Flm}
$A$ and an \kbd{Flc} $y$, returns an $x$ such that $Ax = y$, or \kbd{NULL}
if no such vector exist.

\fun{GEN}{Flm_invimage}{GEN A, GEN y, ulong p}
given two \kbd{Flm} $A$ and $y$, returns $x$ such that $Ax = y$, or \kbd{NULL}
if no such matrix exist.

\fun{GEN}{Flm_ker}{GEN x, ulong p}

\fun{GEN}{Flm_ker_sp}{GEN x, ulong p, long deplin}, as \kbd{Flm\_ker} (if
\kbd{deplin=0}) or \kbd{Flm\_deplin} (if \kbd{deplin=1}) , in place
(destroys~\kbd{x}).

\fun{long}{Flm_rank}{GEN x, ulong p}

\fun{long}{Flm_suppl}{GEN x, ulong p}

\fun{GEN}{Flm_image}{GEN x, ulong p}

\fun{GEN}{Flm_intersect}{GEN x, GEN y, ulong p}

\fun{GEN}{Flm_transpose}{GEN x}

\fun{GEN}{Flm_hess}{GEN x, ulong p} upper Hessenberg form of $x$ over $\F_p$.

\subsec{\kbd{F2c} / \kbd{F2v}, \kbd{F2m}}  An \kbd{F2v}~\kbd{v} is a
\typ{VECSMALL} representing a vector over $\F_2$. Specifically \kbd{z[0]} is
the usual codeword, \kbd{z[1]} is the number of components of $v$ and the
coefficients are given by the bits of remaining words by increasing indices.

\fun{ulong}{F2v_coeff}{GEN x, long i} returns the coefficient $i\ge 1$ of $x$.

\fun{void}{F2v_clear}{GEN x, long i} sets the coefficient $i\ge 1$ of $x$ to
$0$.

\fun{void}{F2v_flip}{GEN x, long i} adds $1$ to the coefficient $i\ge 1$ of $x$.

\fun{void}{F2v_set}{GEN x, long i} sets the coefficient $i\ge 1$ of $x$ to $1$.

\fun{void}{F2v_copy}{GEN x} returns a copy of $x$.

\fun{GEN}{F2v_slice}{GEN x, long a, long b} returns the \kbd{F2v} with
entries $x[a]$, \dots, $x[b]$. Assumes $a \leq b$.

\fun{ulong}{F2m_coeff}{GEN x, long i, long j} returns the coefficient $(i,j)$
of $x$.

\fun{void}{F2m_clear}{GEN x, long i, long j} sets the coefficient $(i,j)$ of $x$
to $0$.

\fun{void}{F2m_flip}{GEN x, long i, long j} adds $1$ to the coefficient $(i,j)$
of $x$.

\fun{void}{F2m_set}{GEN x, long i, long j} sets the coefficient $(i,j)$ of $x$
to $1$.

\fun{void}{F2m_copy}{GEN x} returns a copy of $x$.

\fun{GEN}{F2m_rowslice}{GEN x, long a, long b} returns the \kbd{F2m} built
from the $a$-th to $b$-th rows of the \kbd{F2m} $x$. Assumes $a \leq b$.

\fun{GEN}{F2m_F2c_mul}{GEN x, GEN y} multiplies  \kbd{x} and \kbd{y} (assumed
to have compatible dimensions).

\fun{GEN}{F2m_image}{GEN x} gives a subset of the columns of $x$ that generate
the image of $x$.

\fun{GEN}{F2m_invimage}{GEN A, GEN B}

\fun{GEN}{F2m_F2c_invimage}{GEN A, GEN y}

\fun{GEN}{F2m_gauss}{GEN a, GEN b}
as \kbd{gauss}, where $b$ is a \kbd{F2m}.

\fun{GEN}{F2m_F2c_gauss}{GEN a, GEN b}
as \kbd{gauss}, where $b$ is a \kbd{F2c}.


\fun{GEN}{F2m_indexrank}{GEN x} $x$ being a matrix of rank $r$, returns a
vector with two \typ{VECSMALL} components $y$ and $z$ of length $r$ giving a
list of rows and columns respectively (starting from 1) such that the extracted
matrix obtained from these two vectors using \kbd{vecextract}$(x,y,z)$ is
invertible.

\fun{GEN}{F2m_mul}{GEN x, GEN y} multiplies  \kbd{x} and \kbd{y} (assumed to
have compatible dimensions).

\fun{GEN}{F2m_powu}{GEN x, ulong n} computes $x^n$ where $x$ is a square
\kbd{F2m}.

\fun{long}{F2m_rank}{GEN x} as \kbd{rank}.

\fun{long}{F2m_suppl}{GEN x} as \kbd{suppl}.

\fun{GEN}{matid_F2m}{long n} returns an \kbd{F2m} which is an $n \times n$
identity matrix.

\fun{GEN}{zero_F2v}{long n} creates a \kbd{F2v} with \kbd{n} components set to
$0$.

\fun{GEN}{const_F2v}{long n} creates a \kbd{F2v} with \kbd{n} components set to
$1$.

\fun{GEN}{F2v_ei}{long n, long i} creates a \kbd{F2v} with \kbd{n} components
set to $0$, but for the $i$-th one, which is set to $1$ ($i$-th vector in the
canonical basis).

\fun{GEN}{zero_F2m}{long m, long n} creates a \kbd{Flm} with \kbd{m} x \kbd{n}
components set to $0$. Note that the result allocates a
\emph{single} column, so modifying an entry in one column modifies it in
all columns.

\fun{GEN}{zero_F2m_copy}{long m, long n} creates a \kbd{F2m} with \kbd{m} x
\kbd{n} components set to $0$.

\fun{GEN}{F2v_to_Flv}{GEN x}

\fun{GEN}{F2c_to_ZC}{GEN x}

\fun{GEN}{ZV_to_F2v}{GEN x}

\fun{GEN}{RgV_to_F2v}{GEN x}

\fun{GEN}{F2m_to_Flm}{GEN x}

\fun{GEN}{F2m_to_ZM}{GEN x}

\fun{GEN}{Flv_to_F2v}{GEN x}

\fun{GEN}{Flm_to_F2m}{GEN x}

\fun{GEN}{ZM_to_F2m}{GEN x}

\fun{GEN}{RgM_to_F2m}{GEN x}

\fun{void}{F2v_add_inplace}{GEN x, GEN y} replaces $x$ by $x+y$. It is
allowed for $y$ to be shorter than $x$.

\fun{ulong}{F2m_det}{GEN x}

\fun{ulong}{F2m_det_sp}{GEN x}, as \kbd{F2m\_det}, in place (destroys~\kbd{x}).

\fun{GEN}{F2m_deplin}{GEN x}

\fun{ulong}{F2v_dotproduct}{GEN x, GEN y} returns the scalar product of \kbd{x}
and \kbd{y}

\fun{GEN}{F2m_inv}{GEN x}

\fun{GEN}{F2m_ker}{GEN x}

\fun{GEN}{F2m_ker_sp}{GEN x, long deplin}, as \kbd{F2m\_ker} (if
\kbd{deplin=0}) or \kbd{F2m\_deplin} (if \kbd{deplin=1}), in place
(destroys~\kbd{x}).

\subsec{\kbd{FlxqV}, \kbd{FlxqM}} See \kbd{FqV}, \kbd{FqM} operations.

\fun{GEN}{FlxqV_dotproduct}{GEN x, GEN y, GEN T, ulong p} as
\kbd{FpV\_dotproduct}.

\fun{GEN}{FlxM_Flx_add_shallow}{GEN x, GEN y, ulong p} as
\kbd{RgM\_Rg\_add\_shallow}.

\fun{GEN}{FlxqM_gauss}{GEN a, GEN b, GEN T, ulong p}

\fun{GEN}{FlxqM_FlxqC_gauss}{GEN a, GEN b, GEN T, ulong p}

\fun{GEN}{FlxqM_FlxqC_mul}{GEN a, GEN b, GEN T, ulong p}

\fun{GEN}{FlxqM_ker}{GEN x, GEN T, ulong p}

\fun{GEN}{FlxqM_image}{GEN x, GEN T, ulong p}

\fun{GEN}{FlxqM_det}{GEN a, GEN T, ulong p}

\fun{GEN}{FlxqM_inv}{GEN x, GEN T, ulong p}

\fun{GEN}{FlxqM_mul}{GEN a, GEN b, GEN T, ulong p}

\fun{long}{FlxqM_rank}{GEN x, GEN T, ulong p}

\fun{GEN}{matid_FlxqM}{long n, GEN T, ulong p}

\subsec{\kbd{FpX}} Let \kbd{p} an understood \typ{INT}, to be given in
the function arguments; in practice \kbd{p} is not assumed to be prime, but
be wary. Recall than an \kbd{Fp} object is a \typ{INT}, preferably belonging
to $[0, \kbd{p}-1]$; an \kbd{FpX} is a \typ{POL} in a fixed variable whose
coefficients are \kbd{Fp} objects. Unless mentioned otherwise, all outputs in
this section are \kbd{FpX}s. All operations are understood to take place in
$(\Z/\kbd{p}\Z)[X]$.

\subsubsec{Conversions} In what follows \kbd{p} is always a \typ{INT},
not necessarily prime.

\fun{int}{RgX_is_FpX}{GEN z, GEN *p}, \kbd{z} a \typ{POL},
checks if it can be mapped to a \kbd{FpX}, by checking \kbd{Rg\_is\_Fp}
coefficientwise.

\fun{GEN}{RgX_to_FpX}{GEN z, GEN p}, \kbd{z} a \typ{POL}, returns the
\kbd{FpX} obtained by applying \kbd{Rg\_to\_Fp} coefficientwise.

\fun{GEN}{FpX_red}{GEN z, GEN p}, \kbd{z} a \kbd{ZX}, returns \kbd{lift(z *
Mod(1,p))}, normalized.

\fun{GEN}{FpXV_red}{GEN z, GEN p}, \kbd{z} a \typ{VEC} of \kbd{ZX}. Applies
\kbd{FpX\_red} componentwise and returns the result (and we obtain a vector
of \kbd{FpX}s).

\fun{GEN}{FpXT_red}{GEN z, GEN p}, \kbd{z} a tree of \kbd{ZX}. Applies
\kbd{FpX\_red} to each leaf and returns the result (and we obtain a tree
of \kbd{FpX}s).

\subsubsec{Basic operations} In what follows \kbd{p} is always a \typ{INT},
not necessarily prime.

\noindent Now, except for \kbd{p}, the operands and outputs are all \kbd{FpX}
objects. Results are undefined on other inputs.

\fun{GEN}{FpX_add}{GEN x,GEN y, GEN p} adds \kbd{x} and \kbd{y}.

\fun{GEN}{FpX_neg}{GEN x,GEN p} returns $-\kbd{x}$, the components are
between $0$ and $p$ if this is the case for the components of $x$.

\fun{GEN}{FpX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.

\fun{GEN}{FpX_sub}{GEN x,GEN y,GEN p} returns $x-y$.

\fun{GEN}{FpX_halve}{GEN x, GEN m} returns $z$ such that $2\*z = x$ modulo
$m$ assuming such $z$ exists.

\fun{GEN}{FpX_mul}{GEN x,GEN y,GEN p} returns $x\*y$.

\fun{GEN}{FpX_mulspec}{GEN a, GEN b, GEN p, long na, long nb}
see \kbd{ZX\_mulspec}

\fun{GEN}{FpX_sqr}{GEN x,GEN p} returns $\kbd{x}^2$.

\fun{GEN}{FpX_powu}{GEN x, ulong n, GEN p} returns $x^n$.

\fun{GEN}{FpX_divrem}{GEN x, GEN y, GEN p, GEN *pr} returns the quotient
of \kbd{x} by \kbd{y}, and sets \kbd{pr} to the remainder.

\fun{GEN}{FpX_div}{GEN x, GEN y, GEN p} returns the quotient of \kbd{x} by
\kbd{y}.

\fun{GEN}{FpX_div_by_X_x}{GEN A, GEN a, GEN p, GEN *r} returns the
quotient of the \kbd{FpX}~\kbd{A} by $(X - \kbd{a})$, and sets \kbd{r} to the
remainder $\kbd{A}(\kbd{a})$.

\fun{GEN}{FpX_rem}{GEN x, GEN y, GEN p} returns the remainder \kbd{x} mod
\kbd{y}.

\fun{long}{FpX_valrem}{GEN x, GEN t, GEN p, GEN *r} The arguments \kbd{x} and
\kbd{e} being non-zero \kbd{FpX} returns the highest exponent $e$ such that
$\kbd{t}^{e}$ divides~\kbd{x}. The quotient $\kbd{x}/\kbd{t}^{e}$ is returned
in~\kbd{*r}. In particular, if \kbd{t} is irreducible, this returns the
valuation at \kbd{t} of~\kbd{x}, and \kbd{*r} is the prime-to-\kbd{t} part
of~\kbd{x}.

\fun{GEN}{FpX_deriv}{GEN x, GEN p} returns the derivative of \kbd{x}.
This function is not memory-clean, but nevertheless suitable for
\kbd{gerepileupto}.

\fun{GEN}{FpX_digits}{GEN x, GEN B, GEN p} returns a vector of \kbd{FpX}
$[c_0,\ldots,c_n]$ of degree less than the degree of $B$ and such that
$x=\sum_{i=0}^{n}{c_i\*B^i}$.

\fun{GEN}{FpX_fromdigits}{GEN v, GEN B, GEN p} where $v=[c_0,\ldots,c_n]$
is a vector of \kbd{FpX}, returns $\sum_{i=0}^{n}{c_i\*B^i}$.

\fun{GEN}{FpX_translate}{GEN P, GEN c, GEN p} let $c$ be an \kbd{Fp} and let
$P$ be an \kbd{FpX}; returns the translated \kbd{FpX} of $P(X+c)$.

\fun{GEN}{FpX_gcd}{GEN x, GEN y, GEN p} returns a (not necessarily monic)
greatest common divisor of $x$  and $y$.

\fun{GEN}{FpX_halfgcd}{GEN x, GEN y, GEN p} returns a two-by-two \kbd{FpXM}
$M$ with determinant $\pm 1$ such that the image $(a,b)$ of $(x,y)$ by $M$
has the property that $\deg a \geq {\deg x \over 2} > \deg b$.

\fun{GEN}{FpX_extgcd}{GEN x, GEN y, GEN p, GEN *u, GEN *v} returns
$d = \text{GCD}(\kbd{x},\kbd{y})$ (not necessarily monic), and sets \kbd{*u},
\kbd{*v} to the Bezout coefficients such that $\kbd{*ux} + \kbd{*vy} = d$.
If \kbd{*u} is set to \kbd{NULL}, it is not computed which is a bit faster.
This is useful when computing the inverse of $y$ modulo $x$.

\fun{GEN}{FpX_center}{GEN z, GEN p, GEN pov2} returns the polynomial whose
coefficient belong to the symmetric residue system. Assumes the coefficients
already belong to $[0,\kbd{p}-1]$) and \kbd{pov2} is \kbd{shifti(p,-1)}.

\fun{GEN}{FpX_Frobenius}{GEN T, GEN p} returns $X^{p}\pmod{T(X)}$.

\fun{GEN}{FpX_matFrobenius}{GEN T, GEN p} returns the matrix of the
Frobenius automorphism $x\mapsto x^p$ over the power basis of $\F_p[X]/(T)$.

\subsubsec{Mixed operations}
The following functions implement arithmetic operations between \kbd{FpX}
and \kbd{Fp} operands, the result being of type \kbd{FpX}. The integer
\kbd{p} need not be prime.

\fun{GEN}{Z_to_FpX}{GEN x, GEN p, long v} converts a \typ{INT} to a scalar
polynomial in variable $v$, reduced modulo $p$.

\fun{GEN}{FpX_Fp_add}{GEN y, GEN x, GEN p} add the \kbd{Fp}~\kbd{x} to the
\kbd{FpX}~\kbd{y}.

\fun{GEN}{FpX_Fp_add_shallow}{GEN y, GEN x, GEN p} add the \kbd{Fp}~\kbd{x}
to the \kbd{FpX}~\kbd{y}, using a shallow copy (result not suitable for
\kbd{gerepileupto})

\fun{GEN}{FpX_Fp_sub}{GEN y, GEN x, GEN p} subtract the \kbd{Fp}~\kbd{x} from
the \kbd{FpX}~\kbd{y}.

\fun{GEN}{FpX_Fp_sub_shallow}{GEN y, GEN x, GEN p} subtract the
\kbd{Fp}~\kbd{x} from the \kbd{FpX}~\kbd{y}, using a shallow copy (result not
suitable for \kbd{gerepileupto})

\fun{GEN}{Fp_FpX_sub}{GEN x,GEN y,GEN p} returns $x - y$, where $x$ is
a \typ{INT} and $y$ an \kbd{FpX}.

\fun{GEN}{FpX_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{FpX}~\kbd{x}
by the \kbd{Fp}~\kbd{y}.

\fun{GEN}{FpX_Fp_mulspec}{GEN x, GEN y, GEN p, long lx} see \kbd{ZX\_mulspec}

\fun{GEN}{FpX_mulu}{GEN x, ulong y, GEN p} multiplies the \kbd{FpX}~\kbd{x}
by \kbd{y}.

\fun{GEN}{FpX_Fp_mul_to_monic}{GEN y,GEN x,GEN p} returns $y\*x$ assuming the
result is monic of the same degree as $y$ (in particular $x\neq 0$).

\subsubsec{Miscellaneous operations}

\fun{GEN}{FpX_normalize}{GEN z, GEN p} divides the \kbd{FpX}~\kbd{z} by its
leading coefficient. If the latter is~$1$, \kbd{z} itself is returned, not a
copy. If not, the inverse remains uncollected on the stack.

\fun{GEN}{FpX_invBarrett}{GEN T, GEN p}, returns the Barrett inverse
$M$ of $T$ defined by $M(x)\*x^n\*T(1/x)\equiv 1\pmod{x^{n-1}}$ where $n$ is
the degree of $T$.

\fun{GEN}{FpX_rescale}{GEN P, GEN h, GEN p} returns $h^{\deg(P)} P(x/h)$.
\kbd{P} is an \kbd{FpX} and \kbd{h} is a non-zero \kbd{Fp} (the routine would
work with any non-zero \typ{INT} but is not efficient in this case).

\fun{GEN}{FpX_eval}{GEN x, GEN y, GEN p} evaluates the \kbd{FpX}~\kbd{x}
at the \kbd{Fp}~\kbd{y}. The result is an~\kbd{Fp}.

\fun{GEN}{FpX_FpV_multieval}{GEN P, GEN v, GEN p} returns the vector
$[P(v[1]),\ldots,P(v[n])]$ as a \kbd{FpV}.

\fun{GEN}{FpX_dotproduct}{GEN x, GEN y, GEN p} return the scalar product
$\sum_{i\geq 0} x_i\*y_i$ of the coefficients of $x$ and $y$.

\fun{GEN}{FpXV_FpC_mul}{GEN V, GEN W, GEN p} multiplies a non-empty line
vector of\kbd{FpX} by a column vector of \kbd{Fp} of compatible dimensions.
The result is an~\kbd{FpX}.

\fun{GEN}{FpXV_prod}{GEN V, GEN p}, \kbd{V} being a vector of \kbd{FpX},
returns their product.

\fun{GEN}{FpV_roots_to_pol}{GEN V, GEN p, long v}, \kbd{V} being a vector
of \kbd{INT}s, returns the monic \kbd{FpX}
$\prod_i (\kbd{pol\_x[v]} - \kbd{V[i]})$.

\fun{GEN}{FpX_chinese_coprime}{GEN x,GEN y, GEN Tx,GEN Ty, GEN Tz, GEN p}:
returns an \kbd{FpX}, congruent to \kbd{x} mod \kbd{Tx} and to \kbd{y} mod
\kbd{Ty}. Assumes \kbd{Tx} and \kbd{Ty} are coprime, and \kbd{Tz = Tx * Ty}
or \kbd{NULL} (in which case it is computed within).

\fun{GEN}{FpV_polint}{GEN x, GEN y, GEN p, long v} returns the \kbd{FpX}
interpolation polynomial with value \kbd{y[i]} at \kbd{x[i]}. Assumes lengths
are the same, components are \typ{INT}s, and the \kbd{x[i]} are distinct
modulo \kbd{p}.

\fun{GEN}{FpV_FpM_polint}{GEN x, GEN V, GEN p, long v} equivalent (but
faster) to applying \kbd{FpV\_polint(x,$\ldots$)} to all the elements of the
vector $V$ (thus, returns a \kbd{FpXV}).

\fun{GEN}{FpV_invVandermonde}{GEN L, GEN d, GEN p} $L$ being a \kbd{FpV}
of length $n$, return the inverse $M$ of the Vandermonde matrix attached to
the elements of $L$, eventually multiplied by \kbd{d} if it is not
\kbd{NULL}. If $A$ is a \kbd{FpV} and $B=M\*A$, then the polynomial
$P=\sum_{i=1}^n B[i]\*X^{i-1}$ verifies $P(L[i])=d\*A[i]$ for
$1 \leq i \leq n$.

\fun{int}{FpX_is_squarefree}{GEN f, GEN p} returns $1$ if the
\kbd{FpX}~\kbd{f} is squarefree, $0$ otherwise.

\fun{int}{FpX_is_irred}{GEN f, GEN p} returns $1$ if the \kbd{FpX}~\kbd{f}
is irreducible, $0$ otherwise. Assumes that \kbd{p} is prime. If~\kbd{f} has
few factors, \kbd{FpX\_nbfact(f,p) == 1} is much faster.

\fun{int}{FpX_is_totally_split}{GEN f, GEN p} returns $1$ if the
\kbd{FpX}~\kbd{f} splits into a product of distinct linear factors, $0$
otherwise. Assumes that \kbd{p} is prime.

\fun{GEN}{FpX_factor}{GEN f, GEN p}, factors the \kbd{FpX}~\kbd{f}. Assumes
that \kbd{p} is prime. The returned value \kbd{v} is a \typ{VEC} with two
components: \kbd{v[1]} is a vector of distinct irreducible (\kbd{FpX})
factors, and \kbd{v[2]} is a \typ{VECSMALL} of corresponding exponents. The
order of the factors is deterministic (the computation is not).

\fun{GEN}{FpX_factor_squarefree}{GEN f, GEN p} returns the squarefree
factorization of $f$ modulo $p$. This is a vector $[u_1,\dots,u_k]$
of pairwise coprime \kbd{FpX} such that $u_k \neq 1$ and $f = \prod u_i^i$.
Shallow function.

\fun{long}{FpX_nbfact}{GEN f, GEN p}, assuming the \kbd{FpX}~f is squarefree,
returns the number of its irreducible factors. Assumes that \kbd{p} is prime.

\fun{long}{FpX_nbfact_Frobenius}{GEN f, GEN XP, GEN p}, as
\kbd{FpX\_nbfact(f, p)} but faster,
where \kbd{XP} is \kbd{FpX\_Frobenius(f, p)}.

\fun{long}{FpX_degfact}{GEN f, GEN p}, as \kbd{FpX\_factor}, but the
degrees of the irreducible factors are returned instead of the factors
themselves (as a \typ{VECSMALL}). Assumes that \kbd{p} is prime.

\fun{long}{FpX_nbroots}{GEN f, GEN p} returns the number of distinct
roots in \kbd{\Z/p\Z} of the \kbd{FpX}~\kbd{f}. Assumes that \kbd{p} is prime.

\fun{GEN}{FpX_oneroot}{GEN f, GEN p} returns one root in \kbd{\Z/p\Z} of
the \kbd{FpX}~\kbd{f}. Return \kbd{NULL} if no root exists.
Assumes that \kbd{p} is prime.

\fun{GEN}{FpX_roots}{GEN f, GEN p} returns the roots in \kbd{\Z/p\Z} of
the \kbd{FpX}~\kbd{f} (without multiplicity, as a vector of \kbd{Fp}s).
Assumes that \kbd{p} is prime.

\fun{GEN}{FpX_split_part}{GEN f, GEN p} returns the largest totally split
squarefree factor of $f$.

\fun{GEN}{random_FpX}{long d, long v, GEN p} returns a random \kbd{FpX}
in variable \kbd{v}, of degree less than~\kbd{d}.

\fun{GEN}{FpX_resultant}{GEN x, GEN y, GEN p} returns the resultant
of \kbd{x} and \kbd{y}, both \kbd{FpX}. The result is a \typ{INT}
belonging to $[0,p-1]$.

\fun{GEN}{FpX_disc}{GEN x, GEN p} returns the discriminant
of the \kbd{FpX} \kbd{x}. The result is a \typ{INT} belonging to $[0,p-1]$.

\fun{GEN}{FpX_FpXY_resultant}{GEN a, GEN b, GEN p}, \kbd{a} a \typ{POL} of
\typ{INT}s (say in variable $X$), \kbd{b} a \typ{POL} (say in variable $X$)
whose coefficients are either \typ{POL}s in $\Z[Y]$ or \typ{INT}s.
Returns $\text{Res}_X(a, b)$ in $\F_p[Y]$ as an \kbd{FpY}. The function
assumes that $X$ has lower priority than $Y$.

\subsec{\kbd{FpXQ}, \kbd{Fq}} Let \kbd{p} a \typ{INT} and \kbd{T} an
\kbd{FpX} for \kbd{p}, both to be given in the function arguments; an \kbd{FpXQ}
object is an \kbd{FpX} whose degree is strictly less than the degree of
\kbd{T}. An \kbd{Fq} is either an \kbd{FpXQ} or an \kbd{Fp}. Both represent
a class in $(\Z/\kbd{p}\Z)[X] / (T)$, in which all operations below take
place. In addition, \kbd{Fq} routines also allow $\kbd{T} = \kbd{NULL}$, in
which case no reduction mod \kbd{T} is performed on the result.

For efficiency, the routines in this section may leave small unused objects
behind on the stack (their output is still suitable for \kbd{gerepileupto}).
Besides \kbd{T} and \kbd{p}, arguments are either \kbd{FpXQ} or \kbd{Fq}
depending on the function name. (All \kbd{Fq} routines accept \kbd{FpXQ}s by
definition, not the other way round.)

\subsubsec{Preconditioned reduction}

For faster reduction, the modulus \kbd{T} can be replaced by an extended
modulus, which is an \kbd{FpXT}, in all \kbd{FpXQ}- and \kbd{Fq}-classes
functions, and in \kbd{FpX\_rem} and \kbd{FpX\_divrem}.

\fun{GEN}{FpX_get_red}{GEN T, GEN p} returns the extended modulus \kbd{eT}.

To write code that works both with plain and extended moduli, the following
accessors are defined:

\fun{GEN}{get_FpX_mod}{GEN eT} returns the underlying modulus \kbd{T}.

\fun{GEN}{get_FpX_var}{GEN eT} returns the variable number of the modulus.

\fun{GEN}{get_FpX_degree}{GEN eT} returns the degree of the modulus.

Furthermore, \kbd{ZXT\_to\_FlxT} allows to convert an extended modulus for
a \kbd{FpX} to an extended modulus for the corresponding \kbd{Flx}.

\subsubsec{Conversions}

\fun{GEN}{Rg_is_FpXQ}{GEN z, GEN *T, GEN *p}, checks if \kbd{z} is a \kbd{GEN}
which can be mapped to $\F_p[X]/(T)$: anything for which \kbd{Rg\_is\_Fp} return
$1$, a \typ{POL} for which \kbd{RgX\_to\_FpX} return $1$, a \typ{POLMOD}
whose modulus is equal to \kbd{*T} if \kbd{*T} is not \kbd{NULL} (once mapped
to a \kbd{FpX}), or a \typ{FFELT} $z$ such that $z^0$ is equal to \kbd{*T}
if \kbd{*T} is not \kbd{NULL}.

If an integer modulus is found it is put in \kbd{*p}, else \kbd{*p} is left
unchanged. If a polynomial modulus is found it is put in \kbd{*T},
if a \typ{FFELT} $z$ is found, $z^0$ is put in \kbd{*T}, else
\kbd{*T} is left unchanged.

\fun{int}{RgX_is_FpXQX}{GEN z, GEN *T, GEN *p}, \kbd{z} a \typ{POL},
checks if it can be mapped to a \kbd{FpXQX}, by checking \kbd{Rg\_is\_FpXQ}
coefficientwise.

\fun{GEN}{Rg_to_FpXQ}{GEN z, GEN T, GEN p}, \kbd{z} a \kbd{GEN} which can be
mapped to $\F_p[X]/(T)$: anything \kbd{Rg\_to\_Fp} can be applied to,
a \typ{POL} to which \kbd{RgX\_to\_FpX} can be applied to, a \typ{POLMOD}
whose modulus is divisible by $T$ (once mapped to a \kbd{FpX}), a suitable
\typ{RFRAC}. Returns \kbd{z} as an \kbd{FpXQ}, normalized.

\fun{GEN}{RgX_to_FpXQX}{GEN z, GEN T, GEN p}, \kbd{z} a \typ{POL}, returns the
\kbd{FpXQ} obtained by applying \kbd{Rg\_to\_FpXQ} coefficientwise.

\fun{GEN}{RgX_to_FqX}{GEN z, GEN T, GEN p}: let \kbd{z} be a \typ{POL};
returns the \kbd{FqX} obtained by applying \kbd{Rg\_to\_FpXQ}
coefficientwise and simplifying scalars to \typ{INT}s.

\fun{GEN}{Fq_to_FpXQ}{GEN z, GEN T, GEN p /*unused*/}
if $z$ is a \typ{INT}, convert it to a constant polynomial in the variable of
$T$, otherwise return $z$ (shallow function).

\fun{GEN}{Fq_red}{GEN x, GEN T, GEN p}, \kbd{x} a \kbd{ZX} or \typ{INT},
reduce it to an \kbd{Fq} ($\kbd{T} = \kbd{NULL}$ is allowed iff \kbd{x} is a
\typ{INT}).

\fun{GEN}{FqX_red}{GEN x, GEN T, GEN p}, \kbd{x} a \typ{POL}
whose coefficients are \kbd{ZX}s or \typ{INT}s, reduce them to \kbd{Fq}s. (If
$\kbd{T} = \kbd{NULL}$, as \kbd{FpXX\_red(x, p)}.)

\fun{GEN}{FqV_red}{GEN x, GEN T, GEN p}, \kbd{x} a vector of \kbd{ZX}s or
\typ{INT}s, reduce them to \kbd{Fq}s. (If $\kbd{T} = \kbd{NULL}$, only
reduce components mod \kbd{p} to \kbd{FpX}s or \kbd{Fp}s.)

\fun{GEN}{FpXQ_red}{GEN x, GEN T,GEN p} \kbd{x} a \typ{POL}
whose coefficients are \typ{INT}s, reduce them to \kbd{FpXQ}s.

\subsec{\kbd{FpXQ}}

\fun{GEN}{FpXQ_add}{GEN x, GEN y, GEN T,GEN p}

\fun{GEN}{FpXQ_sub}{GEN x, GEN y, GEN T,GEN p}

\fun{GEN}{FpXQ_mul}{GEN x, GEN y, GEN T,GEN p}

\fun{GEN}{FpXQ_sqr}{GEN x, GEN T, GEN p}

\fun{GEN}{FpXQ_div}{GEN x, GEN y, GEN T,GEN p}

\fun{GEN}{FpXQ_inv}{GEN x, GEN T, GEN p} computes the inverse of \kbd{x}

\fun{GEN}{FpXQ_invsafe}{GEN x,GEN T,GEN p}, as \kbd{FpXQ\_inv}, returning
\kbd{NULL} if \kbd{x} is not invertible.

\fun{GEN}{FpXQ_pow}{GEN x, GEN n, GEN T, GEN p} computes $\kbd{x}^\kbd{n}$.

\fun{GEN}{FpXQ_powu}{GEN x, ulong n, GEN T, GEN p} computes $\kbd{x}^\kbd{n}$
for small $n$.

In the following three functions the integer parameter \kbd{ord} can be given
either as a positive \typ{INT} $N$, or as its factorization matrix $\var{faN}$,
or as a pair $[N,\var{faN}]$. The parameter may be omitted by setting it to
\kbd{NULL} (the value is then $p^d-1$, $d = \deg T$).

\fun{GEN}{FpXQ_log}{GEN a, GEN g, GEN ord, GEN T, GEN p} Let \kbd{g} be of
order \kbd{ord} in the finite field $\F_p[X]/(T)$, return $e$ such that
$a^e=g$. If $e$ does not exists, the result is undefined. Assumes
that \kbd{T} is irreducible mod \kbd{p}.

\fun{GEN}{Fp_FpXQ_log}{GEN a, GEN g, GEN ord, GEN T, GEN p} As
\kbd{FpXQ\_log}, \kbd{a} being a \kbd{Fp}.

\fun{GEN}{FpXQ_order}{GEN a, GEN ord, GEN T, GEN p} returns the order of the
\kbd{FpXQ} \kbd{a}. Assume that \kbd{ord} is a multiple of the order of
\kbd{a}. Assume that \kbd{T} is irreducible mod \kbd{p}.

\fun{int}{FpXQ_issquare}{GEN x, GEN T, GEN p} returns $1$ if $x$ is a square
and $0$ otherwise. Assumes that \kbd{T} is irreducible mod \kbd{p}.

\fun{GEN}{FpXQ_sqrt}{GEN x, GEN T, GEN p} returns a square root of \kbd{x}.
Return \kbd{NULL} if \kbd{x} is not a square.

\fun{GEN}{FpXQ_sqrtn}{GEN x, GEN n, GEN T, GEN p, GEN *zn}
Let $T$be irreducible mod $p$ and $q = p^{\deg T}$; returns \kbd{NULL} if $a$
is not an $n$-th power residue mod $p$. Otherwise, returns an $n$-th root of
$a$; if \kbd{zn} is non-\kbd{NULL} set it to a primitive $m$-th root of $1$
in $\F_q$, $m = \gcd(q-1,n)$ allowing to compute all $m$ solutions in $\F_q$
of the equation $x^n = a$.

\subsec{\kbd{Fq}}

\fun{GEN}{Fq_add}{GEN x, GEN y, GEN T/*unused*/, GEN p}

\fun{GEN}{Fq_sub}{GEN x, GEN y, GEN T/*unused*/, GEN p}

\fun{GEN}{Fq_mul}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{Fq_Fp_mul}{GEN x, GEN y, GEN T, GEN p} multiplies the \kbd{Fq} $x$
by the \typ{INT} $y$.

\fun{GEN}{Fq_mulu}{GEN x, ulong y, GEN T, GEN p} multiplies the \kbd{Fq} $x$
by the scalar $y$.

\fun{GEN}{Fq_halve}{GEN x, GEN T, GEN p} returns $z$ such that $2\*z = x$
assuming such $z$ exists.

\fun{GEN}{Fq_sqr}{GEN x, GEN T, GEN p}

\fun{GEN}{Fq_neg}{GEN x, GEN T, GEN p}

\fun{GEN}{Fq_neg_inv}{GEN x, GEN T, GEN p} computes $-\kbd{x}^{-1}$

\fun{GEN}{Fq_inv}{GEN x, GEN pol, GEN p} computes $\kbd{x}^{-1}$, raising an
error if \kbd{x} is not invertible.

\fun{GEN}{Fq_invsafe}{GEN x, GEN pol, GEN p} as \kbd{Fq\_inv}, but returns
\kbd{NULL} if \kbd{x} is not invertible.

\fun{GEN}{Fq_div}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FqV_inv}{GEN x, GEN T, GEN p} $x$ being a vector of \kbd{Fq}s,
return the vector of inverses of the $x[i]$. The routine uses Montgomery's
trick, and involves a single inversion, plus $3(N-1)$ multiplications for
$N$ entries. The routine is not stack-clean: $2N$ \kbd{FpXQ} are left on
stack, besides the $N$ in the result.

\fun{GEN}{Fq_pow}{GEN x, GEN n, GEN pol, GEN p} returns $\kbd{x}^\kbd{n}$.

\fun{GEN}{Fq_powu}{GEN x, ulong n, GEN pol, GEN p} returns $\kbd{x}^\kbd{n}$
for small $n$.

\fun{GEN}{Fq_log}{GEN a, GEN g, GEN ord, GEN T, GEN p} as
\tet{Fp_log} or \tet{FpXQ_log}.

\fun{int}{Fq_issquare}{GEN x, GEN T, GEN p} returns $1$ if $x$ is a square
and $0$ otherwise. Assumes that \kbd{T} is irreducible mod \kbd{p} and that
$p$ is prime; $T = \kbd{NULL}$ is forbidden unless $x$ is an \kbd{Fp}.

\fun{long}{Fq_ispower}{GEN x, GEN n, GEN T, GEN p} returns $1$ if $x$
is a $n$-th power and $0$ otherwise. Assumes that \kbd{T} is irreducible mod
\kbd{p} and that $p$ is prime; $T = \kbd{NULL}$ is forbidden unless $x$ is an
\kbd{Fp}.

\fun{GEN}{Fq_sqrt}{GEN x, GEN T, GEN p} returns a square root of \kbd{x}.
Return \kbd{NULL} if \kbd{x} is not a square.

\fun{GEN}{Fq_sqrtn}{GEN a, GEN n, GEN T, GEN p, GEN *zn}
as \tet{FpXQ_sqrtn}.

\fun{GEN}{FpXQ_charpoly}{GEN x, GEN T, GEN p} returns the characteristic
polynomial of \kbd{x}

\fun{GEN}{FpXQ_minpoly}{GEN x, GEN T, GEN p} returns the minimal polynomial
of \kbd{x}

\fun{GEN}{FpXQ_norm}{GEN x, GEN T, GEN p} returns the norm of \kbd{x}

\fun{GEN}{FpXQ_trace}{GEN x, GEN T, GEN p} returns the trace of \kbd{x}

\fun{GEN}{FpXQ_conjvec}{GEN x, GEN T, GEN p} returns the vector of conjugates
$[x,x^p,x^{p^2},\ldots,x^{p^{n-1}}]$ where $n$ is the degree of $T$.

\fun{GEN}{gener_FpXQ}{GEN T, GEN p, GEN *po} returns a primitive root modulo
$(T,p)$. $T$ is an \kbd{FpX} assumed to be irreducible modulo the prime
$p$. If \kbd{po} is not \kbd{NULL} it is set to $[o,\var{fa}]$, where $o$ is
the order of the multiplicative group of the finite field, and \var{fa} is
its factorization.

\fun{GEN}{gener_FpXQ_local}{GEN T, GEN p, GEN L}, \kbd{L} being a vector of
primes dividing $p^{\deg T} - 1$, returns an element of $G:=\F_p[x]/(T)$
which is a generator of the $\ell$-Sylow of $G$ for every $\ell$ in
\kbd{L}. It is not necessary, and in fact slightly inefficient, to include
$\ell=2$, since 2 is treated separately in any case, i.e. the generator
obtained is never a square if $p$ is odd.

\fun{GEN}{gener_Fq_local}{GEN T, GEN p, GEN L} as
\kbd{pgener\_Fp\_local(p, L)} if $T$ is \kbd{NULL},
or \kbd{gener\_FpXQ\_local} (otherwise).


\fun{GEN}{FpXQ_powers}{GEN x, long n, GEN T, GEN p} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC} of \kbd{FpXQ}s.

\fun{GEN}{FpXQ_matrix_pow}{GEN x, long m, long n, GEN T, GEN p}, as
\kbd{FpXQ\_powers}$(x, n-1, T, p)$, but returns the powers as a an
$m\times n$ matrix. Usually, we have $m = n = \deg T$.

\fun{GEN}{FpXQ_autpow}{GEN a, ulong n, GEN T, GEN p} computes $\sigma^n(X)$
assuming $a=\sigma(X)$ where $\sigma$ is an automorphism of the algebra
$\F_p[X]/T(X)$.

\fun{GEN}{FpXQ_autsum}{GEN a, ulong n, GEN T, GEN p}
$a$ being a two-component vector,
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
returns the vector $[\sigma^n(X),b\sigma(b)\ldots\sigma^{n-1}(b)]$
where $b=a[2]$.

\fun{GEN}{FpXQ_auttrace}{GEN a, ulong n, GEN T, GEN p}
$a$ being a two-component vector,
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
returns the vector $[\sigma^n(X),b+\sigma(b)+\ldots+\sigma^{n-1}(b)]$
where $b=a[2]$.

\fun{GEN}{FpXQ_autpowers}{GEN S, long n, GEN T, GEN p} returns
$[x,S(x),S(S(x)),\dots,S^{(n)}(x)]$ as a \typ{VEC} of \kbd{FpXQ}s.

\fun{GEN}{FpXQM_autsum}{GEN a, long n, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
returns the vector $[\sigma^n(X),b\sigma(b)\ldots\sigma^{n-1}(b)]$
where $b=a[2]$ is a square matrix.

\fun{GEN}{FpX_FpXQ_eval}{GEN f, GEN x, GEN T, GEN p} returns
$\kbd{f}(\kbd{x})$.

\fun{GEN}{FpX_FpXQV_eval}{GEN f, GEN V, GEN T, GEN p} returns
$\kbd{f}(\kbd{x})$, assuming that \kbd{V} was computed by
$\kbd{FpXQ\_powers}(\kbd{x}, n, \kbd{T}, \kbd{p})$.

\fun{GEN}{FpXC_FpXQV_eval}{GEN C, GEN V,GEN T,GEN p} applies
\kbd{FpX\_FpXQV\_eval} to all elements of the vector $C$
and returns a \typ{COL}.

\fun{GEN}{FpXM_FpXQV_eval}{GEN M, GEN V,GEN T,GEN p} applies
\kbd{FpX\_FpXQV\_eval} to all elements of the matrix $M$.

\subsec{\kbd{FpXX}, \kbd{FpXY}}
Contrary to what the name implies, an \kbd{FpXX} is a \typ{POL} whose
coefficients are either \typ{INT}s or \kbd{FpX}s. This reduces memory
overhead at the expense of consistency. The prefix \kbd{FpXY} is an
alias for \kbd{FpXX} when variables matters.

\fun{GEN}{FpXX_red}{GEN z, GEN p}, \kbd{z} a \typ{POL} whose coefficients are
either \kbd{ZX}s or \typ{INT}s. Returns the \typ{POL} equal to \kbd{z} with
all components reduced modulo \kbd{p}.

\fun{GEN}{FpXX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.

\fun{GEN}{FpXX_add}{GEN x, GEN y, GEN p} adds \kbd{x} and \kbd{y}.

\fun{GEN}{FpXX_sub}{GEN x, GEN y, GEN p} returns $\kbd{x}-\kbd{y}$.

\fun{GEN}{FpXX_neg}{GEN x, GEN p} returns $-\kbd{x}$.

\fun{GEN}{FpXX_Fp_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{FpXX}~\kbd{x}
by the \kbd{Fp}~\kbd{y}.

\fun{GEN}{FpXX_FpX_mul}{GEN x, GEN y, GEN p} multiplies the coefficients of the
\kbd{FpXX}~\kbd{x} by the \kbd{FpX}~\kbd{y}.

\fun{GEN}{FpXX_mulu}{GEN x, GEN y, GEN p} multiplies the \kbd{FpXX}~\kbd{x}
by the scalar \kbd{y}.

\fun{GEN}{FpXX_deriv}{GEN P, GEN p} differentiates \kbd{P} with respect of
the main variable.

\fun{GEN}{FpXY_eval}{GEN Q, GEN y, GEN x, GEN p} $Q$ being an \kbd{FpXY},
i.e.~a \typ{POL} with \kbd{Fp} or \kbd{FpX} coefficients representing an
element of $\F_p[X][Y]$. Returns the \kbd{Fp} $Q(x,y)$.

\fun{GEN}{FpXY_evalx}{GEN Q, GEN x, GEN p} $Q$ being an \kbd{FpXY}, returns the
\kbd{FpX} $Q(x,Y)$, where $Y$ is the main variable of $Q$.

\fun{GEN}{FpXY_evaly}{GEN Q, GEN y, GEN p, long vx} $Q$ an \kbd{FpXY}, returns
the \kbd{FpX} $Q(X,y)$, where $X$ is the second variable of $Q$, and \kbd{vx}
is the variable number of $X$.

\fun{GEN}{FpXY_Fq_evaly}{GEN Q, GEN y, GEN T, GEN p, long vx} $Q$ an \kbd{FpXY}
and $y$ being an \kbd{Fq}, returns the \kbd{FqX} $Q(X,y)$, where $X$ is the
second variable of $Q$, and \kbd{vx} is the variable number of $X$.

\fun{GEN}{FpXY_FpXQ_evalx}{GEN Q, GEN x, ulong p} $Q$ an \kbd{FpXY} and
$x$ being an \kbd{FpXQ}, returns the \kbd{FpXQX} $Q(x,Y)$, where $Y$ is the
first variable of $Q$.

\fun{GEN}{FpXY_FpXQV_evalx}{GEN Q, GEN V, ulong p} $Q$ an \kbd{FpXY} and
$x$ being an \kbd{FpXQ}, returns the \kbd{FpXQX} $Q(x,Y)$, where $Y$ is the
first variable of $Q$, assuming that \kbd{V} was computed by
$\kbd{FpXQ\_powers}(\kbd{x}, n, \kbd{T}, \kbd{p})$.

\fun{GEN}{FpXYQQ_pow}{GEN x, GEN n, GEN S, GEN T, GEN p}, \kbd{x} being a
\kbd{FpXY}, \kbd{T} being a \kbd{FpX} and \kbd{S} being a \kbd{FpY},
return $x^n \pmod{S,T,p}$.

\subsec{\kbd{FpXQX}, \kbd{FqX}}
Contrary to what the name implies, an \kbd{FpXQX} is a \typ{POL} whose
coefficients are \kbd{Fq}s. So the only difference between \kbd{FqX} and
\kbd{FpXQX} routines is that $\kbd{T} = \kbd{NULL}$ is not allowed in the
latter. (It was thought more useful to allow \typ{INT} components than to
enforce strict consistency, which would not imply any efficiency gain.)

\subsubsec{Basic operations}

\fun{GEN}{FqX_add}{GEN x,GEN y,GEN T,GEN p}

\fun{GEN}{FqX_Fq_add}{GEN x, GEN y, GEN T, GEN p} adds the
\kbd{Fq}~\kbd{y} to the \kbd{FqX}~\kbd{x}.

\fun{GEN}{FqX_neg}{GEN x,GEN T,GEN p}

\fun{GEN}{FqX_sub}{GEN x,GEN y,GEN T,GEN p}

\fun{GEN}{FqX_mul}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FqX_Fq_mul}{GEN x, GEN y, GEN T, GEN p} multiplies the
\kbd{FqX}~\kbd{x} by the \kbd{Fq}~\kbd{y}.

\fun{GEN}{FqX_mulu}{GEN x, ulong y, GEN T, GEN p} multiplies the
\kbd{FqX}~\kbd{x} by the scalar~\kbd{y}.

\fun{GEN}{FqX_Fp_mul}{GEN x, GEN y, GEN T, GEN p} multiplies the
\kbd{FqX}~\kbd{x} by the \typ{INT}~\kbd{y}.

\fun{GEN}{FqX_Fq_mul_to_monic}{GEN x, GEN y, GEN T, GEN p}
returns $x\*y$ assuming the result is monic of the same degree as $x$ (in
particular $y\neq 0$).

\fun{GEN}{FpXQX_normalize}{GEN z, GEN T, GEN p}

\fun{GEN}{FqX_normalize}{GEN z, GEN T, GEN p} divides the \kbd{FqX}~\kbd{z}
by its leading term. The leading coefficient becomes $1$ as a \typ{INT}.

\fun{GEN}{FqX_sqr}{GEN x, GEN T, GEN p}

\fun{GEN}{FqX_powu}{GEN x, ulong n, GEN T, GEN p}

\fun{GEN}{FqX_divrem}{GEN x, GEN y, GEN T, GEN p, GEN *z}

\fun{GEN}{FqX_div}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FqX_div_by_X_x}{GEN a, GEN x, GEN T, GEN p, GEN *r}

\fun{GEN}{FqX_rem}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FqX_deriv}{GEN x, GEN T, GEN p} returns the derivative of \kbd{x}.
(This function is suitable for \kbd{gerepilupto} but not memory-clean.)

\fun{GEN}{FqX_translate}{GEN P, GEN c, GEN T, GEN p} let $c$ be an \kbd{Fq}
defined modulo $(p, T)$, and let $P$ be an \kbd{FqX}; returns the translated
\kbd{FqX} of $P(X+c)$.

\fun{GEN}{FqX_gcd}{GEN P, GEN Q, GEN T, GEN p} returns a (not necessarily
monic) greatest common divisor of $x$  and $y$.

\fun{GEN}{FqX_extgcd}{GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv}
returns $d = \text{GCD}(\kbd{x},\kbd{y})$ (not necessarily monic), and sets
\kbd{*u}, \kbd{*v} to the Bezout coefficients such that $\kbd{*ux} +
\kbd{*vy} = d$.

\fun{GEN}{FqX_halfgcd}{GEN x, GEN y, GEN T, GEN p} returns a two-by-two
\kbd{FqXM} $M$ with determinant $\pm 1$ such that the image $(a,b)$ of $(x,y)$
by $M$ has the property that $\deg a \geq {\deg x \over 2} > \deg b$.

\fun{GEN}{FqX_eval}{GEN x, GEN y, GEN T, GEN p} evaluates the \kbd{FqX}~\kbd{x}
at the \kbd{Fq}~\kbd{y}. The result is an~\kbd{Fq}.

\fun{GEN}{FqXY_eval}{GEN Q, GEN y, GEN x, GEN T, GEN p} $Q$ an \kbd{FqXY},
i.e.~a \typ{POL} with \kbd{Fq} or \kbd{FqX} coefficients representing an
element of $\F_q[X][Y]$. Returns the \kbd{Fq} $Q(x,y)$.

\fun{GEN}{FqXY_evalx}{GEN Q, GEN x, GEN T, GEN p} $Q$ being an \kbd{FqXY},
returns the \kbd{FqX} $Q(x,Y)$, where $Y$ is the main variable of $Q$.

\fun{GEN}{random_FpXQX}{long d, long v, GEN T, GEN p} returns a random
\kbd{FpXQX} in variable \kbd{v}, of degree less than~\kbd{d}.

\fun{GEN}{FpXQX_renormalize}{GEN x, long lx}

\fun{GEN}{FpXQX_red}{GEN z, GEN T, GEN p} \kbd{z} a \typ{POL} whose
coefficients are \kbd{ZX}s or \typ{INT}s, reduce them to \kbd{FpXQ}s.

\fun{GEN}{FpXQX_mul}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{Kronecker_to_FpXQX}{GEN z, GEN T, GEN p}. Let $n = \deg T$ and let
$P(X,Y)\in \Z[X,Y]$ lift a polynomial in $K[Y]$, where $K := \F_p[X]/(T)$ and
$\deg_X P < 2n-1$ --- such as would result from multiplying minimal degree
lifts of two polynomials in $K[Y]$. Let $z = P(t,t^{2*n-1})$ be a Kronecker
form of $P$, this function returns $Q\in \Z[X,t]$ such that $Q$ is congruent to
$P(X,t)$ mod $(p, T(X))$, $\deg_X Q < n$, and all coefficients are in $[0,p[$.
Not stack-clean. Note that $t$ need not be the same variable as $Y$!

\fun{GEN}{FpXQX_FpXQ_mul}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FpXQX_sqr}{GEN x, GEN T, GEN p}

\fun{GEN}{FpXQX_divrem}{GEN x, GEN y, GEN T, GEN p, GEN *pr}

\fun{GEN}{FpXQX_div}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FpXQX_div_by_X_x}{GEN a, GEN x, GEN T, GEN p, GEN *r}

\fun{GEN}{FpXQX_rem}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FpXQX_powu}{GEN x, ulong n, GEN T, GEN p} returns $x^n$.

\fun{GEN}{FpXQX_digits}{GEN x, GEN B, GEN T, GEN p}

\fun{GEN}{FpXQX_fromdigits}{GEN v, GEN B, GEN T, GEN p}

\fun{GEN}{FpXQX_invBarrett}{GEN y, GEN T, GEN p} returns the Barrett inverse of
the \kbd{FpXQX} $y$, namely a lift of $1/\kbd{polrecip}(y)+O(x^{\deg(y)-1})$.

\fun{GEN}{FpXQXV_prod}{GEN V, GEN T, GEN p}, \kbd{V} being a vector of
\kbd{FpXQX}, returns their product.

\fun{GEN}{FpXQX_gcd}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FpXQX_extgcd}{GEN x, GEN y, GEN T, GEN p, GEN *ptu, GEN *ptv}

\fun{GEN}{FpXQX_halfgcd}{GEN x, GEN y, GEN T, GEN p}

\fun{GEN}{FpXQX_FpXQXQ_eval}{GEN f,GEN x,GEN S, GEN T,GEN p} returns
$\kbd{f}(\kbd{x})$.

\subsec{\kbd{FpXQXQ}, \kbd{FqXQ}}

A \kbd{FpXQXQ} is a \typ{FpXQX} which represents an element of the ring
$(Fp[X]/T(X))[Y]/S(X,Y)$, where $T$ is a \kbd{FpX} and $S$ a \kbd{FpXQX}
modulo $T$.  A \kbd{FqXQ} is identical except that $T$ is allowed to be
\kbd{NULL} in which case $S$ must be a \kbd{FpX}.

\subsubsec{Preconditioned reduction}

For faster reduction, the modulus \kbd{S} can be replaced by an extended
modulus, which is an \kbd{FpXQXT}, in all \kbd{FpXQXQ}- and \kbd{FqXQ}-classes
functions, and in \kbd{FpXQX\_rem} and \kbd{FpXQX\_divrem}.

\fun{GEN}{FpXQX_get_red}{GEN S, GEN T, GEN p} returns the extended modulus
\kbd{eS}.

\fun{GEN}{FqX_get_red}{GEN S, GEN T, GEN p} identical, but allow $T$ to
be \kbd{NULL}, in which case it returns \kbd{FpX\_get\_red(S,p)}.

To write code that works both with plain and extended moduli, the following
accessors are defined:

\fun{GEN}{get_FpXQX_mod}{GEN eS} returns the underlying modulus \kbd{S}.

\fun{GEN}{get_FpXQX_var}{GEN eS} returns the variable number of the modulus.

\fun{GEN}{get_FpXQX_degree}{GEN eS} returns the degree of the modulus.

Furthermore, \kbd{ZXXT\_to\_FlxXT} allows to convert an extended modulus for
a \kbd{FpXQX} to an extended modulus for the corresponding \kbd{FlxqX}.

\subsubsec{basic operations}

\fun{GEN}{FpXQX_FpXQXQV_eval}{GEN f,GEN V,GEN S,GEN T,GEN p} returns
$\kbd{f}(\kbd{x})$, assuming that \kbd{V} was computed by
$\kbd{FpXQXQ\_powers}(\kbd{x}, n, \kbd{S}, \kbd{T}, \kbd{p})$.

\fun{GEN}{FpXQXQ_div}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}*\kbd{y}^{-1}$ modulo \kbd{S}.

\fun{GEN}{FpXQXQ_inv}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}^{-1}$ modulo \kbd{S}.

\fun{GEN}{FpXQXQ_invsafe}{GEN x, GEN S, GEN T,GEN p}, as \kbd{FpXQXQ\_inv},
returning \kbd{NULL} if \kbd{x} is not invertible.

\fun{GEN}{FpXQXQ_mul}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}\*\kbd{y}$ modulo \kbd{S}.

\fun{GEN}{FpXQXQ_sqr}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}^2$ modulo \kbd{S}.

\fun{GEN}{FpXQXQ_pow}{GEN x, GEN n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $\kbd{x}^\kbd{n}$ modulo \kbd{S}.

\fun{GEN}{FpXQXQ_powers}{GEN x, long n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FpXQX}s, returns $[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ as a
\typ{VEC} of \kbd{FpXQXQ}s.

\fun{GEN}{FpXQXQ_matrix_pow}{GEN x, long m, long n, GEN S, GEN T, GEN p}
returns the same powers of \kbd{x} as \kbd{FpXQXQ\_powers}$(x, n-1,S, T, p)$,
but as an $m\times n$ matrix.

\fun{GEN}{FpXQXQV_autpow}{GEN a, long n, GEN S, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$, returns $[\sigma^n(X),\sigma^n(Y)]$.

\fun{GEN}{FpXQXQV_autsum}{GEN a, long n, GEN S, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$, returns the vector
$[\sigma^n(X),\sigma^n(Y),b\sigma(b)\ldots\sigma^{n-1}(b)]$
where $b=a[3]$.

\fun{GEN}{FpXQXQV_auttrace}{GEN a, long n, GEN S, GEN T, GEN p}
$\sigma$ being the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$,
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$, returns the vector
$[\sigma^n(X),\sigma^n(Y),b+\sigma(b)+\ldots+\sigma^{n-1}(b)]$
where $b=a[3]$.

% FqXQ

\fun{GEN}{FqXQ_add}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x} + \kbd{y}$ modulo \kbd{S}.

\fun{GEN}{FqXQ_sub}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x} - \kbd{y}$ modulo \kbd{S}.

\fun{GEN}{FqXQ_mul}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x}, \kbd{y} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}\*\kbd{y}$ modulo \kbd{S}.

\fun{GEN}{FqXQ_div}{GEN x, GEN y, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}/\kbd{y}$ modulo \kbd{S}.

\fun{GEN}{FqXQ_inv}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}^{-1}$ modulo \kbd{S}.

\fun{GEN}{FqXQ_invsafe}{GEN x, GEN S, GEN T, GEN p} , as \kbd{FqXQ\_inv},
returning \kbd{NULL} if \kbd{x} is not invertible.

\fun{GEN}{FqXQ_sqr}{GEN x, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}^2$ modulo \kbd{S}.

\fun{GEN}{FqXQ_pow}{GEN x, GEN n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $\kbd{x}^\kbd{n}$ modulo \kbd{S}.

\fun{GEN}{FqXQ_powers}{GEN x, long n, GEN S, GEN T, GEN p}, \kbd{x} and
\kbd{S} being \kbd{FqX}s, returns $[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ as a
\typ{VEC} of \kbd{FqXQ}s.

\fun{GEN}{FqXQ_matrix_pow}{GEN x, long m, long n, GEN S, GEN T, GEN p}
returns the same powers of \kbd{x} as \kbd{FqXQ\_powers}$(x, n-1,S, T, p)$,
but as an $m\times n$ matrix.

\fun{GEN}{FqV_roots_to_pol}{GEN V, GEN T, GEN p, long v},
\kbd{V} being a vector of \kbd{Fq}s, returns the monic \kbd{FqX}
$\prod_i (\kbd{pol\_x[v]} - \kbd{V[i]})$.

\subsubsec{Miscellaneous operations}

\fun{GEN}{init_Fq}{GEN p, long n, long v} returns an irreducible polynomial
of degree $\kbd{n} > 0$ over $\F_p$, in variable \kbd{v}.

\fun{int}{FqX_is_squarefree}{GEN P, GEN T, GEN p}

\fun{GEN}{FpXQX_roots}{GEN x, GEN T, GEN p} return the roots of \kbd{x} in
$\F_p[X]/(T)$. Assumes \kbd{p} is prime and \kbd{T} irreducible in $\F_p[X]$.

\fun{GEN}{FqX_roots}{GEN x, GEN T, GEN p} same but allow $\kbd{T} = \kbd{NULL}$.

\fun{GEN}{FpXQX_factor}{GEN x, GEN T, GEN p} same output convention as
\kbd{FpX\_factor}. Assumes \kbd{p} is prime and \kbd{T} irreducible
in $\F_p[X]$.

\fun{GEN}{FqX_factor}{GEN x, GEN T, GEN p} same but allow $\kbd{T} = \kbd{NULL}$.

\fun{GEN}{FpXQX_split_part}{GEN f, GEN T, GEN p} returns the largest totally
split squarefree factor of $f$.

\fun{long}{FqX_ispower}{GEN f, ulong k, GEN T, GEN p, GEN *pt} return
returns 1 if \kbd{FqX} $f$ is a $K$-th power Return $0$
otherwise. If \kbd{py} is not \kbd{NULL}, set it to $g$ such that $g^K = f$.

\fun{GEN}{FpX_factorff}{GEN P, GEN T, GEN p}. Assumes \kbd{p} prime
and \kbd{T} irreducible in $\F_p[X]$. Factor the \kbd{FpX} \kbd{P}
over the finite field $\F_p[Y]/(T(Y))$. See \kbd{FpX\_factorff\_irred}
if \kbd{P} is known to be irreducible of $\F_p$.

\fun{GEN}{FpX_rootsff}{GEN P, GEN T, GEN p}. Assumes \kbd{p} prime
and \kbd{T} irreducible in $\F_p[X]$. Returns the roots of the \kbd{FpX}
\kbd{P} belonging to the finite field $\F_p[Y]/(T(Y))$.

\fun{GEN}{FpX_factorff_irred}{GEN P, GEN T, GEN p}. Assumes \kbd{p} prime
and \kbd{T} irreducible in $\F_p[X]$. Factors the \emph{irreducible}
\kbd{FpX} \kbd{P} over the finite field $\F_p[Y]/(T(Y))$ and returns the
vector of irreducible \kbd{FqX}s factors (the exponents, being all equal to
$1$, are not included).

\fun{GEN}{FpX_ffisom}{GEN P, GEN Q, GEN p}. Assumes \kbd{p} prime,
\kbd{P}, \kbd{Q} are \kbd{ZX}s, both irreducible mod \kbd{p}, and
$\deg(P) \mid \deg Q$. Outputs a monomorphism between $\F_p[X]/(P)$ and
$\F_p[X]/(Q)$, as a polynomial $R$ such that $\kbd{Q} \mid \kbd{P}(R)$ in
$\F_p[X]$. If \kbd{P} and \kbd{Q} have the same degree, it is of course an
isomorphism.

\fun{void}{FpX_ffintersect}{GEN P, GEN Q, long n, GEN p, GEN *SP,GEN *SQ, GEN
MA,GEN MB}\hfil\break
Assumes \kbd{p} is prime, \kbd{P}, \kbd{Q} are \kbd{ZX}s, both
irreducible mod \kbd{p}, and \kbd{n} divides both the degree of \kbd{P} and
\kbd{Q}. Compute \kbd{SP} and \kbd{SQ} such that the subfield of
$\F_p[X]/(P)$ generated by \kbd{SP} and the subfield of $\F_p[X]/(Q)$
generated by \kbd{SQ} are isomorphic of degree \kbd{n}. The polynomials
\kbd{P} and \kbd{Q} do not need to be of the same variable. If \kbd{MA}
(resp. \kbd{MB}) is not \kbd{NULL}, it must be the matrix of the Frobenius
map in $\F_p[X]/(P)$ (resp.~$\F_p[X]/(Q)$).

\fun{GEN}{FpXQ_ffisom_inv}{GEN S, GEN T, GEN p}. Assumes \kbd{p} is prime,
\kbd{T} a \kbd{ZX}, which is irreducible modulo \kbd{p}, \kbd{S} a
\kbd{ZX} representing an automorphism of $\F_q := \F_p[X]/(\kbd{T})$.
($\kbd{S}(X)$ is the image of $X$ by the automorphism.) Returns the
inverse automorphism of \kbd{S}, in the same format, i.e.~an \kbd{FpX}~$H$
such that $H(\kbd{S}) \equiv X$ modulo $(\kbd{T}, \kbd{p})$.

\fun{long}{FpXQX_nbfact}{GEN S, GEN T, GEN p} returns the number of
irreducible factors of the polynomial $S$ over the finite field $\F_q$
defined by $T$ and $p$.

\fun{long}{FqX_nbfact}{GEN S, GEN T, GEN p} as above but accept \kbd{T=NULL}.

\fun{long}{FpXQX_nbroots}{GEN S, GEN T, GEN p} returns the number of roots of
the polynomial $S$ over the finite field $\F_q$ defined by $T$ and $p$.

\fun{long}{FqX_nbroots}{GEN S, GEN T, GEN p} as above but accept \kbd{T=NULL}.

\fun{GEN}{FpXQX_Frobenius}{GEN S, GEN T, GEN p} returns
$X^{q}\pmod{S(X)}$ over the finite field $\F_q$ defined by $T$ and $p$, thus
$q=p^n$ where $n$ is the degree of $T$.

\fun{GEN}{FpXQXQ_halfFrobenius}{GEN A, GEN S, GEN T, GEN p} returns
$A(X)^{(q-1)/2}\pmod{S(X)}$ over the finite field $\F_q$ defined by $T$
and $p$, thus $q=p^n$ where $n$ is the degree of $T$.

\subsec{\kbd{Flx}} Let \kbd{p} an understood \kbd{ulong}, assumed to be
prime, to be given the function arguments; an \kbd{Fl} is an \kbd{ulong}
belonging to $[0,\kbd{p}-1]$, an \kbd{Flx}~\kbd{z} is a \typ{VECSMALL}
representing a polynomial with small integer coefficients. Specifically
\kbd{z[0]} is the usual codeword, \kbd{z[1] = evalvarn($v$)} for some
variable $v$, then the coefficients by increasing degree. An \kbd{FlxX} is a
\typ{POL} whose coefficients are \kbd{Flx}s.

\noindent In the following, an argument called \kbd{sv} is of the form
\kbd{evalvarn}$(v)$ for some variable number~$v$.

\subsubsec{Preconditioned reduction}

For faster reduction, the modulus \kbd{T} can be replaced by an extended
modulus, which is an \kbd{FlxT}, in all \kbd{Flxq}-classes functions, and in
\kbd{Flx\_divrem}.

\fun{GEN}{Flx_get_red}{GEN T, ulong p} returns the extended modulus \kbd{eT}.

To write code that works both with plain and extended moduli, the following
accessors are defined:

\fun{GEN}{get_Flx_mod}{GEN eT} returns the underlying modulus \kbd{T}.

\fun{GEN}{get_Flx_var}{GEN eT} returns the variable number of the modulus.

\fun{GEN}{get_Flx_degree}{GEN eT} returns the degree of the modulus.

Furthermore, \kbd{ZXT\_to\_FlxT} allows to convert an extended modulus for
a \kbd{FpX} to an extended modulus for the corresponding \kbd{Flx}.

\subsubsec{Basic operations}

\fun{ulong}{Flx_lead}{GEN x} returns the leading coefficient of $x$ as a
\kbd{ulong} (return $0$ for the zero polynomial).

\fun{GEN}{Flx_red}{GEN z, ulong p} converts from \kbd{zx} with
non-negative coefficients to \kbd{Flx} (by reducing them mod \kbd{p}).

\fun{int}{Flx_equal1}{GEN x} returns 1 (true) if the \kbd{Flx} $x$ is equal
to~1, 0~(false) otherwise.

\fun{int}{Flx_equal}{GEN x, GEN y} returns 1 (true) if the \kbd{Flx} $x$
and $y$ are equal, and 0~(false) otherwise.

\fun{GEN}{Flx_copy}{GEN x} returns a copy of \kbd{x}.

\fun{GEN}{Flx_add}{GEN x, GEN y, ulong p}

\fun{GEN}{Flx_Fl_add}{GEN y, ulong x, ulong p}

\fun{GEN}{Flx_neg}{GEN x, ulong p}

\fun{GEN}{Flx_neg_inplace}{GEN x, ulong p}, same as \kbd{Flx\_neg}, in place
(\kbd{x} is destroyed).

\fun{GEN}{Flx_sub}{GEN x, GEN y, ulong p}

\fun{GEN}{Flx_halve}{GEN x, ulong p} returns $z$ such that $2\*z = x$ modulo
$p$ assuming such $z$ exists.

\fun{GEN}{Flx_mul}{GEN x, GEN y, ulong p}

\fun{GEN}{Flx_Fl_mul}{GEN y, ulong x, ulong p}

\fun{GEN}{Flx_double}{GEN y, ulong p} returns $2\*y$.

\fun{GEN}{Flx_triple}{GEN y, ulong p} returns $3\*y$.

\fun{GEN}{Flx_mulu}{GEN y, ulong x, ulong p} as \kbd{Flx\_Fl\_mul} but do not
assume that $x<p$.

\fun{GEN}{Flx_Fl_mul_to_monic}{GEN y, ulong x, ulong p} returns $y\*x$
assuming the result is monic of the same degree as $y$ (in particular $x\neq
0$).

\fun{GEN}{Flx_sqr}{GEN x, ulong p}

\fun{GEN}{Flx_powu}{GEN x, ulong n, ulong p} returns $x^n$.

\fun{GEN}{Flx_divrem}{GEN x, GEN y, ulong p, GEN *pr}

\fun{GEN}{Flx_div}{GEN x, GEN y, ulong p}

\fun{GEN}{Flx_rem}{GEN x, GEN y, ulong p}

\fun{GEN}{Flx_deriv}{GEN z, ulong p}

\fun{GEN}{Flx_Frobenius}{GEN T, ulong p}

\fun{GEN}{Flx_matFrobenius}{GEN T, ulong p}

\fun{GEN}{Flx_gcd}{GEN a, GEN b, ulong p} returns a (not necessarily monic)
greatest common divisor of $x$  and $y$.

\fun{GEN}{Flx_halfgcd}{GEN x, GEN y, GEN p} returns a two-by-two \kbd{FlxM}
$M$ with determinant $\pm 1$ such that the image $(a,b)$ of $(x,y)$ by $M$
has the property that $\deg a \geq {\deg x \over 2} > \deg b$.

\fun{GEN}{Flx_extgcd}{GEN a, GEN b, ulong p, GEN *ptu, GEN *ptv}

\fun{GEN}{Flx_roots}{GEN f, ulong p} returns the vector of roots
of $f$ (without multiplicity, as a \typ{VECSMALL}). Assumes that $p$ is
prime.

\fun{ulong}{Flx_oneroot}{GEN f, ulong p} returns one root $0 \leq r < p$ of
the \kbd{Flx}~\kbd{f} in \kbd{\Z/p\Z}. Return $p$ if no root exists. Assumes
that \kbd{p} is prime.

\fun{ulong}{Flx_oneroot_split}{GEN f, ulong p} as \kbd{Flx\_oneroot} but
assume $f$ is totally split.

\fun{GEN}{Flx_roots_naive}{GEN f, ulong p} returns the vector of roots
of $f$ as a \typ{VECSMALL} (multiple roots are not repeated), found
by an exhaustive search. Efficient for very small $p$ !

\fun{GEN}{Flx_factor}{GEN f, ulong p}

\fun{GEN}{Flx_factor_squarefree}{GEN f, ulong p} returns the squarefree
factorization of $f$ modulo $p$. This is a vector $[u_1,\dots,u_k]$
of pairwise coprime \kbd{Flx} such that $u_k \neq 1$ and $f = \prod u_i^i$.
Shallow function.

\fun{GEN}{Flx_mod_Xn1}{GEN T, ulong n, ulong p} return $T$ modulo
$(X^n + 1, p)$. Shallow function.

\fun{GEN}{Flx_mod_Xnm1}{GEN T, ulong n, ulong p} return $T$ modulo
$(X^n - 1, p)$. Shallow function.

\fun{GEN}{Flx_degfact}{GEN f, ulong p} as \tet{FpX_degfact}.

\fun{GEN}{Flx_factorff_irred}{GEN P, GEN Q, ulong p} as
\tet{FpX_factorff_irred}.

\fun{GEN}{Flx_rootsff}{GEN P, GEN T, ulong p} as \tet{FpX_rootsff}.

\fun{GEN}{Flx_ffisom}{GEN P,GEN Q,ulong l} as \tet{FpX_ffisom}.

\subsubsec{Miscellaneous operations}

\fun{GEN}{pol0_Flx}{long sv} returns a zero \kbd{Flx} in variable $v$.

\fun{GEN}{zero_Flx}{long sv} alias for \kbd{pol0\_Flx}

\fun{GEN}{pol1_Flx}{long sv} returns the unit \kbd{Flx} in variable $v$.

\fun{GEN}{polx_Flx}{long sv} returns the variable $v$ as degree~1~\kbd{Flx}.

\fun{GEN}{monomial_Flx}{ulong a, long d, long sv} returns the \kbd{Flx}
$a\*X^d$ in variable $v$.

\fun{GEN}{Flx_normalize}{GEN z, ulong p}, as \kbd{FpX\_normalize}.

\fun{GEN}{Flx_rescale}{GEN P, ulong h, ulong p} returns $h^{\deg(P)} P(x/h)$,
\kbd{P} is a \kbd{Flx} and \kbd{h} is a non-zero integer.

\fun{GEN}{random_Flx}{long d, long sv, ulong p} returns a random \kbd{Flx}
in variable \kbd{v}, of degree less than~\kbd{d}.

\fun{GEN}{Flx_recip}{GEN x}, returns the reciprocal polynomial

\fun{ulong}{Flx_resultant}{GEN a, GEN b, ulong p}, returns the resultant
of \kbd{a} and \kbd{b}

\fun{ulong}{Flx_extresultant}{GEN a, GEN b, ulong p, GEN *ptU, GEN *ptV}
given two \kbd{Flx} \kbd{a} and \kbd{b},
returns their resultant and sets Bezout coefficients (if the resultant is 0,
the latter are not set).

\fun{GEN}{Flx_invBarrett}{GEN T, ulong p}, returns the Barrett inverse
$M$ of $T$ defined by $M(x)\*x^n\*T(1/x)\equiv 1\pmod{x^{n-1}}$ where $n$ is
the degree of $T$.

\fun{GEN}{Flx_renormalize}{GEN x, long l}, as \kbd{FpX\_renormalize}, where
$\kbd{l} = \kbd{lg(x)}$, in place.

\fun{GEN}{Flx_shift}{GEN T, long n} returns $\kbd{T} * x^n$ if $n\geq 0$,
and $\kbd{T} \bs x^{-n}$ otherwise.

\fun{long}{Flx_val}{GEN x} returns the valuation of \kbd{x}, i.e. the
multiplicity of the $0$ root.

\fun{long}{Flx_valrem}{GEN x, GEN *Z} as \kbd{RgX\_valrem}, returns the
valuation of \kbd{x}. In particular, if the valuation is $0$, set \kbd{*Z}
to $x$, not a copy.

\fun{GEN}{Flx_div_by_X_x}{GEN A, ulong a, ulong p, ulong *rem}, returns the
Euclidean quotient of the \kbd{Flx}~\kbd{A} by $X - \kbd{a}$, and sets
\kbd{rem} to the remainder $ \kbd{A}(\kbd{a})$.

\fun{ulong}{Flx_eval}{GEN x, ulong y, ulong p}, as \kbd{FpX\_eval}.

\fun{ulong}{Flx_eval_pre}{GEN x, ulong y, ulong p, ulong pi}, as \kbd{Flx\_eval},
assuming $pi$ is the pseudo inverse of $p$.

\fun{ulong}{Flx_eval_powers_pre}{GEN P, GEN y, ulong p, ulong pi}. Let $y$ be
the \typ{VECSMALL} $(1,a,\dots,a^n)$, where $n$ is the degree of the
\kbd{Flx} $P$, return $P(a)$, assuming $pi$ is the pseudo inverse of $p$.

\fun{GEN}{Flx_Flv_multieval}{GEN P, GEN v, ulong p} returns the vector
$[P(v[1]),\ldots,P(v[n])]$ as a \kbd{Flv}.

\fun{ulong}{Flx_dotproduct}{GEN x, GEN y, ulong p} returns the scalar product
of the coefficients of $x$ and $y$.

\fun{GEN}{Flx_deflate}{GEN P, long d} assuming $P$ is a polynomial of the
form $Q(X^d)$, return $Q$.

\fun{GEN}{Flx_splitting}{GEN p, long k}, as \tet{RgX_splitting}.

\fun{GEN}{Flx_inflate}{GEN P, long d} returns $P(X^d)$.

\fun{int}{Flx_is_squarefree}{GEN z, ulong p}

\fun{int}{Flx_is_irred}{GEN f, ulong p}, as \kbd{FpX\_is\_irred}.

\fun{int}{Flx_is_smooth}{GEN f, long r, ulong p} return $1$ if all
irreducible factors of $f$ are of degree at most $r$, $0$ otherwise.

\fun{long}{Flx_nbroots}{GEN f, ulong p}, as \kbd{FpX\_nbroots}.

\fun{long}{Flx_nbfact}{GEN z, ulong p}, as \kbd{FpX\_nbfact}.

\fun{long}{Flx_nbfact_Frobenius}{GEN f, GEN XP, ulong p},
as \kbd{FpX\_nbfact\_Frobenius}.

\fun{GEN}{Flx_degfact}{GEN f, ulong p}, as \kbd{FpX\_degfact}.

\fun{GEN}{Flx_nbfact_by_degree}{GEN z, long *nb, ulong p} Assume
that the \kbd{Flx} $z$ is squarefree mod the prime $p$. Returns a
\typ{VECSMALL} $D$ with $\deg z$ entries, such that $D[i]$ is the number of
irreducible factors of degree $i$. Set \kbd{nb} to the total number of
irreducible factors (the sum of the $D[i]$).

\fun{void}{Flx_ffintersect}{GEN P,GEN Q, long n, ulong p, GEN*SP, GEN*SQ, GEN
MA,GEN MB},\hfil\break
as \kbd{FpX\_ffintersect}

\fun{GEN}{Flv_polint}{GEN x, GEN y, ulong p, long sv} as \kbd{FpV\_polint},
returning an \kbd{Flx} in variable $v$.

\fun{GEN}{Flv_Flm_polint}{GEN x, GEN V, ulong p, long sv} equivalent (but
faster) to applying \kbd{Flv\_polint(x,$\ldots$)} to all the elements of the
vector $V$ (thus, returns a \kbd{FlxV}).

\fun{GEN}{Flv_invVandermonde}{GEN L, ulong d, ulong p} $L$ being a \kbd{Flv}
of length $n$, return the inverse $M$ of the Vandermonde matrix attached to
the elements of $L$, multiplied by \kbd{d}.
If $A$ is a \kbd{Flv} and $B=M\*A$, then the polynomial
$P=\sum_{i=1}^n B[i]\*X^{i-1}$ verifies $P(L[i])=d\*A[i]$ for
$1 \leq i \leq n$.

\fun{GEN}{Flv_roots_to_pol}{GEN a, ulong p, long sv} as
\kbd{FpV\_roots\_to\_pol} returning an \kbd{Flx} in variable $v$.

\subsec{\kbd{FlxV}} See \kbd{FpXV} operations.

\fun{GEN}{FlxV_Flc_mul}{GEN V, GEN W, ulong p}, as \kbd{FpXV\_FpC\_mul}.

\fun{GEN}{FlxV_red}{GEN V, ulong p} reduces each components with \kbd{Flx\_red}.

\fun{GEN}{FlxV_prod}{GEN V, ulong p}, \kbd{V} being a vector of \kbd{Flx},
returns their product.

\subsec{\kbd{FlxT}} See \kbd{FpXT} operations.

\fun{GEN}{FlxT_red}{GEN V, ulong p} reduces each leaf with \kbd{Flx\_red}.

\subsec{\kbd{Flxq}} See \kbd{FpXQ} operations.

\fun{GEN}{Flxq_add}{GEN x, GEN y, GEN T, ulong p}

\fun{GEN}{Flxq_sub}{GEN x, GEN y, GEN T, ulong p}

\fun{GEN}{Flxq_mul}{GEN x, GEN y, GEN T, ulong p}

\fun{GEN}{Flxq_sqr}{GEN y, GEN T, ulong p}

\fun{GEN}{Flxq_inv}{GEN x, GEN T, ulong p}

\fun{GEN}{Flxq_invsafe}{GEN x, GEN T, ulong p}

\fun{GEN}{Flxq_div}{GEN x, GEN y, GEN T, ulong p}

\fun{GEN}{Flxq_pow}{GEN x, GEN n, GEN T, ulong p}

\fun{GEN}{Flxq_powu}{GEN x, ulong n, GEN T, ulong p}

\fun{GEN}{Flxq_powers}{GEN x, long n, GEN T, ulong p}

\fun{GEN}{Flxq_matrix_pow}{GEN x, long m, long n, GEN T, ulong p},
see \kbd{FpXQ\_matrix\_pow}.

\fun{GEN}{Flxq_autpow}{GEN a, long n, GEN T, ulong p}
see \kbd{FpXQ\_autpow}.

\fun{GEN}{Flxq_autsum}{GEN a, long n, GEN T, GEN p}
see \kbd{FpXQ\_autsum}.

\fun{GEN}{Flxq_auttrace}{GEN a, ulong n, GEN T, ulong p}
see \kbd{FpXQ\_auttrace}.

\fun{GEN}{Flxq_ffisom_inv}{GEN S, GEN T, ulong p}, as \kbd{FpXQ\_ffisom\_inv}.

\fun{GEN}{Flx_Flxq_eval}{GEN f, GEN x, GEN T, ulong p} returns
$\kbd{f}(\kbd{x})$.

\fun{GEN}{Flx_FlxqV_eval}{GEN f, GEN x, GEN T, ulong p},
see \kbd{FpX\_FpXQV\_eval}.

\fun{GEN}{FlxqV_roots_to_pol}{GEN V, GEN T, ulong p, long v} as
\kbd{FqV\_roots\_to\_pol} returning an \kbd{FlxqX} in variable $v$.

\fun{int}{Flxq_issquare}{GEN x, GEN T, ulong p} returns $1$ if $x$ is a square
and $0$ otherwise. Assume that \kbd{T} is irreducible mod \kbd{p}.

\fun{int}{Flxq_is2npower}{GEN x, long n, GEN T, ulong p} returns $1$ if $x$ is
a $2^n$-th power and $0$ otherwise. Assume that \kbd{T} is irreducible mod
\kbd{p}.

\fun{GEN}{Flxq_order}{GEN a, GEN ord, GEN T, ulong p}
as \tet{FpXQ_order}.

\fun{GEN}{Flxq_log}{GEN a, GEN g, GEN ord, GEN T, ulong p}
as \tet{FpXQ_log}

\fun{GEN}{Flxq_sqrtn}{GEN x, GEN n, GEN T, ulong p, GEN *zn} as
\tet{FpXQ_sqrtn}.

\fun{GEN}{Flxq_sqrt}{GEN x, GEN T, ulong p} returns a square root of \kbd{x}.
Return \kbd{NULL} if \kbd{x} is not a square.

\fun{GEN}{Flxq_lroot}{GEN a, GEN T, ulong p} returns $x$ such that $x^p = a$.

\fun{GEN}{Flxq_lroot_fast}{GEN a, GEN V, GEN T, ulong p} assuming that
\kbd{V=Flxq\_powers(s,p-1,T,p)} where $s(x)^p \equiv x\pmod{T(x),p}$,
returns $b$ such that $b^p=a$. Only useful if $p$ is less than the degree of
$T$.

\fun{GEN}{Flxq_charpoly}{GEN x, GEN T, ulong p} returns the characteristic
polynomial of \kbd{x}

\fun{GEN}{Flxq_minpoly}{GEN x, GEN T, ulong p} returns the minimal polynomial
of \kbd{x}

\fun{ulong}{Flxq_norm}{GEN x, GEN T, ulong p} returns the norm of \kbd{x}

\fun{ulong}{Flxq_trace}{GEN x, GEN T, ulong p} returns the trace of \kbd{x}

\fun{GEN}{Flxq_conjvec}{GEN x, GEN T, ulong p} returns the conjugates
$[x,x^p,x^{p^2},\ldots,x^{p^{n-1}}]$ where $n$ is the degree of $T$.

\fun{GEN}{gener_Flxq}{GEN T, ulong p, GEN *po} returns a primitive root modulo
$(T,p)$. $T$ is an \kbd{Flx} assumed to be irreducible modulo the prime
$p$. If \kbd{po} is not \kbd{NULL} it is set to $[o,\var{fa}]$, where $o$ is the
order of the multiplicative group of the finite field, and \var{fa} is
its factorization.

\subsec{\kbd{FlxX}} See \kbd{FpXX} operations.

\fun{GEN}{pol1_FlxX}{long vX, long sx} returns the unit \kbd{FlxX} as a
\typ{POL} in variable \kbd{vX} which only coefficient is \kbd{pol1\_Flx(sx)}.

\fun{GEN}{polx_FlxX}{long vX, long sx} returns the variable $X$ as a
degree~1~\typ{POL} with \kbd{Flx} coefficients in the variable $x$.

\fun{long}{FlxY_degreex}{GEN P} return the degree of $P$ with respect to
the secondary variable.

\fun{GEN}{FlxX_add}{GEN P, GEN Q, ulong p}

\fun{GEN}{FlxX_sub}{GEN P, GEN Q, ulong p}

\fun{GEN}{FlxX_Fl_mul}{GEN x, ulong y, ulong p}

\fun{GEN}{FlxX_double}{GEN x, ulong p}

\fun{GEN}{FlxX_triple}{GEN x, ulong p}

\fun{GEN}{FlxX_neg}{GEN x, ulong p}

\fun{GEN}{FlxX_Flx_add}{GEN y, GEN x, ulong p}

\fun{GEN}{FlxX_Flx_mul}{GEN x, GEN y, ulong p}

\fun{GEN}{FlxY_Flx_div}{GEN x, GEN y, ulong p} divides the coefficients of $x$
by $y$ using \kbd{Flx\_div}.

\fun{GEN}{FlxX_deriv}{GEN P, ulong p} returns the derivative of \kbd{P} with
respect to the main variable.

\fun{GEN}{FlxY_evalx}{GEN P, ulong z, ulong p} $P$ being an \kbd{FlxY}, returns
the \kbd{Flx} $P(z,Y)$, where $Y$ is the main variable of $P$.

\fun{GEN}{FlxY_Flx_translate}{GEN P, GEN f, ulong p} $P$ being an \kbd{FlxY} and $f$
being an \kbd{Flx}, return $(P(x,Y+f(x))$, where $Y$ is the main variable of $P$.

\fun{ulong}{FlxY_evalx_powers_pre}{GEN P, GEN xp, ulong p, ulong pi}, \kbd{xp}
being the vector $[1,x,\dots,x^n]$, where $n$ is larger or equal to the degree
of $P$ in $X$, return $P(x,Y)$, where $Y$ is the main variable of $Q$, assuming
$pi$ is the pseudo inverse of $p$.

\fun{ulong}{FlxY_eval_powers_pre}{GEN P, GEN xp, GEN yp, ulong p, ulong pi},
\kbd{xp} being the vector $[1,x,\dots,x^n]$, where $n$ is larger or equal to the degree
of $P$ in $X$ and \kbd{yp} being the vector $[1,y,\dots,y^m]$, where $m$ is larger or equal to the degree of $P$ in $Y$ return $P(x,y)$, assuming
$pi$ is the pseudo inverse of $p$.

\fun{GEN}{FlxY_Flxq_evalx}{GEN x, GEN y, GEN T, ulong p} as \kbd{FpXY\_FpXQ\_evalx}.

\fun{GEN}{FlxY_FlxqV_evalx}{GEN x, GEN V, GEN T, ulong p} as \kbd{FpXY\_FpXQV\_evalx}.

\fun{GEN}{FlxX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.

\fun{GEN}{FlxX_resultant}{GEN u, GEN v, ulong p, long sv} Returns
$\text{Res}_X(u, v)$, which is an \kbd{Flx}. The coefficients of \kbd{u}
and \kbd{v} are assumed to be in the variable $v$.

\fun{GEN}{Flx_FlxY_resultant}{GEN a, GEN b, ulong p}
Returns $\text{Res}_x(a, b)$, which is an \kbd{Flx}
in the main variable of \kbd{b}.

\fun{GEN}{FlxX_shift}{GEN a, long n}

\fun{GEN}{FlxX_swap}{GEN x, long n, long ws}, as \kbd{RgXY\_swap}.

\fun{GEN}{FlxYqq_pow}{GEN x, GEN n, GEN S, GEN T, ulong p}, as
\kbd{FpXYQQ\_pow}.

\subsec{\kbd{FlxqX}} See \kbd{FpXQX} operations.

\subsubsec{Preconditioned reduction}

For faster reduction, the modulus \kbd{S} can be replaced by an extended
modulus, which is an \kbd{FlxqXT}, in all \kbd{FlxqXQ}-classes
functions, and in \kbd{FlxqX\_rem} and \kbd{FlxqX\_divrem}.

\fun{GEN}{FlxqX_get_red}{GEN S, GEN T, ulong p} returns the extended modulus
\kbd{eS}.

To write code that works both with plain and extended moduli, the following
accessors are defined:

\fun{GEN}{get_FlxqX_mod}{GEN eS} returns the underlying modulus \kbd{S}.

\fun{GEN}{get_FlxqX_var}{GEN eS} returns the variable number of the modulus.

\fun{GEN}{get_FlxqX_degree}{GEN eS} returns the degree of the modulus.

\subsubsec{basic functions}

\fun{GEN}{random_FlxqX}{long d, long v, GEN T, ulong p} returns a random
\kbd{FlxqX} in variable \kbd{v}, of degree less than~\kbd{d}.

\fun{GEN}{zxX_to_Kronecker}{GEN P, GEN Q} assuming $P(X,Y)$ is a polynomial
of degree in $X$ strictly less than $n$, returns $P(X,X^{2*n-1})$, the
Kronecker form of $P$.

\fun{GEN}{Kronecker_to_FlxqX}{GEN z, GEN T, ulong p}. Let $n = \deg T$ and let
$P(X,Y)\in \Z[X,Y]$ lift a polynomial in $K[Y]$, where $K := \F_p[X]/(T)$ and
$\deg_X P < 2n-1$ --- such as would result from multiplying minimal degree
lifts of two polynomials in $K[Y]$. Let $z = P(t,t^{2*n-1})$ be a Kronecker
form of $P$, this function returns $Q\in \Z[X,t]$ such that $Q$ is congruent to
$P(X,t)$ mod $(p, T(X))$, $\deg_X Q < n$, and all coefficients are in $[0,p[$.
Not stack-clean. Note that $t$ need not be the same variable as $Y$!

\fun{GEN}{FlxqX_red}{GEN z, GEN T, ulong p}

\fun{GEN}{FlxqX_normalize}{GEN z, GEN T, ulong p}

\fun{GEN}{FlxqX_mul}{GEN x, GEN y, GEN T, ulong p}

\fun{GEN}{FlxqX_Flxq_mul}{GEN P, GEN U, GEN T, ulong p}

\fun{GEN}{FlxqX_Flxq_mul_to_monic}{GEN P, GEN U, GEN T, ulong p}
returns $P*U$ assuming the result is monic of the same degree as $P$ (in
particular $U\neq 0$).

\fun{GEN}{FlxqX_sqr}{GEN x, GEN T, ulong p}

\fun{GEN}{FlxqX_powu}{GEN x, ulong n, GEN T, ulong p}

\fun{GEN}{FlxqX_divrem}{GEN x, GEN y, GEN T, ulong p, GEN *pr}

\fun{GEN}{FlxqX_div}{GEN x, GEN y, GEN T, ulong p}

\fun{GEN}{FlxqX_rem}{GEN x, GEN y, GEN T, ulong p}

\fun{GEN}{FlxqX_invBarrett}{GEN T, GEN Q, ulong p}

\fun{GEN}{FlxqX_gcd}{GEN x, GEN y, ulong p} returns a (not necessarily monic)
greatest common divisor of $x$  and $y$.

\fun{GEN}{FlxqX_extgcd}{GEN x, GEN y, GEN T, ulong p, GEN *ptu, GEN *ptv}

\fun{GEN}{FlxqX_halfgcd}{GEN x, GEN y, GEN T, ulong p}, see \kbd{FpX\_halfgcd}.

\fun{GEN}{FlxqXV_prod}{GEN V, GEN T, ulong p}

\fun{GEN}{FlxqX_safegcd}{GEN P, GEN Q, GEN T, ulong p} Returns the \emph{monic}
GCD of $P$ and $Q$ if Euclid's algorithm succeeds and \kbd{NULL} otherwise. In
particular, if $p$ is not prime or $T$ is not irreducible over $\F_p[X]$, the
routine may still be used (but will fail if non-invertible leading terms
occur).

\fun{GEN}{FlxqX_Frobenius}{GEN S, GEN T, GEN p}, as \kbd{FpXQX\_Frobenius}

\fun{GEN}{FlxqXQ_halfFrobenius}{GEN A, GEN S, GEN T, GEN p}, as
\kbd{FpXQXQ\_halfFrobenius}

\fun{GEN}{FlxqX_roots}{GEN f, GEN T, ulong p} return the roots of \kbd{f} in
$\F_p[X]/(T)$. Assumes \kbd{p} is prime and \kbd{T} irreducible in $\F_p[X]$.

\fun{GEN}{FlxqX_factor}{GEN f, GEN T, ulong p} return the factorization of
\kbd{f} over $\F_p[X]/(T)$. Assumes \kbd{p} is prime and \kbd{T} irreducible
in $\F_p[X]$.

\fun{long}{FlxqX_nbroots}{GEN S, GEN T, GEN p}, as \kbd{FpX\_nbroots}.

\fun{GEN}{FlxqX_FlxqXQ_eval}{GEN Q, GEN x, GEN S, GEN T, ulong p} as
\kbd{FpX\_FpXQ\_eval}.

\fun{GEN}{FlxqX_FlxqXQV_eval}{GEN P, GEN V, GEN S, GEN T, ulong p} as
\kbd{FpX\_FpXQV\_eval}.

\subsec{\kbd{FlxqXQ}} See \kbd{FpXQXQ} operations.

\fun{GEN}{FlxqXQ_mul}{GEN x, GEN y, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_sqr}{GEN x, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_inv}{GEN x, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_invsafe}{GEN x, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_div}{GEN x, GEN y, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_pow}{GEN x, GEN n, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_powu}{GEN x, ulong n, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_powers}{GEN x, long n, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQ_matrix_pow}{GEN x, long n, long m, GEN S, GEN T, ulong p}

\fun{GEN}{FlxqXQV_autpow}{GEN a, long n, GEN S, GEN T, ulong p}
as \kbd{FpXQXQV\_autpow}

\fun{GEN}{FlxqXQV_autsum}{GEN a, long n, GEN S, GEN T, ulong p}
as \kbd{FpXQXQV\_autsum}

\subsec{\kbd{F2x}} An \kbd{F2x}~\kbd{z} is a \typ{VECSMALL}
representing a polynomial over $\F_2[X]$. Specifically
\kbd{z[0]} is the usual codeword, \kbd{z[1] = evalvarn($v$)} for some
variable $v$ and the coefficients are given by the bits of remaining
words by increasing degree.

\subsubsec{Basic operations}

\fun{ulong}{F2x_coeff}{GEN x, long i} returns the coefficient $i\ge 0$ of $x$.

\fun{void}{F2x_clear}{GEN x, long i} sets the coefficient $i\ge 0$ of $x$ to
$0$.

\fun{void}{F2x_flip}{GEN x, long i} adds $1$ to the coefficient $i\ge 0$ of $x$.

\fun{void}{F2x_set}{GEN x, long i} sets the coefficient $i\ge 0$ of $x$ to $1$.

\fun{GEN}{F2x_copy}{GEN x}

\fun{GEN}{Flx_to_F2x}{GEN x}

\fun{GEN}{Z_to_F2x}{GEN x, long v}

\fun{GEN}{ZX_to_F2x}{GEN x}

\fun{GEN}{F2v_to_F2x}{GEN x, long sv}

\fun{GEN}{F2x_to_Flx}{GEN x}

\fun{GEN}{F2x_to_ZX}{GEN x}

\fun{GEN}{pol0_F2x}{long sv} returns a zero \kbd{F2x} in variable $v$.

\fun{GEN}{zero_F2x}{long sv} alias for \kbd{pol0\_F2x}.

\fun{GEN}{pol1_F2x}{long sv} returns the \kbd{F2x} in variable $v$ constant to
$1$.

\fun{GEN}{polx_F2x}{long sv} returns the variable $v$ as degree~1~\kbd{F2x}.

\fun{GEN}{monomial_F2x}{long d, long sv} returns the \kbd{F2x}
$X^d$ in variable $v$.

\fun{GEN}{random_F2x}{long d, long sv} returns a random \kbd{F2x}
in variable \kbd{v}, of degree less than~\kbd{d}.

\fun{long}{F2x_degree}{GEN x} returns the degree of the \kbd{F2x x}. The
degree of $0$ is defined as $-1$.

\fun{int}{F2x_equal1}{GEN x}

\fun{int}{F2x_equal}{GEN x, GEN y}

\fun{GEN}{F2x_1_add}{GEN y} returns \kbd{y+1} where \kbd{y} is a \kbd{Flx}.

\fun{GEN}{F2x_add}{GEN x, GEN y}

\fun{GEN}{F2x_mul}{GEN x, GEN y}

\fun{GEN}{F2x_sqr}{GEN x}

\fun{GEN}{F2x_divrem}{GEN x, GEN y, GEN *pr}

\fun{GEN}{F2x_rem}{GEN x, GEN y}

\fun{GEN}{F2x_div}{GEN x, GEN y}

\fun{GEN}{F2x_renormalize}{GEN x, long lx}

\fun{GEN}{F2x_deriv}{GEN x}

\fun{GEN}{F2x_deflate}{GEN x, long d}

\fun{ulong}{F2x_eval}{GEN P, ulong u} returns $P(u)$.

\fun{void}{F2x_shift}{GEN x, long d} as \tet{RgX_shift}

\fun{void}{F2x_even_odd}{GEN p, GEN *pe, GEN *po} as \tet{RgX_even_odd}

\fun{long}{F2x_valrem}{GEN x, GEN *Z}

\fun{GEN}{F2x_extgcd}{GEN a, GEN b, GEN *ptu, GEN *ptv}

\fun{GEN}{F2x_gcd}{GEN a, GEN b}

\fun{GEN}{F2x_halfgcd}{GEN a, GEN b}

\fun{int}{F2x_issquare}{GEN x} returns $1$ if $x$ is a square of a \kbd{F2x}
and $0$ otherwise.

\fun{int}{F2x_is_irred}{GEN f}, as \tet{FpX_is_irred}.

\fun{GEN}{F2x_degfact}{GEN f} as \tet{FpX_degfact}.

\fun{GEN}{F2x_sqrt}{GEN x} returns the squareroot of $x$, assuming $x$ is a
square of a \kbd{F2x}.

\fun{GEN}{F2x_Frobenius}{GEN T}

\fun{GEN}{F2x_matFrobenius}{GEN T}

\fun{GEN}{F2x_factor}{GEN f}

\fun{GEN}{F2x_factor_squarefree}{GEN f}

\subsec{\kbd{F2xq}} See \kbd{FpXQ} operations.

\fun{GEN}{F2xq_mul}{GEN x, GEN y, GEN pol}

\fun{GEN}{F2xq_sqr}{GEN x,GEN pol}

\fun{GEN}{F2xq_div}{GEN x,GEN y,GEN T}

\fun{GEN}{F2xq_inv}{GEN x, GEN T}

\fun{GEN}{F2xq_invsafe}{GEN x, GEN T}

\fun{GEN}{F2xq_pow}{GEN x, GEN n, GEN pol}

\fun{GEN}{F2xq_powu}{GEN x, ulong n, GEN pol}

\fun{ulong}{F2xq_trace}{GEN x, GEN T}

\fun{GEN}{F2xq_conjvec}{GEN x, GEN T} returns the vector of conjugates
$[x,x^2,x^{2^2},\ldots,x^{2^{n-1}}]$ where $n$ is the degree of $T$.

\fun{GEN}{F2xq_log}{GEN a, GEN g, GEN ord, GEN T}

\fun{GEN}{F2xq_order}{GEN a, GEN ord, GEN T}

\fun{GEN}{F2xq_Artin_Schreier}{GEN a, GEN T} returns a solution of $x^2+x=a$,
assuming it exists.

\fun{GEN}{F2xq_sqrt}{GEN a, GEN T}

\fun{GEN}{F2xq_sqrt_fast}{GEN a, GEN s, GEN T} assuming that
$s^2 \equiv x\pmod{T(x)}$, computes $b \equiv a(s)\pmod{T}$ so that $b^2=a$.

\fun{GEN}{F2xq_sqrtn}{GEN a, GEN n, GEN T, GEN *zeta}

\fun{GEN}{gener_F2xq}{GEN T, GEN *po}

\fun{GEN}{F2xq_powers}{GEN x, long n, GEN T}

\fun{GEN}{F2xq_matrix_pow}{GEN x, long m, long n, GEN T}

\fun{GEN}{F2x_F2xq_eval}{GEN f, GEN x, GEN T}

\fun{GEN}{F2x_F2xqV_eval}{GEN f, GEN x, GEN T}, see \kbd{FpX\_FpXQV\_eval}.

\fun{GEN}{F2xq_autpow}{GEN a, long n, GEN T} computes $\sigma^n(X)$ assuming
$a=\sigma(X)$ where $\sigma$ is an automorphism of the algebra $\F_2[X]/T(X)$.

\subsec{\kbd{F2xqV}, \kbd{F2xqM}}. See \kbd{FqV}, \kbd{FqM} operations.

\fun{GEN}{F2xqM_F2xqC_mul}{GEN a, GEN b, GEN T}

\fun{GEN}{F2xqM_ker}{GEN x, GEN T}

\fun{GEN}{F2xqM_det}{GEN a, GEN T}

\fun{GEN}{F2xqM_image}{GEN x, GEN T}

\fun{GEN}{F2xqM_inv}{GEN a, GEN T}

\fun{GEN}{F2xqM_mul}{GEN a, GEN b, GEN T}

\fun{long}{F2xqM_rank}{GEN x, GEN T}

\fun{GEN}{matid_F2xqM}{long n, GEN T}

\subsec{\kbd{F2xX}}. See \kbd{FpXX} operations.

\fun{GEN}{ZXX_to_F2xX}{GEN x, long v}

\fun{GEN}{FlxX_to_F2xX}{GEN x}

\fun{GEN}{F2xX_to_ZXX}{GEN B}

\fun{GEN}{F2xX_renormalize}{GEN x, long lx}

\fun{long}{F2xY_degreex}{GEN P} return the degree of $P$ with respect to
the secondary variable.

\fun{GEN}{pol1_F2xX}{long v, long sv}

\fun{GEN}{polx_F2xX}{long v, long sv}

\fun{GEN}{F2xX_add}{GEN x, GEN y}

\fun{GEN}{F2xX_F2x_mul}{GEN x, GEN y}

\fun{GEN}{F2xX_deriv}{GEN P} returns the derivative of \kbd{P} with respect to
the main variable.

\fun{GEN}{Kronecker_to_F2xqX}{GEN z, GEN T}

\fun{GEN}{F2xX_to_Kronecker}{GEN z, GEN T}

\fun{GEN}{F2xY_F2xq_evalx}{GEN x, GEN y, GEN T} as \kbd{FpXY\_FpXQ\_evalx}.

\fun{GEN}{F2xY_F2xqV_evalx}{GEN x, GEN V, GEN T} as \kbd{FpXY\_FpXQV\_evalx}.

\subsec{\kbd{F2xXV/F2xXC}}. See \kbd{FpXXV} operations.

\fun{GEN}{FlxXC_to_F2xXC}{GEN B}

\fun{GEN}{F2xXC_to_ZXXC}{GEN B}

\subsec{\kbd{F2xqX}}. See \kbd{FlxqX} operations.

\fun{GEN}{random_F2xqX}{long d, long v, GEN T, ulong p} returns a random
\kbd{F2xqX} in variable \kbd{v}, of degree less than~\kbd{d}.

\fun{GEN}{F2xqX_red}{GEN z, GEN T}

\fun{GEN}{F2xqX_normalize}{GEN z, GEN T}

\fun{GEN}{F2xqX_F2xq_mul}{GEN P, GEN U, GEN T}

\fun{GEN}{F2xqX_F2xq_mul_to_monic}{GEN P, GEN U, GEN T}

\fun{GEN}{F2xqX_mul}{GEN x, GEN y, GEN T}

\fun{GEN}{F2xqX_sqr}{GEN x, GEN T}

\fun{GEN}{F2xqX_rem}{GEN x, GEN y, GEN T}

\fun{GEN}{F2xqX_div}{GEN x, GEN y, GEN T}

\fun{GEN}{F2xqX_divrem}{GEN x, GEN y, GEN T, GEN *pr}

\fun{GEN}{F2xqX_gcd}{GEN x, GEN y, GEN T}

\fun{GEN}{F2xqX_F2xqXQ_eval}{GEN Q, GEN x, GEN S, GEN T} as
\kbd{FpX\_FpXQ\_eval}.

\fun{GEN}{F2xqX_F2xqXQV_eval}{GEN P, GEN V, GEN S, GEN T} as
\kbd{FpX\_FpXQV\_eval}.

\fun{GEN}{F2xqX_roots}{GEN f, GEN T} return the roots of \kbd{f} in
$\F_2[X]/(T)$. Assumes \kbd{T} irreducible in $\F_2[X]$.

\fun{GEN}{F2xqX_factor}{GEN f, GEN T} return the factorisation of \kbd{f} over
$\F_2[X]/(T)$. Assumes \kbd{T} irreducible in $\F_2[X]$.

\subsec{\kbd{F2xqXQ}}. See \kbd{FlxqXQ} operations.

\fun{GEN}{F2xqXQ_mul}{GEN x, GEN y, GEN S, GEN T}

\fun{GEN}{F2xqXQ_sqr}{GEN x, GEN S, GEN T}

\fun{GEN}{F2xqXQ_pow}{GEN x, GEN n, GEN S, GEN T}

\fun{GEN}{F2xqXQ_powers}{GEN x, long n, GEN S, GEN T}

\fun{GEN}{F2xqXQV_autpow}{GEN a, long n, GEN S, GEN T}
as \kbd{FpXQXQV\_autpow}

\fun{GEN}{F2xqXQV_auttrace}{GEN a, long n, GEN S, GEN T}. Let
$\sigma$ be the automorphism defined by $\sigma(X)=a[1]\pmod{T(X)}$ and
$\sigma(Y)=a[2]\pmod{S(X,Y),T(X)}$; returns the vector
$[\sigma^n(X),\sigma^n(Y),b+\sigma(b)+\ldots+\sigma^{n-1}(b)]$
where $b=a[3]$.

\subsec{Functions returning objects with \typ{INTMOD} coefficients}

Those functions are mostly needed for interface reasons: \typ{INTMOD}s should
not be used in library mode since the modular kernel is more flexible and more
efficient, but GP users do not have access to the modular kernel.
We document them for completeness:

\fun{GEN}{Fp_to_mod}{GEN z, GEN p}, \kbd{z} a \typ{INT}. Returns \kbd{z *
Mod(1,p)}, normalized. Hence the returned value is a \typ{INTMOD}.

\fun{GEN}{FpX_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZX}. Returns \kbd{z *
Mod(1,p)}, normalized. Hence the returned value has \typ{INTMOD} coefficients.

\fun{GEN}{FpC_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZC}. Returns \kbd{Col(z) *
Mod(1,p)}, a \typ{COL} with \typ{INTMOD} coefficients.

\fun{GEN}{FpV_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZV}. Returns \kbd{Vec(z) *
Mod(1,p)}, a \typ{VEC} with \typ{INTMOD} coefficients.

\fun{GEN}{FpVV_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZVV}. Returns \kbd{Vec(z) *
Mod(1,p)}, a \typ{VEC} of \typ{VEC} with \typ{INTMOD} coefficients.

\fun{GEN}{FpM_to_mod}{GEN z, GEN p}, \kbd{z} a \kbd{ZM}. Returns \kbd{z *
Mod(1,p)}, with \typ{INTMOD} coefficients.

\fun{GEN}{F2c_to_mod}{GEN x}

\fun{GEN}{F2m_to_mod}{GEN x}

\fun{GEN}{Flc_to_mod}{GEN z}

\fun{GEN}{Flm_to_mod}{GEN z}

\fun{GEN}{FpXQC_to_mod}{GEN V, GEN T, GEN p} $V$ being a vector of \kbd{FpXQ},
converts each entry to a \typ{POLMOD} with \typ{INTMOD} coefficients, and return
a \typ{COL}.

\fun{GEN}{QXQV_to_mod}{GEN V, GEN T} $V$ a vector of \kbd{QXQ}, which
are lifted representatives of elements of $\Q[X]/(T)$ (number field elements
in most applications) and $T$ is in $\Z[X]$. Return a vector where all
non-rational entries are converted to \typ{POLMOD} modulo $T$; no reduction
mod $T$ is attempted: the representatives should be already reduced. Used to
normalize the output of \kbd{nfroots}.

\fun{GEN}{QXQXV_to_mod}{GEN V, GEN T} $V$ a vector of polynomials whose
coefficients are \kbd{QXQ}. Analogous to \kbd{QXQV\_to\_mod}.
Used to normalize the output of \kbd{nffactor}.

\fun{GEN}{QXQX_to_mod_shallow}{GEN z, GEN T} $v$ a polynomial with \kbd{QXQ}
coefficients; replace them by \kbd{mkpolmod(.,T)}. Shallow function.

The following functions are obsolete and should not be used: they receive a
polynomial with arbitrary coefficients, apply \kbd{RgX\_to\_FpX}, a function
from the modular kernel, then \kbd{*\_to\_mod}:

\fun{GEN}{rootmod}{GEN f, GEN p}, applies \kbd{FpX\_roots}.

\fun{GEN}{rootmod2}{GEN f, GEN p}, applies \kbd{ZX\_to\_flx} then
\kbd{Flx\_roots\_naive}.

\fun{GEN}{factmod}{GEN f, GEN p} applies \kbd{FpX\_factor}.

\fun{GEN}{simplefactmod}{GEN f, GEN p} applies \kbd{FpX\_degfact}.

\subsec{Chinese remainder theorem over $\Z$}

\fun{GEN}{Z_chinese}{GEN a, GEN b, GEN A, GEN B} returns the integer
in $[0, \lcm(A,B)[$ congruent to $a$ mod $A$ and $b$ mod $B$, assuming it
exists; in other words, that $a$ and $b$ are congruent mod $\gcd(A,B)$.

\fun{GEN}{Z_chinese_all}{GEN a, GEN b, GEN A, GEN B, GEN *pC} as
\kbd{Z\_chinese}, setting \kbd{*pC} to the lcm of $A$ and $B$.

\fun{GEN}{Z_chinese_coprime}{GEN a, GEN b, GEN A, GEN B, GEN C}, as
\kbd{Z\_chinese}, assuming that $\gcd(A,B) = 1$ and that $C = \lcm(A,B) = AB$.

\fun{void}{Z_chinese_pre}{GEN A, GEN B, GEN *pC, GEN *pU, GEN *pd}
initializes chinese remainder computations modulo $A$ and $B$. Sets
\kbd{*pC} to $\lcm(A,B)$, \kbd{*pd} to $\gcd(A,B)$,
\kbd{*pU} to an integer congruent to $0$ mod $(A/d)$ and $1$ mod $(B/d)$.
It is allowed to set \kbd{pd = NULL}, in which case, $d$ is still
computed, but not saved.

\fun{GEN}{Z_chinese_post}{GEN a, GEN b, GEN C, GEN U, GEN d} returns
the solution to the chinese remainder problem $x$ congruent
to $a$ mod $A$ and $b$ mod $B$, where $C, U, d$ were set in
\kbd{Z\_chinese\_pre}. If $d$ is \kbd{NULL}, assume the problem has a
solution. Otherwise, return \kbd{NULL} if it has no solution.

\medskip

\fun{GEN}{ZV_producttree}{GEN x} where $x$ are vectors of integer (or
\typ{VECSMALL}s) of length $n\ge 1$, return the vector of \typ{VEC}s
$[f(x),f^2(x),\ldots,f^k(x)]$ where $f$ is the transformation
$[a_1,a_2,\ldots,a_m] \mapsto [a_1\*a_2,a_3\*a_4,\ldots,a_{m-1}\*a_m]$ if $m$
is even and $[a_1\*a_2,a_3\*a4,\ldots,a_{m-2}\*a_{m-1},a_m]$ if $m$ is odd,
and $k$ is chosen so that $f^k(x)$ is of length $1$ (This is the vector
$[a_1\*a_2\*ldots\*a_m]$).

\fun{GEN}{ZV_chinese}{GEN A, GEN P, GEN *pt_mod}
where $A$ and $P$ are vectors of integer (or \typ{VECSMALL}s) of the same
length $n\ge 1$, the elements of $P$ being pairwise coprime, and $M$ being the
product of the elements of $P$, returns the integer in $[0, M[$ congruent to
$A[i]$ mod $P[i]$ for all $1\leq i\leq n$.  If \kbd{pt\_mod} is not \kbd{NULL},
set \kbd{*pt\_mod} to $M$

\fun{GEN}{ZV_chinese_tree}{GEN A, GEN P, GEN T, GEN *pt_mod}
as \kbd{ZV\_chinese}, where $T$ is assumed to be the tree created by
\kbd{ZV\_producttree(P)}.

\fun{GEN}{ncV_chinese_center}{GEN A, GEN P, GEN *pt_mod}
where $A$ is a vector of \kbd{VECSMALL}s (seen as vectors of unsigned integers)
and $P$ a \typ{VECSMALL} of the same length $n\ge 1$, the elements of $P$
being pairwise coprime, and $M$ being the product of the elements of $P$,
returns the \typ{COL} whose entries are integers in $[-M/2, M/2[$ congruent to $A[i]$
mod $P[i]$ for all $1\leq i\leq n$.
If \kbd{pt\_mod} is not \kbd{NULL}, set \kbd{*pt\_mod} to $M$.

\fun{GEN}{nmV_chinese_center}{GEN A, GEN P, GEN *pt_mod}
where $A$ is a vector of \kbd{MATSMALL}s (seen as matrices of unsigned integers)
 and $P$ a \typ{VECSMALL} of the same length $n\ge 1$, the elements of $P$
being pairwise coprime, and $M$ being the product of the elements of $P$,
returns the matrix whose entries are integers in $[-M/2, M/2[$ congruent to $A[i]$
mod $P[i]$ for all $1\leq i\leq n$.
If \kbd{pt\_mod} is not \kbd{NULL}, set \kbd{*pt\_mod} to $M$.
NB: this function uses the parallel GP interface.

\fun{GEN}{Z_ZV_mod}{GEN A, GEN P}
$P$ being a vector of integers of length $n\ge 1$, the elements of $P$ being
pairwise coprime, return a vector $B$ of the same length such that
$B[i]=A\pmod{P[i]}$ and $0\leq B[i] < P[i]$ for all $1\leq i\leq n$.

\fun{GEN}{Z_nv_mod}{GEN A, GEN P}
$P$ being a \typ{VECSMALL} of length $n\ge 1$, the elements of $P$ being
pairwise coprime, return a \typ{VECSMALL} $B$ of the same length such that
$B[i]=A\pmod{P[i]}$ and $0\leq B[i] < P[i]$ for all $1\leq i\leq n$.
The entries of $P$ and $B$ are treated as \kbd{ulong}s.

\fun{GEN}{ZX_nv_mod_tree}{GEN A, GEN P, GEN T} $A$ being a \kbd{ZX}
and $P$ a \typ{VECSMALL} of length $n\ge 1$, the elements of $P$ being
pairwise coprime, return the vector of \kbd{Flx}
$[A \pmod{P[1]},\ldots,A \pmod{P[n]}]$,
where $T$ is assumed to be the tree created by \kbd{ZV\_producttree(P)}.

\medskip

The following pair of functions is used in homomorphic imaging schemes,
when reconstructing an integer from its images modulo pairwise coprime
integers. The idea is as follows: we want to discover an integer $H$ which
satisfies $|H| < B$ for some known bound $B$; we are given pairs $(H_p, p)$
with $H$ congruent to $H_p$ mod $p$ and all $p$ pairwise coprime.

Given \kbd{H} congruent to $H_p$ modulo a number of $p$, whose product is
$q$, and a new pair $(\kbd{Hp}, \kbd{p})$, \kbd{p} coprime to $q$, the
following incremental functions use the chinese remainder theorem (CRT) to
find a new \kbd{H}, congruent to the preceding one modulo $q$, but also to
\kbd{Hp} modulo \kbd{p}. It is defined uniquely modulo $qp$, and we choose
the centered representative. When $P$ is larger than $2B$, we have $\kbd{H} =
H$, but of course, the value of \kbd{H} may stabilize sooner. In many
applications it is possible to directly check that such a partial result is
correct.

\fun{GEN}{Z_init_CRT}{ulong Hp, ulong p} given a \kbd{Fl} \kbd{Hp} in
$[0, p-1]$, returns the centered representative \kbd{H} congruent to \kbd{Hp}
modulo \kbd{p}.

\fun{int}{Z_incremental_CRT}{GEN *H, ulong Hp, GEN *q, ulong p}
given a \typ{INT} \kbd{*H}, centered modulo \kbd{*q}, a new pair $(\kbd{Hp},
\kbd{p})$ with \kbd{p} coprime to \kbd{q}, this function updates \kbd{*H} so
that it also becomes congruent to $(\kbd{Hp}, \kbd{p})$, and \kbd{*q} to the
product$\kbd{qp} = \kbd{p} \cdot \kbd{*q}$. It returns $1$ if the new value
is equal to the old one, and $0$ otherwise.

\fun{GEN}{chinese1_coprime_Z}{GEN v} an alternative divide-and-conquer
implementation: $v$ is a vector of \typ{INTMOD} with pairwise coprime moduli.
Return the \typ{INTMOD} solving the corresponding chinese remainder problem.
This is a streamlined version of

\fun{GEN}{chinese1}{GEN v}, which solves a general chinese remainder problem
(not necessarily over $\Z$, moduli not assumed coprime).


As above, for $H$ a \kbd{ZM}: we assume that $H$ and all \kbd{Hp} have
dimension $> 0$. The original \kbd{*H} is destroyed.

\fun{GEN}{ZM_init_CRT}{GEN Hp, ulong p}

\fun{int}{ZM_incremental_CRT}{GEN *H, GEN Hp, GEN *q, ulong p}

As above for $H$ a \kbd{ZX}: note that the degree may increase or decrease.
The original \kbd{*H} is destroyed.

\fun{GEN}{ZX_init_CRT}{GEN Hp, ulong p, long v}

\fun{int}{ZX_incremental_CRT}{GEN *H, GEN Hp, GEN *q, ulong p}

\subsec{Rational reconstruction}

\fun{int}{Fp_ratlift}{GEN x, GEN m, GEN amax, GEN bmax, GEN *a, GEN *b}.
Assuming that $0 \leq x < m$, $\kbd{amax} \geq 0$, and
$\kbd{bmax} > 0$ are \typ{INT}s, and that $2 \kbd{amax} \kbd{bmax} < m$,
attempts to recognize $x$ as a rational $a/b$, i.e. to find \typ{INT}s $a$
and $b$ such that

\item $a \equiv b x$ modulo $m$,

\item $|a| \leq \kbd{amax}$, $0 < b \leq \kbd{bmax}$,

\item $\gcd(m,b) = \gcd(a,b)$.

\noindent If unsuccessful, the routine returns $0$ and leaves $a$, $b$
unchanged; otherwise it returns $1$ and sets $a$ and $b$.

In almost all applications, we actually know that a solution exists, as well
as a non-zero multiple $B$ of $b$, and $m = p^\ell$ is a prime power, for a
prime $p$ chosen coprime to $B$ hence to $b$. Under the single assumption
$\gcd(m,b) = 1$, if a solution $a,b$ exists satisfying the three conditions
above, then it is unique.

\fun{GEN}{FpM_ratlift}{GEN M, GEN m, GEN amax, GEN bmax, GEN denom}
given an \kbd{FpM} modulo $m$ with reduced or \kbd{Fp\_center}-ed entries,
reconstructs a matrix with rational coefficients by applying \kbd{Fp\_ratlift}
to all entries. Assume that all preconditions for \kbd{Fp\_ratlift} are
satisfied, as well $\gcd(m,b) = 1$ (so that the solution is unique if it
exists). Return \kbd{NULL} if the reconstruction fails, and the rational
matrix otherwise. If \kbd{denom} is not \kbd{NULL} check further that all
denominators divide \kbd{denom}.

The functions is not stack clean if one coefficients of $M$ is negative
(centered residues), but still suitable for \kbd{gerepileupto}.

\fun{GEN}{FpX_ratlift}{GEN P, GEN m, GEN amax, GEN bmax, GEN denom} as
\kbd{FpM\_ratlift}, where $P$ is an \kbd{FpX}.

\fun{GEN}{FpC_ratlift}{GEN P, GEN m, GEN amax, GEN bmax, GEN denom} as
\kbd{FpM\_ratlift}, where $P$ is an \kbd{FpC}.

\subsec{Zp}

\fun{GEN}{Zp_sqrt}{GEN b, GEN p, long e} $b$ and $p$ being \typ{INT}s, with $p$
a prime (possibly $2$), returns a \typ{INT} $a$ such that $a^2 \equiv b \mod
p^e$.

\fun{GEN}{Z2_sqrt}{GEN b, long e} $b$ being a \typ{INT}s
returns a \typ{INT} $a$ such that $a^2 \equiv b \mod 2^e$.

\fun{GEN}{Zp_sqrtlift}{GEN b, GEN a, GEN p, long e} let
$a,b,p$ be \typ{INT}s, with $p > 1$ odd, such that $a^2\equiv b\mod p$.
Returns a \typ{INT} $A$ such that $A^2 \equiv b \mod p^e$. Special case
of \tet{Zp_sqrtnlift}.

\fun{GEN}{Zp_sqrtnlift}{GEN b, GEN n, GEN a, GEN p, long e} let
$a,b,n,p$ be \typ{INT}s, with $n,p > 1$, and $p$ coprime to $n$,
such that $a^n \equiv b \mod p$. Returns a \typ{INT} $A$ such that
$A^n \equiv b \mod p^e$. Special case of \tet{ZpX_liftroot}.

\fun{GEN}{Zp_teichmuller}{GEN x, GEN p, long e, GEN pe} for $p$ an odd prime,
$x$ a \typ{INT} coprime to $p$, and $pe = p^e$, returns the $(p-1)$-th root of
$1$ congruent to $x$ modulo $p$, modulo $p^e$. For convenience, $p = 2$ is
also allowed and we return $1$ ($x$ is $1$ mod $4$) or $2^e - 1$ ($x$ is $3$
mod $4$).

\fun{GEN}{teichmullerinit}{long p, long n} returns the values of
\tet{Zp_teichmuller} at all $x = 1, \dots, p-1$.

\subsec{ZpX}

\fun{GEN}{ZpX_roots}{GEN f, GEN p, long e} $f$ a \kbd{ZX} with leading
term prime to $p$, and without multiple roots mod $p$. Return a vector
of \typ{INT}s which are the roots of $f$ mod $p^e$.

\fun{GEN}{ZpX_liftroot}{GEN f, GEN a, GEN p, long e} $f$ a \kbd{ZX} with
leading term prime to $p$, and $a$ a root mod $p$ such that
$v_p(f'(a))=0$.  Return a \typ{INT} which is the root of $f$ mod $p^e$
congruent to $a$ mod $p$.

\fun{GEN}{ZX_Zp_root}{GEN f, GEN a, GEN p, long e} same as \tet{ZpX_liftroot}
without the assumption $v_p(f'(a)) = 0$. Return a \typ{VEC} of \typ{INT}s,
which are the $p$-adic roots of $f$ congruent to $a$ mod $p$ (given modulo
$p^e$).

\fun{GEN}{ZpX_liftroots}{GEN f, GEN S, GEN p, long e} $f$ a \kbd{ZX} with
leading term prime to $p$, and $S$ a vector of simple roots mod $p$. Return a
vector of \typ{INT}s which are the root of $f$ mod $p^e$ congruent to the
$S[i]$ mod $p$.

\fun{GEN}{ZpX_liftfact}{GEN A, GEN B, GEN pe, GEN p, long e} is
the routine underlying \tet{polhensellift}. Here, $p$ is prime
defines a finite field $\F_p$. $A$ is a polynomial in
$\Z[X]$, whose leading coefficient is non-zero in $\F_q$. $B$ is a vector of
monic \kbd{FpX}, pairwise coprime in $\F_p[X]$, whose product is congruent to
$A/\text{lc}(A)$ in $\F_p[X]$. Lifts the elements of $B$ mod $\kbd{pe} = p^e$.

\fun{GEN}{ZpX_Frobenius}{GEN T, GEN p, ulong e} returns the $p$-adic lift
of the Frobenius automorphism of $\F_p[X]/(T)$ to precision $e$.

\fun{long}{ZpX_disc_val}{GEN f, GEN p} returns the valuation at $p$ of the
discriminant of $f$. Assume that $f$ is a monic \emph{separable} \kbd{ZX}
and that $p$ is a prime number. Proceeds by dynamically increasing the
$p$-adic accuracy; infinite loop if the discriminant of $f$ is
$0$.

\fun{long}{ZpX_resultant_val}{GEN f, GEN g, GEN p, long M} returns the
valuation at $p$ of $\text{Res}(f,g)$. Assume $f,g$ are both \kbd{ZX},
and that $p$ is a prime number coprime to the leading coefficient of $f$.
Proceeds by dynamically increasing the $p$-adic accuracy.
To avoid an infinite loop when the resultant is $0$, we return $M$ if
the Sylvester matrix mod $p^M$ still does not have maximal rank.

\fun{GEN}{ZpX_gcd}{GEN f,GEN g, GEN p, GEN pm} $f$ a monic \kbd{ZX},
$g$ a \kbd{ZX}, $\kbd{pm} = p^m$ a prime power. There is a unique integer
$r\geq 0$ and a monic $h\in \Q_p[X]$ such that
$$p^rh\Z_p[X] + p^m\Z_p[X] = f\Z_p[X] + g\Z_p[X] + p^m\Z_p[X].$$
Return the $0$ polynomial if $r\geq m$ and a monic $h\in\Z[1/p][X]$ otherwise
(whose valuation at $p$ is $> -m$).

\fun{GEN}{ZpX_reduced_resultant}{GEN f, GEN g, GEN p, GEN pm} $f$ a monic
\kbd{ZX}, $g$ a \kbd{ZX}, $\kbd{pm} = p^m$ a prime power. The $p$-adic
\emph{reduced resultant}\varsidx{resultant (reduced)} of $f$ and $g$ is
$0$ if $f$, $g$ not coprime in $\Z_p[X]$, and otherwise the generator of the
form $p^d$ of
$$ (f\Z_p[X] + g\Z_p[X])\cap \Z_p. $$
Return the reduced resultant modulo $p^m$.

\fun{GEN}{ZpX_reduced_resultant_fast}{GEN f, GEN g, GEN p, long M} $f$
a monic \kbd{ZX}, $g$ a \kbd{ZX}, $p$ a prime. Returns
the $p$-adic reduced resultant of $f$ and $g$ modulo $p^M$. This function
computes resultants for a sequence of increasing $p$-adic accuracies
(up to $M$ $p$-adic digits), returning as soon as it obtains a non-zero
result. It is very inefficient when the resultant is $0$, but otherwise
usually more efficient than computations using a priori bounds.

\fun{GEN}{ZpX_monic_factor}{GEN f, GEN p, long M} $f$ a monic
\kbd{ZX}, $p$ a primer, return the $p$-adic factorization of $f$, modulo
$p^M$. This is the underlying low-level recursive function behind
\kbd{factorpadic} (using a combination of Round 4 factorization and Hensel
lifting); the factors are not sorted and the function is not
\kbd{gerepile}-clean.

\subsec{ZpXQ}

\fun{GEN}{ZpXQ_invlift}{GEN b, GEN a, GEN T, GEN p, long e} let
$p$ be a prime \typ{INT} and $a,b$ be \kbd{FpXQ}s (modulo $T$) such that $a\*b
\equiv 1 \mod (p,T)$.  Returns an \kbd{FpXQ} $A$ such that
$A\*b \equiv 1 \mod (p^e, T)$.  Special case of \tet{ZpXQ_liftroot}.

\fun{GEN}{ZpXQ_inv}{GEN b, GEN T, GEN p, long e} let
$p$ be a prime \typ{INT} and $b$ be a \kbd{FpXQ} (modulo $T, p^e$).
Returns an \kbd{FpXQ} $A$ such that $A\*b \equiv 1 \mod (p^e, T)$.

\fun{GEN}{ZpXQ_div}{GEN a, GEN b, GEN T, GEN q, GEN p, long e} let
$p$ be a prime \typ{INT} and $a$ and $b$ be a \kbd{FpXQ} (modulo $T, p^e$).
Returns an \kbd{FpXQ} $c$ such that $c\*b \equiv a \mod (p^e, T)$.
The parameter $q$ must be equal to $p^e$.

\fun{GEN}{ZpXQ_sqrtnlift}{GEN b, GEN n, GEN a, GEN T, GEN p, long e} let
$n,p$ be \typ{INT}s, with $n,p > 1$ and $p$ coprime to $n$, and $a,b$
be \kbd{FpXQ}s (modulo $T$) such that $a^n \equiv b \mod (p,T)$.
Returns an \kbd{Fq} $A$ such that $A^n \equiv b \mod (p^e, T)$.
Special case of \tet{ZpXQ_liftroot}.

\fun{GEN}{ZpXQ_sqrt}{GEN b, GEN T, GEN p, long e} let
$p$ being a odd prime and $b$ be a \kbd{FpXQ} (modulo $T, p^e$),
returns $a$ such that $a^2 \equiv b \mod (p^e, T)$.

\fun{GEN}{ZpX_ZpXQ_liftroot}{GEN f, GEN a, GEN T, GEN p, long e}
as \tet{ZpXQX_liftroot}, but $f$ is a polynomial in $\Z[X]$.

\fun{GEN}{ZpX_ZpXQ_liftroot_ea}{GEN f, GEN a, GEN T, GEN p, long e,
                     void *E, int early(void *E, GEN x, GEN q)}
as \tet{ZpX_ZpXQ_liftroot} with early abort: the function \kbd{early(E,x,q)}
will be called with $x$ is a root of $f$ modulo $q=p^n$ for some $n$. If
\kbd{early} returns a non-zero value, the function returns $x$ immediately.

\fun{GEN}{ZpXQ_log}{GEN a, GEN T, GEN p, long e} $T$ being a \kbd{ZpX}
irreducible modulo $p$, return the logarithm of $a$ in $\Z_p[X]/(T)$ to
precision $e$, assuming that $a\equiv 1 \pmod{p\Z_p[X]}$ if $p$ odd or
$a\equiv 1 \pmod{4\Z_2[X]}$ if $p=2$.

\subsec{Zq}

\fun{GEN}{Zq_sqrtnlift}{GEN b, GEN n, GEN a, GEN T, GEN p, long e}

\subsec{ZpXQM}

\fun{GEN}{ZpXQM_prodFrobenius}{GEN M, GEN T, GEN p, long e}
returns the product of matrices $M\*\sigma(M)\*\sigma^2(M)\ldots\sigma^{n-1}(M)$
to precision $e$ where $\sigma$ is the lift of the Frobenius automorphism
over $\Z_p[X]/(T)$ and $n$ is the degree of $T$.

\subsec{ZpXQX}

\fun{GEN}{ZpXQX_liftfact}{GEN A, GEN B, GEN T, GEN pe, GEN p, long e} is the
routine underlying \tet{polhensellift}. Here, $p$ is prime, $T(Y)$ defines a
finite field $\F_q$. $A$ is a polynomial in $\Z[X,Y]$, whose leading
coefficient is non-zero in $\F_q$. $B$ is a vector of monic or \kbd{FqX},
pairwise coprime in $\F_q[X]$, whose product is congruent to $A/\text{lc}(A)$
in $\F_q[X]$. Lifts the elements of $B$ mod $\kbd{pe} = p^e$, such that the
congruence now holds mod $(T,p^e)$.

\fun{GEN}{ZpXQX_liftroot}{GEN f, GEN a, GEN T, GEN p, long e} as
\tet{ZpX_liftroot}, but $f$ is now a polynomial in $\Z[X,Y]$ and lift the
root $a$ in the unramified extension of $\Q_p$ with residue field $\F_p[Y]/(T)$,
assuming $v_p(f(a))>0$ and $v_p(f'(a))=0$.

\fun{GEN}{ZpXQX_liftroot_vald}{GEN f, GEN a, long v, GEN T, GEN p, long e}
returns the foots of $f$ as \tet{ZpXQX_liftroot}, where $v$ is the valuation
of the content of $f'$ and it is required that $v_p(f(a))>v$ and
$v_p(f'(a))=v$.

\fun{GEN}{ZpXQX_roots}{GEN F, GEN T, GEN p, long e}

\fun{GEN}{ZpXQX_divrem}{GEN x, GEN Sp, GEN T,GEN q,GEN p,long e, GEN *pr}
as \kbd{FpXQX\_divrem}. The parameter $q$ must be equal to $p^e$.

\fun{GEN}{ZpXQX_digits}{GEN x, GEN B, GEN T, GEN q, GEN p, long e}
As \kbd{FpXQX\_digits}. The parameter $q$ must be equal to $p^e$.

\subsec{ZqX}

\fun{GEN}{ZqX_roots}{GEN F, GEN T, GEN p, long e}

\fun{GEN}{ZqX_liftfact}{GEN A, GEN B, GEN T, GEN pe, GEN p, long e}

\fun{GEN}{ZqX_liftroot}{GEN f, GEN a, GEN T, GEN p, long e}

\subsec{Other $p$-adic functions}

\fun{GEN}{ZpM_echelon}{GEN M, long early_abort, GEN p, GEN pm} given a
\kbd{ZM} $M$, a prime $p$ and $\kbd{pm} = p^m$, returns an echelon form
$E$ for $M$ mod $p^m$. I.e. there exist a square integral matrix $U$ with
$\det U$ coprime to $p$ such that $E = MU$ modulo $p^m$. I
\kbd{early\_abort} is non-zero, return NULL as soon as one pivot in
the echelon form is divisible by $p^m$. The echelon form is an upper
triangular HNF, we do not waste time to reduce it to Gauss-Jordan form.

\fun{GEN}{zlm_echelon}{GEN M, long early_abort, ulong p, ulong pm}
variant of \kbd{ZpM\_echelon}, for a \kbd{Zlm} $M$.

\fun{GEN}{ZlM_gauss}{GEN a, GEN b, ulong p, long e, GEN C} as \kbd{gauss}
with the following peculiarities: $a$ and $b$ are \kbd{ZM}, such that $a$ is
invertible modulo $p$. Optional $C$ is an \kbd{Flm} that is an inverse of
$a\mod p$ or \kbd{NULL}. Return the matrix $x$ such that $ax=b\mod p^e$ and
all elements of $x$ are in $[0,p^e-1]$. For efficiency, it is better
to reduce $a$ and $b$ mod $p^e$ first.

\fun{GEN}{padic_to_Q}{GEN x} truncate the \typ{PADIC} to a \typ{INT} or
\typ{FRAC}.

\fun{GEN}{padic_to_Q_shallow}{GEN x} shallow version of \tet{padic_to_Q}

\fun{GEN}{QpV_to_QV}{GEN v} apply \tet{padic_to_Q_shallow}

\fun{long}{padicprec}{GEN x, GEN p} returns the absolute $p$-adic precision of
the object $x$, by definition the minimum precision of the components of $x$.
For a non-zero \typ{PADIC}, this returns \kbd{valp(x) + precp(x)}.

\fun{long}{padicprec_relative}{GEN x} returns the relative $p$-adic
precision of the \typ{INT}, \typ{FRAC}, or \typ{PADIC} $x$ (minimum precision
of the components of $x$ for \typ{POL} or vector/matrices).
For a \typ{PADIC}, this returns \kbd{precp(x)} if $x\neq0$, and $0$ for $x=0$.

\subsubsec{low-level}

The following technical function returns an optimal sequence of $p$-adic
accuracies, for a given target accuracy:

\fun{ulong}{quadratic_prec_mask}{long n} we want to reach accuracy
$n\geq 1$, starting from accuracy 1, using a quadratically convergent,
self-correcting, algorithm; in other words, from inputs correct to accuracy
$l$ one iteration outputs a result correct to accuracy $2l$.
For instance, to reach $n = 9$, we want to use accuracies
$[1,2,3,5,9]$ instead of $[1,2,4,8,9]$. The idea is to essentially double
the accuracy at each step, and not overshoot in the end.

Let $a_0$ = 1, $a_1 = 2, \ldots, a_k = n$, be the desired sequence of
accuracies. To obtain it, we work backwards and set
$$ a_k = n,\quad a_{i-1} = (a_i + 1)\,\bs\, 2.$$
This is in essence what the function returns.
But we do not want to store the $a_i$ explicitly, even as a \typ{VECSMALL},
since this would leave an object on the stack. Instead, we store $a_i$
implicitly in a bitmask \kbd{MASK}: let $a_0 = 1$, if the $i$-th bit of the
mask is set, set $a_{i+1} = 2a_i - 1$, and $2a_i$ otherwise; in short the
bits indicate the places where we do something special and do not quite
double the accuracy (which would be the straightforward thing to do).

In fact, to avoid returning separately the mask and the sequence length
$k+1$, the function returns $\kbd{MASK} + 2^{k+1}$, so the highest bit of
the mask indicates the length of the sequence, and the following ones give
an algorithm to obtain the accuracies. This is much simpler than it sounds,
here is what it looks like in practice:
\bprog
  ulong mask = quadratic_prec_mask(n);
  long l = 1;
  while (mask > 1) {            /* here, the result is known to accuracy l */
    l = 2*l; if (mask & 1) l--; /* new accuracy l for the iteration */
    mask >>= 1;                 /* pop low order bit */
    /* ... lift to the new accuracy ... */
  }
  /* we are done. At this point l = n */
@eprog\noindent We just pop the bits in \kbd{mask} starting from the low
order bits, stop when \kbd{mask} is $1$ (that last bit corresponds to the
$2^{k+1}$ that we added to the mask proper). Note that there is nothing
specific to Hensel lifts in that function: it would work equally well for
an Archimedean Newton iteration.

Note that in practice, we rather use an infinite loop, and insert an
\bprog
  if (mask == 1) break;
@eprog\noindent in the middle of the loop: the loop body usually includes
preparations for the next iterations (e.g. lifting Bezout coefficients
in a quadratic Hensel lift), which are costly and useless in the \emph{last}
iteration.

\subsec{Conversions involving single precision objects}

\subsubsec{To single precision}

\fun{ulong}{Rg_to_Fl}{GEN z, ulong p}, \kbd{z} which can be mapped to
$\Z/p\Z$: a \typ{INT}, a \typ{INTMOD} whose modulus is divisible by $p$,
a \typ{FRAC} whose denominator is coprime to $p$, or a \typ{PADIC} with
underlying prime $\ell$ satisfying $p = \ell^n$ for some $n$ (less than the
accuracy of the input). Returns \kbd{lift(z * Mod(1,p))}, normalized, as an
\kbd{Fl}.

\fun{ulong}{Rg_to_F2}{GEN z}, as \tet{Rg_to_Fl} for $p = 2$.

\fun{ulong}{padic_to_Fl}{GEN x, ulong p} special case of \tet{Rg_to_Fl},
for a $x$ a \typ{PADIC}.

\fun{GEN}{RgX_to_F2x}{GEN x}, \kbd{x} a \typ{POL}, returns the
\kbd{F2x} obtained by applying \kbd{Rg\_to\_Fl} coefficientwise.

\fun{GEN}{RgX_to_Flx}{GEN x, ulong p}, \kbd{x} a \typ{POL}, returns the
\kbd{Flx} obtained by applying \kbd{Rg\_to\_Fl} coefficientwise.

\fun{GEN}{Rg_to_F2xq}{GEN z, GEN T}, \kbd{z} a \kbd{GEN} which can be
mapped to $\F_2[X]/(T)$: anything \kbd{Rg\_to\_Fl} can be applied to,
a \typ{POL} to which \kbd{RgX\_to\_F2x} can be applied to, a \typ{POLMOD}
whose modulus is divisible by $T$ (once mapped to a \kbd{F2x}), a suitable
\typ{RFRAC}. Returns \kbd{z} as an \kbd{F2xq}, normalized.

\fun{GEN}{Rg_to_Flxq}{GEN z, GEN T, ulong p}, \kbd{z} a \kbd{GEN} which can be
mapped to $\F_p[X]/(T)$: anything \kbd{Rg\_to\_Fl} can be applied to,
a \typ{POL} to which \kbd{RgX\_to\_Flx} can be applied to, a \typ{POLMOD}
whose modulus is divisible by $T$ (once mapped to a \kbd{Flx}), a suitable
\typ{RFRAC}. Returns \kbd{z} as an \kbd{Flxq}, normalized.

\fun{GEN}{ZX_to_Flx}{GEN x, ulong p} reduce \kbd{ZX}~\kbd{x} modulo \kbd{p}
(yielding an \kbd{Flx}). Faster than \kbd{RgX\_to\_Flx}.

\fun{GEN}{ZV_to_Flv}{GEN x, ulong p} reduce \kbd{ZV}~\kbd{x} modulo \kbd{p}
(yielding an \kbd{Flv}).

\fun{GEN}{ZXV_to_FlxV}{GEN v, ulong p}, as \kbd{ZX\_to\_Flx}, repeatedly
called on the vector's coefficients.

\fun{GEN}{ZXT_to_FlxT}{GEN v, ulong p}, as \kbd{ZX\_to\_Flx}, repeatedly
called on the tree leaves.

\fun{GEN}{ZXX_to_FlxX}{GEN B, ulong p, long v}, as \kbd{ZX\_to\_Flx},
repeatedly called on the polynomial's coefficients.

\fun{GEN}{zxX_to_FlxX}{GEN z, ulong p} as \kbd{zx\_to\_Flx},
repeatedly called on the polynomial's coefficients.

\fun{GEN}{ZXXV_to_FlxXV}{GEN V, ulong p, long v}, as \kbd{ZXX\_to\_FlxX},
repeatedly called on the vector's coefficients.

\fun{GEN}{ZXXT_to_FlxXT}{GEN V, ulong p, long v}, as \kbd{ZXX\_to\_FlxX},
repeatedly called on the tree leaves.

\fun{GEN}{RgV_to_Flv}{GEN x, ulong p} reduce the \typ{VEC}/\typ{COL}
$x$ modulo $p$, yielding a \typ{VECSMALL}.

\fun{GEN}{RgM_to_Flm}{GEN x, ulong p} reduce the \typ{MAT} $x$ modulo $p$.

\fun{GEN}{ZM_to_Flm}{GEN x, ulong p} reduce \kbd{ZM}~$x$ modulo $p$
(yielding an \kbd{Flm}).

\fun{GEN}{ZV_to_zv}{GEN z}, converts coefficients using \kbd{itos}

\fun{GEN}{ZV_to_nv}{GEN z}, converts coefficients using \kbd{itou}

\fun{GEN}{ZM_to_zm}{GEN z}, converts coefficients using \kbd{itos}

\fun{GEN}{FqC_to_FlxC}{GEN x, GEN T, GEN p}, converts coefficients in \kbd{Fq}
to coefficient in Flx, result being a column vector.

\fun{GEN}{FqV_to_FlxV}{GEN x, GEN T, GEN p}, converts coefficients in \kbd{Fq}
to coefficient in Flx, result being a line vector.


\fun{GEN}{FqM_to_FlxM}{GEN x, GEN T, GEN p}, converts coefficients in \kbd{Fq}
to coefficient in Flx.

\subsubsec{From single precision}

\fun{GEN}{Flx_to_ZX}{GEN z}, converts to \kbd{ZX} (\typ{POL} of non-negative
\typ{INT}s in this case)

\fun{GEN}{Flx_to_FlxX}{GEN z}, converts to \kbd{FlxX} (\typ{POL} of constant
\kbd{Flx} in this case).

\fun{GEN}{Flx_to_ZX_inplace}{GEN z}, same as \kbd{Flx\_to\_ZX}, in place
(\kbd{z} is destroyed).

\fun{GEN}{FlxX_to_ZXX}{GEN B}, converts an \kbd{FlxX} to a polynomial with
\kbd{ZX} or \typ{INT} coefficients (repeated calls to \kbd{Flx\_to\_ZX}).

\fun{GEN}{FlxXC_to_ZXXC}{GEN B}, converts an \kbd{FlxXC} to a \typ{COL} with
\kbd{ZXX} coefficients (repeated calls to \kbd{FlxX\_to\_ZXX}).

\fun{GEN}{FlxXM_to_ZXXM}{GEN B}, converts an \kbd{FlxXM} to a \typ{MAT} with
\kbd{ZXX} coefficients (repeated calls to \kbd{FlxX\_to\_ZXX}).

\fun{GEN}{FlxC_to_ZXC}{GEN x}, converts a vector of \kbd{Flx} to a column
vector of polynomials with \typ{INT} coefficients (repeated calls to

\kbd{Flx\_to\_ZX}).

\fun{GEN}{FlxV_to_ZXV}{GEN x}, as above but return a \typ{VEC}.

\fun{void}{F2xV_to_FlxV_inplace}{GEN v} v is destroyed.

\fun{void}{F2xV_to_ZXV_inplace}{GEN v} v is destroyed.

\fun{void}{FlxV_to_ZXV_inplace}{GEN v} v is destroyed.

\fun{GEN}{FlxM_to_ZXM}{GEN z}, converts a matrix of \kbd{Flx} to a matrix of
polynomials with \typ{INT} coefficients (repeated calls to \kbd{Flx\_to\_ZX}).

\fun{GEN}{zx_to_ZX}{GEN z}, as \kbd{Flx\_to\_ZX}, without assuming
the coefficients to be non-negative.

\fun{GEN}{zx_to_Flx}{GEN z, ulong p} as \kbd{Flx\_red} without assuming
the coefficients to be non-negative.

\fun{GEN}{Flc_to_ZC}{GEN z}, converts to \kbd{ZC} (\typ{COL} of non-negative
\typ{INT}s in this case)

\fun{GEN}{Flv_to_ZV}{GEN z}, converts to \kbd{ZV} (\typ{VEC} of non-negative
\typ{INT}s in this case)

\fun{GEN}{Flm_to_ZM}{GEN z}, converts to \kbd{ZM} (\typ{MAT} with
non-negative \typ{INT}s coefficients in this case)

\fun{GEN}{zc_to_ZC}{GEN z} as \kbd{Flc\_to\_ZC}, without assuming
coefficients are non-negative.

\fun{GEN}{zv_to_ZV}{GEN z} as \kbd{Flv\_to\_ZV}, without assuming
coefficients are non-negative.

\fun{GEN}{zm_to_ZM}{GEN z} as \kbd{Flm\_to\_ZM}, without assuming
coefficients are non-negative.

\fun{GEN}{zv_to_Flv}{GEN z, ulong p}

\fun{GEN}{zm_to_Flm}{GEN z, ulong p}

\subsubsec{Mixed precision linear algebra} Assumes dimensions are compatible.
Multiply a multiprecision object by a single-precision one.

\fun{GEN}{RgM_zc_mul}{GEN x, GEN y}

\fun{GEN}{RgMrow_zc_mul}{GEN x, GEN y, long i}

\fun{GEN}{RgM_zm_mul}{GEN x, GEN y}

\fun{GEN}{RgV_zc_mul}{GEN x, GEN y}

\fun{GEN}{RgV_zm_mul}{GEN x, GEN y}

\fun{GEN}{ZM_zc_mul}{GEN x, GEN y}

\fun{GEN}{zv_ZM_mul}{GEN x, GEN y}

\fun{GEN}{ZV_zc_mul}{GEN x, GEN y}

\fun{GEN}{ZM_zm_mul}{GEN x, GEN y}

\fun{GEN}{ZC_z_mul}{GEN x, long y}

\fun{GEN}{ZM_nm_mul}{GEN x, GEN y} the entries of $y$ are \kbd{ulong}s.

\fun{GEN}{nm_Z_mul}{GEN y, GEN c} the entries of $y$ are \kbd{ulong}s.

\subsubsec{Miscellaneous involving Fl}

\fun{GEN}{Fl_to_Flx}{ulong x, long evx} converts a \kbd{unsigned long} to a
scalar \kbd{Flx}. Assume that \kbd{evx = evalvarn(vx)} for some variable
number \kbd{vx}.

\fun{GEN}{Z_to_Flx}{GEN x, ulong p, long sv} converts a \typ{INT} to a scalar
\kbd{Flx} polynomial. Assume that \kbd{sv = evalvarn(v)} for some variable
number \kbd{v}.

\fun{GEN}{Flx_to_Flv}{GEN x, long n} converts from \kbd{Flx} to \kbd{Flv}
with \kbd{n} components (assumed larger than the number of coefficients of
\kbd{x}).

\fun{GEN}{zx_to_zv}{GEN x, long n} as \kbd{Flx\_to\_Flv}.

\fun{GEN}{Flv_to_Flx}{GEN x, long sv} converts from vector (coefficient
array) to (normalized) polynomial in variable $v$.

\fun{GEN}{zv_to_zx}{GEN x, long n} as \kbd{Flv\_to\_Flx}.

\fun{GEN}{Flm_to_FlxV}{GEN x, long sv} converts the columns of
\kbd{Flm}~\kbd{x} to an array of \kbd{Flx} in the variable $v$
(repeated calls to \kbd{Flv\_to\_Flx}).

\fun{GEN}{zm_to_zxV}{GEN x, long n} as \kbd{Flm\_to\_FlxV}.

\fun{GEN}{Flm_to_FlxX}{GEN x, long sw, long sv} same as
\kbd{Flm\_to\_FlxV(x,sv)} but returns the result as a (normalized) polynomial
in variable $w$.

\fun{GEN}{FlxV_to_Flm}{GEN v, long n} reverse \kbd{Flm\_to\_FlxV}, to obtain
an \kbd{Flm} with \kbd{n} rows (repeated calls to \kbd{Flx\_to\_Flv}).

\fun{GEN}{FlxX_to_Flm}{GEN v, long n} reverse \kbd{Flm\_to\_FlxX}, to obtain
an \kbd{Flm} with \kbd{n} rows (repeated calls to \kbd{Flx\_to\_Flv}).

\fun{GEN}{FlxX_to_FlxC}{GEN B, long n, long sv} see \kbd{RgX\_to\_RgV}.
The coefficients of \kbd{B} are assumed to be in the variable $v$.

\fun{GEN}{FlxXV_to_FlxM}{GEN V, long n, long sv} see \kbd{RgXV\_to\_RgM}.
The coefficients of \kbd{V[i]} are assumed to be in the variable $v$.

\fun{GEN}{Fly_to_FlxY}{GEN a, long sv} convert coefficients of \kbd{a} to
constant \kbd{Flx} in variable $v$.

\subsubsec{Miscellaneous involving \kbd{F2x}}

\fun{GEN}{F2x_to_F2v}{GEN x, long n} converts from \kbd{F2x} to \kbd{F2v}
with \kbd{n} components (assumed larger than the number of coefficients of
\kbd{x}).

\fun{GEN}{F2xC_to_ZXC}{GEN x}, converts a vector of \kbd{F2x} to a column
vector of polynomials with \typ{INT} coefficients (repeated calls to
\kbd{F2x\_to\_ZX}).

\fun{GEN}{F2xC_to_FlxC}{GEN x}

\fun{GEN}{FlxC_to_F2xC}{GEN x}

\fun{GEN}{F2xV_to_F2m}{GEN v, long n} \kbd{F2x\_to\_F2v} to each polynomial
to get an \kbd{F2m} with \kbd{n} rows.

\section{Higher arithmetic over $\Z$: primes, factorization}

\subsec{Pure powers}

\fun{long}{Z_issquare}{GEN n} returns $1$ if the \typ{INT} $n$ is
a square, and $0$ otherwise. This is tested first modulo small prime
powers, then \kbd{sqrtremi} is called.

\fun{long}{Z_issquareall}{GEN n, GEN *sqrtn} as \kbd{Z\_issquare}. If
$n$ is indeed a square, set \kbd{sqrtn} to its integer square root.
Uses a fast congruence test mod $64\times 63\times 65\times 11$ before
computing an integer square root.

\fun{long}{Z_ispow2}{GEN x} returns $1$ if the \typ{INT} $x$ is a power of
$2$, and $0$ otherwise.

\fun{long}{uissquare}{ulong n} as \kbd{Z\_issquare},
for an \kbd{ulong} operand \kbd{n}.

\fun{long}{uissquareall}{ulong n, ulong *sqrtn} as \kbd{Z\_issquareall},
for an \kbd{ulong} operand \kbd{n}.

\fun{ulong}{usqrt}{ulong a} returns the floor of the square root of $a$.

\fun{ulong}{usqrtn}{ulong a, ulong n} returns the floor of the $n$-th root
of $a$.

\fun{long}{Z_ispower}{GEN x, ulong k} returns $1$ if the \typ{INT} $n$ is a
$k$-th power, and $0$ otherwise; assume that $k > 1$.

\fun{long}{Z_ispowerall}{GEN x, ulong k, GEN *pt} as \kbd{Z\_ispower}. If
$n$ is indeed a $k$-th power, set \kbd{*pt} to its integer $k$-th root.

\fun{long}{Z_isanypower}{GEN x, GEN *ptn} returns the maximal $k\geq 2$  such
that the \typ{INT} $x = n^k$ is a perfect power, or $0$ if no such $k$ exist;
in particular \kbd{ispower(1)}, \kbd{ispower(0)}, \kbd{ispower(-1)} all
return 0. If the return value $k$ is not $0$ (so that $x = n^k$) and
\kbd{ptn} is not \kbd{NULL}, set \kbd{*ptn} to $n$.

The following low-level functions are called by \tet{Z_isanypower} but can
be directly useful:

\fun{int}{is_357_power}{GEN x, GEN *ptn, ulong *pmask} tests whether the
integer $x > 0$ is a $3$-rd, $5$-th or $7$-th power. The bits of \kbd{*mask}
initially indicate which test is to be performed;
bit $0$: $3$-rd,
bit $1$: $5$-th,
bit $2$: $7$-th (e.g.~$\kbd{*pmask} = 7$ performs all tests). They are
updated during the call: if the ``$i$-th power'' bit is set to $0$
then $x$ is not a $k$-th power. The function returns $0$
(not a
$3$-rd,
$5$-th or
$7$-th power),
$3$
($3$-rd power,
not a $5$-th or
$7$-th power),
$5$
($5$-th power,
not a $7$-th power),
or $7$
($7$-th power); if an $i$-th power bit is initially set to $0$, we take it
at face value and assume $x$ is not an $i$-th power without performing any
test. If the return value $k$ is non-zero, set \kbd{*ptn} to $n$ such that $x
= n^k$.

\fun{int}{is_pth_power}{GEN x, GEN *ptn, forprime_t *T, ulong cutoff}
let $x > 0$ be an integer, $\kbd{cutoff} > 0$ and $T$ be an iterator over
primes $\geq 11$, we look for the smallest prime $p$ such that $x = n^p$
(advancing $T$ as we go along). The $11$ is due to the fact that
\tet{is_357_power} and \kbd{issquare} are faster than the generic version for
$p < 11$.

Fail and return $0$ when the existence of $p$ would imply $2^{\kbd{cutoff}} >
x^{1/p}$, meaning that a possible $n$ is so small that it should have been
found by trial division; for maximal speed, you should start by a round of
trial division, but the cut-off may also be set to $1$ for a rigorous result
without any trial division.

Otherwise returns the smallest suitable prime power $p^i$ and set \kbd{*ptn}
to the $p^i$-th root of $x$ (which is now not a $p$-th power). We may
immediately recall the function with the same parameters after setting $x =
\kbd{*ptn}$: it will start at the next prime.

\subsec{Factorization}

\fun{GEN}{Z_factor}{GEN n} factors the \typ{INT} \kbd{n}. The ``primes''
in the factorization are actually strong pseudoprimes.

\fun{GEN}{absZ_factor}{GEN n} returns \kbd{Z\_factor(absi(n))}.

\fun{long}{Z_issmooth}{GEN n, ulong lim} returns $1$ if all the
prime factors of the \typ{INT} $n$ are less or equal to $lim$.

\fun{GEN}{Z_issmooth_fact}{GEN n, ulong lim} returns \kbd{NULL} if a prime
factor of the \typ{INT} $n$ is $> lim$, and returns the factorization
of $n$ otherwise, as a \typ{MAT} with \typ{VECSMALL} columns (word-size
primes and exponents). Neither memory-clean nor suitable for
\kbd{gerepileupto}.

\fun{GEN}{Z_factor_until}{GEN n, GEN lim} as \kbd{Z\_factor}, but stop the
factorization process as soon as the unfactored part is smaller than \kbd{lim}.
The resulting factorization matrix only contains the factors found. No other
assumptions can be made on the remaining factors.

\fun{GEN}{Z_factor_limit}{GEN n, ulong lim} trial divide $n$ by all primes $p
< \kbd{lim}$ in the precomputed list of prime numbers and return the
corresponding factorization matrix. In this case, the last ``prime'' divisor
in the first column of the factorization matrix may well be a proven
composite.

If $\kbd{lim} = 0$, the effect is the same as setting $\kbd{lim} =
\kbd{maxprime()} + 1$: use all precomputed primes.

\fun{GEN}{absZ_factor_limit}{GEN n, ulong all}returns
\kbd{Z\_factor\_limit(absi(n))}.

\fun{GEN}{boundfact}{GEN x, ulong lim} as \tet{Z_factor_limit}, applying to
\typ{INT} or \typ{FRAC} inputs.

\fun{GEN}{Z_smoothen}{GEN n, GEN L, GEN *pP, GEN *pE} given a \typ{VECSMALL}
$L$ containing a list of small primes and a \typ{INT} $n$, trial divide
$n$ by the elements of $L$ and return the cofactor. Return \kbd{NULL} if the
cofactor is $\pm 1$. \kbd{*P} and \kbd{*E} contain the list of prime divisors
found and their exponents, as \typ{VECSMALL}s. Neither memory-clean, nor
suitable for \tet{gerepileupto}.

\fun{GEN}{Z_factor_listP}{GEN N, GEN L} given a \typ{INT} $N$, a vector or
primes $L$ containing all prime divisors of $N$ (and possibly others). Return
\kbd{factor(N)}. Neither memory-clean, nor suitable for \tet{gerepileupto}.

\fun{GEN}{factor_pn_1}{GEN p, ulong n} returns the factorization of $p^n-1$,
where $p$ is prime and $n$ is a positive integer.

\fun{GEN}{factor_pn_1_limit}{GEN p, ulong n, ulong B} returns a partial
factorization of $p^n-1$, where $p$ is prime and $n$ is a positive integer.
Don't actively search for prime divisors $p > B$, but we may find still find
some due to Aurifeuillian factorizations. Any entry $> B^2$ in the output
factorization matrix is \emph{a priori} not a prime (but may well be).

\fun{GEN}{factor_Aurifeuille_prime}{GEN p, long n} an Aurifeuillian factor
of $\phi_n(p)$, assuming $p$ prime and an Aurifeuillian factor exists
($p \zeta_n$ is a square in $\Q(\zeta_n)$).

\fun{GEN}{factor_Aurifeuille}{GEN a, long d} an Aurifeuillian factor of
$\phi_n(a)$, assuming $a$ is a non-zero integer and $n > 2$. Returns $1$
if no Aurifeuillian factor exists.

\fun{GEN}{odd_prime_divisors}{GEN a} \typ{VEC} of all prime divisors of the
\typ{INT} $a$.

\fun{GEN}{factoru}{ulong n}, returns the factorization of $n$. The result
is a $2$-component vector $[P,E]$, where $P$ and $E$ are \typ{VECSMALL}
containing the prime divisors of $n$, and the $v_p(n)$.

\fun{GEN}{factoru_pow}{ulong n}, returns the factorization of $n$. The result
is a $3$-component vector $[P,E,C]$, where $P$, $E$ and $C$ are
\typ{VECSMALL} containing the prime divisors of $n$, the $v_p(n)$
and the $p^{v_p(n)}$.

\fun{ulong}{tridiv_bound}{GEN n} returns the trial division bound used by
\tet{Z_factor}$(n)$.

\subsec{Coprime factorization}

Given $a$ and $b$ two non-zero integers, let \teb{ppi}$(a,b)$, \teb{ppo}$(a,b)$,
\teb{ppg}$(a,b)$, \teb{pple}$(a,b)$ (powers in $a$ of primes inside $b$,
outside $b$, greater than thos in $b$, less than or equal to those in $b$) be
the integers defined by

\item $v_p(\text{ppi}) = v_p(a) [v_p(b) > 0]$,

\item $v_p(\text{ppo}) = v_p(a) [v_p(b) = 0]$,

\item $v_p(\text{ppg}) = v_p(a) [v_p(a) > v_p(b)]$,

\item $v_p(\text{pple}) = v_p(a) [v_p(a) \leq v_p(b)]$.

\fun{GEN}{Z_ppo}{GEN a, GEN b} returns $\text{ppo}(a,b)$; shallow function.

\fun{ulong}{u_ppo}{ulong a, ulong b} returns $\text{ppo}(a,b)$.

\fun{GEN}{Z_ppgle}{GEN a, GEN b} returns $[\text{ppg}(a,b), \text{pple}(a,b)]$;
shallow function.

\fun{GEN}{Z_ppio}{GEN a, GEN b} returns
$[\gcd(a,b), \text{ppi}(a,b), \text{ppo}(a,b)]$; shallow function.

\fun{GEN}{Z_cba}{GEN a, GEN b} fast natural coprime base algorithm. Returns a
vector of coprime divisors of $a$ and $b$ such that both $a$ and $b$ can
be multiplicatively generated from this set.

\subsec{Checks attached to arithmetic functions}

Arithmetic functions accept arguments of the following kind: a plain positive
integer $N$ (\typ{INT}), the factorization \var{fa} of a positive integer (a
\typ{MAT} with two columns containing respectively primes and exponents), or
a vector $[N,\var{fa}]$. A few functions accept non-zero
integers (e.g.~\tet{omega}), and some others arbitrary integers
(e.g.~\tet{factorint}, \dots).

\fun{int}{is_Z_factorpos}{GEN f} returns $1$ if $f$ looks like the
factorization of a positive integer, and $0$ otherwise. Useful for sanity
checks but not 100\% foolproof. Specifically, this routine checks that $f$ is
a two-column matrix all of whose entries are positive integers. It does
\emph{not} check that entries in the first column (``primes'') are prime,
or even pairwise coprime, nor that they are stricly increasing.

\fun{int}{is_Z_factornon0}{GEN f} returns $1$ if $f$ looks like the
factorization of a non-zero integer, and $0$ otherwise. Useful for sanity
checks but not 100\% foolproof, analogous to \tet{is_Z_factorpos}. (Entries
in the first column need only be non-zero integers.)

\fun{int}{is_Z_factor}{GEN f} returns $1$ if $f$ looks like the
factorization of an integer, and $0$ otherwise. Useful for sanity
checks but not 100\% foolproof. Specifically, this routine checks that $f$ is
a two-column matrix all of whose entries are integers. Entries in the second
column (``exponents'') are all positive. Either it encodes the
``factorization'' $0^e$, $e > 0$, or entries in the first column (``primes'')
are all non-zero.

\fun{GEN}{clean_Z_factor}{GEN f} assuming $f$ is the factorization of an
integer $n$, return the factorization of $|n|$, i.e.~remove $-1$ from the
factorization. Shallow function.

\fun{GEN}{fuse_Z_factor}{GEN f, GEN B} assuming $f$ is the
factorization of an integer $n$, return \kbd{boundfact(n, B)}, i.e.
return a factorization where all primary factors for $|p| \leq B$
are preserved, and all others are ``fused'' into a single composite
integer; if that remainder is trivial, i.e.~equal to 1, it is of course
not included. Shallow function.

In the following three routines, $f$ is the name of an arithmetic function,
and $n$ a supplied argument. They all raise exceptions if $n$ does not
correspond to an integer or an integer factorization of the expected shape.

\fun{GEN}{check_arith_pos}{GEN n, const char *f} check whether $n$
is attached to the factorization of a positive integer, and return
\kbd{NULL} (plain \typ{INT}) or a factorization extracted from $n$ otherwise.
May raise an \tet{e_DOMAIN} ($n \leq 0$) or an \tet{e_TYPE} exception (other
failures).

\fun{GEN}{check_arith_non0}{GEN n, const char *f} check whether $n$
is attached to the factorization of a non-$0$ integer, and return
\kbd{NULL} (plain \typ{INT}) or a factorization extracted from $n$ otherwise.
May raise an \tet{e_TYPE} exception.

\fun{GEN}{check_arith_all}{GEN n, const char *f}
is attached to the factorization of an integer, and return \kbd{NULL}
(plain \typ{INT}) or a factorization extracted from $n$ otherwise.

\subsec{Incremental integer factorization}

Routines attached to the dynamic factorization of an integer $n$, iterating
over successive prime divisors. This is useful to implement high-level
routines allowed to take shortcuts given enough partial information: e.g.
\kbd{moebius}$(n)$ can be trivially computed if we hit $p$ such that $p^2
\mid n$. For efficiency, trial division by small primes should have already
taken place. In any case, the functions below assume that no prime $< 2^{14}$
divides $n$.

\fun{GEN}{ifac_start}{GEN n, int moebius} schedules a new factorization
attempt for the integer $n$. If \kbd{moebius} is non-zero, the factorization
will be aborted as soon as a repeated factor is detected (Moebius mode).
The function assumes that $n > 1$ is a \emph{composite} \typ{INT} whose prime
divisors satisfy $p > 2^{14}$ \emph{and} that one can write to $n$ in place.

This function stores data on the stack, no \kbd{gerepile} call should
delete this data until the factorization is complete. Returns \kbd{partial},
a data structure recording the partial factorization state.

\fun{int}{ifac_next}{GEN *partial, GEN *p, long *e} deletes a primary factor
$p^e$ from \kbd{partial} and sets \kbd{p} (prime) and \kbd{e} (exponent), and
normally returns $1$. Whatever remains in the \kbd{partial} structure is now
coprime to $p$.

Returns $0$ if all primary factors have been used already, so we are done
with the factorization. In this case $p$ is set to \kbd{NULL}. If we ran in
Moebius mode and the factorization was in fact aborted, we have $e = 1$,
otherwise $e = 0$.

\fun{int}{ifac_read}{GEN part, GEN *k, long *e} peeks at the next integer
to be factored in the list $k^e$, where $k$ is not necessarily prime
and can be a perfect power as well, but will be factored by the next call to
\tet{ifac_next}. You can remove this factorization from the schedule by
calling:

\fun{void}{ifac_skip}{GEN part} removes the next scheduled factorization.

\fun{int}{ifac_isprime}{GEN n} given $n$ whose prime divisors are $> 2^{14}$,
returns the decision the factoring engine would take about the compositeness
of $n$: $0$ if $n$ is a proven composite, and $1$ if we believe it to be
prime; more precisely, $n$ is a proven prime if \tet{factor_proven} is
set, and only a BPSW-pseudoprime otherwise.

\subsec{Integer core, squarefree factorization}

\fun{long}{Z_issquarefree}{GEN n} returns $1$ if the \typ{INT} \kbd{n}
is square-free, and $0$ otherwise.

\fun{long}{Z_isfundamental}{GEN x} returns $1$ if the \typ{INT} \kbd{x}
is a fundamental discriminant, and $0$ otherwise.

\fun{GEN}{core}{GEN n} unique squarefree integer $d$ dividing $n$ such that
$n/d$ is a square. The core of $0$ is defined to be $0$.

\fun{GEN}{core2}{GEN n} return $[d,f]$ with $d$ squarefree and $n = df^2$.

\fun{GEN}{corepartial}{GEN n, long lim} as \kbd{core}, using
\kbd{boundfact(n,lim)} to partially factor \kbd{n}. The result is not
necessarily squarefree, but $p^2 \mid n$ implies $p > \kbd{lim}$.

\fun{GEN}{core2partial}{GEN n, long lim} as \kbd{core2}, using
\kbd{boundfact(n,lim)} to partially factor \kbd{n}. The resulting $d$ is not
necessarily squarefree, but $p^2 \mid n$ implies $p > \kbd{lim}$.



\subsec{Primes, primality and compositeness tests}

\subsubsec{Chebyshev's $\pi$ function, bounds}

\fun{ulong}{uprimepi}{ulong n}, returns the number of primes $p\leq n$
(Chebyshev's $\pi$ function).

\fun{double}{primepi_upper_bound}{double x} return a quick upper bound for
$\pi(x)$, using Dusart bounds.

\fun{GEN}{gprimepi_upper_bound}{GEN x} as \tet{primepi_upper_bound}, returns a
\typ{REAL}.

\fun{double}{primepi_lower_bound}{double x} return a quick lower bound for
$\pi(x)$, using Dusart bounds.

\fun{GEN}{gprimepi_lower_bound}{GEN x} as \tet{primepi_lower_bound}, returns
a \typ{REAL} or \kbd{gen\_0}.

\subsubsec{Primes, primes in intervals}

\fun{ulong}{unextprime}{ulong n}, returns the smallest prime $\geq n$. Return
$0$ if it cannot be represented as an \kbd{ulong} ($n$ bigger than $2^{64} -
59$ or $2^{32} - 5$ depending on the word size).

\fun{ulong}{uprecprime}{ulong n}, returns the largest prime $\leq n$. Return
$0$ if $n\leq 1$.

\fun{ulong}{uprime}{long n} returns the $n$-th prime, assuming it fits in an
\kbd{ulong} (overflow error otherwise).

\fun{GEN}{prime}{long n} same as \kbd{utoi(uprime(n))}.

\fun{GEN}{primes_zv}{long m} returns the first $m$ primes, in a
\typ{VECSMALL}.

\fun{GEN}{primes}{long m} return the first $m$ primes, as a \typ{VEC} of
\typ{INT}s.

\fun{GEN}{primes_interval}{GEN a, GEN b} return the primes in the interval
$[a,b]$, as a \typ{VEC} of \typ{INT}s.

\fun{GEN}{primes_interval_zv}{ulong a, ulong b} return the primes in the
interval $[a,b]$, as a \typ{VECSMALL} of \kbd{ulongs}s.

\fun{GEN}{primes_upto_zv}{ulong b} return the primes in the interval $[2,b]$,
as a \typ{VECSMALL} of \kbd{ulongs}s.

\subsubsec{Tests}

\fun{int}{uisprime}{ulong p}, returns $1$ if \kbd{p} is a prime number and
$0$ otherwise.

\fun{int}{uisprime_101}{ulong p}, assuming that $p$ has no divisor $\leq
101$, returns $1$ if \kbd{p} is a prime number and $0$ otherwise.

\fun{int}{uisprime_661}{ulong p}, assuming that $p$ has no divisor $\leq
661$, returns $1$ if \kbd{p} is a prime number and $0$ otherwise.

\fun{int}{isprime}{GEN n}, returns $1$ if the \typ{INT} \kbd{n} is a
(fully proven) prime number and $0$ otherwise.

\fun{long}{isprimeAPRCL}{GEN n}, returns $1$ if the \typ{INT} \kbd{n} is a
prime number and $0$ otherwise, using only the APRCL test --- not even trial
division or compositeness tests. The workhorse \kbd{isprime} should be
faster on average, especially if non-primes are included!

\fun{long}{BPSW_psp}{GEN n}, returns $1$ if the \typ{INT} \kbd{n} is a
Baillie-Pomerance-Selfridge-Wagstaff pseudoprime, and $0$ otherwise (proven
composite).

\fun{int}{BPSW_isprime}{GEN x} assuming $x$ is a BPSW-pseudoprime, rigorously
prove its primality. The function \tet{isprime} is currently implemented
as
\bprog
 BPSW_psp(x) && BPSW_isprime(x)
@eprog

\fun{long}{millerrabin}{GEN n, long k} performs $k$ strong Rabin-Miller
compositeness tests on the \typ{INT} $n$, using $k$ random bases. This
function also caches square roots of $-1$ that are encountered during the
successive tests and stops as soon as three distinct square roots have been
produced; we have in principle factored $n$ at this point, but
unfortunately, there is currently no way for the factoring machinery to
become aware of it. (It is highly implausible that hard to find factors
would be exhibited in this way, though.) This should be slower than
\tet{BPSW_psp} for $k\geq 4$ and we would expect it to be less reliable.

\subsec{Iterators over primes}

\fun{int}{forprime_init}{forprime_t *T, GEN a, GEN b} initialize an
iterator $T$ over primes in $[a,b]$; over primes $\geq a$ if $b =
\kbd{NULL}$. Return $0$ if the range is known to be empty from the start
(as if $b < a$ or $b < 0$), and return $1$ otherwise.

\fun{GEN}{forprime_next}{forprime_t *T} returns the next prime in the range,
assuming that $T$ was initialized by \tet{forprime_init}.

\fun{int}{u_forprime_init}{forprime_t *T, ulong a, ulong b}

\fun{ulong}{u_forprime_next}{forprime_t *T}

\fun{void}{u_forprime_restrict}{forprime_t *T, ulong c} let $T$ an iterator
over primes initialized via \kbd{u\_forprime\_init(\&T, a, b)}, possibly
followed by a number of calls to \tet{u_forprime_next}, and $a \leq c \leq
b$. Restrict the range of primes considered to $[a,c]$.

\fun{int}{u_forprime_arith_init}{forprime_t *T, ulong a,ulong b, ulong c,ulong q} initialize an iterator over primes in $[a,b]$, congruent to $c$
modulo $q$. Assume $0 \leq c < q$ and $(c,q) = 1$. Subsequent calls to
\tet{u_forprime_next} will only return primes congruent to $c$ modulo $q$.

\section{Integral, rational and generic linear algebra}
\subsec{\kbd{ZC} / \kbd{ZV}, \kbd{ZM}} A \kbd{ZV} (resp.~a~\kbd{ZM},
resp.~a~\kbd{ZX}) is a \typ{VEC} or \typ{COL} (resp.~\typ{MAT},
resp.~\typ{POL}) with \typ{INT} coefficients.

\subsubsec{\kbd{ZC} / \kbd{ZV}}

\fun{void}{RgV_check_ZV}{GEN x, const char *s} Assuming \kbd{x} is a \typ{VEC}
or \typ{COL} raise an error if it is not a \kbd{ZV} ($s$ should point to the
name of the caller).

\fun{int}{RgV_is_ZV}{GEN x} Assuming \kbd{x} is a \typ{VEC}
or \typ{COL} return $1$ if it is a \kbd{ZV}, and $0$ otherwise.

\fun{int}{RgV_is_QV}{GEN P} return 1 if the \kbd{RgV}~$P$ has only
\typ{INT} and \typ{FRAC} coefficients, and 0 otherwise.

\fun{int}{ZV_equal0}{GEN x} returns 1 if all entries of the \kbd{ZV} $x$ are
zero, and $0$ otherwise.

\fun{int}{ZV_cmp}{GEN x, GEN y} compare two \kbd{ZV}, which we assume have
the same length (lexicographic order, comparing absolute values).

\fun{int}{ZV_abscmp}{GEN x, GEN y} compare two \kbd{ZV}, which we assume have
the same length (lexicographic order).

\fun{int}{ZV_equal}{GEN x, GEN y} returns $1$ if the two \kbd{ZV} are equal
and $0$ otherwise. A \typ{COL} and a \typ{VEC} with the same entries are
declared equal.

\fun{GEN}{ZC_add}{GEN x, GEN y} adds \kbd{x} and \kbd{y}.

\fun{GEN}{ZC_sub}{GEN x, GEN y} subtracts \kbd{x} and \kbd{y}.

\fun{GEN}{ZC_Z_add}{GEN x, GEN y} adds \kbd{y} to \kbd{x[1]}.

\fun{GEN}{ZC_Z_sub}{GEN x, GEN y} subtracts \kbd{y} to \kbd{x[1]}.

\fun{GEN}{Z_ZC_sub}{GEN a, GEN x} returns the vector $[a - x_1,
-x_2,\dots,-x_n]$.

\fun{GEN}{ZC_copy}{GEN x} returns a (\typ{COL}) copy of \kbd{x}.

\fun{GEN}{ZC_neg}{GEN x} returns $-\kbd{x}$ as a \typ{COL}.

\fun{void}{ZV_neg_inplace}{GEN x} negates the \kbd{ZV} \kbd{x} in place, by
replacing each component by its opposite (the type of \kbd{x} remains the
same, \typ{COL} or \typ{COL}). If you want to save even more memory by
avoiding the implicit component copies, use \kbd{ZV\_togglesign}.

\fun{void}{ZV_togglesign}{GEN x} negates \kbd{x} in place, by toggling the
sign of its integer components. Universal constants \kbd{gen\_1},
\kbd{gen\_m1}, \kbd{gen\_2} and \kbd{gen\_m2} are handled specially and will
not be corrupted. (We use \tet{togglesign_safe}.)

\fun{GEN}{ZC_Z_mul}{GEN x, GEN y} multiplies the \kbd{ZC} or \kbd{ZV}~\kbd{x}
(which can be a column or row vector) by the \typ{INT}~\kbd{y}, returning a
\kbd{ZC}.

\fun{GEN}{ZC_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all divisions
are exact.

\fun{GEN}{ZC_Z_div}{GEN x, GEN y} returns $x/y$, where the resulting vector
has rational entries.

\fun{GEN}{ZV_dotproduct}{GEN x,GEN y} as \kbd{RgV\_dotproduct} assuming $x$
and $y$ have \typ{INT} entries.

\fun{GEN}{ZV_dotsquare}{GEN x} as \kbd{RgV\_dotsquare} assuming $x$
has \typ{INT} entries.

\fun{GEN}{ZC_lincomb}{GEN u, GEN v, GEN x, GEN y} returns $ux + vy$, where
$u$, $v$ are \typ{INT} and $x,y$ are \kbd{ZC} or \kbd{ZV}. Return a \kbd{ZC}

\fun{void}{ZC_lincomb1_inplace}{GEN X, GEN Y, GEN v} sets $X\leftarrow X +
vY$, where $v$ is a \typ{INT} and $X,Y$ are \kbd{ZC} or \kbd{ZV}. (The result
has the type of $X$.) Memory efficient (e.g. no-op if $v = 0$), but not
gerepile-safe.

\fun{GEN}{ZC_ZV_mul}{GEN x, GEN y, GEN p} multiplies the \kbd{ZC}~\kbd{x}
(seen as a column vector) by the \kbd{ZV}~\kbd{y} (seen as a row vector,
assumed to have compatible dimensions).

\fun{GEN}{ZV_content}{GEN x} returns the GCD of all the components
of~\kbd{x}.

\fun{GEN}{ZV_extgcd}{GEN A} given a vector of $n$ integers $A$, returns $[d,
U]$, where $d$ is the content of $A$ and $U$ is a matrix
in $\text{GL}_n(\Z)$ such that $AU = [D,0, \dots,0]$.

\fun{GEN}{ZV_prod}{GEN x} returns the product of all the components
of~\kbd{x} ($1$ for the empty vector).

\fun{GEN}{ZV_sum}{GEN x} returns the sum of all the components
of~\kbd{x} ($0$ for the empty vector).

\fun{long}{ZV_max_lg}{GEN x} returns the effective length of the longest
entry in $x$.

\fun{int}{ZV_dvd}{GEN x, GEN y} assuming $x$, $y$ are two \kbd{ZV}s of the same
length, return $1$ if $y[i]$ divides $x[i]$ for all $i$ and $0$ otherwise.
Error if one of the $y[i]$ is $0$.

\fun{GEN}{ZV_sort}{GEN L} sort the \kbd{ZV} $L$.
Returns a vector with the same type as $L$.

\fun{GEN}{ZV_sort_uniq}{GEN L} sort the \kbd{ZV} $L$, removing duplicate
entries. Returns a vector with the same type as $L$.

\fun{long}{ZV_search}{GEN L, GEN y} look for the \typ{INT} $y$ in the sorted
\kbd{ZV} $L$. Return an index $i$ such that $L[i] = y$, and  $0$ otherwise.

\fun{GEN}{ZV_indexsort}{GEN L} returns the permutation which, applied to the
\kbd{ZV} $L$, would sort the vector. The result is a \typ{VECSMALL}.

\fun{GEN}{ZV_union_shallow}{GEN x, GEN y} given two \emph{sorted} ZV (as per
\tet{ZV_sort}, returns the union of $x$ and $y$. Shallow function. In case two
entries are equal in $x$ and $y$,  include the one from $x$.

\subsubsec{\kbd{ZM}}

\fun{void}{RgM_check_ZM}{GEN A, const char *s} Assuming \kbd{x} is a \typ{MAT}
raise an error if it is not a \kbd{ZM} ($s$ should point to the name of the
caller).

\fun{GEN}{ZM_copy}{GEN x} returns a copy of \kbd{x}.

\fun{int}{ZM_equal}{GEN A, GEN B} returns $1$ if the two \kbd{ZM} are equal
and $0$ otherwise.

\fun{GEN}{ZM_add}{GEN x, GEN y} returns $\kbd{x} + \kbd{y}$ (assumed to have
compatible dimensions).

\fun{GEN}{ZM_sub}{GEN x, GEN y} returns $\kbd{x} - \kbd{y}$ (assumed to have
compatible dimensions).

\fun{GEN}{ZM_neg}{GEN x} returns $-\kbd{x}$.

\fun{void}{ZM_togglesign}{GEN x} negates \kbd{x} in place, by toggling the
sign of its integer components. Universal constants \kbd{gen\_1},
\kbd{gen\_m1}, \kbd{gen\_2} and \kbd{gen\_m2} are handled specially and will
not be corrupted. (We use \tet{togglesign_safe}.)

\fun{GEN}{ZM_mul}{GEN x, GEN y} multiplies \kbd{x} and \kbd{y} (assumed to
have compatible dimensions).

\fun{GEN}{ZM_sqr}{GEN x} returns $x^2$, where $x$ is a square \kbd{ZM}.

\fun{GEN}{ZM_Z_mul}{GEN x, GEN y} multiplies the \kbd{ZM}~\kbd{x}
by the \typ{INT}~\kbd{y}.

\fun{GEN}{ZM_ZC_mul}{GEN x, GEN y} multiplies the \kbd{ZM}~\kbd{x}
by the \kbd{ZC}~\kbd{y} (seen as a column vector, assumed to have compatible
dimensions).

\fun{GEN}{ZM_diag_mul}{GEN d, GEN m} given a vector $d$ with integer entries
and a \kbd{ZM} $m$ of compatible dimensions, return \kbd{diagonal(d) * m}.

\fun{GEN}{ZM_mul_diag}{GEN m, GEN d} given a vector $d$ with integer entries
 and a \kbd{ZM} $m$ of compatible dimensions, return \kbd{m * diagonal(d)}.

\fun{GEN}{ZM_multosym}{GEN x, GEN y}

\fun{GEN}{ZM_transmultosym}{GEN x, GEN y}

\fun{GEN}{ZM_transmul}{GEN x, GEN y}

\fun{GEN}{ZMrow_ZC_mul}{GEN x, GEN y, long i} multiplies the $i$-th row
of \kbd{ZM}~\kbd{x} by the \kbd{ZC}~\kbd{y} (seen as a column vector, assumed
to have compatible dimensions). Assumes that $x$ is non-empty and
$0 < i < \kbd{lg(x[1])}$.

\fun{GEN}{ZV_ZM_mul}{GEN x, GEN y} multiplies the \kbd{ZV}~\kbd{x}
by the \kbd{ZM}~\kbd{y}. Returns a \typ{VEC}.

\fun{GEN}{ZM_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all divisions
are exact.

\fun{GEN}{ZM_Z_div}{GEN x, GEN y} returns $x/y$, where the resulting matrix
has rational entries.

\fun{GEN}{ZM_pow}{GEN x, GEN n} returns $\kbd{x}^\kbd{n}$, assuming \kbd{x}
is a square \kbd{ZM} and $\kbd{n}\geq 0$.

\fun{GEN}{ZM_powu}{GEN x, ulong n} returns $\kbd{x}^\kbd{n}$, assuming \kbd{x}
is a square \kbd{ZM} and $\kbd{n}\geq 0$.

\fun{GEN}{ZM_det}{GEN M} if \kbd{M} is a \kbd{ZM}, returns the determinant of
$M$. This is the function underlying \tet{matdet} whenever $M$ is a \kbd{ZM}.

\fun{GEN}{ZM_detmult}{GEN M} if \kbd{M} is a \kbd{ZM}, returns a multiple of
the determinant of the lattice generated by its columns. This is the function
underlying \tet{detint}.

\fun{GEN}{ZM_supnorm}{GEN x} return the sup norm of the \kbd{ZM} $x$.

\fun{GEN}{ZM_charpoly}{GEN M} returns the characteristic polynomial (in
variable $0$) of the \kbd{ZM} $M$.

\fun{GEN}{QM_charpoly_ZX}{GEN M} returns the characteristic polynomial
(in variable $0$) of the \kbd{QM} $M$, assuming that the result has integer
coefficients.

\fun{GEN}{QM_charpoly_ZX_bound}{GEN M, long b} as \tet{QM_charpoly_ZX}
assuming that the sup norm of the (integral) result is $\leq 2^b$.

\fun{GEN}{ZM_imagecompl}{GEN x} returns \kbd{matimagecompl(x)}.

\fun{long}{ZM_rank}{GEN x} returns \kbd{matrank(x)}.

\fun{GEN}{ZM_indexrank}{GEN x} returns \kbd{matindexrank(x)}.

\fun{GEN}{ZM_indeximage}{GEN x} returns \kbd{gel(ZM\_indexrank(x), 2)}.

\fun{long}{ZM_max_lg}{GEN x} returns the effective length of the longest
entry in $x$.

\fun{GEN}{ZM_inv}{GEN M, GEN d} if \kbd{M} is a \kbd{ZM} and \kbd{d}
is a \typ{INT} such that $M' := \kbd{d}\kbd{M}^{-1}$ is integral,
return $M'$. It is allowed to set \kbd{d = NULL}, in which case, the
determinant of \kbd{M} is used instead.

\fun{GEN}{ZM_inv_ratlift}{GEN M, GEN *pd} if \kbd{M} is a \kbd{ZM},
return a primitive matrix $H$ such that $M H$ is $d$ times the identity
and set \kbd{*pd} to $d$. To be used when you expect that the denominator
of $M^{-1}$ is much smaller than $\det M$ and no sharp multiplicative
bound is available; else use \kbd{ZM\_inv}.

\fun{GEN}{QM_inv}{GEN M, GEN d} as above, with \kbd{M} a \kbd{QM}. We
still assume that $M'$ has integer coefficients.

\fun{GEN}{ZM_det_triangular}{GEN x} returns the product of the diagonal
entries of $x$ (its determinant if it is indeed triangular).

\fun{int}{ZM_isidentity}{GEN x} return 1 if the \kbd{ZM} $x$ is the
identity matrix, and 0 otherwise.

\fun{int}{ZM_isscalar}{GEN x, GEN s} given a \kbd{ZM} $x$ and a
\typ{INT} $s$, return 1 if $x$ is equal to $s$ times the identity, and 0
otherwise. If $s$ is \kbd{NULL}, test whether $x$ is an arbitrary scalar
matrix.

\fun{long}{ZC_is_ei}{GEN x} return $i$ if the \kbd{ZC} $x$ has $0$ entries,
but for a $1$ at position $i$.

\fun{int}{ZM_ishnf}{GEN x} return $1$ if $x$ is in HNF form, i.e. is upper
triangular with positive diagonal coefficients, and  for $j>i$,
$x_{i,i}>x_{i,j} \ge 0$.

\fun{GEN}{Qevproj_init}{GEN M} let $M$ be a  $n\times d$ \kbd{ZM} of
maximal rank $d \leq n$, representing the basis of a $\Q$-subspace
$V$ of $\Q^n$. Return a projector on $V$, to be used by \tet{Qevproj_apply}.
The interface details may change in the future, but this function currently
returns $[M, B,D,p]$, where $p$ is a \typ{VECSMALL} with $d$ entries
such that the submatrix $A = \kbd{rowpermute}(M,p)$ is invertible, $B$ is a
\kbd{ZM} and $d$ a \typ{INT} such that $A B = D \Id_d$.

\fun{GEN}{Qevproj_apply}{GEN T, GEN pro} let $T$ be an $n\times n$
\kbd{QM}, stabilizing a $\Q$-subspace $V\subset \Q^n$ of dimension $d$, and
let \kbd{pro} be a projector on that subspace initialized by
\tet{Qevproj_init}$(M)$. Return the $d\times d$ matrix representing $T_{|V}$
on the basis given by the columns of $M$.

\fun{GEN}{Qevproj_apply_vecei}{GEN T, GEN pro, long k} as
\tet{Qevproj_apply}, return only the image of the $k$-th basis vector $M[k]$
(still on the basis given by the columns of $M$).

\subsec{\kbd{zv}, \kbd{zm}}

\fun{GEN}{zv_neg}{GEN x} return $-x$. No check for overflow is done, which
occurs in the fringe case where an entry is equal to $2^{\B-1}$.

\fun{GEN}{zv_neg_inplace}{GEN x} negates $x$ in place and return it. No check
for overflow is done, which occurs in the fringe case where an entry is equal
to $2^{\B-1}$.

\fun{GEN}{zm_zc_mul}{GEN x, GEN y}

\fun{GEN}{zm_mul}{GEN x, GEN y}

\fun{GEN}{zv_z_mul}{GEN x, long n} return $n\*x$. No check for overflow is
done.

\fun{long}{zv_content}{GEN x} returns the gcd of the entries of $x$.

\fun{long}{zv_dotproduct}{GEN x, GEN y}

\fun{long}{zv_prod}{GEN x} returns the product of all the components
of~\kbd{x} (assumes no overflow occurs).

\fun{GEN}{zv_prod_Z}{GEN x} returns the product of all the components
of~\kbd{x}; consider all $x[i]$ as \kbd{ulong}s.

\fun{long}{zv_sum}{GEN x} returns the sum of all the components
of~\kbd{x} (assumes no overflow occurs).

\fun{int}{zv_cmp0}{GEN x} returns 1 if all entries of the \kbd{zv} $x$ are $0$,
and $0$ otherwise.

\fun{int}{zv_equal}{GEN x, GEN y} returns $1$ if the two \kbd{zv} are equal
and $0$ otherwise.

\fun{int}{zv_equal0}{GEN x} returns $1$ if all entries are $0$, and return
$0$ otherwise.

\fun{long}{zv_search}{GEN L, long y} look for $y$ in the sorted
\kbd{zv} $L$. Return an index $i$ such that $L[i] = y$, and  $0$ otherwise.

\fun{GEN}{zv_copy}{GEN x} as \kbd{Flv\_copy}.

\fun{GEN}{zm_transpose}{GEN x} as \kbd{Flm\_transpose}.

\fun{GEN}{zm_copy}{GEN x} as \kbd{Flm\_copy}.

\fun{GEN}{zero_zm}{long m, long n} as \kbd{zero\_Flm}.

\fun{GEN}{zero_zv}{long n} as \kbd{zero\_Flv}.

\fun{GEN}{zm_row}{GEN A, long x0} as \kbd{Flm\_row}.

\fun{int}{zvV_equal}{GEN x, GEN y} returns $1$ if the two \kbd{zvV} (vectors
of \kbd{zv}) are equal and $0$ otherwise.

\subsec{\kbd{ZMV} / \kbd{zmV} (vectors of \kbd{ZM}/\kbd{zm})}

\fun{int}{RgV_is_ZMV}{GEN x} Assuming \kbd{x} is a \typ{VEC}
or \typ{COL} return $1$ if its components are \kbd{ZM}, and $0$ otherwise.

\fun{GEN}{ZMV_to_zmV}{GEN z}

\fun{GEN}{zmV_to_ZMV}{GEN z}

\fun{GEN}{ZMV_to_FlmV}{GEN z, ulong m}

\subsec{\kbd{RgC} / \kbd{RgV}, \kbd{RgM}}

\kbd{RgC} and \kbd{RgV} routines assume the inputs are \kbd{VEC} or \kbd{COL}
of the same dimension. \kbd{RgM} assume the inputs are \kbd{MAT} of
compatible dimensions.

\subsubsec{Matrix arithmetic}

\fun{void}{RgM_dimensions}{GEN}{x, long *m, long *n} sets $m$, resp.~$n$, to
the number of rows, resp.~columns of the \typ{MAT} $x$.

\fun{GEN}{RgC_add}{GEN x, GEN y} returns $x + y$ as a \typ{COL}.

\fun{GEN}{RgC_neg}{GEN x} returns $-x$ as a \typ{COL}.

\fun{GEN}{RgC_sub}{GEN x, GEN y} returns $x - y$ as a \typ{COL}.

\fun{GEN}{RgV_add}{GEN x, GEN y} returns $x + y$ as a \typ{VEC}.

\fun{GEN}{RgV_neg}{GEN x} returns $-x$ as a \typ{VEC}.

\fun{GEN}{RgV_sub}{GEN x, GEN y} returns $x - y$ as a \typ{VEC}.

\fun{GEN}{RgM_add}{GEN x, GEN y} return $x+y$.

\fun{GEN}{RgM_neg}{GEN x} returns $-x$.

\fun{GEN}{RgM_sub}{GEN x, GEN y} returns $x-y$.

\fun{GEN}{RgM_Rg_add}{GEN x, GEN y} assuming $x$ is a square matrix
and $y$ a scalar, returns the square matrix $x + y*\text{Id}$.

\fun{GEN}{RgM_Rg_add_shallow}{GEN x, GEN y} as \kbd{RgM\_Rg\_add} with much
fewer copies. Not suitable for \kbd{gerepileupto}.

\fun{GEN}{RgM_Rg_sub}{GEN x, GEN y} assuming $x$ is a square matrix
and $y$ a scalar, returns the square matrix $x - y*\text{Id}$.

\fun{GEN}{RgM_Rg_sub_shallow}{GEN x, GEN y} as \kbd{RgM\_Rg\_sub} with much
fewer copies. Not suitable for \kbd{gerepileupto}.

\fun{GEN}{RgC_Rg_add}{GEN x, GEN y} assuming $x$ is a non-empty column vector
and $y$ a scalar, returns the vector $[x_1 + y, x_2,\dots,x_n]$.

\fun{GEN}{RgC_Rg_sub}{GEN x, GEN y} assuming $x$ is a non-empty column vector
and $y$ a scalar, returns the vector $[x_1 - y, x_2,\dots,x_n]$.

\fun{GEN}{Rg_RgC_sub}{GEN a, GEN x} assuming $x$ is a non-empty column vector
and $a$ a scalar, returns the vector $[a - x_1, -x_2,\dots,-x_n]$.

\fun{GEN}{RgC_Rg_div}{GEN x, GEN y}

\fun{GEN}{RgM_Rg_div}{GEN x, GEN y} returns $x/y$ ($y$ treated as a scalar).

\fun{GEN}{RgC_Rg_mul}{GEN x, GEN y}

\fun{GEN}{RgV_Rg_mul}{GEN x, GEN y}

\fun{GEN}{RgM_Rg_mul}{GEN x, GEN y} returns $x\times y$ ($y$ treated as a
scalar).

\fun{GEN}{RgV_RgC_mul}{GEN x, GEN y} returns $x\times y$.

\fun{GEN}{RgV_RgM_mul}{GEN x, GEN y} returns $x\times y$.

\fun{GEN}{RgM_RgC_mul}{GEN x, GEN y} returns $x\times y$.

\fun{GEN}{RgM_mul}{GEN x, GEN y} returns $x\times y$.

\fun{GEN}{RgM_transmul}{GEN x, GEN y} returns $x\til \times y$.

\fun{GEN}{RgM_multosym}{GEN x, GEN y} returns $x\times y$, assuming
the result is a symmetric matrix (about twice faster than a generic matrix
multiplication).

\fun{GEN}{RgM_transmultosym}{GEN x, GEN y} returns $x\til \times y$, assuming
the result is a symmetric matrix (about twice faster than a generic matrix
multiplication).

\fun{GEN}{RgMrow_RgC_mul}{GEN x, GEN y, long i} multiplies the $i$-th row of
\kbd{RgM}~\kbd{x} by the \kbd{RgC}~\kbd{y} (seen as a column vector, assumed
to have compatible dimensions). Assumes that $x$ is non-empty and $0 < i <
\kbd{lg(x[1])}$.

\fun{GEN}{RgM_mulreal}{GEN x, GEN y} returns the real part of $x\times y$
(whose entries are \typ{INT}, \typ{FRAC}, \typ{REAL} or \typ{COMPLEX}).

\fun{GEN}{RgM_sqr}{GEN x} returns $x^2$.

\fun{GEN}{RgC_RgV_mul}{GEN x, GEN y} returns $x\times y$ (the square matrix
$(x_iy_j)$).

The following two functions are not well defined in general and only provided
for convenience in specific cases:

\fun{GEN}{RgC_RgM_mul}{GEN x, GEN y} returns $x\times y[1,]$ if $y$ is
a row matrix $1\times n$, error otherwise.

\fun{GEN}{RgM_RgV_mul}{GEN x, GEN y} returns $x\times y[,1]$ if $y$ is
a column matrix $n\times 1$, error otherwise.

\fun{GEN}{RgM_powers}{GEN x, long n} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC} of \kbd{RgM}s.

\smallskip

\fun{GEN}{RgV_sum}{GEN v} sum of the entries of $v$

\fun{GEN}{RgV_prod}{GEN v} product of the entries of $v$, using
a divide and conquer strategy

\fun{GEN}{RgV_sumpart}{GEN v, long n} returns the sum $v[1] + \dots + v[n]$
(assumes that \kbd{lg}$(v) > n$).

\fun{GEN}{RgV_sumpart2}{GEN v, long m, long n} returns the sum $v[m] + \dots +
v[n]$ (assumes that \kbd{lg}$(v) > n$ and $m > 0$). Returns \kbd{gen\_0}
when $m > n$.

\fun{GEN}{RgM_sumcol}{GEN v} returns a \typ{COL}, sum of the columns of the
\typ{MAT} $v$.

\fun{GEN}{RgV_dotproduct}{GEN x,GEN y} returns the scalar product of $x$ and $y$

\fun{GEN}{RgV_dotsquare}{GEN x} returns the scalar product of $x$ with itself.

\fun{GEN}{RgV_kill0}{GEN v} returns a shallow copy of $v$ where entries
matched by \kbd{gequal0} are replaced by \kbd{NULL}. The return value
is not a valid \kbd{GEN} and must be handled specially. The idea is
to pre-treat a vector of coefficients to speed up later linear combinations
or scalar products.

\fun{GEN}{gram_matrix}{GEN v} returns the \idx{Gram matrix} $(v_i\cdot v_j)$
attached to the entries of $v$ (matrix, or vector of vectors).

\fun{GEN}{RgV_polint}{GEN X, GEN Y, long v} $X$ and $Y$ being two vectors of
the same length, returns the polynomial $T$ in variable $v$ such that
$T(X[i]) = Y[i]$ for all $i$. The special case $X = \kbd{NULL}$
corresponds to $X = [1,2,\dots,n]$, where $n$ is the length of $Y$.

\subsubsec{Special shapes}

The following routines check whether matrices or vectors have a special
shape, using \kbd{gequal1} and \kbd{gequal0} to test components. (This makes
a difference when components are inexact.)

\fun{int}{RgV_isscalar}{GEN x} return 1 if all the entries of $x$ are $0$
(as per \kbd{gequal0}), except possibly the first one. The name comes from
vectors expressing polynomials on the standard basis $1,T,\dots, T^{n-1}$, or
on \kbd{nf.zk} (whose first element is $1$).

\fun{int}{QV_isscalar}{GEN x} as \kbd{RgV\_isscalar}, assuming $x$ is a
\kbd{QV} (\typ{INT} and \typ{FRAC} entries only).

\fun{int}{ZV_isscalar}{GEN x} as \kbd{RgV\_isscalar}, assuming $x$ is a
\kbd{ZV} (\typ{INT} entries only).

\fun{int}{RgM_isscalar}{GEN x, GEN s} return 1 if $x$ is the scalar matrix
equal to $s$ times the identity, and 0 otherwise. If $s$ is \kbd{NULL}, test
whether $x$ is an arbitrary scalar matrix.

\fun{int}{RgM_isidentity}{GEN x} return 1 if the \typ{MAT} $x$ is the
identity matrix, and 0 otherwise.

\fun{int}{RgM_isdiagonal}{GEN x} return 1 if the \typ{MAT} $x$ is a
diagonal matrix, and 0 otherwise.

\fun{long}{RgC_is_ei}{GEN x} return $i$ if the \typ{COL} $x$ has $0$ entries,
but for a $1$ at position $i$.

\fun{int}{RgM_is_ZM}{GEN x} return 1 if the \typ{MAT}~$x$ has only
\typ{INT} coefficients, and 0 otherwise.

\fun{long}{RgV_isin}{GEN v, GEN x} return the first index $i$ such that
$v[i] = x$ if it exists, and $0$ otherwise. Naive search in linear time, does
not assume that \kbd{v} is sorted.

\fun{GEN}{RgM_diagonal}{GEN m} returns the diagonal of $m$ as a \typ{VEC}.

\fun{GEN}{RgM_diagonal_shallow}{GEN m} shallow version of \kbd{RgM\_diagonal}

\subsubsec{Conversion to floating point entries}

\fun{GEN}{RgC_gtofp}{GEN x, GEN prec} returns the \typ{COL} obtained by
applying \kbd{gtofp(gel(x,i), prec)} to all coefficients of $x$.

\fun{GEN}{RgC_gtomp}{GEN x, long prec} returns the \typ{COL} obtained by
applying \kbd{gtomp(gel(x,i), prec)} to all coefficients of $x$.

\fun{GEN}{RgC_fpnorml2}{GEN x, long prec} returns (a stack-clean variant of)
\bprog
  gnorml2( RgC_gtofp(x, prec) )
@eprog

\fun{GEN}{RgM_gtofp}{GEN x, GEN prec} returns the \typ{MAT} obtained by
applying \kbd{gtofp(gel(x,i), prec)} to all coefficients of $x$.

\fun{GEN}{RgM_gtomp}{GEN x, long prec} returns the \typ{MAT} obtained by
applying \kbd{gtomp(gel(x,i), prec)} to all coefficients of $x$.

\fun{GEN}{RgM_fpnorml2}{GEN x, long prec} returns (a stack-clean variant of)
\bprog
  gnorml2( RgM_gtofp(x, prec) )
@eprog

\subsubsec{Linear algebra, linear systems}

\fun{GEN}{RgM_inv}{GEN a} returns a left inverse of $a$ (which needs not be
square), or \kbd{NULL} if this turns out to be impossible. The latter
happens when the matrix does not have maximal rank (or when rounding errors
make it appear so).

\fun{GEN}{RgM_inv_upper}{GEN a} as \kbd{RgM\_inv}, assuming that $a$ is a
non-empty invertible upper triangular matrix, hence a little faster.

\fun{GEN}{RgM_RgC_invimage}{GEN A, GEN B} returns a \typ{COL} $X$ such that
$A X = B$ if one such exists, and \kbd{NULL} otherwise.

\fun{GEN}{RgM_invimage}{GEN A, GEN B} returns a \typ{MAT} $X$ such that
$A X = B$ if one such exists, and \kbd{NULL} otherwise.

\fun{GEN}{RgM_Hadamard}{GEN a} returns a upper bound for the absolute
value of $\text{det}(a)$. The bound is a \typ{INT}.

\fun{GEN}{RgM_solve}{GEN a, GEN b} returns $a^{-1}b$ where $a$ is a square
\typ{MAT} and $b$ is a \typ{COL} or \typ{MAT}. Returns \kbd{NULL} if $a^{-1}$
cannot be computed, see \tet{RgM_inv}.

If $b = \kbd{NULL}$, the matrix $a$ need no longer be square, and we strive
to return a left inverse for $a$ (\kbd{NULL} if it does not exist).

\fun{GEN}{RgM_solve_realimag}{GEN M, GEN b} $M$ being a \typ{MAT}
with $r_1+r_2$ rows and $r_1+2r_2$ columns, $y$ a \typ{COL} or \typ{MAT}
such that the equation $Mx = y$ makes sense, returns $x$ under the following
simplifying assumptions: the first $r_1$ rows of $M$ and $y$ are real
(the $r_2$ others are complex), and $x$ is real. This is stabler and faster
than calling $\kbd{RgM\_solve}(M, b)$ over $\C$. In most applications,
$M$ approximates the complex embeddings of an integer basis in a number
field, and $x$ is actually rational.

\fun{GEN}{split_realimag}{GEN x, long r1, long r2} $x$ is a \typ{COL} or
\typ{MAT} with $r_1 + r_2$ rows, whose first $r_1$ rows have real entries
(the $r_2$ others are complex). Return an object of the same type as
$x$ and $r_1 + 2r_2$ rows, such that the first $r_1 + r_2$ rows contain
the real part of $x$, and the $r_2$ following ones contain the imaginary part
of the last $r_2$ rows of $x$. Called by \tet{RgM_solve_realimag}.

\fun{GEN}{RgM_det_triangular}{GEN x} returns the product of the diagonal
entries of $x$ (its determinant if it is indeed triangular).

\fun{GEN}{Frobeniusform}{GEN V, long n} given the vector $V$ of elementary
divisors for $M - x\text{Id}$, where $M$ is an $n\times n$ square matrix.
Returns the Frobenius form of $M$.

\fun{int}{RgM_QR_init}{GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec}
QR-decomposition of a square invertible \typ{MAT} $x$ with real coefficients.
Sets \kbd{*pB} to the vector of squared lengths of the $x[i]$, \kbd{*pL} to
the Gram-Schmidt coefficients and \kbd{*pQ} to a vector of successive
Householder transforms. If $R$ denotes the transpose of $L$ and $Q$ is the
result of applying \kbd{*pQ} to the identity matrix, then $x = QR$ is the QR
decomposition of $x$. Returns $0$ is $x$ is not invertible or we hit a
precision problem, and $1$ otherwise.

\fun{int}{QR_init}{GEN x, GEN *pB, GEN *pQ, GEN *pL, long prec} as
\kbd{RgM\_QR\_init}, assuming further that $x$ has \typ{INT} or \typ{REAL}
coefficients.

\fun{GEN}{R_from_QR}{GEN x, long prec} assuming that $x$ is a square
invertible \typ{MAT} with \typ{INT} or \typ{REAL} coefficients, return
the upper triangular $R$ from the $QR$ docomposition of $x$. Not memory
clean. If the matrix is not known to have \typ{INT} or \typ{REAL}
coefficients, apply \tet{RgM_gtomp} first.

\fun{GEN}{gaussred_from_QR}{GEN x, long prec} assuming that $x$ is a square
invertible \typ{MAT} with \typ{INT} or \typ{REAL} coefficients, returns
\kbd{qfgaussred(x\til * x)}; this is essentially the upper triangular $R$
matrix from the $QR$ decomposition of $x$, renormalized to accomodate
\kbd{qfgaussred} conventions. Not memory clean.

\fun{GEN}{RgM_gram_schmidt}{GEN e, GEN *ptB} naive (unstable) Gram-Schmidt
orthogonalization of the basis $(e_i)$ given by the columns of \typ{MAT} $e$.
Return the $e_i^*$ (as columns of a \typ{MAT}) and set \kbd{*ptB} to the
vector of squared lengths $|e_i^*|^2$.

\fun{GEN}{RgM_Babai}{GEN M, GEN y} given an LLL-reduced \typ{MAT} $M$ and
a \typ{COL} $y$ of the same dimension, apply Babai's nearest plane algorithm
to return an \emph{integral} $x$ such that $y - Mx$ has small $L_2$ norm.
This yields an approximate solution to the closest vector problem.

\subsec{\kbd{ZG}}

Let $G$ be a multiplicative group with neutral element $1_G$ whose
multiplication is supported by \kbd{gmul} and where equality test is
performed using \tet{gidentical}, e.g. a matrix group. The following
routines implement basic computations in the group algebra $\Z[G]$. All of
them are shallow for efficiency reasons. A \kbd{ZG} is either

\item a \typ{INT} $n$, representing $n[1_G]$

\item or a ``factorization matrix'' with two columns $[g,e]$: the first one
contains group elements, sorted according to \tet{cmp_universal}, and the
second one contains integer ``exponents'', representing $\sum e_i [g_i]$.

Note that \tet{to_famat} and \tet{to_famat_shallow}$(g,e)$ allow to build
the \kbd{ZG} $e[g]$ from $e\in \Z$ and $g\in G$.

\fun{GEN}{ZG_normalize}{GEN x} given a \typ{INT} $x$ or a factorization
matrix \emph{without} assuming that the first column is properly sorted.
Return a valid (sorted) \kbd{ZG}. Shallow function.

\fun{GEN}{ZG_add}{GEN x, GEN y} return $x+y$; shallow function.

\fun{GEN}{ZG_neg}{GEN x} return $-x$; shallow function.

\fun{GEN}{ZG_sub}{GEN x, GEN y} return $x-y$; shallow function.

\fun{GEN}{ZG_mul}{GEN x, GEN y} return $xy$; shallow function.

\fun{GEN}{ZG_G_mul}{GEN x, GEN y} given a \kbd{ZG} $x$ and $y\in G$,
 return $xy$; shallow function.

\fun{GEN}{G_ZG_mul}{GEN x, GEN y} given a \kbd{ZG} $y$ and $x\in G$,
 return $xy$; shallow function.

\fun{GEN}{ZG_Z_mul}{GEN x, GEN n} given a \kbd{ZG} $x$ and $y\in \Z$,
 return $xy$; shallow function.

\fun{GEN}{ZGC_G_mul}{GEN v, GEN x} given $v$ a vector of \kbd{ZG} and $x\in
G$ return the vector (with the same type as $v$ with entries $v[i]\cdot x$.
Shallow function.

\fun{void}{ZGC_G_mul_inplace}{GEN v, GEN x} as \tet{ZGC_G_mul}, modifying
$v$ in place.

\fun{GEN}{ZGC_Z_mul}{GEN v, GEN n} given $v$ a vector of \kbd{ZG} and $n\in
Z$ return the vector (with the same type as $v$ with entries $n \cdot v[i]$.
Shallow function.

\fun{GEN}{G_ZGC_mul}{GEN x, GEN v} given $v$ a vector of \kbd{ZG} and $x\in
G$ return the vector of $x \cdot v[i]$. Shallow function.

\fun{GEN}{ZGCs_add}{GEN x, GEN y} add two sparse vectors of
\kbd{ZG} elements (see Blackbox linear algebra below).

\subsec{Blackbox linear algebra}

A sparse column \kbd{zCs} $v$ is a \typ{COL} with two components $C$ and $E$
which are \typ{VECSMALL} of the same length, representing $\sum_i
E[i]*e_{C[i]}$, where $(e_j)$ is the canonical basis. A sparse matrix
(\kbd{zMs}) is a \typ{VEC} of \kbd{zCs}.

\kbd{FpCs} and \kbd{FpMs} are identical to the above, but $E[i]$ is now
interpreted as a \emph{signed} C long integer representing an element of
$\F_p$. This is important since $p$ can be so large that $p+E[i]$ would not
fit in a C long.

\kbd{RgCs} and \kbd{RgMs} are similar, except that the type of the components
of $E$ is now unspecified. Functions handling those later objects
must not depend on the type of those components.

It is not possible to derive the space dimension (number of rows) from the
above data. Thus most functions take an argument \kbd{nbrow} which is the
number of rows of the corresponding column/matrix in dense representation.

\fun{GEN}{zCs_to_ZC}{GEN C, long nbrow} convert the sparse vector $C$
to a dense \kbd{ZC} of dimension \kbd{nbrow}.

\fun{GEN}{zMs_to_ZM}{GEN M, long nbrow} convert the sparse matrix $M$
to a dense \kbd{ZM} whose columns have dimension \kbd{nbrow}.

\fun{GEN}{FpMs_FpC_mul}{GEN M, GEN B, GEN p} multiply the sparse matrix $M$
(over $\F_p$) by the sparse vector $B$. The result is an \kbd{FpC}, i.e.~a
dense vector.

\fun{GEN}{zMs_ZC_mul}{GEN M, GEN B, GEN p} multiply the sparse matrix $M$
by the sparse vector $B$ (over $\Z$). The result is an \kbd{ZC}, i.e.~a
dense vector.

\fun{GEN}{FpV_FpMs_mul}{GEN B, GEN M, GEN p} multiply the sparse vector $B$
by the sparse matrix $M$ (over $\F_p$). The result is an \kbd{FpV}, i.e.~a
dense vector.

\fun{GEN}{ZV_zMs_mul}{GEN B, GEN M, GEN p} multiply the sparse vector $B$ (over
$\Z$) by the sparse matrix $M$. The result is an \kbd{ZV}, i.e.~a
dense vector.

\fun{void}{RgMs_structelim}{GEN M, long nbrow, GEN A, GEN *p_col, GEN *p_row}
$M$ being a RgMs with \kbd{nbrow} rows, $A$ being a list of row indices,
Perform structured elimination on $M$ by removing some rows and columns until
the number of effectively present rows is equal to the number of columns.
the result is stored in two \typ{VECSMALL}s, \kbd{*p\_col} and \kbd{*p\_row}:
\kbd{*p\_col} is a map from the new columns indices to the old one.
\kbd{*p\_row} is a map from the old rows indices to the new one ($0$ if removed).

\fun{GEN}{FpMs_leftkernel_elt}{GEN M, long nbrow, GEN p}
$M$ being a sparse matrix over $\F_p$, return a non-zero kbd{FpV} $X$ such
that $X\*M$ components are almost all $0$.

\fun{GEN}{FpMs_FpCs_solve}{GEN M, GEN B, long nbrow, GEN p}
solve the equation $M\*X = B$, where $M$ is a sparse matrix and $B$ is a sparse
vector, both over $\F_p$. Return either a solution as a \typ{COL} (dense
vector), the index of a column which is linearly dependent from the
others as a \typ{VECSMALL} with a single component, or \kbd{NULL}
(can happen if $B$ is not in the image of $M$).

\fun{GEN}{FpMs_FpCs_solve_safe}{GEN M, GEN B, long nbrow, GEN p}
as above, but in the event that $p$ is not a prime and an impossible division
occurs, return \kbd{NULL}.

\fun{GEN}{ZpMs_ZpCs_solve}{GEN M, GEN B, long nbrow, GEN p, long e}
solve the equation $MX = B$, where $M$ is a sparse matrix and $B$ is a sparse
vector, both over $\Z/p^e\Z$. Return either a solution as a \typ{COL} (dense
vector), or the index of a column which is linearly dependent from the
others as a \typ{VECSMALL} with a single component.

\fun{GEN}{gen_FpM_Wiedemann}{void *E, GEN (*f)(void*, GEN), GEN B, GEN p}
solve the equation $f(X) = B$ over $\F_p$, where $B$ is a \kbd{FpV}, and $f$
is a blackbox endomorphism, where $f(E, X)$ computes the value of $f$ at the
(dense) column vector $X$. Returns either a solution \typ{COL}, or a kernel
vector as a \typ{VEC}.

\fun{GEN}{gen_ZpM_Dixon}{void *E, GEN (*f)(void*, GEN), GEN B, GEN p, long e}
solve equation $f(X) = B$ over $\Z/p^e\Z$, where $B$ is a \kbd{ZV}, and $f$ is a
blackbox endomorphism, where $f(E, X)$ computes the value of $f$ at the
(dense) column vector $X$. Returns either a solution \typ{COL}, or a kernel
vector as a \typ{VEC}.

\subsec{Obsolete functions}

The functions in this section are kept for backward compatibility only
and will eventually disappear.

\fun{GEN}{image2}{GEN x} compute the image of $x$ using a very slow
algorithm. Use \tet{image} instead.

\section{Integral, rational and generic polynomial arithmetic}

\subsec{\kbd{ZX}}

\fun{void}{RgX_check_ZX}{GEN x, const char *s} Assuming \kbd{x} is a \typ{POL}
raise an error if it is not a \kbd{ZX} ($s$ should point to the name of the
caller).

\fun{GEN}{ZX_copy}{GEN x,GEN p} returns a copy of \kbd{x}.

\fun{long}{ZX_max_lg}{GEN x} returns the effective length of the longest
component in $x$.

\fun{GEN}{scalar_ZX}{GEN x, long v} returns the constant \kbd{ZX} in variable
$v$ equal to the \typ{INT} $x$.

\fun{GEN}{scalar_ZX_shallow}{GEN x, long v} returns the constant \kbd{ZX} in
variable $v$ equal to the \typ{INT} $x$. Shallow function not suitable for
\kbd{gerepile} and friends.

\fun{GEN}{ZX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.

\fun{int}{ZX_equal}{GEN x, GEN y} returns $1$ if the two \kbd{ZX} have
the same \kbd{degpol} and their coefficients are equal. Variable numbers are
not checked.

\fun{int}{ZX_equal1}{GEN x} returns $1$ if the \kbd{ZX} is equal to $1$
and $0$ otherwise.

\fun{GEN}{ZX_add}{GEN x,GEN y} adds \kbd{x} and \kbd{y}.

\fun{GEN}{ZX_sub}{GEN x,GEN y} subtracts \kbd{x} and \kbd{y}.

\fun{GEN}{ZX_neg}{GEN x,GEN p} returns $-\kbd{x}$.

\fun{GEN}{ZX_Z_add}{GEN x,GEN y} adds the integer \kbd{y} to the
\kbd{ZX}~\kbd{x}.

\fun{GEN}{ZX_Z_add_shallow}{GEN x,GEN y} shallow version of \tet{ZX_Z_add}.

\fun{GEN}{ZX_Z_sub}{GEN x,GEN y} subtracts the integer \kbd{y} to the
\kbd{ZX}~\kbd{x}.

\fun{GEN}{Z_ZX_sub}{GEN x,GEN y} subtracts the \kbd{ZX} \kbd{y} to the
integer \kbd{x}.

\fun{GEN}{ZX_Z_mul}{GEN x,GEN y} multiplies the \kbd{ZX} \kbd{x} by the
integer \kbd{y}.

\fun{GEN}{ZX_mulu}{GEN x, ulong y} multiplies \kbd{x} by the integer \kbd{y}.

\fun{GEN}{ZX_shifti}{GEN x, long n} shifts all coefficients of \kbd{x} by $n$
bits, which can be negative.

\fun{GEN}{ZX_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all divisions
are exact.

\fun{GEN}{ZX_remi2n}{GEN x, long n} reduces all coefficients of \kbd{x} to
$n$ bits, using \tet{remi2n}.

\fun{GEN}{ZX_mul}{GEN x,GEN y} multiplies \kbd{x} and \kbd{y}.

\fun{GEN}{ZX_sqr}{GEN x,GEN p} returns $\kbd{x}^2$.

\fun{GEN}{ZX_mulspec}{GEN a, GEN b, long na, long nb}. Internal routine:
\kbd{a} and \kbd{b} are arrays of coefficients representing polynomials
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$ and
$\sum_{i = 0}^{\kbd{nb-1}} \kbd{b}[i] X^i$. Returns their product (as a true
\kbd{GEN}).

\fun{GEN}{ZX_sqrspec}{GEN a, long na}. Internal routine:
\kbd{a} is an array of coefficients representing polynomial
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$. Return its square (as a true
\kbd{GEN}).

\fun{GEN}{ZX_rem}{GEN x, GEN y} returns the remainder of the Euclidean
division of $x$ mod $y$. Assume that $x$, $y$ are two \kbd{ZX} and that
$y$ is monic.

\fun{GEN}{ZX_mod_Xnm1}{GEN T, ulong n} return $T$ modulo $X^n - 1)$. Shallow
function.

\fun{GEN}{ZX_div_by_X_1}{GEN T, GEN *r} return the quotient of $T$ by $X-1$.
If $r$ is not \kbd{NULL} set it to $T(1)$.

\fun{GEN}{ZX_gcd}{GEN x,GEN y} returns a gcd of the \kbd{ZX} $x$ and $y$.
Not memory-clean, but suitable for \kbd{gerepileupto}.

\fun{GEN}{ZX_gcd_all}{GEN x, GEN y, GEN *pX}. returns a gcd $d$ of $x$ and
$y$. If \kbd{pX} is not \kbd{NULL}, set $\kbd{*pX}$ to a (non-zero) integer
multiple of $x/d$. If $x$ and $y$ are both monic, then $d$ is monic and
\kbd{*pX} is exactly $x/d$. Not memory clean if the gcd is $1$
(in that case \kbd{*pX} is set to $x$).

\fun{GEN}{ZX_content}{GEN x} returns the content of the \kbd{ZX} $x$.

\fun{long}{ZX_val}{GEN P} as \kbd{RgX\_val}, but assumes \kbd{P} has \typ{INT}
coefficients.

\fun{long}{ZX_valrem}{GEN P, GEN *z} as \kbd{RgX\_valrem}, but assumes
\kbd{P} has \typ{INT} coefficients.

\fun{GEN}{ZX_to_monic}{GEN q GEN *L} given $q$ a non-zero \kbd{ZX},
returns a monic integral polynomial $Q$ such that $Q(x) = C q(x/L)$, for some
rational $C$ and positive integer $L > 0$. If $\kbd{L}$ is not \kbd{NULL},
set \kbd{*L} to $L$; if $L = 1$, \kbd{*L} is set to \kbd{gen\_1}. Not
suitable for gerepileupto.

\fun{GEN}{ZX_primitive_to_monic}{GEN q, GEN *L} as \tet{ZX_to_monic} except
$q$ is assumed to have trivial content, which avoids recomputing it.
The result is suboptimal if $q$ is not primitive ($L$ larger than
necessary), but remains correct.

\fun{GEN}{ZX_Z_normalize}{GEN q, GEN *L} a restricted version of
\kbd{ZX\_primitive\_to\_monic}, where $q$ is a \emph{monic} \kbd{ZX}
of degree $> 0$. Finds the largest integer $L > 0$ such that
$Q(X) := L^{-\deg q} q(Lx)$ is integral and return $Q$; this is not
well-defined if $q$ is a monomial, in that case, set $L=1$ and $Q = q$. If
\kbd{L} is not \kbd{NULL}, set \kbd{*L} to $L$.

\fun{GEN}{ZX_Q_normalize}{GEN q, GEN *L} a variant of \tet{ZX_Z_normalize}
where $L > 0$ is allowed to be rational, the monic $Q\in \Z[X]$ has possibly
smaller coefficients.

\fun{long}{ZX_deflate_order}{GEN P} given a non-constant \kbd{ZX}
$P$, returns the largest exponent $d$ such that $P$ is of the form $P(x^d)$.

\fun{long}{ZX_deflate_max}{GEN P, long *d}. Given a non-constant
polynomial with integer coefficients $P$, sets \kbd{d} to
\kbd{ZX\_deflate\_order(P)} and returns \kbd{RgX\_deflate(P,d)}. Shallow
function.

\fun{GEN}{ZX_rescale}{GEN P, GEN h} returns $h^{\deg(P)} P(x/h)$.
\kbd{P} is a \kbd{ZX} and \kbd{h} is a non-zero integer. Neither memory-clean
nor suitable for \kbd{gerepileupto}.

\fun{GEN}{ZX_rescale2n}{GEN P, long n} returns $2^{n\deg(P)} P(x>>n)$ where
\kbd{P} is a \kbd{ZX}. Neither memory-clean nor suitable for
\kbd{gerepileupto}.

\fun{GEN}{ZX_rescale_lt}{GEN P} returns the monic integral polynomial
$h^{\deg(P)-1} P(x/h)$, where \kbd{P} is a non-zero \kbd{ZX} and \kbd{h} is
its leading coefficient. Neither memory-clean nor suitable for
\kbd{gerepileupto}.

\fun{GEN}{ZX_translate}{GEN P, GEN c} assume $P$ is a \kbd{ZX} and $c$ an
integer. Returns $P(X + c)$ (optimized for $c = \pm 1$).

\fun{GEN}{ZX_unscale}{GEN P, GEN h} given a \kbd{ZX} $P$ and a \typ{INT} $h$,
returns $P(hx)$. Not memory clean.

\fun{GEN}{ZX_unscale2n}{GEN P, long n} given a \kbd{ZX} $P$, returns
$P(x<<n)$. Not memory clean.

\fun{GEN}{ZX_unscale_div}{GEN P, GEN h} given a \kbd{ZX} $P$ and a \typ{INT} $h$
such that $h \mid P(0)$, returns $P(hx)/h$. Not memory clean.

\fun{GEN}{ZX_eval1}{GEN P} returns the integer $P(1)$.

\fun{GEN}{ZX_graeffe}{GEN p} returns the Graeffe transform of $p$, i.e. the
\kbd{ZX} $q$ such that $p(x)p(-x) = q(x^2)$.

\fun{GEN}{ZX_deriv}{GEN x} returns the derivative of \kbd{x}.

\fun{GEN}{ZX_resultant}{GEN A, GEN B} returns the resultant of the
\kbd{ZX}~\kbd{A} and \kbd{B}.

\fun{GEN}{ZX_disc}{GEN T} returns the discriminant of the \kbd{ZX}
\kbd{T}.

\fun{GEN}{ZX_factor}{GEN T} returns the factorization of the primitive part
of \kbd{T} over $\Q[X]$ (the content is lost).

\fun{int}{ZX_is_squarefree}{GEN T} returns $1$ if the
\kbd{ZX}~\kbd{T} is squarefree, $0$ otherwise.

\fun{long}{ZX_is_irred}{GEN T} returns 1 it \kbd{T} is irreducible, and
0 otherwise.

\fun{GEN}{ZX_squff}{GEN T, GEN *E} write $T$ as a product $\prod T_i^{e_i}$
with the $e_1 < e_2 < \cdots$ all distinct and the $T_i$ pairwise coprime.
Return the vector of the $T_i$, and set \kbd{*E} to the vector of the $e_i$,
as a \typ{VECSMALL}.

\fun{GEN}{ZX_Uspensky}{GEN P, GEN ab, long flag, long bitprec} let \kbd{P} be a
primitive \kbd{ZX} polynomial whose real roots are simple and \kbd{bitprec} is
the relative precision in bits.

\item If \kbd{flag} is 0 returns a list of intervals that isolate the real
roots of \kbd{P}. The return value is a column of elements which are either
vectors \kbd{[a,b]} meaning that there is a single root in the open interval
\kbd{(a,b)} or elements \kbd{x0} such that \kbd{x0} is a root of \kbd{P}.
There is no guarantee that all rational roots are found (at most those with
denominator a power of $2$ can be found and even those are not guaranteed).
Beware that the limits of the open intervals can be roots of the polynomial.

\item If \kbd{flag} is 1 returns an approximation of the real roots of \kbd{P}.

\item If \kbd{flag} is 2 returns the number of roots.

The argument \kbd{ab} specify the interval in which the roots
are searched. The default interval is $(-\infty,\infty)$. If \kbd{ab} is an
integer or fraction $a$ then the interval is $[a,\infty)$. If \kbd{ab} is
a vector $[a,b]$, where \typ{INT}, \typ{FRAC} or \typ{INFINITY} are allowed
for $a$ and $b$, the interval is $[a,b]$.

\fun{long}{ZX_sturm}{GEN P} number of real roots of the non-constant
squarefree \kbd{ZX} $P$. For efficiency, it is advised to make $P$ primitive
first.

\fun{long}{ZX_sturmpart}{GEN P, GEN ab} number of real roots of the
non-constant squarefree \kbd{ZX} $P$ in the interval specified by \kbd{ab}:
either \kbd{NULL} (no restriction) or a \typ{VEC} $[a,b]$ with two real
components (of type \typ{INT}, \typ{FRAC} or \typ{INFINITY}). For efficiency,
it is advised to make $P$ primitive first.

\subsec{\kbd{ZXQ}}

\fun{GEN}{ZXQ_mul}{GEN x,GEN y,GEN T} returns $x*y$ mod $T$, assuming
that all inputs are \kbd{ZX}s and that $T$ is monic.

\fun{GEN}{ZXQ_sqr}{GEN x,GEN T} returns $x^2$ mod $T$, assuming
that all inputs are \kbd{ZX}s and that $T$ is monic.

\fun{GEN}{ZXQ_charpoly}{GEN A, GEN T, long v}: let \kbd{T} and \kbd{A} be
\kbd{ZX}s, returns the characteristic polynomial of \kbd{Mod(A, T)}.
More generally, \kbd{A} is allowed to be a \kbd{QX}, hence possibly has
rational coefficients, \emph{assuming} the result is a \kbd{ZX}, i.e.~the
algebraic number \kbd{Mod(A,T)} is integral over \kbd{Z}.

\fun{GEN}{ZX_ZXY_resultant}{GEN A, GEN B}
under the assumption that \kbd{A} in $\Z[Y]$, \kbd{B} in $\Q[Y][X]$, and
$R = \text{Res}_Y(A, B) \in \Z[X]$, returns the resultant $R$.

\fun{GEN}{ZX_compositum_disjoint}{GEN A, GEN B} given two irreducible \kbd{ZX}
defining linearly disjoint extensions, returns a \kbd{ZX} defining their
compositum.

\fun{GEN}{ZX_ZXY_rnfequation}{GEN A, GEN B, long *lambda},
assume \kbd{A} in $\Z[Y]$, \kbd{B} in $\Q[Y][X]$, and $R =
\text{Res}_Y(A, B) \in \Z[X]$. If \kbd{lambda = NULL}, returns $R$
as in \kbd{ZY\_ZXY\_resultant}. Otherwise, \kbd{lambda} must point to
some integer, e.g. $0$ which is used as a seed. The function then finds a
small $\lambda \in \Z$ (starting from \kbd{*lambda}) such that
$R_\lambda(X) := \text{Res}_Y(A, B(X + \lambda Y))$ is squarefree, resets
\kbd{*lambda} to the chosen value and returns $R_{\lambda}$.

\subsec{\kbd{ZXV}}

\fun{GEN}{ZXV_equal}{GEN x,GEN y} returns $1$ if the two vectors of \kbd{ZX}
are equal, as per \tet{ZX_equal} (variables are not checked to be equal) and
$0$ otherwise.

\fun{GEN}{ZXV_Z_mul}{GEN x,GEN y} multiplies the vector of \kbd{ZX} \kbd{x}
by the integer \kbd{y}.

\fun{GEN}{ZXV_remi2n}{GEN x, long n} applies \kbd{ZX\_remi2n} to all
coefficients of \kbd{x}.

\fun{GEN}{ZXV_dotproduct}{GEN x,GEN y} as \kbd{RgV\_dotproduct} assuming $x$
and $y$ have \kbd{ZX} entries.

\subsec{\kbd{ZXT}}

\fun{GEN}{ZXT_remi2n}{GEN x, long n} applies \kbd{ZX\_remi2n} to all
leaves of the tree \kbd{x}.

\subsec{\kbd{ZXX}}

\fun{void}{RgX_check_ZXX}{GEN x, const char *s} Assuming \kbd{x} is a \typ{POL}
raise an error if it one of its coefficients is not an integer or a \kbd{ZX}
($s$ should point to the name of the caller).

\fun{GEN}{ZXX_renormalize}{GEN x, long l}, as \kbd{normalizepol}, where
$\kbd{l} = \kbd{lg(x)}$, in place.

\fun{long}{ZXX_max_lg}{GEN x} returns the effective length of the longest
component in $x$; assume all coefficients are \typ{INT} or \kbd{ZX}s.

\fun{GEN}{ZXX_Z_mul}{GEN x, GEN y} returns $x\*y$.

\fun{GEN}{ZXX_Z_add_shallow}{GEN x, GEN y} returns $x+y$. Shallow function.

\fun{GEN}{ZXX_Z_divexact}{GEN x, GEN y} returns $x/y$ assuming all integer
divisions are exact.

\fun{GEN}{ZXX_to_Kronecker}{GEN P, long n} Assuming $P(X,Y)$ is a polynomial
of degree in $X$ strictly less than $n$, returns $P(X,X^{2*n-1})$, the
Kronecker form of $P$. Shallow function.

\fun{GEN}{ZXX_to_Kronecker_spec}{GEN Q, long lQ, long n} return
\tet{ZXX_to_Kronecker}$(P, n)$, where $P$ is the polynomial
$\sum_{i = 0}^{\kbd{lQ} - 1} Q[i] x^i$. To be used when splitting
the coefficients of genuine polynomials into blocks. Shallow function.

\fun{GEN}{Kronecker_to_ZXX}{GEN z, long n, long v} recover $P(X,Y)$
from its Kronecker form $P(X,X^{2\*n-1})$, $v$ is the variable number
corresponding to $Y$. Shallow function.

\fun{GEN}{ZXX_mul_Kronecker}{GEN P, GEN Q, long n} return \tet{ZX_mul}
applied to the Kronecker forms $P(X,X^{2\*n-1})$ and $Q(X,X^{2\*n-1})$
of $P$ and $Q$. Not memory clean.

\fun{GEN}{ZXX_sqr_Kronecker}{GEN P, long n} return \tet{ZX_sqr}
applied to the Kronecker forms $P(X,X^{2\*n-1})$
of $P$. Not memory clean.

\subsec{\kbd{QX}}

\fun{void}{RgX_check_QX}{GEN x, const char *s} Assuming \kbd{x} is a \typ{POL}
raise an error if it is not a \kbd{QX} ($s$ should point to the name of the
caller).

\fun{GEN}{QX_gcd}{GEN x,GEN y} returns a gcd of the \kbd{QX} $x$ and $y$.

\fun{GEN}{QX_disc}{GEN T} returns the discriminant of the \kbd{QX}
\kbd{T}.

\fun{GEN}{QX_factor}{GEN T} as \kbd{ZX\_factor}.

\fun{GEN}{QX_resultant}{GEN A, GEN B} returns the resultant of the
\kbd{QX}~\kbd{A} and \kbd{B}.

\fun{GEN}{QX_complex_roots}{GEN p, long l} returns the complex roots of the
\kbd{QX} $p$ at accuracy $l$, where real roots are returned as \typ{REAL}s.
More efficient when $p$ is irreducible and primitive. Special case
of \tet{cleanroots}.

\subsec{\kbd{QXQ}}

\fun{GEN}{QXQ_norm}{GEN A, GEN B} $A$ being a \kbd{QX} and $B$ being a
\kbd{ZX}, returns the norm of the algebraic number $A \mod B$, using a
modular algorithm. To ensure that $B$ is a \kbd{ZX}, one may replace it by
\kbd{Q\_primpart(B)}, which of course does not change the norm.

If $A$ is not a \kbd{ZX} --- it has a denominator ---, but the result is
nevertheless known to be an integer, it is much more efficient to call
\tet{QXQ_intnorm} instead.

\fun{GEN}{QXQ_intnorm}{GEN A, GEN B} $A$ being a \kbd{QX} and $B$
being a \kbd{ZX}, returns the norm of the algebraic number $A \mod B$,
\emph{assuming} that the result is an integer, which is for instance the case
is $A\mod B$ is an algebraic integer, in particular if $A$ is a \kbd{ZX}. To
ensure that $B$ is a \kbd{ZX}, one may replace it by \kbd{Q\_primpart(B)}
(which of course does not change the norm).

If the result is not known to be an integer, you must use \tet{QXQ_norm}
instead, which is slower.

\fun{GEN}{QXQ_inv}{GEN A, GEN B} returns the inverse of $A$ modulo $B$
where $A$ is a \kbd{QX} and $B$ is a \kbd{ZX}. Should you need this for
a \kbd{QX} $B$, just use
\bprog
  QXQ_inv(A, Q_primpart(B));
@eprog\noindent But in all cases where modular arithmetic modulo $B$ is
desired, it is much more efficient to replace $B$ by \kbd{Q\_primpart$(B)$}
once and for all.

\fun{GEN}{QXQ_charpoly}{GEN A, GEN T, long v} where \kbd{A} is a \kbd{QX} and
\kbd{T} is a \kbd{ZX}, returns the characteristic polynomial of \kbd{Mod(A, T)}.
If the result is known to be a \kbd{ZX}, then calling \kbd{ZXQ\_charpoly} will
be faster.

\fun{GEN}{QXQ_powers}{GEN x, long n, GEN T} returns $[\kbd{x}^0, \dots,
\kbd{x}^\kbd{n}]$ as \kbd{RgXQ\_powers} would, but in a more efficient way when
$x$ has a huge integer denominator (we start by removing that denominator).
Meant to be used to precompute powers of algebraic integers in $\Q[t]/(T)$.
The current implementation does not require $x$ to be a \kbd{QX}: any
polynomial to which \kbd{Q\_remove\_denom} can be applied is fine.

\fun{GEN}{QXQ_reverse}{GEN f, GEN T} as \kbd{RgXQ\_reverse}, assuming $f$
is a \kbd{QX}.

\fun{GEN}{QX_ZXQV_eval}{GEN f, GEN nV, GEN dV} as \kbd{RgX\_RgXQV\_eval},
except that $f$ is assumed to be a \kbd{QX}, $V$ is given implicitly
by a numerator \kbd{nV} (\kbd{ZV}) and denominator \kbd{dV} (a positive
\typ{INT} or \kbd{NULL} for trivial denominator). Not memory clean, but
suitable for \kbd{gerepileupto}.

\fun{GEN}{QXV_QXQ_eval}{GEN v, GEN a, GEN T} $v$ is a vector of \kbd{QX}s
(possibly scalars, i.e.~rational numbers, for convenience), $a$ and $T$ both
\kbd{QX}. Return the vector of evaluations at $a$ modulo $T$.
Not memory clean, nor suitable for \kbd{gerepileupto}.

\fun{GEN}{QXX_QXQ_eval}{GEN P, GEN a, GEN T} $P(X,Y)$ is a \typ{POL} with
\kbd{QX} coefficients (possibly scalars, i.e.~rational numbers, for
convenience) , $a$ and $T$ both \kbd{QX}. Return the \kbd{QX} $P(X, a \mod
T)$. Not memory clean, nor suitable for \kbd{gerepileupto}.

\fun{GEN}{nfgcd}{GEN P, GEN Q, GEN T, GEN den} given $P$ and $Q$ in
$\Z[X,Y]$, $T$ monic irreducible in $\Z[Y]$, returns the primitive $d$ in
$\Z[X,Y]$ which is a gcd of $P$, $Q$ in $K[X]$, where $K$ is the number field
$\Q[Y]/(T)$. If not \kbd{NULL}, \kbd{den} is a multiple of the integral
denominator of the (monic) gcd of $P,Q$ in $K[X]$.

\fun{GEN}{nfgcd_all}{GEN P, GEN Q, GEN T, GEN den, GEN *Pnew} as \kbd{nfgcd}.
If \kbd{Pnew} is not \kbd{NULL}, set \kbd{*Pnew} to a non-zero integer
multiple of $P/d$. If $P$ and $Q$ are both monic, then $d$ is monic and
\kbd{*Pnew} is exactly $P/d$. Not memory clean if the gcd is $1$
(in that case \kbd{*Pnew} is set to $P$).

\subsec{\kbd{zx}}

\fun{GEN}{zero_zx}{long sv} returns a zero \kbd{zx} in variable $v$.

\fun{GEN}{polx_zx}{long sv} returns the variable $v$ as degree~1~\kbd{Flx}.

\fun{GEN}{zx_renormalize}{GEN x, long l}, as \kbd{Flx\_renormalize}, where
$\kbd{l} = \kbd{lg(x)}$, in place.

\fun{GEN}{zx_shift}{GEN T, long n} returns \kbd{T}
multiplied by $\kbd{x}^n$, assuming $n\geq 0$.

\subsec{\kbd{RgX}}

\subsubsec{Coefficient ring}

\fun{long}{RgX_type}{GEN x, GEN *ptp, GEN *ptpol, long *ptprec} returns
the ``natural'' base ring over which the polynomial $x$ is defined. Contrary
to what its name suggests, this function also works for scalar types,
\typ{SER} and \typ{MAT} $x$.

Raise an error if it detects consistency problems in modular objects:
incompatible rings (e.g. $\F_p$ and $\F_q$ for primes $p\neq q$,
$\F_p[X]/(T)$ and $\F_p[X]/(U)$ for $T\neq U$). Minor discrepancies are
supported if they make general sense (e.g. $\F_p$ and $\F_{p^k}$, but not
$\F_p$ and $\Q_p$); \typ{FFELT} and \typ{POLMOD} of \typ{INTMOD}s are
considered inconsistent, even if they define the same field: if you need to
use simultaneously these different finite field implementations, multiply the
polynomial by a \typ{FFELT} equal to $1$ first.

\item 0: none of the others (presumably multivariate, possibly inconsistent).

\item \typ{INT}: defined over $\Q$ (not necessarily $\Z$).

\item \typ{INTMOD}: defined over $\Z/p\Z$, where \kbd{*ptp} is set to $p$.
It is not checked whether $p$ is prime.

\item \typ{COMPLEX}: defined over $\C$ (at least one \typ{COMPLEX} with at
least one inexact floating point \typ{REAL} component). Set \kbd{*ptprec}
to the minimal accuracy (as per \kbd{precision}) of inexact components.

\item \typ{REAL}: defined over $\R$ (at least one inexact floating point
\typ{REAL} component). Set \kbd{*ptprec} to the minimal accuracy (as per
\kbd{precision}) of inexact components.

\item \typ{PADIC}: defined over $\Q_p$, where \kbd{*ptp} is set to $p$ and
\kbd{*ptprec} to the $p$-adic accuracy.

\item \typ{FFELT}: defined over a finite field $\F_{p^k}$, where \kbd{*ptp}
is set to the field characteristic $p$ and \kbd{*ptpol} is set to a
\typ{FFELT} belonging to the field.

\item other values are composite corresponding to quotients $R[X]/(T)$, with
one primary type \kbd{t1}, describing the form of the quotient,
and a secondary type \kbd{t2}, describing $R$. If \kbd{t} is the
\kbd{RgX\_type}, \kbd{t1} and \kbd{t2} are recovered using

\fun{void}{RgX_type_decode}{long t, long *t1, long *t2}

\kbd{t1} is one of

\typ{POLMOD}: at least one \typ{POLMOD} component,
set \kbd{*ppol} to the modulus,

\typ{QUAD}: no \typ{POLMOD}, at least one \typ{QUAD} component,
set \kbd{*ppol} to the modulus (\kbd{$-$.pol}) of the \typ{QUAD},

\typ{COMPLEX}: no \typ{POLMOD} or \typ{QUAD}, at least one \typ{COMPLEX}
component, set \kbd{*ppol} to $y^2 + 1$.

and the underlying base ring $R$ is given by \kbd{t2}, which
is one of \typ{INT}, \typ{INTMOD} (set \kbd{*ptp}) or \typ{PADIC}
(set \kbd{*ptp} and \kbd{*ptprec}), with the same meaning
as above.

\fun{int}{RgX_type_is_composite}{long t} $t$ as returned by \kbd{RgX\_type},
return 1 if $t$ is a composite type, and 0 otherwise.

\fun{GEN}{RgX_get_0}{GEN x} returns $0$ in the base ring over which $x$
is defined, to the proper accuracy (e.g. \kbd{0}, \kbd{Mod(0,3)},
\kbd{O(5\pow 10)}).

\fun{GEN}{RgX_get_1}{GEN x} returns $1$ in the base ring over which $x$
is defined, to the proper accuracy (e.g. \kbd{0}, \kbd{Mod(0,3)},

\subsubsec{Tests}

\fun{long}{RgX_degree}{GEN x, long v} $x$ being a \typ{POL} and $v \geq 0$,
returns the degree in $v$ of $x$. Error if $x$ is not a polynomial in $v$.

\fun{int}{RgX_isscalar}{GEN x} return 1 if $x$ all the coefficients of
$x$ of degree $> 0$ are $0$ (as per \kbd{gequal0}).

\fun{int}{RgX_is_rational}{GEN P} return 1 if the \kbd{RgX}~$P$ has only
rational coefficients (\typ{INT} and \typ{FRAC}), and 0 otherwise.

\fun{int}{RgX_is_QX}{GEN P} return 1 if the \kbd{RgX}~$P$ has only
\typ{INT} and \typ{FRAC} coefficients, and 0 otherwise.

\fun{int}{RgX_is_ZX}{GEN P} return 1 if the \kbd{RgX}~$P$ has only
\typ{INT} coefficients, and 0 otherwise.

\fun{int}{RgX_is_monomial}{GEN x} returns 1 (true) if \kbd{x} is a non-zero
monomial in its main variable, 0~otherwise.

\fun{long}{RgX_equal}{GEN x, GEN y} returns $1$ if the \typ{POL}s $x$ and $y$
have the same \kbd{degpol} and their coefficients are equal (as per
\tet{gequal}). Variable numbers are not checked. Note that this is more
stringent than \kbd{gequal(x,y)}, which only checks whether $x - y$ satisfies
\kbd{gequal0}; in particular, they may have different apparent degrees provided
the extra leading terms are $0$.

\fun{long}{RgX_equal_var}{GEN x, GEN y} returns $1$ if $x$ and $y$
have the same variable number and \kbd{RgX\_equal(x,y)} is $1$.

\subsubsec{Coefficients, blocks}

\fun{GEN}{RgX_coeff}{GEN P, long n} return the coefficient of $x^n$ in $P$,
defined as \kbd{gen\_0} if $n < 0$ or $n > \kbd{degpol}(P)$. Shallow
function.

\fun{int}{RgX_blocks}{GEN P, long n, long m} writes
$P(X)=a_0(X)+X^n*a_1(X)*X^n+\ldots+X^{n*(m-1)}\*a_{m-1}(X)$,
where the $a_i$ are polynomial of degree at most $n-1$
(except possibly for the last one) and returns
$[a_0(X),a_1(X),\ldots,a_{m-1}(X)]$.  Shallow function.

\fun{void}{RgX_even_odd}{GEN p, GEN *pe, GEN *po} write $p(X) = E(X^2) +
X O(X^2)$ and set \kbd{*pe = E}, \kbd{*po = O}.  Shallow function.

\fun{GEN}{RgX_splitting}{GEN P, long k} write
$P(X)=a_0(X^k)+X\*a_1(X^k)+\ldots+X^{k-1}\*a_{k-1}(X^k)$ and return
$[a_0(X),a_1(X),\ldots,a_{k-1}(X)]$.  Shallow function.

\fun{GEN}{RgX_copy}{GEN x} returns (a deep copy of) $\kbd{x}$.

\fun{GEN}{RgX_renormalize}{GEN x} remove leading terms in \kbd{x} which are
equal to (necessarily inexact) zeros.

\fun{GEN}{RgX_renormalize_lg}{GEN x, long lx} as \kbd{setlg(x, lx)}
followed by \kbd{RgX\_renormalize(x)}. Assumes that $\kbd{lx} \leq
\kbd{lg(x)}$.

\fun{GEN}{RgX_recip}{GEN P} returns the reverse of the polynomial
$P$, i.e. $X^{\deg P} P(1/X)$.

\fun{GEN}{RgX_recip_shallow}{GEN P} shallow function of \tet{RgX_recip}.

\fun{GEN}{RgX_deflate}{GEN P, long d} assuming $P$ is a polynomial of the
form $Q(X^d)$, return $Q$. Shallow function, not suitable for
\kbd{gerepileupto}.

\fun{long}{RgX_deflate_order}{GEN P} given a non-constant polynomial
$P$, returns the largest exponent $d$ such that $P$ is of the form $P(x^d)$
(use \kbd{gequal0} to check whether coefficients are 0).

\fun{long}{RgX_deflate_max}{GEN P, long *d} given a non-constant polynomial
$P$, sets \kbd{d} to \kbd{RgX\_deflate\_order(P)} and
returns \kbd{RgX\_deflate(P,d)}. Shallow function.

\fun{GEN}{RgX_inflate}{GEN P, long d} return $P(X^d)$. Shallow function, not
suitable for \kbd{gerepileupto}.

\subsubsec{Shifts, valuations}

\fun{GEN}{RgX_shift}{GEN x, long n} returns $\kbd{x} * t^n$ if $n\geq 0$,
and $\kbd{x} \bs t^{-n}$ otherwise.

\fun{GEN}{RgX_shift_shallow}{GEN x, long n} as \kbd{RgX\_shift}, but
shallow (coefficients are not copied).

\fun{GEN}{RgX_rotate_shallow}{GEN P, long k, long p} returns $\kbd{P} * X^k
\pmod {X^p-1}$, assuming the degree of $P$ is strictly less than $p$, and
$k\geq 0$.

\fun{void}{RgX_shift_inplace_init}{long v} $v \geq 0$, prepare for a later
call to \tet{RgX_shift_inplace}. Reserves $v$ words on the stack.

\fun{GEN}{RgX_shift_inplace}{GEN x, long v} $v \geq 0$, assume that
\tet{RgX_shift_inplace_init}$(v)$ has been called (reserving $v$ words on the
stack), immediately followed by a \typ{POL} $x$. Return \kbd{RgX\_shift}$(x,v)$
by shifting $x$ in place. To be used as follows
\bprog
  RgX_shift_inplace_init(v);
  av = avma;
  ...
  x = gerepileupto(av, ...); /* a t_POL */
  return RgX_shift_inplace(x, v);
@eprog

\fun{long}{RgX_valrem}{GEN P, GEN *pz} returns the valuation $v$ of the
\typ{POL}~\kbd{P} with respect to its main variable $X$. Check whether
coefficients are $0$ using \kbd{gequal0}. Set \kbd{*pz} to
$\kbd{RgX\_shift\_shallow}(P,-v)$.

\fun{long}{RgX_val}{GEN P} returns the valuation $v$ of the
\typ{POL}~\kbd{P} with respect to its main variable $X$. Check whether
coefficients are $0$ using \kbd{gequal0}.

\fun{long}{RgX_valrem_inexact}{GEN P, GEN *z} as \kbd{RgX\_valrem}, using
\kbd{isexactzero} instead of \kbd{gequal0}.

\subsubsec{Basic arithmetic}

\fun{GEN}{RgX_add}{GEN x,GEN y} adds \kbd{x} and \kbd{y}.

\fun{GEN}{RgX_sub}{GEN x,GEN y} subtracts \kbd{x} and \kbd{y}.

\fun{GEN}{RgX_neg}{GEN x} returns $-\kbd{x}$.

\fun{GEN}{RgX_Rg_add}{GEN y, GEN x} returns $x+y$.

\fun{GEN}{RgX_Rg_add_shallow}{GEN y, GEN x} returns $x+y$; shallow function.

\fun{GEN}{Rg_RgX_sub}{GEN x, GEN y}

\fun{GEN}{RgX_Rg_sub}{GEN y, GEN x} returns $x-y$

\fun{GEN}{RgX_Rg_mul}{GEN y, GEN x} multiplies the \kbd{RgX} \kbd{y}
by the scalar \kbd{x}.

\fun{GEN}{RgX_muls}{GEN y, long s} multiplies the \kbd{RgX} \kbd{y}
by the \kbd{long}~\kbd{s}.

\fun{GEN}{RgX_Rg_div}{GEN y, GEN x} divides the \kbd{RgX} \kbd{y}
by the scalar \kbd{x}.

\fun{GEN}{RgX_divs}{GEN y, long s} divides the \kbd{RgX} \kbd{y}
by the \kbd{long}~\kbd{s}.

\fun{GEN}{RgX_Rg_divexact}{GEN x, GEN y} exact division of the \kbd{RgX}
\kbd{y} by the scalar \kbd{x}.

\fun{GEN}{RgX_Rg_eval_bk}{GEN f, GEN x} returns $\kbd{f}(\kbd{x})$ using
Brent and Kung algorithm. (Use \tet{poleval} for Horner algorithm.)

\fun{GEN}{RgX_RgV_eval}{GEN f, GEN V} as \kbd{RgX\_Rg\_eval\_bk(f, x)},
assuming $V$ was output by \kbd{gpowers(x, n)} for some $n\geq 1$.

\fun{GEN}{RgXV_RgV_eval}{GEN f, GEN V} apply \kbd{RgX\_RgV\_eval\_bk(, V)}
to all the components of the vector $f$.

\fun{GEN}{RgX_normalize}{GEN x} divides $x$ by its
leading coefficient. If the latter is~$1$, $x$ itself is returned, not a
copy. Leading coefficients equal to $0$ are stripped, e.g.
\bprog
  0.*t^3 + Mod(0,3)*t^2 + 2*t
@eprog\noindent is normalized to $t$.

\fun{GEN}{RgX_mul}{GEN x, GEN y} multiplies the two \typ{POL} (in the same
variable) \kbd{x} and \kbd{y}. Uses Karatsuba algorithm.

\fun{GEN}{RgX_mul_normalized}{GEN A, long a, GEN B, long b}
returns $(X^a + A)(X^b + B) - X^(a+b)$, where we assume that $\deg A < a$
and $\deg B < b$ are polynomials in the same variable $X$.

\fun{GEN}{RgX_mulspec}{GEN a, GEN b, long na, long nb}. Internal routine:
\kbd{a} and \kbd{b} are arrays of coefficients representing polynomials
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$ and
$\sum_{i = 0}^{\kbd{nb-1}} \kbd{b}[i] X^i$. Returns their product (as a true
\kbd{GEN}).

\fun{GEN}{RgX_sqr}{GEN x} squares the \typ{POL} \kbd{x}. Uses Karatsuba
algorithm.

\fun{GEN}{RgX_sqrspec}{GEN a, long na}. Internal routine:
\kbd{a} is an array of coefficients representing polynomial
$\sum_{i = 0}^{\kbd{na-1}} \kbd{a}[i] X^i$. Return its square (as a true
\kbd{GEN}).

\fun{GEN}{RgX_divrem}{GEN x, GEN y, GEN *r} by default, returns the Euclidean
quotient and store the remainder in $r$. Three special values of $r$ change
that behavior
\item \kbd{NULL}: do not store the remainder, used to implement \kbd{RgX\_div},

\item \tet{ONLY_REM}: return the remainder, used to implement \kbd{RgX\_rem},

\item \tet{ONLY_DIVIDES}: return the quotient if the division is exact, and
\kbd{NULL} otherwise.

\fun{GEN}{RgX_div}{GEN x, GEN y}

\fun{GEN}{RgX_div_by_X_x}{GEN A, GEN a, GEN *r} returns the
quotient of the \kbd{RgX}~\kbd{A} by $(X - \kbd{a})$, and sets \kbd{r} to the
remainder $\kbd{A}(\kbd{a})$.

\fun{GEN}{RgX_rem}{GEN x, GEN y}

\fun{GEN}{RgX_pseudodivrem}{GEN x, GEN y, GEN *ptr} compute a pseudo-quotient
$q$ and pseudo-remainder $r$ such that $\kbd{lc}(y)^{\deg(x) - \deg(y) + 1}x
= qy + r$. Return $q$ and set \kbd{*ptr} to $r$.

\fun{GEN}{RgX_pseudorem}{GEN x, GEN y} return the remainder
in the pseudo-division of $x$ by $y$.

\fun{GEN}{RgXQX_pseudorem}{GEN x, GEN y, GEN T} return the remainder
in the pseudo-division of $x$ by $y$ over $R[X]/(T)$.

\fun{int}{ZXQX_dvd}{GEN x, GEN y, GEN T} let $T$ be a monic irreducible
\kbd{ZX}, let $x, y$ be \typ{POL} whose coefficients are either \typ{INT}s or
\kbd{ZX} in the same variable as $T$. Assume further that the leading
coefficient of $y$ is an integer. Return $1$ if $y | x$ in $(\Z[Y]/(T))[X]$,
and $0$ otherwise.

\fun{GEN}{RgXQX_pseudodivrem}{GEN x, GEN y, GEN T, GEN *ptr} compute
a pseudo-quotient $q$ and pseudo-remainder $r$ such that
$\kbd{lc}(y)^{\deg(x) - \deg(y) + 1}x = qy + r$ in $R[X]/(T)$. Return $q$ and
set \kbd{*ptr} to $r$.

\fun{GEN}{RgX_mulXn}{GEN x, long n} returns $\kbd{x} * t^n$. This may
be a \typ{FRAC} if $n < 0$ and the valuation of \kbd{x} is not large
enough.

\subsubsec{GCD, Resultant}

\fun{GEN}{RgX_gcd}{GEN x, GEN y} returns the GCD of \kbd{x} and \kbd{y},
assumed to be \typ{POL}s in the same variable.

\fun{GEN}{RgX_gcd_simple}{GEN x, GEN y} as \tet{RgX_gcd} using a standard
extended Euclidean algorithm. Usually slower than \tet{RgX_gcd}.

\fun{GEN}{RgX_extgcd}{GEN x, GEN y, GEN *u, GEN *v} returns
$d = \text{GCD}(\kbd{x},\kbd{y})$, and sets \kbd{*u}, \kbd{*v} to the Bezout
coefficients such that $\kbd{*ux} + \kbd{*vy} = d$. Uses a generic
subresultant algorithm.

\fun{GEN}{RgX_extgcd_simple}{GEN x, GEN y, GEN *u, GEN *v} as
\tet{RgX_extgcd} using a standard extended Euclidean algorithm. Usually
slower than \tet{RgX_extgcd}.

\fun{GEN}{RgX_disc}{GEN x} returns the discriminant of the \typ{POL} \kbd{x}
with respect to its main variable.

\fun{GEN}{RgX_resultant_all}{GEN x, GEN y, GEN *sol} returns
\kbd{resultant(x,y)}. If \kbd{sol} is not \kbd{NULL}, sets it to the last
non-constant remainder in the polynomial remainder sequence if it exists and to
\kbd{gen\_0} otherwise (e.g. one polynomial has degree 0). Compared to
\kbd{resultant\_all}, this function always uses the generic subresultant
algorithm, hence always computes \kbd{sol}.

\subsubsec{Other operations}

\fun{GEN}{RgX_gtofp}{GEN x, GEN prec} returns the polynomial obtained by
applying
\bprog
  gtofp(gel(x,i), prec)
@eprog\noindent to all coefficients of $x$.

\fun{GEN}{RgX_fpnorml2}{GEN x, long prec} returns (a stack-clean variant of)
\bprog
  gnorml2( RgX_gtofp(x, prec) )
@eprog

\fun{GEN}{RgX_deriv}{GEN x} returns the derivative of \kbd{x} with respect to
its main variable.

\fun{GEN}{RgX_integ}{GEN x} returns the primitive of \kbd{x} vanishing at
$0$, with respect to its main variable.

\fun{GEN}{RgX_rescale}{GEN P, GEN h} returns $h^{\deg(P)} P(x/h)$.
\kbd{P} is an \kbd{RgX} and \kbd{h} is non-zero. (Leaves small objects on the
stack. Suitable but inefficient for \kbd{gerepileupto}.)

\fun{GEN}{RgX_unscale}{GEN P, GEN h} returns $P(h x)$. (Leaves small objects
on the stack. Suitable but inefficient for \kbd{gerepileupto}.)

\fun{GEN}{RgXV_unscale}{GEN v, GEN h} apply \kbd{RgX\_unscale} to a vector
of \kbd{RgX}.

\fun{GEN}{RgX_translate}{GEN P, GEN c} assume $c$ is a scalar or
a polynomials whose main variable has lower priority than the main variable
$X$ of $P$. Returns $P(X + c)$ (optimized for $c = \pm 1$).

\subsubsec{Function related to modular forms}

\fun{GEN}{RgX_act_Gl2Q}{GEN g, long k} let $R$ be a commutative ring
and $g = [a,b;c,d]$ be in $\text{GL}_2(\Q)$, $g$ acts (on the left)
on homogeneous polynomials of degree $k-2$ in $V := R[X,Y]_{k-2}$ via
$$ g\cdot P := P(dX-cY, -bX+aY) = (\det g)^{k-2} P((X,Y)\cdot g^{-1}).$$
This function returns the matrix in $M_{k-1}(R)$ of $P\mapsto g\cdot P$ in
the basis $(X^{k-2},\dots,Y^{k-2})$ of $V$.

\fun{GEN}{RgX_act_ZGl2Q}{GEN z, long k} let $G:=\text{GL}_2(\Q)$, acting
on $R[X,Y]_{k-2}$ and $z\in \Z[G]$. Return the matrix giving
$P\mapsto z\cdot P$ in the basis $(X^{k-2},\dots,Y^{k-2})$.

\subsec{\kbd{RgXn}}

\fun{GEN}{RgXn_red_shallow}{GEN x, long n} return $\kbd{x \% } t^n$,
where $n\geq 0$. Shallow function.

\fun{GEN}{RgXn_mul}{GEN a, GEN b, long n} returns $a b$ modulo $X^n$,
where $a,b$ are two \typ{POL} in the same variable $X$ and $n \geq 0$. Uses
Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).

\fun{GEN}{RgXn_sqr}{GEN a, long n} returns $a^2$ modulo $X^n$,
where $a$ is a \typ{POL} in the variable $X$ and $n \geq 0$. Uses
Karatsuba algorithm (Mulders, Hanrot-Zimmermann variant).

\fun{GEN}{RgXn_inv}{GEN a, long n} returns $a^{-1}$ modulo $X^n$,
where $a$ is a \typ{POL} in the variable $X$ and $n \geq 0$. Uses
Newton-Raphson algorithm.

\fun{GEN}{RgXn_powers}{GEN x, long m, long n} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{m}]$ modulo $X^n$ as a \typ{VEC} of \kbd{RgXn}s.

\fun{GEN}{RgXn_powu}{GEN x, ulong m, long n} returns $x^m$ modulo
$X^n$.

\fun{GEN}{RgXn_powu_i}{GEN x, ulong m, long n} as \tet{RgXn_powu},
not memory clean.

\fun{GEN}{RgXn_exp}{GEN a, long n} returns $exp(a)$ modulo $X^n$, assuming
$a = 0 \mod{X}$. Uses Hanrot-Zimmermann algorithm.

\fun{GEN}{RgXn_eval}{GEN Q, GEN x, long n} special case of
\tet{RgX_RgXQ_eval}, when the modulus is a monomial:
returns $\kbd{Q}(\kbd{x})$ modulo $t^n$, where $x \in R[t]$.

\fun{GEN}{RgX_RgXn_eval}{GEN f, GEN x, long n} returns $\kbd{f}(\kbd{x})$ modulo
$X^n$.

\fun{GEN}{RgX_RgXnV_eval}{GEN f, GEN V, long n} as \kbd{RgX\_RgXn\_eval(f, x, n)},
assuming $V$ was output by \kbd{RgXn\_powers(x, m, n)} for some $m\geq 1$.

\fun{GEN}{RgXn_reverse}{GEN f, long n} assuming that $f = a\*x \mod{x^2}$
with $a$ invertible, returns a \typ{POL} $g$ of degree $< n$ such that $(g
\circ f)(x) = x$ modulo $x^n$.

\subsec{\kbd{RgXnV}}

\fun{GEN}{RgXnV_red_shallow}{GEN x, long n} apply \kbd{RgXn\_red\_shallow}
to all the components of the vector $x$.

\subsec{\kbd{RgXQ}}

\fun{GEN}{RgXQ_mul}{GEN y, GEN x, GEN T} computes $xy$ mod $T$

\fun{GEN}{RgXQ_sqr}{GEN x, GEN T} computes $x^2$ mod $T$

\fun{GEN}{RgXQ_inv}{GEN x, GEN T} return the inverse of $x$ mod $T$.

\fun{GEN}{RgXQ_pow}{GEN x, GEN n, GEN T} computes $x^n$ mod $T$

\fun{GEN}{RgXQ_powu}{GEN x, ulong n, GEN T} computes $x^n$ mod $T$,
$n$ being an \kbd{ulong}.

\fun{GEN}{RgXQ_powers}{GEN x, long n, GEN T} returns $[\kbd{x}^0,
\dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC} of \kbd{RgXQ}s.

\fun{GEN}{RgXQ_matrix_pow}{GEN y, long n, long m, GEN P} returns
\kbd{RgXQ\_powers(y,m-1,P)}, as a matrix of dimension $n \geq \deg P$.

\fun{GEN}{RgXQ_norm}{GEN x, GEN T} returns the norm of \kbd{Mod(x, T)}.

\fun{GEN}{RgXQ_charpoly}{GEN x, GEN T, long v} returns the characteristic
polynomial of \kbd{Mod(x, T)}, in variable $v$.

\fun{GEN}{RgX_RgXQ_eval}{GEN f, GEN x, GEN T} returns $\kbd{f}(\kbd{x})$ modulo
$T$.

\fun{GEN}{RgX_RgXQV_eval}{GEN f, GEN V, GEN T} as \kbd{RgX\_RgXQ\_eval(f, x, T)},
assuming $V$ was output by \kbd{RgXQ\_powers(x, n, T)} for some $n\geq 1$.

\fun{int}{RgXQ_ratlift}{GEN x, GEN T, long amax, long bmax, GEN *P, GEN *Q}
Assuming that $\kbd{amax}+\kbd{bmax}<\deg T$, attempts to recognize $x$ as a
rational function $a/b$, i.e. to find \typ{POL}s $P$ and $Q$ such that

\item $P \equiv Q x$ modulo $T$,

\item $\deg P \leq \kbd{amax}$, $\deg Q \leq \kbd{bmax}$,

\item $\gcd(T,P) = \gcd(P,Q)$.

\noindent If unsuccessful, the routine returns $0$ and leaves $P$, $Q$
unchanged; otherwise it returns $1$ and sets $P$ and $Q$.

\fun{GEN}{RgXQ_reverse}{GEN f, GEN T} returns a \typ{POL} $g$ of degree $< n
= \text{deg}~T$ such that $T(x)$ divides $(g \circ f)(x) - x$, by solving a
linear system. Low-level function underlying \tet{modreverse}: it returns a
lift of \kbd[modreverse(f,T)]; faster than the high-level function since it
needs not compute the characteristic polynomial of $f$ mod $T$ (often already
known in applications). In the trivial case where $n \leq 1$, returns a
scalar, not a constant \typ{POL}.

\subsec{\kbd{RgXQV, RgXQC}}

\fun{GEN}{RgXQC_red}{GEN z, GEN T} \kbd{z} a vector whose
coefficients are \kbd{RgX}s (arbitrary \kbd{GEN}s in fact), reduce them to
\kbd{RgXQ}s (applying \kbd{grem} coefficientwise) in a \typ{COL}.

\fun{GEN}{RgXQV_red}{GEN z, GEN T} \kbd{z} a \typ{POL} whose
coefficients are \kbd{RgX}s (arbitrary \kbd{GEN}s in fact), reduce them to
\kbd{RgXQ}s (applying \kbd{grem} coefficientwise) in a \typ{VEC}.

\fun{GEN}{RgXQV_RgXQ_mul}{GEN z, GEN x, GEN T} \kbd{z} multiplies the
 \kbd{RgXQV} \kbd{z} by the scalar (\kbd{RgXQ}) \kbd{x}.

\subsec{\kbd{RgXQX}}

\fun{GEN}{RgXQX_red}{GEN z, GEN T} \kbd{z} a \typ{POL} whose
coefficients are \kbd{RgX}s (arbitrary \kbd{GEN}s in fact), reduce them to
\kbd{RgXQ}s (applying \kbd{grem} coefficientwise).

\fun{GEN}{RgXQX_mul}{GEN x, GEN y, GEN T}

\fun{GEN}{RgXQX_RgXQ_mul}{GEN x, GEN y, GEN T} multiplies the \kbd{RgXQX}
\kbd{y} by the scalar (\kbd{RgXQ}) \kbd{x}.

\fun{GEN}{RgXQX_sqr}{GEN x, GEN T}

\fun{GEN}{RgXQX_divrem}{GEN x, GEN y, GEN T, GEN *pr}

\fun{GEN}{RgXQX_div}{GEN x, GEN y, GEN T, GEN *r}

\fun{GEN}{RgXQX_rem}{GEN x, GEN y, GEN T, GEN *r}

\fun{GEN}{RgXQX_translate}{GEN P, GEN c, GEN T} assume the main variable
$X$ of $P$ has higher priority than the main variable $Y$ of $T$ and $c$.
Return a lift of $P(X+\text{Mod}(c(Y), T(Y)))$.

\fun{GEN}{Kronecker_to_mod}{GEN z, GEN T} $z\in R[X]$ represents an element
$P(X,Y)$ in $R[X,Y]$ mod $T(Y)$ in Kronecker form, i.e. $z = P(X,X^{2*n-1})$

Let $R$ be some commutative ring, $n = \deg T$ and let $P(X,Y)\in R[X,Y]$ lift
a polynomial in $K[Y]$, where $K := R[X]/(T)$ and $\deg_X P < 2n-1$ --- such as
would result from multiplying minimal degree lifts of two polynomials in
$K[Y]$. Let $z = P(t,t^{2*n-1})$ be a Kronecker form of $P$, this function
returns the image of $P(X,t)$ in $K[t]$, with \typ{POLMOD} coefficients.
Not stack-clean. Note that $t$ need not be the same variable as $Y$!

\chapter{Black box algebraic structures}

The generic routines like \kbd{gmul} or \kbd{gadd} allow handling objects
belonging to a fixed list of basic types, with some natural polymorphism
(you can mix rational numbers and polynomials, etc.), at the expense of
efficiency and sometimes of clarity when the recursive structure becomes
complicated, e.g. a few levels of \typ{POLMOD}s attached to different
polynomials and variable numbers for quotient structures. This
is the only possibility in GP.

On the other hand, the Level 2 Kernel allows dedicated routines to handle
efficiently objects of a very specific type, e.g. polynomials with
coefficients in the same finite field. This is more efficient, but imvolves a
lot of code duplication since polymorphism is no longer possible.

A third and final option, still restricted to library programming, is to
define an arbitrary algebraic structure (currently groups, fields, rings,
algebras and $\Z_p$-modules) by providing suitable methods, then using generic
algorithms. For instance naive Gaussian pivoting applies over all base fields
and need only be implemented once. The difference with the first solution
is that we no longer depend on the way functions like \kbd{gmul} or
\kbd{gadd} will guess what the user is trying to do. We can then implement
independently various groups / fields / algebras in a clean way.

\section{Black box groups}

A black box group is defined by a \tet{bb_group} struct, describing methods
available to handle group elements:
\bprog
    struct bb_group
    {
      GEN (*mul)(void*, GEN, GEN);
      GEN (*pow)(void*, GEN, GEN);
      GEN (*rand)(void*);
      ulong (*hash)(GEN);
      int (*equal)(GEN, GEN);
      int (*equal1)(GEN);
      GEN (*easylog)(void *E, GEN, GEN, GEN);
    };
@eprog
\kbd{mul(E,x,y)} returns the product $x\*y$.

\kbd{pow(E,x,n)} returns $x^n$ ($n$ integer, possibly negative or zero).

\kbd{rand(E)} returns a random element in the group.

\kbd{hash(x)} returns a hash value for $x$ (\kbd{hash\_GEN} is suitable for this field).

\kbd{equal(x,y)} returns one if $x=y$ and zero otherwise.

\kbd{equal1(x)} returns one if $x$ is the neutral element in the group,
and zero otherwise.

\kbd{easylog(E,a,g,o)} (optional) returns either NULL or the discrete logarithm
$n$ such that $g^n=a$, the element $g$ being of order $o$. This provides a
short-cut in situation where a better algorithm than the generic one is known.

A group is thus described by a \kbd{struct bb\_group} as above and auxiliary
data typecast to \kbd{void*}. The following functions operate on black box
groups:

\fun{GEN}{gen_Shanks_log}{GEN x, GEN g, GEN N, void *E, const struct bb_group
*grp} \hbadness 10000\break
Generic baby-step/giant-step algorithm (Shanks's method). Assuming
that $g$ has order $N$, compute an integer $k$ such that $g^k = x$.
Return \kbd{cgetg(1, t\_VEC)} if there are no solutions. This requires
$O(\sqrt{N})$ group operations and uses an auxiliary table containing
$O(\sqrt{N})$ group elements.

The above is useful for a one-shot computation. If many discrete logs
are desired:
\fun{GEN}{gen_Shanks_init}{GEN g, long n, void *E, const struct bb_group *grp}
return an auxiliary data structure $T$ required to compute a discrete log in
base $g$. Compute and store all powers $g^i$,  $i < n$.

\fun{GEN}{gen_Shanks}{GEN T, GEN x, ulong N, void *E, const struct bb_group *grp}
Let $T$ be computed by \tet{gen_Shanks_init}$(g,n,\dots)$.
Return $k < n N$ such that  $g^k = x$ or \kbd{NULL} if no such index exist.
It uses $O(N)$ operation in the group and fast table lookups  (in time
$O(\log n)$). The interface is such that the function may be used when the
order of the base $g$ is unknown, and hence compute it given only an upper
bound $B$ for it: e.g. choose $n,N$ such that $nN \geq B$ and compute the
discrete log $l$ of $g^{-1}$ in base $g$, then use \tet{gen_order}
with multiple $N = l+1$.

\fun{GEN}{gen_Pollard_log}{GEN x, GEN g, GEN N, void *E, const struct bb_group
*grp} \hbadness 10000\break
Generic Pollard rho algorithm. Assuming that $g$ has order $N$, compute an
integer $k$ such that $g^k = x$. This requires $O(\sqrt{N})$ group operations
in average and $O(1)$ storage. Will enter an infinite loop if there are no
solutions.

\fun{GEN}{gen_plog}{GEN x, GEN g, GEN N, void *E, const struct bb_group}
Assuming that $g$ has prime order $N$, compute an integer $k$ such that
$g^k = x$, using either \kbd{gen\_Shanks\_log} or \kbd{gen\_Pollard\_log}.
Return \kbd{cgetg(1, t\_VEC)} if there are no solutions.

\fun{GEN}{gen_Shanks_sqrtn}{GEN a, GEN n, GEN N, GEN *zetan, void *E, const
struct bb_group *grp} \hbadness 10000 returns one solution of $x^n = a$ in a
black box cyclic group of order $N$. Return \kbd{NULL} if no solution exists.
If \kbd{zetan} is not \kbd{NULL} it is set to an element of exact order $n$.
This function uses \kbd{gen\_plog} for all prime divisors of $\gcd(n,N)$.

\fun{GEN}{gen_PH_log}{GEN a, GEN g, GEN N, void *E, const struct bb_group
*grp}
returns an integer $k$ such that $g^k = x$, assuming that $g$ has order $N$,
by Pohlig-Hellman algorithm. Return \kbd{cgetg(1, t\_VEC)} if there are no
solutions. This calls \tet{gen_plog} repeatedly for all prime divisors $p$ of
$N$.

In the following functions the integer parameter \kbd{ord} can be given
in all the formats recognized for the argument of arithmetic functions,
i.e.~either as a positive \typ{INT} $N$, or as its factorization matrix
$\var{faN}$, or (preferred) as a pair $[N,\var{faN}]$.

\fun{GEN}{gen_order}{GEN x, GEN ord, void *E, const struct bb_group *grp}
computes the order of $x$; \kbd{ord} is a multiple of the order, for instance
the group order.

\fun{GEN}{gen_factored_order}{GEN x, GEN ord, void *E, const struct bb_group
*grp} returns a pair $[o,F]$, where $o$ is the order of $x$ and $F$ is the
factorization of $o$; \kbd{ord} is as in \tet{gen_order}.

\fun{GEN}{gen_gener}{GEN ord, void *E, const struct bb_group *grp}
returns a random generator of the group, assuming it is of order exactly
\kbd{ord}.

\fun{GEN}{get_arith_Z}{GEN ord} given \kbd{ord} as above in one of the
formats recognized for arithmetic functions, i.e. a positive
\typ{INT} $N$, its factorization \var{faN}, or the pair $[N, \var{faN}]$,
return $N$.

\fun{GEN}{get_arith_ZZM}{GEN ord} given \kbd{ord} as above,
return the pair $[N, \var{faN}]$. This may require factoring $N$.

\fun{GEN}{gen_select_order}{GEN v, void *E, const struct bb_group *grp}
Let $v$ be a vector of possible orders for the group; try to find the true
order by checking orders of random points. This will not terminate if there
is an ambiguity.

\subsec{Black box groups with pairing}

Theses functions handle groups of rank at most $2$ equipped with a family of
bilinear pairings which behave like the Weil pairing on elliptic curves over
finite field. In the descriptions below, the function \kbd{pairorder(E, P, Q,
m, F)} must return the order of the $m$-pairing of $P$ and $Q$, both of order
dividing $m$, where $F$ is the factorisation matrix of a multiple of $m$.

\fun{GEN}{gen_ellgroup}{GEN o, GEN d, GEN *pt_m, void *E, const struct bb_group *grp,
             GEN pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)}
returns the elementary divisors $[d_1, d_2]$ of the group, assuming it is of
order exactly $o>1$ (which can be given by a factorization matrix), and that
$d_2$ divides $d$. If $d_2=1$ then $[o]$ is returned, otherwise
\kbd{m=*pt\_m} is set to the order of the pairing required to verify a
generating set which is to be used with \kbd{gen\_ellgens}.

\fun{GEN}{gen_ellgens}{GEN d1, GEN d2, GEN m, void *E, const struct bb_group *grp,
             GEN pairorder(void *E, GEN P, GEN Q, GEN m, GEN F)}
the parameters $d_1$, $d_2$, $m$ being as returned by \kbd{gen\_ellgroup},
returns a pair of generators $[P,Q]$ such that $P$ is of order $d_1$ and the
$m$-pairing of $P$ and $Q$ is of order $m$. (Note: $Q$ needs not be of order
$d_2$).

\subsec{Functions returning black box groups}

\fun{const struct bb_group *}{get_Flxq_star}{void **E, GEN T, ulong p}

\fun{const struct bb_group *}{get_FpXQ_star}{void **E, GEN T, GEN p}
returns a pointer to the black box group $(\F_p[x]/(T))^*$.

\fun{const struct bb_group *}{get_FpE_group}{void **pE, GEN a4, GEN a6, GEN p}
returns a pointer to a black box group and set \kbd{*pE} to the necessary data for
computing in the group $E(\F_p)$ where $E$ is the elliptic curve $E:y^2=x^3+a_4\*x+a_6$,
with $a_4$ and $a_6$ in $\F_p$.

\fun{const struct bb_group *}{get_FpXQE_group}{void **pE, GEN a4, GEN a6, GEN T, GEN p}
returns a pointer to a black box group and set \kbd{*pE} to the necessary data for
computing in the group $E(\F_p[X]/(T))$ where $E$ is the elliptic curve $E:y^2=x^3+a_4\*x+a_6$,
with $a_4$ and $a_6$ in $\F_p[X]/(T)$.

\fun{const struct bb_group *}{get_FlxqE_group}{void **pE, GEN a4, GEN a6, GEN
T, ulong p} idem for small $p$.

\fun{const struct bb_group *}{get_F2xqE_group}{void **pE, GEN a2, GEN a6, GEN T}
idem for $p=2$.

\section{Black box finite fields}

A black box finite field is defined by a \tet{bb_field} struct, describing methods
available to handle field elements:
\bprog
  struct bb_field
  {
    GEN (*red)(void *E ,GEN);
    GEN (*add)(void *E ,GEN, GEN);
    GEN (*mul)(void *E ,GEN, GEN);
    GEN (*neg)(void *E ,GEN);
    GEN (*inv)(void *E ,GEN);
    int (*equal0)(GEN);
    GEN (*s)(void *E, long);
  };
@eprog\noindent In contrast of black box group, elements can have
non canonical forms, and only \kbd{red} is required to return a canonical form.

\kbd{red(E,x)} returns the canonical form of $x$.

\kbd{add(E,x,y)} returns the sum $x+y$.

\kbd{mul(E,x,y)} returns the product $x\*y$.

\kbd{neg(E,x)} returns $-x$.

\kbd{inv(E,x)} returns the inverse of $x$.

\kbd{equal0(x)} $x$ being in canonical form, returns one if $x=0$ and zero otherwise.

\kbd{s(n)} $n$ being a small signed integer, returns $n$ times the unit element.

\noindent A finite field is thus described by a \kbd{struct bb\_field} as
above and auxiliary data typecast to \kbd{void*}. The following functions
operate on black box fields:

\fun{GEN}{gen_Gauss}{GEN a, GEN b, void *E, const struct bb_field *ff}

\fun{GEN}{gen_Gauss_pivot}{GEN x, long *rr, void *E, const struct bb_field *ff}

\fun{GEN}{gen_det}{GEN a, void *E, const struct bb_field *ff}

\fun{GEN}{gen_ker}{GEN x, long deplin, void *E, const struct bb_field *ff}

\fun{GEN}{gen_matcolmul}{GEN a, GEN b, void *E, const struct bb_field *ff}

\fun{GEN}{gen_matid}{long n, void *E, const struct bb_field *ff}

\fun{GEN}{gen_matmul}{GEN a, GEN b, void *E, const struct bb_field *ff}

\subsec{Functions returning black box fields}

\fun{const struct bb_field *}{get_Fp_field}{void **pE, GEN p}

\fun{const struct bb_field *}{get_Fq_field}{void **pE, GEN T, GEN p}

\fun{const struct bb_field *}{get_Flxq_field}{void **pE, GEN T, ulong p}

\fun{const struct bb_field *}{get_F2xq_field}{void **pE, GEN T}

\fun{const struct bb_field *}{get_nf_field}{void **pE, GEN nf}

\section{Black box algebra}

A black box algebra is defined by a \tet{bb_algebra} struct, describing methods
available to handle algebra elements:
\bprog
struct bb_algebra
{
  GEN (*red)(void *E, GEN x);
  GEN (*add)(void *E, GEN x, GEN y);
  GEN (*sub)(void *E, GEN x, GEN y);
  GEN (*mul)(void *E, GEN x, GEN y);
  GEN (*sqr)(void *E, GEN x);
  GEN (*one)(void *E);
  GEN (*zero)(void *E);
};
@eprog\noindent In contrast with black box groups, elements can have non
canonical forms, but only \kbd{add} is allowed to return a non canonical
form.

\kbd{red(E,x)} returns the canonical form of $x$.

\kbd{add(E,x,y)} returns the sum $x+y$.

\kbd{sub(E,x,y)} returns the difference $x-y$.

\kbd{mul(E,x,y)} returns the product $x\*y$.

\kbd{sqr(E,x)} returns the square $x^2$.

\kbd{one(E)} returns the unit element.

\kbd{zero(E)} returns the zero element.

\noindent An algebra is thus described by a \kbd{struct bb\_algebra} as above
and auxiliary data typecast to \kbd{void*}. The following functions operate
on black box algebra:

\fun{GEN}{gen_bkeval}{GEN P, long d, GEN x, int use_sqr, void *E,
          const struct bb_algebra *ff, GEN cmul(void *E, GEN P, long a, GEN x)}
$x$ being an element of the black box algebra, and $P$ some black box
polynomial of degree $d$ over the base field,  returns $P(x)$. The function
\kbd{cmul(E,P,a,y)} must return the coefficient of degree $a$ of $P$
multiplied by $y$. \kbd{cmul} is allowed to return a non canonical form;
it is also allowed to return \kbd{NULL} instead of an exact $0$.

The flag \kbd{use\_sqr} has the same meaning as for \kbd{gen\_powers}. This
implements an algorithm of Brent and Kung (1978).

\fun{GEN}{gen_bkeval_powers}{GEN P, long d, GEN V, void *E,
 const struct bb_algebra *ff, GEN cmul(void *E, GEN P, long a, GEN x)}
as \tet{gen_RgX_bkeval} assuming $V$ was output by
\tet{gen_powers}$(x, l, E, \var{ff})$ for some $l\geq 1$. For optimal
performance, $l$ should be computed by \tet{brent_kung_optpow}.

\fun{long}{brent_kung_optpow}{long d, long n, long m} returns the optimal
parameter $l$ for the evaluation of $n/m$ polynomials of degree $d$.
Fractional values can be used if the evaluations are done with different
accuracies, and thus have different weights.

\subsec{Functions returning black box algebras}

\fun{const struct bb_algebra *}{get_FpX_algebra}{void **E, GEN p, long v}
return the algebra of polynomials over $\F_p$ in variable $v$.

\fun{const struct bb_algebra *}{get_FpXQ_algebra}{void **E, GEN T, GEN p}
return the algebra $\F_p[X]/(T(X))$.

\fun{const struct bb_algebra *}{get_FpXQX_algebra}{void **E, GEN T, GEN p, long v}
return the algebra of polynomials over $\F_p[X]/(T(X))$ in variable $v$.

\fun{const struct bb_algebra *}{get_FlxqXQ_algebra}{void **E, GEN S, GEN T, ulong p}
return the algebra $\F_p[X,Y]/(S(X,Y),T(X))$ (for \kbd{ulong} $p$).

\fun{const struct bb_algebra *}{get_FpXQXQ_algebra}{void **E, GEN S, GEN T, GEN p}
return the algebra $\F_p[X,Y]/(S(X,Y),T(X))$.

\fun{const struct bb_algebra *}{get_Rg_algebra}{void}
return the generic algebra.

\section{Black box ring}

A black box ring is defined by a \tet{bb_ring} struct, describing methods
available to handle ring elements:
\bprog
struct bb_ring
{
  GEN (*add)(void *E, GEN x, GEN y);
  GEN (*mul)(void *E, GEN x, GEN y);
  GEN (*sqr)(void *E, GEN x);
};
@eprog

\kbd{add(E,x,y)} returns the sum $x+y$.

\kbd{mul(E,x,y)} returns the product $x\*y$.

\kbd{sqr(E,x)} returns the square $x^2$.

\fun{GEN}{gen_fromdigits}{GEN v, GEN B, void *E, struct bb_ring *r}
where $B$ is a ring element and $v=[c_0,\ldots,c_{n-1}]$ a vector of ring elements,
return $\sum_{i=0}^n c_i\*B^i$ using binary splitting.

\fun{GEN}{gen_digits}{GEN x, GEN B, long n, void *E, struct bb_ring *r,
                          GEN (*div)(void *E, GEN x, GEN y, GEN *r)}

(Require the ring to be Euclidean)

\kbd{div(E,x,y,\&r)} performs the Euclidean division of $x$ by $y$ in the ring
$R$, returning the quotient $q$ and setting $r$ to the residue so that
$x=q\*y+r$ holds. The residue must belong to a fixed set of representatives of
$R/(y)$.

The argument $x$ being a ring element, \kbd{gen\_digits} returns a vector of
ring elements $[c_0,\ldots,c_{n-1}]$ such that $x = \sum_{i=0}^n c_i\*B^i$.
Furthermore for all $i\ne n-1$, the elements $c_i$ belonging to the fixed set
of representatives of $R/(B)$.

\section{Black box free $\Z_p$-modules}

(Very experimental)

\fun{GEN}{gen_ZpX_Dixon}{GEN F, GEN V, GEN q, GEN p, long N, void *E,
                            GEN lin(void *E, GEN F, GEN z, GEN q),
                            GEN invl(void *E, GEN z)}

Let $F$ be a \kbd{ZpXT} representing the coefficients of some abstract
linear mapping $f$ over $\Z_p[X]$ seen as a free $\Z_p$-module, let $V$ be
an element of $\Z_p[X]$ and let $q = p^N$.  Return $y\in\Z_p[X]$ such that
$f(y)=V\pmod{p^N}$ assuming the following holds for $n\leq N$:

\item $\kbd{lin}(E, \kbd{FpX\_red}(F, p^n), z, p^n) \equiv f(z) \pmod{p^n}$

\item $f(\kbd{invl}(E, z)) \equiv z \pmod{p}$

The rationale for the argument $F$ being that it allows \kbd{gen\_ZpX\_Dixon}
to reduce it to the required $p$-adic precision.

\fun{GEN}{gen_ZpX_Newton}{GEN x, GEN p, long n, void *E,
                          GEN eval(void *E, GEN a, GEN q),
                          GEN invd(void *E, GEN b, GEN v, GEN q, long N)}

Let $x$ be an element of $\Z_p[X]$ seen as a free  $\Z_p$-module, and $f$
some differentiable function over $\Z_p[X]$ such that $f(x) \equiv 0
\pmod{p}$. Return $y$ such that $f(y) \equiv 0\pmod{p^n}$, assuming the
following holds for all $a, b\in \Z_p[X]$ and $M\leq N$:

\item $v = \kbd{eval}(E,a,p^N)$ is a vector of elements of $\Z_p[X]$,

\item $w = \kbd{invd}(E,b,v,p^M,M)$ is an element in $\Z_p[X]$,

\item $v[1] \equiv f(a) \pmod{p^N\Z_p[X]}$,

\item $df_a(w) \equiv b \pmod{p^M\Z_p[X]}$

\noindent and $df_a$ denotes the differential of $f$ at $a$. Motivation:
\kbd{eval} allows to evaluate $f$ and \kbd{invd} allows to invert its
differential. Frequently, data useful to compute the differential appear as a
subproduct of computing the function. The vector $v$ allows \kbd{eval} to
provide these to \kbd{invd}. The implementation of \kbd{invd} will generally
involves the use of the function \kbd{gen\_ZpX\_Dixon}.


\newpage
\chapter{Operations on general PARI objects}

\section{Assignment}

It is in general easier to use a direct conversion,
e.g.~\kbd{y = stoi(s)}, than to allocate a target of correct type and
sufficient size, then assign to it:
\bprog
  GEN y = cgeti(3); affsi(s, y);
@eprog\noindent
These functions can still be moderately useful in complicated garbage
collecting scenarios but you will be better off not using them.

\fun{void}{gaffsg}{long s, GEN x} assigns the \kbd{long}~\kbd{s} into the
object~\kbd{x}.

\fun{void}{gaffect}{GEN x, GEN y} assigns the object \kbd{x} into the
object~\kbd{y}. Both \kbd{x} and \kbd{y} must be scalar types. Type
conversions (e.g.~from \typ{INT} to \typ{REAL} or \typ{INTMOD}) occur if
legitimate.

\fun{int}{is_universal_constant}{GEN x} returns $1$ if $x$ is a global PARI
constant you should never assign to (such as \kbd{gen\_1}), and $0$
otherwise.

\section{Conversions}

\subsec{Scalars}

\fun{double}{rtodbl}{GEN x} applied to a \typ{REAL}~\kbd{x}, converts \kbd{x}
into a \kbd{double} if possible.

\fun{GEN}{dbltor}{double x} converts the \kbd{double} \kbd{x} into a
\typ{REAL}.

\fun{long}{dblexpo}{double x} returns \kbd{expo(dbltor(x))}, but
faster and without cluttering the stack.

\fun{ulong}{dblmantissa}{double x} returns the most significant word
in the mantissa of \kbd{dbltor(x)}.

\fun{double}{gtodouble}{GEN x} if \kbd{x} is a real number (not necessarily
a~\typ{REAL}), converts \kbd{x} into a \kbd{double} if possible.

\fun{long}{gtos}{GEN x} converts the \typ{INT} \kbd{x} to a small
integer if possible, otherwise raise an exception. This function
is similar to \tet{itos}, slightly slower since it checks the type of \kbd{x}.

\fun{double}{dbllog2r}{GEN x} assuming that \kbd{x} is a non-zero \typ{REAL},
returns an approximation to \kbd{log2(|x|)}.

\fun{double}{dblmodulus}{GEN x} return an approximation to \kbd{|x|}.

\fun{long}{gtolong}{GEN x} if \kbd{x} is an integer (not necessarily
a~\typ{INT}), converts \kbd{x} into a \kbd{long} if possible.

\fun{GEN}{fractor}{GEN x, long l} applied to a \typ{FRAC}~\kbd{x}, converts
\kbd{x} into a \typ{REAL} of length \kbd{prec}.

\fun{GEN}{quadtofp}{GEN x, long l} applied to a \typ{QUAD}~\kbd{x}, converts
\kbd{x} into a \typ{REAL} or \typ{COMPLEX} depending on the sign of the
discriminant of~\kbd{x}, to precision \hbox{\kbd{l} \B-bit} words.
% forbid line brk at hyphen here [GN]

\fun{GEN}{cxtofp}{GEN x, long prec} converts the \typ{COMPLEX}~\kbd{x} to a
a complex whose real and imaginary parts are \typ{REAL} of length \kbd{prec}
(special case of~\kbd{gtofp}.

\fun{GEN}{cxcompotor}{GEN x, long prec} converts the
\typ{INT}, \typ{REAL} or \typ{FRAC} $x$ to a \typ{REAL} of length \kbd{prec}.
These are all the real types which may occur as components of a
\typ{COMPLEX}; special case of~\kbd{gtofp} (introduced so that the latter is
not recursive and can thus be inlined).

\fun{GEN}{gtofp}{GEN x, long prec} converts the complex number~\kbd{x}
(\typ{INT}, \typ{REAL}, \typ{FRAC}, \typ{QUAD} or \typ{COMPLEX}) to either
a \typ{REAL} or \typ{COMPLEX} whose components are \typ{REAL} of precision
\kbd{prec}; not necessarily of \emph{length} \kbd{prec}: a real $0$ may be
given as \kbd{real\_0(...)}). If the result is a \typ{COMPLEX} extra care is
taken so that its modulus really has accuracy \kbd{prec}: there is a problem
if the real part of the input is an exact $0$; indeed, converting it to
\kbd{real\_0(prec)} would be wrong if the imaginary part is tiny, since the
modulus would then become equal to $0$, as in $1.E-100 + 0.E-28 = 0.E-28$.

\fun{GEN}{gtomp}{GEN z, long prec} converts the real number~\kbd{x}
(\typ{INT}, \typ{REAL}, \typ{FRAC}, real \typ{QUAD}) to either
a \typ{INT} or a \typ{REAL} of precision \kbd{prec}. Not memory clean
if $x$ is a \typ{INT}: we return $x$ itself and not a copy.

\fun{GEN}{gcvtop}{GEN x, GEN p, long l} converts $x$ into a \typ{PADIC}
of precision~$l$. Works componentwise on recursive objects,
e.g.~\typ{POL} or \typ{VEC}. Converting $0$ yields $O(p^l)$; converting a
non-zero number yield a result well defined modulo $p^{v_p(x) + l}$.

\fun{GEN}{cvtop}{GEN x, GEN p, long l} as \kbd{gcvtop}, assuming that $x$
is a scalar.

\fun{GEN}{cvtop2}{GEN x, GEN y} $y$ being a $p$-adic, converts the scalar $x$
to a $p$-adic of the same accuracy. Shallow function.

\fun{GEN}{cvstop2}{long s, GEN y} $y$ being a $p$-adic, converts the scalar $s$
to a $p$-adic of the same accuracy. Shallow function.

\fun{GEN}{gprec}{GEN x, long l} returns a copy of $x$ whose precision is
changed to $l$ digits. The precision change is done recursively on all
components of $x$. Digits means \emph{decimal}, $p$-adic and $X$-adic digits
for \typ{REAL}, \typ{SER}, \typ{PADIC} components, respectively.

\fun{GEN}{gprec_w}{GEN x, long l} returns a shallow copy of $x$ whose
\typ{REAL} components have their precision changed to $l$ \emph{words}. This
is often more useful than \kbd{gprec}.

\fun{GEN}{gprec_wtrunc}{GEN x, long l} returns a shallow copy of $x$ whose
\typ{REAL} components have their precision \emph{truncated} to $l$
\emph{words}. Contrary to \kbd{gprec\_w}, this function may never increase
the precision of~$x$.

\subsec{Modular objects / lifts}

\fun{GEN}{gmodulo}{GEN x, GEN y} creates the object \kbd{\key{Mod}(x,y)} on
the PARI stack, where \kbd{x} and \kbd{y} are either both \typ{INT}s, and the
result is a \typ{INTMOD}, or \kbd{x} is a scalar or a \typ{POL} and \kbd{y} a
\typ{POL}, and the result is a \typ{POLMOD}.

\fun{GEN}{gmodulgs}{GEN x, long y} same as \key{gmodulo} except \kbd{y} is a
\kbd{long}.

\fun{GEN}{gmodulsg}{long x, GEN y} same as \key{gmodulo} except \kbd{x} is a
\kbd{long}.

\fun{GEN}{gmodulss}{long x, long y} same as \key{gmodulo} except both
\kbd{x} and \kbd{y} are \kbd{long}s.

\fun{GEN}{lift_shallow}{GEN x} shallow version of \tet{lift}

\fun{GEN}{liftall_shallow}{GEN x} shallow version of \tet{liftall}

\fun{GEN}{liftint_shallow}{GEN x} shallow version of \tet{liftint}

\fun{GEN}{liftpol_shallow}{GEN x} shallow version of \tet{liftpol}

\fun{GEN}{centerlift0}{GEN x,long v} DEPRECATED, kept for backward
compatibility only: use either \tet{lift0}$(x,v)$ or \tet{centerlift}$(x)$.

\subsec{Between polynomials and coefficient arrays}

\fun{GEN}{gtopoly}{GEN x, long v} converts or truncates the object~\kbd{x}
into a \typ{POL} with main variable number~\kbd{v}. A common application
would be the conversion of coefficient vectors (coefficients are given by
decreasing degree). E.g.~\kbd{[2,3]} goes to \kbd{2*v + 3}

\fun{GEN}{gtopolyrev}{GEN x, long v} converts or truncates the object~\kbd{x}
into a \typ{POL} with main variable number~\kbd{v}, but vectors are converted
in reverse order compared to \kbd{gtopoly} (coefficients are given by
increasing degree). E.g.~\kbd{[2,3]} goes to \kbd{3*v + 2}. In other words
the vector represents a polynomial in the basis $(1,v,v^2,v^3,\dots)$.

\fun{GEN}{normalizepol}{GEN x} applied to an unnormalized \typ{POL}~\kbd{x}
(with all coefficients correctly set except that \kbd{leading\_term(x)} might
be zero), normalizes \kbd{x} correctly in place and returns~\kbd{x}. For
internal use. Normalizing means deleting all leading \emph{exact} zeroes
(as per \kbd{isexactzero}), except if the polynomial turns out to be $0$,
in which case we try to find a coefficient $c$ which is a non-rational zero,
and return the constant polynomial $c$. (We do this so that information
about the base ring is not lost.)

\fun{GEN}{normalizepol_lg}{GEN x, long l} applies \kbd{normalizepol} to
\kbd{x}, pretending that \kbd{lg(x)} is $l$, which must be less than
or equal to \kbd{lg(x)}. If equal, the function is equivalent to
\kbd{normalizepol(x)}.

\fun{GEN}{normalizepol_approx}{GEN x, long lx} as \kbd{normalizepol\_lg},
with the difference that we just delete all leading zeroes (as per
\kbd{gequal0}). This rougher normalization is used when we have no other
choice, for instance before attempting a Euclidean division by $x$.

The following routines do \emph{not} copy coefficients on the stack (they
only move pointers around), hence are very fast but not suitable for
\kbd{gerepile} calls. Recall that an \kbd{RgV} (resp.~an \kbd{RgX}, resp.~an
\kbd{RgM}) is a \typ{VEC} or \typ{COL} (resp.~a \typ{POL}, resp.~a \typ{MAT})
with arbitrary components. Similarly, an \kbd{RgXV} is a \typ{VEC} or
\typ{COL} with \kbd{RgX} components, etc.

\fun{GEN}{RgV_to_RgX}{GEN x, long v} converts the \kbd{RgV}~\kbd{x} to a
(normalized) polynomial in variable~\kbd{v} (as \kbd{gtopolyrev}, without
copy).

\fun{GEN}{RgV_to_RgX_reverse}{GEN x, long v} converts the \kbd{RgV}~\kbd{x}
to a (normalized) polynomial in variable~\kbd{v} (as \kbd{gtopoly},
without copy).

\fun{GEN}{RgX_to_RgC}{GEN x, long N} converts the \typ{POL}~\kbd{x} to a
\typ{COL}~\kbd{v} with \kbd{N} components. Coefficients of \kbd{x} are listed
by increasing degree, so that \kbd{y[i]} is the coefficient of the term of
degree $i-1$ in \kbd{x}.

\fun{GEN}{Rg_to_RgC}{GEN x, long N} as \tet{RgX_to_RgV}, except that other
types than \typ{POL} are allowed for \kbd{x}, which is then considered as a
constant polynomial.

\fun{GEN}{RgM_to_RgXV}{GEN x, long v} converts the \kbd{RgM}~\kbd{x} to a
\typ{VEC} of \kbd{RgX}, by repeated calls to \kbd{RgV\_to\_RgX}.

\fun{GEN}{RgV_to_RgM}{GEN v, long N} converts the vector~\kbd{v} to
a~\typ{MAT} with \kbd{N}~rows, by repeated calls to \kbd{Rg\_to\_RgV}.

\fun{GEN}{RgXV_to_RgM}{GEN v, long N} converts the vector of \kbd{RgX}~\kbd{v}
to a~\typ{MAT} with \kbd{N}~rows, by repeated calls to \kbd{RgX\_to\_RgV}.

\fun{GEN}{RgM_to_RgXX}{GEN x, long v,long w} converts the \kbd{RgM}~\kbd{x} into
a \typ{POL} in variable~\kbd{v}, whose coefficients are \typ{POL}s in
variable~\kbd{w}. This is a shortcut for
\bprog
  RgV_to_RgX( RgM_to_RgXV(x, w), v );
@eprog\noindent
There are no consistency checks with respect to variable
priorities: the above is an invalid object if $\kbd{varncmp(v, w)} \geq 0$.

\fun{GEN}{RgXX_to_RgM}{GEN x, long N} converts the \typ{POL}~\kbd{x} with
\kbd{RgX} (or constant) coefficients to a matrix with \kbd{N} rows.

\fun{long}{RgXY_degreex}{GEN P} return the degree of $P$ with respect to
the secondary variable.

\fun{GEN}{RgXY_swap}{GEN P, long n, long w} converts the bivariate polynomial
$\kbd{P}(u,v)$ (a \typ{POL} with \typ{POL} or scalar coefficients) to
$P(\kbd{pol\_x[w]},u)$, assuming \kbd{n} is an upper bound for
$\deg_v(\kbd{P})$.

\fun{GEN}{RgXY_swapspec}{GEN C, long n, long w, long lP}
as \kbd{RgXY\_swap} where the coefficients of $P$ are given by
\kbd{gel(C,0),\dots,gel(C,lP-1)}.

\fun{GEN}{RgX_to_ser}{GEN x, long l} applied to a \typ{POL}~\kbd{x}, creates
a \emph{shallow} \typ{SER} of length~$l\geq 2$ starting with~\kbd{x}.
Unless the polynomial is an exact zero, the coefficient of lowest degree
$T^d$ of the result is not an exact zero (as per \kbd{isexactzero}). The
remainder is $O(T^{d+l})$.

\fun{GEN}{RgX_to_ser_inexact}{GEN x, long l} applied to a \typ{POL}~\kbd{x},
creates a \emph{shallow} \typ{SER} of length~\kbd{l} starting with~\kbd{x}.
Unless the polynomial is zero, the coefficient of lowest degree
$T^d$ of the result is not zero (as per \kbd{gequal0}). The
remainder is $O(T^{d+l})$.

\fun{GEN}{rfrac_to_ser}{GEN x, long l} applied to a \typ{RFRAC}~\kbd{x},
creates a \typ{SER} of length~\kbd{l} congruent to $x$. Not memory-clean
but suitable for \kbd{gerepileupto}.

\fun{GEN}{gtoser}{GEN s, long v, long d} converts the object~$s$ into
a \typ{SER} with main variable number~\kbd{v} and $d > 0$ significant terms.
More precisely

\item if $s$ is a scalar,  we return a constant power series with $d$
significant terms.

\item if $s$ is a \typ{POL}, it is truncated to $d$ terms if needed.

\item If $s$ is a vector, the coefficients of the vector  are understood to
be the coefficients of the power series starting from the constant term (as
in \tet{Polrev}), and the precision $d$ is \emph{ignored}.

\item If $s$ is already a power series in $v$, we retur a copy, and
the precision $d$ is again \emph{ignored}.

\fun{GEN}{gtocol}{GEN x} converts the object~\kbd{x} into a \typ{COL}

\fun{GEN}{gtomat}{GEN x} converts the object~\kbd{x} into a \typ{MAT}.

\fun{GEN}{gtovec}{GEN x} converts the object~\kbd{x} into a \typ{VEC}.

\fun{GEN}{gtovecsmall}{GEN x} converts the object~\kbd{x} into a
\typ{VECSMALL}.

\fun{GEN}{normalize}{GEN x} applied to an unnormalized \typ{SER}~\kbd{x}
(i.e.~type \typ{SER} with all coefficients correctly set except that \kbd{x[2]}
might be zero), normalizes \kbd{x} correctly in place. Returns~\kbd{x}.
For internal use.

\fun{GEN}{serchop0}{GEN s} given a \typ{SER} of the form $x^v s(x)$, with
$s(0)\neq 0$, return $x^v(s - s(0))$. Shallow function.

\section{Constructors}

\subsec{Clean constructors}\label{se:clean}

\fun{GEN}{zeropadic}{GEN p, long n} creates a $0$ \typ{PADIC} equal to
$O(\kbd{p}^\kbd{n})$.

\fun{GEN}{zeroser}{long v, long n} creates a $0$ \typ{SER} in variable
\kbd{v} equal to $O(X^\kbd{n})$.

\fun{GEN}{scalarser}{GEN x, long v, long prec} creates a constant \typ{SER}
in variable \kbd{v} and precision \kbd{prec}, whose constant coefficient is
(a copy of) \kbd{x}, in other words $\kbd{x} + O(\kbd{v}^\kbd{prec})$.
Assumes that $\kbd{prec}\geq 0$.

\fun{GEN}{pol_0}{long v} Returns the constant polynomial $0$ in variable $v$.

\fun{GEN}{pol_1}{long v} Returns the constant polynomial $1$ in variable $v$.

\fun{GEN}{pol_x}{long v} Returns the monomial of degree $1$ in variable $v$.

\fun{GEN}{pol_xn}{long n, long v} Returns the monomial of degree $n$
in variable $v$; assume that $n \geq 0$.

\fun{GEN}{pol_xnall}{long n, long v} Returns the Laurent monomial of degree $n$
in variable $v$; $n < 0$ is allowed.

\fun{GEN}{pol_x_powers}{long N, long v} returns the powers of
\kbd{pol\_x(v)}, of degree $0$ to $N-1$, in a vector with $N$ components.

\fun{GEN}{scalarpol}{GEN x, long v} creates a constant \typ{POL} in variable
\kbd{v}, whose constant coefficient is (a copy of) \kbd{x}.

\fun{GEN}{deg1pol}{GEN a, GEN b,long v} creates the degree 1 \typ{POL}
$a \kbd{pol\_x}(v) + b$

\fun{GEN}{zeropol}{long v} is identical \kbd{pol\_0}.

\fun{GEN}{zerocol}{long n} creates a \typ{COL} with \kbd{n} components set to
\kbd{gen\_0}.

\fun{GEN}{zerovec}{long n} creates a \typ{VEC} with \kbd{n} components set to
\kbd{gen\_0}.

\fun{GEN}{col_ei}{long n, long i} creates a \typ{COL} with \kbd{n} components
set to \kbd{gen\_0}, but for the \kbd{i}-th one which is set to \kbd{gen\_1}
(\kbd{i}-th vector in the canonical basis).

\fun{GEN}{vec_ei}{long n, long i} creates a \typ{VEC} with \kbd{n} components
set to \kbd{gen\_0}, but for the \kbd{i}-th one which is set to \kbd{gen\_1}
(\kbd{i}-th vector in the canonical basis).

\fun{GEN}{trivial_fact}{void} returns the trivial (empty) factorization
\kbd{Mat([]\til,[]\til)}

\fun{GEN}{prime_fact}{GEN x} returns the factorization
\kbd{Mat([x]\til, [1]\til)}

\fun{GEN}{Rg_col_ei}{GEN x, long n, long i} creates a \typ{COL} with \kbd{n}
components set to \kbd{gen\_0}, but for the \kbd{i}-th one which is set to
\kbd{x}.

\fun{GEN}{vecsmall_ei}{long n, long i} creates a \typ{VECSMALL} with \kbd{n}
components set to \kbd{0}, but for the \kbd{i}-th one which is set to
\kbd{1} (\kbd{i}-th vector in the canonical basis).

\fun{GEN}{scalarcol}{GEN x, long n} creates a \typ{COL} with \kbd{n}
components set to \kbd{gen\_0}, but the first one which is set to a copy
of \kbd{x}. (The name comes from \kbd{RgV\_isscalar}.)

\smallskip

\fun{GEN}{mkintmodu}{ulong x, ulong y} creates the \typ{INTMOD} \kbd{Mod(x, y)}.
The inputs must satisfy $x < y$.

\fun{GEN}{zeromat}{long m, long n} creates a \typ{MAT} with \kbd{m} x \kbd{n}
components set to \kbd{gen\_0}. Note that the result allocates a
\emph{single} column, so modifying an entry in one column modifies it in
all columns. To fully allocate a matrix initialized with zero entries,
use \kbd{zeromatcopy}.

\fun{GEN}{zeromatcopy}{long m, long n} creates a \typ{MAT} with \kbd{m} x
\kbd{n} components set to \kbd{gen\_0}.

\fun{GEN}{matid}{long n} identity matrix in dimension \kbd{n} (with
components \kbd{gen\_1} and\kbd{gen\_0}).

\fun{GEN}{scalarmat}{GEN x, long n} scalar matrix, \kbd{x} times the identity.

\fun{GEN}{scalarmat_s}{long x, long n} scalar matrix, \kbd{stoi(x)} times
the identity.

\fun{GEN}{vecrange}{GEN a, GEN b} returns the \typ{VEC} $[a..b]$.

\fun{GEN}{vecrangess}{long a, long b} returns the \typ{VEC} $[a..b]$.

\smallskip
See also next section for analogs of the following functions:

\fun{GEN}{mkfraccopy}{GEN x, GEN y} creates the \typ{FRAC} $x/y$. Assumes that
$y > 1$ and $(x,y) = 1$.

\fun{GEN}{mkrfraccopy}{GEN x, GEN y} creates the \typ{RFRAC} $x/y$.
Assumes that $y$ is a \typ{POL}, $x$ a compatible type whose variable has
lower or same priority, with $(x,y) = 1$.

\fun{GEN}{mkcolcopy}{GEN x} creates a 1-dimensional \typ{COL} containing
\kbd{x}.

\fun{GEN}{mkmatcopy}{GEN x} creates a 1-by-1 \typ{MAT} wrapping the \typ{COL}
\kbd{x}.

\fun{GEN}{mkveccopy}{GEN x} creates a 1-dimensional \typ{VEC} containing
\kbd{x}.

\fun{GEN}{mkvec2copy}{GEN x, GEN y} creates a 2-dimensional \typ{VEC} equal
to \kbd{[x,y]}.

\fun{GEN}{mkcols}{long x} creates a 1-dimensional \typ{COL}
containing \kbd{stoi(x)}.

\fun{GEN}{mkcol2s}{long x, long y} creates a 2-dimensional \typ{COL}
containing \kbd{[stoi(x), stoi(y)]~}.

\fun{GEN}{mkcol3s}{long x, long y, long z} creates a 3-dimensional \typ{COL}
containing \kbd{[stoi(x), stoi(y), stoi(z)]~}.

\fun{GEN}{mkcol4s}{long x, long y, long z, long t} creates a 4-dimensional
\typ{COL} containing \kbd{[stoi(x), stoi(y), stoi(z), stoi(t)]~}.

\fun{GEN}{mkvecs}{long x} creates a 1-dimensional \typ{VEC}
containing \kbd{stoi(x)}.

\fun{GEN}{mkvec2s}{long x, long y} creates a 2-dimensional \typ{VEC}
containing \kbd{[stoi(x), stoi(y)]}.

\fun{GEN}{mkvec3s}{long x, long y, long z} creates a 3-dimensional \typ{VEC}
containing \kbd{[stoi(x), stoi(y), stoi(z)]}.

\fun{GEN}{mkvec4s}{long x, long y, long z, long t} creates a 4-dimensional
\typ{VEC} containing \kbd{[stoi(x), stoi(y), stoi(z), stoi(t)]}.

\fun{GEN}{mkvecsmall}{long x} creates a 1-dimensional \typ{VECSMALL}
containing \kbd{x}.

\fun{GEN}{mkvecsmall2}{long x, long y} creates a 2-dimensional \typ{VECSMALL}
containing \kbd{[x, y]}.

\fun{GEN}{mkvecsmall3}{long x, long y, long z} creates a 3-dimensional
\typ{VECSMALL} containing \kbd{[x, y, z]}.

\fun{GEN}{mkvecsmall4}{long x, long y, long z, long t} creates a 4-dimensional
\typ{VECSMALL} containing \kbd{[x, y, z, t]}.

\fun{GEN}{mkvecsmalln}{long n, ...} returns the \typ{VECSMALL} whose $n$
coefficients (\kbd{long}) follow.
\emph{Warning:} since this is a variadic function, C type promotion is not
performed on the arguments by the compiler, thus you have to make sure that all
the arguments are of type \kbd{long}, in particular integer constants need to
be written with the \kbd{L} suffix: \kbd{mkvecsmalln(2, 1L, 2L)} is correct,
but \kbd{mkvecsmalln(2, 1, 2)} is not.

\subsec{Unclean constructors}\label{se:unclean}

Contrary to the policy of general PARI functions, the functions in this
subsection do \emph{not} copy their arguments, nor do they produce an object
a priori suitable for \tet{gerepileupto}. In particular, they are
faster than their clean equivalent (which may not exist). \emph{If} you
restrict their arguments to universal objects (e.g \kbd{gen\_0}),
then the above warning does not apply.

\fun{GEN}{mkcomplex}{GEN x, GEN y} creates the \typ{COMPLEX} $x + iy$.

\fun{GEN}{mulcxI}{GEN x} creates the \typ{COMPLEX} $ix$. The result in
general contains data pointing back to the original $x$. Use \kbd{gcopy} if
this is a problem. But in most cases, the result is to be used immediately,
before $x$ is subject to garbage collection.

\fun{GEN}{mulcxmI}{GEN x}, as \tet{mulcxI}, but returns the \typ{COMPLEX}
$-ix$.

\fun{GEN}{mkquad}{GEN n, GEN x, GEN y} creates the \typ{QUAD} $x + yw$,
where $w$ is a root of $n$, which is of the form \kbd{quadpoly(D)}.

\fun{GEN}{mkfrac}{GEN x, GEN y} creates the \typ{FRAC} $x/y$. Assumes that
$y > 1$ and $(x,y) = 1$.

\fun{GEN}{mkrfrac}{GEN x, GEN y} creates the \typ{RFRAC} $x/y$. Assumes
that $y$ is a \typ{POL}, $x$ a compatible type whose variable has lower
or same priority, with $(x,y) = 1$.

\fun{GEN}{mkcol}{GEN x} creates a 1-dimensional \typ{COL} containing \kbd{x}.

\fun{GEN}{mkcol2}{GEN x, GEN y} creates a 2-dimensional \typ{COL} equal to
\kbd{[x,y]}.

\fun{GEN}{mkcol3}{GEN x, GEN y, GEN z} creates a 3-dimensional \typ{COL}
equal to \kbd{[x,y,z]}.

\fun{GEN}{mkcol4}{GEN x, GEN y, GEN z, GEN t} creates a 4-dimensional \typ{COL}
equal to \kbd{[x,y,z,t]}.

\fun{GEN}{mkcol5}{GEN a1, GEN a2, GEN a3, GEN a4, GEN a5} creates the
5-dimensional \typ{COL} equal to $[a_1,a_2,a_3,a_4,a_5]$.

\fun{GEN}{mkcol6}{GEN x, GEN y, GEN z, GEN t, GEN u, GEN v}
creates the $6$-dimensional column vector \kbd{[x,y,z,t,u,v]~}.

\fun{GEN}{mkintmod}{GEN x, GEN y} creates the \typ{INTMOD} \kbd{Mod(x, y)}.
The inputs must be \typ{INT}s satisfying $0 \leq x < y$.

\fun{GEN}{mkpolmod}{GEN x, GEN y} creates the \typ{POLMOD} \kbd{Mod(x, y)}.
The input must satisfy $\deg x < \deg y$ with respect to the main variable of
the \typ{POL} $y$. $x$ may be a scalar.

\fun{GEN}{mkmat}{GEN x} creates a 1-column \typ{MAT} with column $x$
(a \typ{COL}).

\fun{GEN}{mkmat2}{GEN x, GEN y} creates a 2-column \typ{MAT} with columns
$x$, $y$ (\typ{COL}s of the same length).

\fun{GEN}{mkmat3}{GEN x, GEN y, GEN z} creates a 3-column \typ{MAT} with columns
$x$, $y$, $z$ (\typ{COL}s of the same length).

\fun{GEN}{mkmat4}{GEN x, GEN y, GEN z, GEN t} creates a 4-column \typ{MAT}
with columns $x$, $y$, $z$, $t$ (\typ{COL}s of the same length).

\fun{GEN}{mkmat5}{GEN x, GEN y, GEN z, GEN t, GEN u} creates a 5-column
\typ{MAT} with columns $x$, $y$, $z$, $t$, $u$ (\typ{COL}s of the same
length).

\fun{GEN}{mkvec}{GEN x} creates a 1-dimensional \typ{VEC} containing \kbd{x}.

\fun{GEN}{mkvec2}{GEN x, GEN y} creates a 2-dimensional \typ{VEC} equal to
\kbd{[x,y]}.

\fun{GEN}{mkvec3}{GEN x, GEN y, GEN z} creates a 3-dimensional \typ{VEC}
equal to \kbd{[x,y,z]}.

\fun{GEN}{mkvec4}{GEN x, GEN y, GEN z, GEN t} creates a 4-dimensional \typ{VEC}
equal to \kbd{[x,y,z,t]}.

\fun{GEN}{mkvec5}{GEN a1, GEN a2, GEN a3, GEN a4, GEN a5} creates the
5-dimensional \typ{VEC} equal to $[a_1,a_2,a_3,a_4,a_5]$.

\fun{GEN}{mkqfi}{GEN x, GEN y, GEN z} creates \typ{QFI} equal
to \kbd{Qfb(x,y,z)}, assuming that $y^2 - 4xz < 0$.

\fun{GEN}{mkerr}{long n} returns a \typ{ERROR} with error code $n$
(\kbd{enum err\_list}).

\smallskip

It is sometimes useful to return such a container whose entries are not
universal objects, but nonetheless suitable for \tet{gerepileupto}.
If the entries can be computed at the time the result is returned, the
following macros achieve this effect:

\fun{GEN}{retmkvec}{GEN x} returns a vector containing the single entry $x$,
where the vector root is created just before the function argument $x$ is
evaluated. Expands to
\bprog
  {
    GEN res = cgetg(2, t_VEC);
    gel(res, 1) = x; /* @Ccom or rather, the \emph{expansion} of $x$ */
    return res;
  }
@eprog\noindent For instance, the \kbd{retmkvec(gcopy(x))} returns a clean
object, just like \kbd{return mkveccopy(x)} would.

\fun{GEN}{retmkvec2}{GEN x, GEN y}
returns the $2$-dimensional \typ{VEC} \kbd{[x,y]}.

\fun{GEN}{retmkvec3}{GEN x, GEN y, GEN z}
returns the $3$-dimensional \typ{VEC} \kbd{[x,y,z]}.

\fun{GEN}{retmkvec4}{GEN x, GEN y, GEN z, GEN t}
returns the $4$-dimensional \typ{VEC} \kbd{[x,y,z,t]}.

\fun{GEN}{retmkvec5}{GEN x, GEN y, GEN z, GEN t, GEN u}
returns the $5$-dimensional row vector \kbd{[x,y,z,t,u]}.

\fun{GEN}{retconst_vec}{long n, GEN x}
returns the $n$-dimensional \typ{VEC} whose entries are constant and all
equal to $x$.

\fun{GEN}{retmkcol}{GEN x}
returns the $1$-dimensional \typ{COL} \kbd{[x]~}.

\fun{GEN}{retmkcol2}{GEN x, GEN y}
returns the $2$-dimensional \typ{COL} \kbd{[x,y]~}.

\fun{GEN}{retmkcol3}{GEN x, GEN y, GEN z}
returns the $3$-dimensional \typ{COL} \kbd{[x,y,z]~}.

\fun{GEN}{retmkcol4}{GEN x, GEN y, GEN z, GEN t}
returns the $4$-dimensional \typ{COL} \kbd{[x,y,z,t]~}.

\fun{GEN}{retmkcol5}{GEN x, GEN y, GEN z, GEN t, GEN u}
returns the $5$-dimensional column vector \kbd{[x,y,z,t,u]~}.

\fun{GEN}{retmkcol6}{GEN x, GEN y, GEN z, GEN t, GEN u, GEN v}
returns the $6$-dimensional column vector \kbd{[x,y,z,t,u,v]~}.

\fun{GEN}{retconst_col}{long n, GEN x}
returns the $n$-dimensional \typ{COL} whose entries are constant and all
equal to $x$.

\fun{GEN}{retmkmat}{GEN x}
returns the $1$-column \typ{MAT} with colum \kbd{x}.

\fun{GEN}{retmkmat2}{GEN x, GEN y}
returns the $2$-column \typ{MAT} with columns \kbd{x}, \kbd{y}.

\fun{GEN}{retmkmat3}{GEN x, GEN y, GEN z}
returns the $3$-dimensional \typ{MAT} with columns
\kbd{x}, \kbd{y}, \kbd{z}.

\fun{GEN}{retmkmat4}{GEN x, GEN y, GEN z, GEN t}
returns the $4$-dimensional \typ{MAT} with columns
\kbd{x}, \kbd{y}, \kbd{z}, \kbd{t}.

\fun{GEN}{retmkmat5}{GEN x, GEN y, GEN z, GEN t, GEN u}
returns the $5$-dimensional \typ{MAT} with columns
\kbd{x}, \kbd{y}, \kbd{z}, \kbd{t}, \kbd{u}.

\fun{GEN}{retmkcomplex}{GEN x, GEN y}
returns the \typ{COMPLEX} \kbd{x + I*y}.

\fun{GEN}{retmkfrac}{GEN x, GEN y}
returns the \typ{FRAC} \kbd{x / y}. Assume $x$ and $y$ are coprime and $y > 1$.

\fun{GEN}{retmkrfrac}{GEN x, GEN y}
returns the \typ{RFRAC} \kbd{x / y}. Assume $x$ and $y$ are coprime and more
generally that the rational function cannot be simplified.

\fun{GEN}{retmkintmod}{GEN x, GEN y}
returns the \typ{INTMOD} \kbd{Mod(x, y)}.

\fun{GEN}{retmkqfi}{GEN a, GEN b, GEN c}.

\fun{GEN}{retmkqfr}{GEN a, GEN b, GEN c, GEN d}.

\fun{GEN}{retmkquad}{GEN n, GEN a, GEN b}.

\fun{GEN}{retmkpolmod}{GEN x, GEN y}
returns the \typ{POLMOD} \kbd{Mod(x, y)}.

\smallskip

\fun{GEN}{mkintn}{long n, ...} returns the non-negative \typ{INT} whose
development in base $2^{32}$ is given by the following $n$ 32bit-words
(\kbd{unsigned int}).
\bprog
  mkintn(3, a2, a1, a0);
@eprog
\noindent returns $a_2 2^{64} + a_1 2^{32} + a_0$.

\fun{GEN}{mkpoln}{long n, ...} Returns the \typ{POL} whose $n$
coefficients (\kbd{GEN}) follow, in order of decreasing degree.
\bprog
  mkpoln(3, gen_1, gen_2, gen_0);
@eprog
\noindent returns the polynomial $X^2 + 2X$ (in variable $0$, use
\tet{setvarn} if you want other variable numbers). Beware that $n$ is the
number of coefficients, hence \emph{one more} than the degree.

\fun{GEN}{mkvecn}{long n, ...} returns the \typ{VEC} whose $n$
coefficients (\kbd{GEN}) follow.

\fun{GEN}{mkcoln}{long n, ...} returns the \typ{COL} whose $n$
coefficients (\kbd{GEN}) follow.

\fun{GEN}{scalarcol_shallow}{GEN x, long n} creates a \typ{COL} with \kbd{n}
components set to \kbd{gen\_0}, but the first one which is set to a shallow
copy of \kbd{x}. (The name comes from \kbd{RgV\_isscalar}.)

\fun{GEN}{scalarmat_shallow}{GEN x, long n} creates an $n\times n$
scalar matrix whose diagonal is set to shallow copies of the scalar \kbd{x}.

\fun{GEN}{diagonal_shallow}{GEN x} returns a diagonal matrix whose diagonal
is given by the vector $x$. Shallow function.

\fun{GEN}{scalarpol_shallow}{GEN a, long v} returns the degree 0
\typ{POL} $a \kbd{pol\_x}(v)^0$.

\fun{GEN}{deg1pol_shallow}{GEN a, GEN b,long v} returns the degree 1
\typ{POL} $a\kbd{pol\_x}(v) + b$

\fun{GEN}{zeropadic_shallow}{GEN p, long n} returns a (shallow) $0$
\typ{PADIC} equal to $O(\kbd{p}^\kbd{n})$.

\subsec{From roots to polynomials}

\fun{GEN}{deg1_from_roots}{GEN L, long v} given a vector $L$ of scalars,
returns the vector of monic linear polynomials in variable $v$ whose roots
are the $L[i]$, i.e. the $x - L[i]$.

\fun{GEN}{roots_from_deg1}{GEN L} given a vector $L$ of monic linear
polynomials, return their roots, i.e. the $- L[i](0)$.

\fun{GEN}{roots_to_pol}{GEN L, long v} given a vector of scalars $L$,
returns the monic polynomial in variable $v$ whose roots are the $L[i]$.
Leaves some garbage on stack, but suitable for \kbd{gerepileupto}.

\fun{GEN}{roots_to_pol_r1}{GEN L, long v, long r1} as \kbd{roots\_to\_pol}
assuming the first $r_1$ roots are ``real'', and the following ones are
representatives of conjugate pairs of ``complex'' roots. So if $L$ has $r_1 +
r_2$ elements, we obtain a polynomial of degree $r_1 + 2r_2$. In most
applications, the roots are indeed real and complex, but the implementation
assumes only that each ``complex'' root $z$ introduces a quadratic
factor $X^2 - \kbd{trace}(z) X + \kbd{norm}(z)$.
Leaves some garbage on stack, but suitable for \kbd{gerepileupto}.

\section{Integer parts}

\fun{GEN}{gfloor}{GEN x} creates the floor of~\kbd{x}, i.e.\ the (true)
integral part.

\fun{GEN}{gfrac}{GEN x} creates the fractional part of~\kbd{x}, i.e.\ \kbd{x}
minus the floor of~\kbd{x}.

\fun{GEN}{gceil}{GEN x} creates the ceiling of~\kbd{x}.

\fun{GEN}{ground}{GEN x} rounds towards~$+\infty$ the components of \kbd{x}
to the nearest integers.

\fun{GEN}{grndtoi}{GEN x, long *e} same as \kbd{ground}, but in addition sets
\kbd{*e} to the binary exponent of $x - \kbd{ground}(x)$. If this is
positive, all significant bits are lost. This kind of situation raises an
error message in \key{ground} but not in \key{grndtoi}.

\fun{GEN}{gtrunc}{GEN x} truncates~\kbd{x}. This is the false integer part
if \kbd{x} is a real number (i.e.~the unique integer closest to \kbd{x} among
those between 0 and~\kbd{x}). If \kbd{x} is a \typ{SER}, it is truncated
to a \typ{POL}; if \kbd{x} is a \typ{RFRAC}, this takes the polynomial part.

\fun{GEN}{gtrunc2n}{GEN x, long n} creates the floor of~$2^n$\kbd{x}, this is
only implemented for \typ{INT}, \typ{REAL}, \typ{FRAC} and \typ{COMPLEX} of
those.

\fun{GEN}{gcvtoi}{GEN x, long *e} analogous to \key{grndtoi} for
\typ{REAL} inputs except that rounding is replaced by truncation. Also applies
componentwise for vector or matrix inputs; otherwise, sets \kbd{*e} to
\kbd{-HIGHEXPOBIT} (infinite real accuracy) and return \kbd{gtrunc(x)}.

\section{Valuation and shift}

\fun{GEN}{gshift[z]}{GEN x, long n[, GEN z]} yields the result of shifting
(the components of) \kbd{x} left by \kbd{n} (if \kbd{n} is non-negative)
or right by $-\kbd{n}$ (if \kbd{n} is negative). Applies only to \typ{INT}
and vectors/matrices of such. For other types, it is simply multiplication
by~$2^{\kbd{n}}$.

\fun{GEN}{gmul2n[z]}{GEN x, long n[, GEN z]} yields the product of \kbd{x}
and~$2^{\kbd{n}}$. This is different from \kbd{gshift} when \kbd{n} is negative
and \kbd{x} is a \typ{INT}: \key{gshift} truncates, while \key{gmul2n}
creates a fraction if necessary.

\fun{long}{gvaluation}{GEN x, GEN p} returns the greatest exponent~$e$ such that
$\kbd{p}^e$ divides~\kbd{x}, when this makes sense.

\fun{long}{gval}{GEN x, long v} returns the highest power of the variable
number \kbd{v} dividing the \typ{POL}~\kbd{x}.

\section{Comparison operators}

\subsec{Generic}

\fun{long}{gcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y}: returns
$1$ ($x > y$), $0$ ($x = y$) or $-1$ ($x < y$). Two \typ{STR}
are compared using the standard lexicographic ordering; a \typ{STR}
is considered strictly larger than any non-string type. If neither
$x$ nor $y$ is a \typ{STR}, their allowed types are \typ{INT}, \typ{REAL}
or \typ{FRAC}. Used \tet{cmp_universal} to compare arbitrary \kbd{GEN}s.

\fun{long}{lexcmp}{GEN x, GEN y} comparison of \kbd{x} with \kbd{y} for the
lexicographic ordering; when comparing objects of different lengths whose
components are all equal up to the smallest of their length, consider that
the longest is largest. Consider scalars as $1$-component vectors. Return
\kbd{gcmp}$(x,y)$ if both arguments are scalars.

\fun{int}{gequalX}{GEN x} return 1 (true) if \kbd{x} is a variable
(monomial of degree $1$ with \typ{INT} coefficients equal to $1$ and $0$),
and $0$ otherwise

\fun{long}{gequal}{GEN x, GEN y} returns 1 (true) if \kbd{x} is equal
to~\kbd{y}, 0~otherwise. A priori, this makes sense only if \kbd{x} and
\kbd{y} have the same type, in which case they are recursively compared
componentwise. When the types are different, a \kbd{true} result
means that \kbd{x - y} was successfully computed and that
\kbd{gequal0} found it equal to $0$. In particular
\bprog
  gequal(cgetg(1, t_VEC), gen_0)
@eprog\noindent is true, and the relation is not transitive. E.g.~an empty
\typ{COL} and an empty \typ{VEC} are not equal but are both equal to
\kbd{gen\_0}.

\fun{long}{gidentical}{GEN x, GEN y} returns 1 (true) if \kbd{x} is identical
to~\kbd{y}, 0~otherwise. In particular, the types and length of \kbd{x} and
\kbd{y} must be equal. This test is much stricter than \tet{gequal}, in
particular, \typ{REAL} with different accuracies are tested different. This
relation is transitive.

\subsec{Comparison with a small integer}

\fun{int}{isexactzero}{GEN x} returns 1 (true) if \kbd{x} is exactly equal
to~0 (including \typ{INTMOD}s like \kbd{Mod(0,2)}), and 0~(false) otherwise.
This includes recursive objects, for instance vectors, whose components are $0$.

\fun{GEN}{gisexactzero}{GEN x} returns \kbd{NULL} unless \kbd{x} is exactly
equal to~0 (as per \kbd{isexactzero}). When \kbd{x} is an exact zero
return the attached scalar zero as a \typ{INT} (\kbd{gen\_0}),
a \typ{INTMOD} (\kbd{Mod(0,$N$)} for the largest possible $N$) or a
\typ{FFELT}.

\fun{int}{isrationalzero}{GEN x} returns 1 (true) if \kbd{x} is equal
to an integer~0 (excluding \typ{INTMOD}s like \kbd{Mod(0,2)}), and 0~(false)
otherwise. Contrary to \kbd{isintzero}, this includes recursive objects, for
instance vectors, whose components are $0$.

\fun{int}{ismpzero}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT} or
a \typ{REAL} equal to~0.

\fun{int}{isintzero}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT}
equal to~0.

\fun{int}{isint1}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT}
equal to~1.

\fun{int}{isintm1}{GEN x} returns 1 (true) if \kbd{x} is a \typ{INT}
equal to~$-1$.

\fun{int}{equali1}{GEN n}
Assuming that \kbd{x} is a \typ{INT}, return 1 (true) if \kbd{x} is equal to
$1$, and return 0~(false) otherwise.

\fun{int}{equalim1}{GEN n}
Assuming that \kbd{x} is a \typ{INT}, return 1 (true) if \kbd{x} is equal to
$-1$, and return 0~(false) otherwise.

\fun{int}{is_pm1}{GEN x}. Assuming that \kbd{x} is a
\emph{non-zero} \typ{INT}, return 1 (true) if \kbd{x} is equal to $-1$ or
$1$, and return 0~(false) otherwise.

\fun{int}{gequal0}{GEN x} returns 1 (true) if \kbd{x} is equal to~0, 0~(false)
otherwise.

\fun{int}{gequal1}{GEN x} returns 1 (true) if \kbd{x} is equal to~1, 0~(false)
otherwise.

\fun{int}{gequalm1}{GEN x} returns 1 (true) if \kbd{x} is equal to~$-1$,
0~(false) otherwise.


\fun{long}{gcmpsg}{long s, GEN x}

\fun{long}{gcmpgs}{GEN x, long s} comparison of \kbd{x} with the
\kbd{long}~\kbd{s}.

\fun{GEN}{gmaxsg}{long s, GEN x}

\fun{GEN}{gmaxgs}{GEN x, long s} returns the largest of \kbd{x} and
the \kbd{long}~\kbd{s} (converted to \kbd{GEN})

\fun{GEN}{gminsg}{long s, GEN x}

\fun{GEN}{gmings}{GEN x, long s} returns the smallest of \kbd{x} and the
\kbd{long}~\kbd{s} (converted to \kbd{GEN})

\fun{long}{gequalsg}{long s, GEN x}

\fun{long}{gequalgs}{GEN x, long s} returns 1 (true) if \kbd{x} is equal to
the \kbd{long}~\kbd{s}, 0~otherwise.

\section{Miscellaneous Boolean functions}

\fun{int}{isrationalzeroscalar}{GEN x} equivalent to, but faster than,
\bprog
  is_scalar_t(typ(x)) && isrationalzero(x)
@eprog

\fun{int}{isinexact}{GEN x} returns 1 (true) if $x$ has an inexact
component, and 0 (false) otherwise.

\fun{int}{isinexactreal}{GEN x} return 1 if $x$ has an inexact
\typ{REAL} component, and 0  otherwise.

\fun{int}{isrealappr}{GEN x, long e} applies (recursively) to complex inputs;
returns $1$ if $x$ is approximately real to the bit accuracy $e$, and 0
otherwise. This means that any \typ{COMPLEX} component must have imaginary part
$t$ satisfying $\kbd{gexpo}(t) < e$.

\fun{int}{isint}{GEN x, GEN *n} returns 0 (false) if \kbd{x} does not round
to an integer. Otherwise, returns 1 (true) and set \kbd{n} to the rounded
value.

\fun{int}{issmall}{GEN x, long *n} returns 0 (false) if \kbd{x} does not
round to a small integer (suitable for \kbd{itos}). Otherwise, returns 1
(true) and set \kbd{n} to the rounded value.

\fun{long}{iscomplex}{GEN x} returns 1 (true) if \kbd{x} is a complex number
(of component types embeddable into the reals) but is not itself real, 0~if
\kbd{x} is a real (not necessarily of type \typ{REAL}), or raises an error if
\kbd{x} is not embeddable into the complex numbers.

\subsec{Obsolete}

The following less convenient comparison functions and Boolean operators were
used by the historical GP interpreter. They are provided for backward
compatibility only and should not be used:

\fun{GEN}{gle}{GEN x, GEN y}

\fun{GEN}{glt}{GEN x, GEN y}

\fun{GEN}{gge}{GEN x, GEN y}

\fun{GEN}{ggt}{GEN x, GEN y}

\fun{GEN}{geq}{GEN x, GEN y}

\fun{GEN}{gne}{GEN x, GEN y}

\fun{GEN}{gor}{GEN x, GEN y}

\fun{GEN}{gand}{GEN x, GEN y}

\fun{GEN}{gnot}{GEN x, GEN y}

\section{Sorting}

\subsec{Basic sort}

\fun{GEN}{sort}{GEN x} sorts the vector \kbd{x} in ascending order using a
mergesort algorithm, and \kbd{gcmp} as the underlying comparison routine
(returns the sorted vector). This routine copies all components of $x$, use
\kbd{gen\_sort\_inplace} for a more memory-efficient function.

\fun{GEN}{lexsort}{GEN x}, as \kbd{sort}, using \kbd{lexcmp} instead of
\kbd{gcmp} as the underlying comparison routine.

\fun{GEN}{vecsort}{GEN x, GEN k}, as \kbd{sort}, but sorts the
vector \kbd{x} in ascending \emph{lexicographic} order, according to the
entries of the \typ{VECSMALL} \kbd{k}. For example,  if $\kbd{k} = [2,1,3]$,
sorting will be done with respect to the second component,  and when these
are  equal, with respect to the first,  and when these are equal,  with
respect to the third.

\subsec{Indirect sorting}

\fun{GEN}{indexsort}{GEN x} as \kbd{sort}, but only returns the permutation
which, applied to \kbd{x}, would sort the vector. The result is a
\typ{VECSMALL}.

\fun{GEN}{indexlexsort}{GEN x}, as \kbd{indexsort}, using \kbd{lexcmp}
instead of \kbd{gcmp} as the underlying comparison routine.

\fun{GEN}{indexvecsort}{GEN x, GEN k}, as \kbd{vecsort}, but only
returns the permutation that would sort the vector \kbd{x}.

\fun{long}{vecindexmin}{GEN x} returns the index for a maximal element of $x$
(\typ{VEC}, \typ{COL} or \typ{VECSMALL}).

\fun{long}{vecindexmax}{GEN x} returns the index for a maximal element of $x$
(\typ{VEC}, \typ{COL} or \typ{VECSMALL}).

\fun{long}{vecindexmax}{GEN x}

\subsec{Generic sort and search} The following routines allow to use an
arbitrary comparison function \kbd{int (*cmp)(void* data, GEN x, GEN y)},
such that \kbd{cmp(data,x,y)} returns a negative result if $x
< y$, a positive one if $x > y$ and 0 if $x = y$. The \kbd{data} argument is
there in case your \kbd{cmp} requires additional context.

\fun{GEN}{gen_sort}{GEN x, void *data, int (*cmp)(void *,GEN,GEN)}, as
\kbd{sort}, with an explicit comparison routine.

\fun{GEN}{gen_sort_uniq}{GEN x, void *data, int (*cmp)(void *,GEN,GEN)}, as
\kbd{gen\_sort}, removing duplicate entries.

\fun{GEN}{gen_indexsort}{GEN x, void *data, int (*cmp)(void*,GEN,GEN)},
as \kbd{indexsort}.

\fun{GEN}{gen_indexsort_uniq}{GEN x, void *data, int (*cmp)(void*,GEN,GEN)},
as \kbd{indexsort}, removing duplicate entries.

\fun{void}{gen_sort_inplace}{GEN x, void *data, int (*cmp)(void*,GEN,GEN), GEN
*perm} sort \kbd{x} in place, without copying its components. If
\kbd{perm} is non-\kbd{NULL}, it is set to the permutation that would sort
the original \kbd{x}.

\fun{GEN}{gen_setminus}{GEN A, GEN B, int (*cmp)(GEN,GEN)} given two sorted
vectors $A$ and $B$, returns the vector of elements of $A$ not belonging to
$B$.

\fun{GEN}{sort_factor}{GEN y, void *data, int (*cmp)(void *,GEN,GEN)}:
assuming \kbd{y} is a factorization matrix, sorts its rows in place (no copy
is made) according to the comparison function \kbd{cmp} applied to its first
column.

\fun{GEN}{merge_sort_uniq}{GEN x,GEN y, void *data, int (*cmp)(void *,GEN,GEN)}
assuming \kbd{x} and \kbd{y} are sorted vectors, with respect to the \kbd{cmp}
comparison function, return a sorted concatenation, with duplicates removed.

\fun{GEN}{merge_factor}{GEN fx, GEN fy, void *data, int (*cmp)(void *,GEN,GEN)}
let \kbd{fx} and \kbd{fy} be factorization matrices for $X$ and $Y$
sorted with respect to the comparison function \kbd{cmp} (see
\tet{sort_factor}), returns the factorization of $X * Y$.

\fun{long}{gen_search}{GEN v, GEN y, long flag, void *data, int
(*cmp)(void*,GEN,GEN)}.\hfil\break
Let \kbd{v} be a vector sorted according to \kbd{cmp(data,a,b)}; look for an
index $i$ such that  \kbd{v[$i$]} is equal to \kbd{y}. \kbd{flag} has the
same meaning as in \kbd{setsearch}: if \kbd{flag} is 0, return $i$ if it
exists and 0 otherwise; if \kbd{flag} is non-zero, return $0$ if $i$ exists
and the index where \kbd{y} should be inserted otherwise.

\fun{long}{tablesearch}{GEN T, GEN x, int (*cmp)(GEN,GEN)} is a faster
implementation for the common case \kbd{gen\_search(T,x,0,cmp,cmp\_nodata)}.

\subsec{Further useful comparison functions}

\fun{int}{cmp_universal}{GEN x, GEN y} a somewhat arbitrary universal
comparison function, devoid of sensible mathematical meaning. It is
transitive, and returns 0 if and only if \kbd{gidentical(x,y)} is true.
Useful to sort and search vectors of arbitrary data.

\fun{int}{cmp_nodata}{void *data, GEN x, GEN y}. This function is a hack
used to pass an existing basic comparison function lacking the \kbd{data}
argument, i.e. with prototype \kbd{int (*cmp)(GEN x, GEN y)}. Instead of
\kbd{gen\_sort(x, NULL, cmp)} which may or may not work depending on how your
compiler handles typecasts between incompatible function pointers, one should
use \kbd{gen\_sort(x, (void*)cmp, cmp\_nodata)}.

Here are a few basic comparison functions, to be used with \kbd{cmp\_nodata}:

\fun{int}{ZV_cmp}{GEN x, GEN y} compare two \kbd{ZV}, which we assume have
the same length (lexicographic order).

\fun{int}{cmp_Flx}{GEN x, GEN y} compare two \kbd{Flx}, which we assume
have the same main variable (lexicographic order).

\fun{int}{cmp_RgX}{GEN x, GEN y} compare two polynomials, which we assume
have the same main variable (lexicographic order). The coefficients are
compared using \kbd{gcmp}.

\fun{int}{cmp_prime_over_p}{GEN x, GEN y} compare two prime ideals, which
we assume divide the same prime number. The comparison is ad hoc but orders
according to increasing residue degrees.

\fun{int}{cmp_prime_ideal}{GEN x, GEN y} compare two prime ideals in the same
\var{nf}. Orders by increasing primes, breaking ties using
\kbd{cmp\_prime\_over\_p}.

\fun{int}{cmp_padic}{GEN x, GEN y} compare two \typ{PADIC} (for the same
prime $p$).

Finally a more elaborate comparison function:

\fun{int}{gen_cmp_RgX}{void *data, GEN x, GEN y} compare two polynomials,
ordering first by increasing degree, then according to the coefficient
comparison function:
\bprog
  int (*cmp_coeff)(GEN,GEN) = (int(*)(GEN,GEN)) data;
@eprog

\section{Divisibility, Euclidean division}

\fun{GEN}{gdivexact}{GEN x, GEN y} returns the quotient $\kbd{x} / \kbd{y}$,
assuming $\kbd{y}$ divides $\kbd{x}$. Not stack clean if $y = 1$
(we return $x$, not a copy).

\fun{int}{gdvd}{GEN x, GEN y}  returns 1 (true) if \kbd{y} divides~\kbd{x},
0~otherwise.

\fun{GEN}{gdiventres}{GEN x, GEN y} creates a 2-component vertical
vector whose components are the true Euclidean quotient and remainder
of \kbd{x} and~\kbd{y}.

\fun{GEN}{gdivent[z]}{GEN x, GEN y[, GEN z]} yields the true Euclidean
quotient of \kbd{x} and the \typ{INT} or \typ{POL}~\kbd{y}, as per
the \kbd{\bs} GP operator.

\fun{GEN}{gdiventsg}{long s, GEN y[, GEN z]}, as \kbd{gdivent}
except that \kbd{x} is a \kbd{long}.

\fun{GEN}{gdiventgs[z]}{GEN x, long s[, GEN z]}, as \kbd{gdivent}
except that \kbd{y} is a \kbd{long}.

\fun{GEN}{gmod[z]}{GEN x, GEN y[, GEN z]} yields the remainder of \kbd{x}
modulo the \typ{INT} or \typ{POL}~\kbd{y}, as per the \kbd{\%} GP operator.
A \typ{REAL} or \typ{FRAC} \kbd{y} is also allowed, in which case the
remainder is the unique real $r$ such that $0 \leq r < |\kbd{y}|$ and
$\kbd{y} = q\kbd{x} + r$ for some (in fact unique) integer $q$.

\fun{GEN}{gmodsg}{long s, GEN y[, GEN z]} as \kbd{gmod}, except \kbd{x} is
a \kbd{long}.

\fun{GEN}{gmodgs}{GEN x, long s[, GEN z]} as \kbd{gmod}, except \kbd{y} is
a \kbd{long}.

\fun{GEN}{gdivmod}{GEN x, GEN y, GEN *r} If \kbd{r} is not equal to
\kbd{NULL} or \kbd{ONLY\_REM}, creates the (false) Euclidean quotient of
\kbd{x} and~\kbd{y}, and puts (the address of) the remainder into~\kbd{*r}.
If \kbd{r} is equal to \kbd{NULL}, do not create the remainder, and if
\kbd{r} is equal to \kbd{ONLY\_REM}, create and output only the remainder.
The remainder is created after the quotient and can be disposed of
individually with a \kbd{cgiv(r)}.

\fun{GEN}{poldivrem}{GEN x, GEN y, GEN *r} same as \key{gdivmod} but
specifically for \typ{POL}s~\kbd{x} and~\kbd{y}, not necessarily in the same
variable. Either of \kbd{x} and \kbd{y} may also be scalars, treated as
polynomials of degree $0$.

\fun{GEN}{gdeuc}{GEN x, GEN y} creates the Euclidean quotient of the
\typ{POL}s~\kbd{x} and~\kbd{y}. Either of \kbd{x} and \kbd{y} may also be
scalars, treated as polynomials of degree $0$.

\fun{GEN}{grem}{GEN x, GEN y} creates the Euclidean remainder of the
\typ{POL}~\kbd{x} divided by the \typ{POL}~\kbd{y}. Either of \kbd{x} and
\kbd{y} may also be scalars, treated as polynomials of degree $0$.


\fun{GEN}{gdivround}{GEN x, GEN y} if \kbd{x} and \kbd{y} are real
(\typ{INT}, \typ{REAL}, \typ{FRAC}), return the rounded Euclidean quotient of
$x$ and $y$ as per the \kbd{\bs/} GP operator. Operate componentwise if
\kbd{x} is a \typ{COL}, \typ{VEC} or \typ{MAT}. Otherwise as \key{gdivent}.

\fun{GEN}{centermod_i}{GEN x, GEN y, GEN y2}, as \kbd{centermodii},
componentwise.

\fun{GEN}{centermod}{GEN x, GEN y}, as \kbd{centermod\_i}, except that
\kbd{y2} is computed (and left on the stack for efficiency).

\fun{GEN}{ginvmod}{GEN x, GEN y} creates the inverse of \kbd{x} modulo \kbd{y}
when it exists. \kbd{y} must be of type \typ{INT} (in which case \kbd{x} is
of type \typ{INT}) or \typ{POL} (in which case \kbd{x} is either a scalar
type or a \typ{POL}).

\section{GCD, content and primitive part}

\subsec{Generic}

\fun{GEN}{resultant}{GEN x, GEN y} creates the resultant of the \typ{POL}s
\kbd{x} and~\kbd{y} computed using Sylvester's matrix (inexact inputs), a
modular algorithm (inputs in $\Q[X]$) or the subresultant algorithm, as
optimized by Lazard and Ducos. Either of \kbd{x} and \kbd{y} may also be
scalars (treated as polynomials of degree $0$)

\fun{GEN}{ggcd}{GEN x, GEN y} creates the GCD of \kbd{x} and~\kbd{y}.

\fun{GEN}{glcm}{GEN x, GEN y} creates the LCM of \kbd{x} and~\kbd{y}.

\fun{GEN}{gbezout}{GEN x,GEN y, GEN *u,GEN *v} returns the GCD of \kbd{x}
and~\kbd{y}, and puts (the addresses of) objects $u$ and~$v$ such that
$u\kbd{x}+v\kbd{y}=\gcd(\kbd{x},\kbd{y})$ into \kbd{*u} and~\kbd{*v}.

\fun{GEN}{subresext}{GEN x, GEN y, GEN *U, GEN *V} returns the resultant
of \kbd{x} and~\kbd{y}, and puts (the addresses of) polynomials $u$ and~$v$
such that $u\kbd{x}+v\kbd{y}=\text{Res}(\kbd{x},\kbd{y})$ into \kbd{*U}
and~\kbd{*V}.

\fun{GEN}{content}{GEN x} returns the GCD of all the components of~\kbd{x}.

\fun{GEN}{primitive_part}{GEN x, GEN *c} sets \kbd{c} to \kbd{content(x)}
and returns the primitive part \kbd{x} / \kbd{c}. A trivial content is set to
\kbd{NULL}.

\fun{GEN}{primpart}{GEN x} as above but the content is lost.
(For efficiency, the content remains on the stack.)

\subsec{Over the rationals}

\fun{long}{Q_pval}{GEN x, GEN p} valuation at the \typ{INT} \kbd{p}
of the \typ{INT} or \typ{FRAC}~\kbd{x}.

\fun{long}{Q_pvalrem}{GEN x, GEN p, GEN *r} returns the valuation $e$ at the
\typ{INT} \kbd{p} of the \typ{INT} or \typ{FRAC}~\kbd{x}. The quotient
$\kbd{x}/\kbd{p}^{e}$ is returned in~\kbd{*r}.

\fun{GEN}{Q_abs}{GEN x} absolute value of the \typ{INT} or
\typ{FRAC}~\kbd{x}.

\fun{GEN}{Qdivii}{GEN x, GEN y}, assuming $x$ and $y$
are both of type \typ{INT}, return the quotient $x/y$ as a \typ{INT} or
\typ{FRAC}; marginally faster than \kbd{gdiv}.

\fun{GEN}{Q_abs_shallow}{GEN x} $x$ being a \typ{INT} or a \typ{FRAC}, returns
a shallow copy of $|x|$, in particular returns $x$ itself when $x \geq 0$, and
\kbd{gneg($x$)} otherwise.

\fun{GEN}{Q_gcd}{GEN x, GEN y} gcd of the \typ{INT} or \typ{FRAC}~\kbd{x}
and~\kbd{y}.
\smallskip

In the following functions, arguments belong to a $M\otimes_\Z\Q$
for some natural $\Z$-module $M$, e.g. multivariate polynomials with integer
coefficients (or vectors/matrices recursively built from such objects), and
an element of $M$ is said to be \emph{integral}.
We are interested in contents, denominators, etc. with respect to this
canonical integral structure; in particular, contents belong to $\Q$,
denominators to $\Z$. For instance the $\Q$-content of $(1/2)xy$ is $(1/2)$,
and its $\Q$-denominator is $2$, whereas \kbd{content} would return $y/2$ and
\kbd{denom}~1.

\fun{GEN}{Q_content}{GEN x} the $\Q$-content of $x$

\fun{GEN}{Q_denom}{GEN x} the $\Q$-denominator of $x$. Shallow function.

\fun{GEN}{Q_primitive_part}{GEN x, GEN *c} sets \kbd{c} to the $\Q$-content
of \kbd{x} and returns \kbd{x / c}, which is integral.

\fun{GEN}{Q_primpart}{GEN x} as above but the content is lost. (For
efficiency, the content remains on the stack.)

\fun{GEN}{Q_remove_denom}{GEN x, GEN *ptd} sets \kbd{d} to the
$\Q$-denominator of \kbd{x} and returns \kbd{x * d}, which is integral.
Shallow function.

\fun{GEN}{Q_div_to_int}{GEN x, GEN c} returns \kbd{x / c}, assuming $c$
is a rational number (\typ{INT} or \typ{FRAC}) and the result is integral.

\fun{GEN}{Q_mul_to_int}{GEN x, GEN c} returns \kbd{x * c}, assuming $c$
is a rational number (\typ{INT} or \typ{FRAC}) and the result is integral.

\fun{GEN}{Q_muli_to_int}{GEN x, GEN d} returns \kbd{x * c}, assuming $c$
is a \typ{INT} and the result is integral.

\fun{GEN}{mul_content}{GEN cx, GEN cy}  \kbd{cx} and \kbd{cy} are
as set by \kbd{primitive\_part}: either a \kbd{GEN} or \kbd{NULL}
representing the trivial content $1$. Returns their product (either a
\kbd{GEN} or \kbd{NULL}).

\fun{GEN}{mul_denom}{GEN dx, GEN dy} \kbd{dx} and \kbd{dy} are
as set by \kbd{Q\_remove\_denom}: either a \typ{INT} or \kbd{NULL} representing
the trivial denominator $1$. Returns their product (either a \typ{INT} or
\kbd{NULL}).

\section{Generic arithmetic operators}

\subsec{Unary operators}

\fun{GEN}{gneg[z]}{GEN x[, GEN z]} yields $-\kbd{x}$.

\fun{GEN}{gneg_i}{GEN x} shallow function yielding $-\kbd{x}$.

\fun{GEN}{gabs[z]}{GEN x[, GEN z]} yields $|\kbd{x}|$.

\fun{GEN}{gsqr}{GEN x} creates the square of~\kbd{x}.

\fun{GEN}{ginv}{GEN x} creates the inverse of~\kbd{x}.

\subsec{Binary operators}

Let ``\op'' be a binary operation among

\op=\key{add}: addition (\kbd{x + y}).

\op=\key{sub}: subtraction (\kbd{x - y}).

\op=\key{mul}: multiplication (\kbd{x * y}).

\op=\key{div}: division (\kbd{x / y}).

\noindent The names and prototypes of the functions corresponding
to \op\ are as follows:

\funno{GEN}{g\op}{GEN x, GEN y}

\funno{GEN}{g\op gs}{GEN x, long s}

\funno{GEN}{g\op sg}{long s, GEN y}

\noindent Explicitly

\fun{GEN}{gadd}{GEN x, GEN y}, \fun{GEN}{gaddgs}{GEN x, long s},
\fun{GEN}{gaddsg}{long s, GEN x}

\fun{GEN}{gmul}{GEN x, GEN y}, \fun{GEN}{gmulgs}{GEN x, long s},
\fun{GEN}{gmulsg}{long s, GEN x}

\fun{GEN}{gsub}{GEN x, GEN y}, \fun{GEN}{gsubgs}{GEN x, long s},
\fun{GEN}{gsubsg}{long s, GEN x}

\fun{GEN}{gdiv}{GEN x, GEN y}, \fun{GEN}{gdivgs}{GEN x, long s},
\fun{GEN}{gdivsg}{long s, GEN x}


\fun{GEN}{gpow}{GEN x, GEN y, long l} creates $\kbd{x}^{\kbd{y}}$. If
\kbd{y} is a \typ{INT}, return \kbd{powgi(x,y)} (the precision \kbd{l} is not
taken into account). Otherwise, the result is $\exp(\kbd{y}*\log(\kbd{x}))$
where exact arguments are converted to floats of precision~\kbd{l} in case of
need; if there is no need, for instance if $x$ is a \typ{REAL}, $l$ is
ignored. Indeed, if $x$ is a \typ{REAL}, the accuracy of $\log x$ is
determined from the accuracy of $x$, it is no problem to multiply by $y$,
even if it is an exact type, and the accuracy of the exponential is
determined, exactly as in the case of the initial $\log x$.

\fun{GEN}{gpowgs}{GEN x, long n} creates $\kbd{x}^{\kbd{n}}$ using
binary powering. To treat the special case $n = 0$, we consider
\kbd{gpowgs} as a series of \kbd{gmul}, so we follow the rule of returning
result which is as exact as possible given the input. More precisely,
we return

\item \kbd{gen\_1} if $x$ has type \typ{INT}, \typ{REAL},  \typ{FRAC}, or
\typ{PADIC}

\item \kbd{Mod(1,N)} if $x$ is a \typ{INTMOD} modulo $N$.

\item \kbd{gen\_1} for \typ{COMPLEX}, \typ{QUAD} unless one component
is a \typ{INTMOD}, in which case we return \kbd{Mod(1, N)} for a suitable
$N$ (the gcd of the moduli that appear).

\item \kbd{FF\_1}$(x)$ for a \typ{FFELT}.

\item \kbd{RgX\_get\_1}$(x)$ for a \typ{POL}.

\item \kbd{qfi\_1}$(x)$ and \kbd{qfr\_1}$(x)$ for \typ{QFI} and \typ{QFR}.

\item the identity permutation for \typ{VECSMALL}.

\item etc.

Of course, the only practical use of this routine for $n = 0$ is
to obtain the multiplicative neutral element in the base ring (or to treat
marginal cases that should be special cased anyway if there is the slightest
doubt about what the result should be).

\fun{GEN}{powgi}{GEN x, GEN y} creates $\kbd{x}^{\kbd{y}}$, where \kbd{y} is a
\typ{INT}, using left-shift binary powering. The case where $y = 0$
(as all cases where $y$ is small) is handled by \kbd{gpowgs(x, 0)}.

\fun{GEN}{gpowers}{GEN x, long n} returns the vector $[1,x,\dots,x^n]$.

\fun{GEN}{grootsof1}{long n, long prec} returns the vector
$[1,x,\dots,x^{n-1}]$, where $x$ is the $n$-th root of unity $\exp(2i\pi/n)$.

\fun{GEN}{gsqrpowers}{GEN x, long n} returns the vector $[x,x^4,\dots,x^{n^2}]$.

In addition we also have the obsolete forms:

\fun{void}{gaddz}{GEN x, GEN y, GEN z}

\fun{void}{gsubz}{GEN x, GEN y, GEN z}

\fun{void}{gmulz}{GEN x, GEN y, GEN z}

\fun{void}{gdivz}{GEN x, GEN y, GEN z}

\section{Generic operators: product, powering, factorback}

To describe the following functions, we use the following private typedefs
to simplify the description:
\bprog
  typedef (*F0)(void *);
  typedef (*F1)(void *, GEN);
  typedef (*F2)(void *, GEN, GEN);
@eprog
\noindent They correspond to generic functions with one and two arguments
respectively (the \kbd{void*} argument provides some arbitrary evaluation
context).

\fun{GEN}{gen_product}{GEN v, void *D, F2 op}
Given two objects $x,y$, assume that \kbd{op(D, $x$, $y$)} implements an
associative binary operator. If $v$ has $k$ entries, return
$$v[1]~\var{op}~v[2]~\var{op}~\ldots ~\var{op}~v[k];$$
returns \kbd{gen\_1} if $k = 0$ and a copy of $v[1]$ if $k = 1$.
Use divide and conquer strategy. Leave some garbage on stack, but suitable for
\kbd{gerepileupto} if \kbd{mul} is.

\fun{GEN}{gen_pow}{GEN x, GEN n, void *D, F1 sqr, F2 mul} $n > 0$ a
\typ{INT}, returns $x^n$; \kbd{mul(D, $x$, $y$)} implements the multiplication
in the underlying monoid; \kbd{sqr} is a (presumably optimized) shortcut for
\kbd{mul(D, $x$, $x$)}.

\fun{GEN}{gen_powu}{GEN x, ulong n, void *D, F1 sqr, F2 mul} $n > 0$,
returns $x^n$. See \tet{gen_pow}.

\fun{GEN}{gen_pow_i}{GEN x, GEN n, void *E, F1 sqr, F2 mul}
internal variant of \tet{gen_pow}, not memory-clean.

\fun{GEN}{gen_powu_i}{GEN x, ulong n, void *E, F1 sqr, F2 mul}
internal variant of \tet{gen_powu}, not memory-clean.

\fun{GEN}{gen_pow_fold}{GEN x, GEN n, void *D, F1 sqr, F1 msqr} variant
of \tet{gen_pow}, where \kbd{mul} is replaced by \kbd{msqr}, with
\kbd{msqr(D, $y$)} returning $xy^2$. In particular \kbd{D} must implicitly
contain $x$.

\fun{GEN}{gen_pow_fold_i}{GEN x, GEN n, void *E, F1 sqr, F1 msqr}
internal variant of the function \tet{gen_pow_fold}, not memory-clean.

\fun{GEN}{gen_powu_fold}{GEN x, ulong n, void *D, F1 sqr, F1 msqr}, see
\tet{gen_pow_fold}.

\fun{GEN}{gen_powu_fold_i}{GEN x, ulong n, void *E, F1 sqr, F1 msqr}
see \tet{gen_pow_fold_i}.

\fun{GEN}{gen_powers}{GEN x, long n, long usesqr, void *D, F1 sqr, F2 mul, F0 one}
returns $[\kbd{x}^0, \dots, \kbd{x}^\kbd{n}]$ as a \typ{VEC}; \kbd{mul(D,
$x$, $y$)} implements the multiplication in the underlying monoid; \kbd{sqr}
is a (presumably optimized) shortcut for \kbd{mul(D, $x$, $x$)}; \kbd{one}
returns the monoid unit. The flag \kbd{usesqr} should be set to $1$ if
squaring are faster than multiplication by $x$.

\fun{GEN}{gen_factorback}{GEN L, GEN e, F2 mul, F2 pow, void *D} generic form
of \tet{factorback}. The pair $[L,e]$ is of the form

\item \kbd{[fa, NULL]}, \kbd{fa} a two-column factorization matrix: expand it.

\item  \kbd{[v, NULL]}, $v$ a vector of objects: return their
product.

\item or \kbd{[v, e]},  $v$ a vector of objects, $e$ a vector of integral
exponents: return the product of the $v[i]^{e[i]}$.

\noindent \kbd{mul(D, $x$, $y$)} and \kbd{pow(D, $x$, $n$)}
return $xy$ and $x^n$ respectively.

\section{Matrix and polynomial norms} This section concerns only standard norms
of $\R$ and $\C$ vector spaces, not algebraic norms given by the determinant of
some multiplication operator. We have already seen type-specific functions like
\tet{ZM_supnorm} or \tet{RgM_fpnorml2} and limit ourselves to generic functions
assuming nothing about their \kbd{GEN} argument; these functions allow
the following scalar types: \typ{INT}, \typ{FRAC}, \typ{REAL}, \typ{COMPLEX},
\typ{QUAD} and are defined recursively (in terms of norms of their components)
for the following ``container'' types: \typ{POL}, \typ{VEC}, \typ{COL} and
\typ{MAT}. They raise an error if some other type appears in the argument.

\fun{GEN}{gnorml2}{GEN x} The norm of a scalar is the square of its complex
modulus, the norm of a recursive type is the sum of the norms of its components.
For polynomials, vectors or matrices of complex numbers one recovers the
\emph{square} of the usual $L^2$ norm. In most applications, the missing square
root computation can be skipped.

\fun{GEN}{gnorml1}{GEN x, long prec} The norm of a scalar is its complex
modulus, the norm of a recursive type is the sum of the norms of its components.
For polynomials, vectors or matrices of complex numbers one recovers
the usual $L^1$ norm. One must include a real precision \kbd{prec} in case
the inputs include \typ{COMPLEX} or \typ{QUAD} with exact rational components:
a square root must be computed and we must choose an accuracy.

\fun{GEN}{gnorml1_fake}{GEN x} as \tet{gnorml1}, except that the norm
of a \typ{QUAD} $x + wy$ or \typ{COMPLEX} $x + Iy$ is defined as
$|x| + |y|$, where we use the ordinary real absolute value. This is still a norm
of $\R$ vector spaces, which is easier to compute than
\kbd{gnorml1} and can often be used in its place.

\fun{GEN}{gsupnorm}{GEN x, long prec} The norm of a scalar is its complex
modulus, the norm of a recursive type is the max of the norms of its
components. A precision \kbd{prec} must be included for the same reason as in
\kbd{gnorml1}.

\fun{void}{gsupnorm_aux}{GEN x, GEN *m, GEN *m2, long prec}
is the low-level function underlying
\kbd{gsupnorm}, used as follows:
\bprog
  GEN m = NULL, m2 = NULL;
  gsupnorm_aux(x, &m, &m2);
@eprog
After the call, the sup norm of $x$ is the min of \kbd{m} and the square root
of \kbd{m2};  one or both of \kbd{m}, \kbd{m2} may be \kbd{NULL}, in
which case it must be omitted. You may initially set \kbd{m} and \kbd{m2} to
non-\kbd{NULL} values, in which case, the above procedure yields the max of
(the initial) \kbd{m}, the square root of (the initial) \kbd{m2}, and the sup
norm of $x$.

The strange interface is due to the fact that $|z|^2$ is easier to compute
than $|z|$ for a \typ{QUAD} or \typ{COMPLEX} $z$: \kbd{m2} is the max of
those $|z|^2$, and \kbd{m} is the max of the other $|z|$.

\section{Substitution and evaluation}

\fun{GEN}{gsubst}{GEN x, long v, GEN y} substitutes the object \kbd{y}
into~\kbd{x} for the variable number~\kbd{v}.

\fun{GEN}{poleval}{GEN q, GEN x} evaluates the \typ{POL} or \typ{RFRAC}
$q$ at $x$. For convenience, a \typ{VEC} or \typ{COL} is also recognized as
the \typ{POL} \kbd{gtovecrev(q)}.

\fun{GEN}{RgX_cxeval}{GEN T, GEN x, GEN xi} evaluate the \typ{POL} $T$
at $x$ via Horner's scheme. If \var{xi} is not \kbd{NULL} it must be equal to
$1/x$ and we evaluate $x^{\deg T}T(1/x)$ instead. This is useful when
$|x| > 1$ is a \typ{REAL} or an inexact \typ{COMPLEX} and $T$ has
``balanced'' coefficients, since the evaluation becomes numerically stable.

\fun{GEN}{RgX_RgM_eval}{GEN q, GEN x} evaluates the \typ{POL} $q$ at the
square matrix $x$.

\fun{GEN}{RgX_RgMV_eval}{GEN f, GEN V} returns
the evaluation $\kbd{f}(\kbd{x})$, assuming that \kbd{V} was computed by
$\kbd{FpXQ\_powers}(\kbd{x}, n)$ for some $n>1$.

\fun{GEN}{qfeval}{GEN q, GEN x} evaluates the quadratic form
$q$ (symmetric matrix) at $x$ (column vector of compatible dimensions).

\fun{GEN}{qfevalb}{GEN q, GEN x, GEN y} evaluates the polar bilinear form
attached to the quadratic form $q$ (symmetric matrix) at $x$, $y$ (column
vectors of compatible dimensions).

\fun{GEN}{hqfeval}{GEN q, GEN x} evaluates the Hermitian form $q$
(a Hermitian complex matrix) at $x$.

\fun{GEN}{qf_apply_RgM}{GEN q, GEN M} $q$ is a symmetric $n\times n$ matrix,
$M$ an $n\times k$ matrix, return $M' q M$.

\fun{GEN}{qf_apply_ZM}{GEN q, GEN M} as above assuming that both
$q$ and $M$ have integer entries.

\newpage
\chapter{Miscellaneous mathematical functions}

\section{Fractions}

\fun{GEN}{absfrac}{GEN x} returns the absolute value of the \typ{FRAC} $x$.

\fun{GEN}{absfrac_shallow}{GEN x} $x$ being a \typ{FRAC}, returns a shallow
copy of $|x|$, in particular returns $x$ itself when $x \geq 0$, and
\kbd{gneg($x$)} otherwise.

\fun{GEN}{sqrfrac}{GEN x} returns the square of the \typ{FRAC} $x$.

\section{Real numbers}

\fun{GEN}{R_abs}{GEN x} $x$ being a \typ{INT}, a \typ{REAL} or a
\typ{FRAC}, returns $|x|$.

\fun{GEN}{R_abs_shallow}{GEN x} $x$ being a \typ{INT}, a \typ{REAL} or a
\typ{FRAC}, returns a shallow copy of $|x|$, in particular returns $x$ itself
when $x \geq 0$, and \kbd{gneg($x$)} otherwise.

\fun{GEN}{modRr_safe}{GEN x, GEN y} let $x$ be a \typ{INT}, a \typ{REAL} or
\typ{FRAC} and let $y$ be a \typ{REAL}. Return $x\% y$ unless the input
accuracy is unsufficient to compute the floor or $x/y$ in which case we
return \kbd{NULL}.

\section{Complex numbers}

\fun{GEN}{imag}{GEN x} returns a copy of the imaginary part of \kbd{x}.

\fun{GEN}{real}{GEN x} returns a copy of the real part of \kbd{x}. If \kbd{x}
is a \typ{QUAD}, returns the coefficient of $1$ in the ``canonical'' integral
basis $(1,\omega)$.

The last two functions are shallow, and not suitable for \tet{gerepileupto}:

\fun{GEN}{imag_i}{GEN x} as \kbd{gimag}, returns a pointer to the imaginary
part.
\fun{GEN}{real_i}{GEN x} as \kbd{greal}, returns a pointer to the real part.

\fun{GEN}{mulreal}{GEN x, GEN} returns the real part of $xy$;
$x,y$ have type \typ{INT}, \typ{FRAC}, \typ{REAL} or \typ{COMPLEX}. See also
\kbd{RgM\_mulreal}.

\fun{GEN}{cxnorm}{GEN x} norm of the \typ{COMPLEX} $x$ (modulus squared).

\fun{GEN}{cxexpm1}{GEN x} returns $\exp(x)-1$, for a \typ{COMPLEX} $x$.

\section{Quadratic numbers and binary quadratic forms}

\fun{GEN}{quad_disc}{GEN x} returns the discriminant of the \typ{QUAD} $x$.

\fun{GEN}{quadnorm}{GEN x} norm of the \typ{QUAD} $x$.

\fun{GEN}{qfb_disc}{GEN x} returns the discriminant of the \typ{QFI}
or \typ{QFR} \kbd{x}.

\fun{GEN}{qfb_disc3}{GEN x, GEN y, GEN z} returns $y^2 - 4xz$ assuming all
inputs are \typ{INT}s. Not stack-clean.

\fun{GEN}{qfb_apply_ZM}{GEN q, GEN g} returns $q \circ g$.

\fun{GEN}{qfbforms}{GEN D} given a discriminant $D < 0$, return the list
of reduced forms of discriminant $D$ as \typ{VECSMALL} with 3 components.
The primitive forms in the list enumerate the class group of the quadratic
order of discriminant $D$; if $D$ is fundamental, all returned forms
are automatically primitive.

\section{Polynomials}\label{se:polynomials}

\fun{GEN}{truecoeff}{GEN x, long n} returns \kbd{polcoeff0(x,n, -1)}, i.e.
the coefficient of the term of degree \kbd{n} in the main variable.

\fun{GEN}{polcoeff_i}{GEN x, long n, long v} internal shallow function. Rewrite
$x$ as a Laurent polynomial in the variable $v$ and returns its coefficient
of degree $n$ (\kbd{gen\_0} if this falls outside the coefficient array).
Allow \typ{POL}, \typ{SER}, \typ{RFRAC} and scalars.

\fun{long}{degree}{GEN x} returns \kbd{poldegree(x, -1)}, the degree of
\kbd{x} with respect to its main variable, with the usual meaning if the
leading coefficient of $x$ is non-zero. If the sign of $x$ is $0$, this
function always returns $-1$. Otherwise, we return the index of the leading
coefficient of $x$, i.e. the coefficient of largest index stored in $x$.
For instance the ``degrees'' of
\bprog
  0. E-38 * x^4 + 0.E-19 * x + 1
  Mod(0,2) * x^0    \\ sign is 0 !
@eprog\noindent are $4$ and $-1$ respectively.

\fun{long}{degpol}{GEN x} is a simple macro returning \kbd{lg(x) - 3}.
This is the degree of the \typ{POL}~\kbd{x} with respect to its main
variable, \emph{if} its leading coefficient is non-zero (a rational $0$ is
impossible, but an inexact $0$ is allowed, as well as an exact modular $0$,
e.g. \kbd{Mod(0,2)}). If $x$ has no coefficients (rational $0$ polynomial),
its length is $2$ and we return the expected $-1$.

\fun{GEN}{characteristic}{GEN x} returns the characteristic of the
base ring over which the polynomial is defined (as defined by \typ{INTMOD}
and \typ{FFELT} components). The function raises an exception if incompatible
primes arise from \typ{FFELT} and \typ{PADIC} components. Shallow function.

\fun{GEN}{residual_characteristic}{GEN x} returns a kind of ``residual
characteristic'' of the base ring over which the polynomial is defined. This
is defined as the gcd of all moduli \typ{INTMOD}s occurring in the structure,
as well as primes $p$ arising from \typ{PADIC}s or \typ{FFELT}s. The function
raises an exception if incompatible primes arise from \typ{FFELT} and
\typ{PADIC} components. Shallow function.

\fun{GEN}{resultant}{GEN x,GEN y} resultant of \kbd{x} and \kbd{y}, with respect
to the main variable of highest priority. Uses either
the subresultant algorithm (generic case), a modular algorithm (inputs in
$\Q[X]$) or Sylvester's matrix (inexact inputs).

\fun{GEN}{resultant2}{GEN x, GEN y} resultant of \kbd{x} and \kbd{y}, with
respect to the main variable of highest priority. Computes the determinant
of Sylvester's matrix.

\fun{GEN}{resultant_all}{GEN u, GEN v, GEN *sol} returns
\kbd{resultant(x,y)}. If \kbd{sol} is not \kbd{NULL}, sets it to the last
non-constant remainder in the polynomial remainder sequence if such a sequence
was computed, and to \kbd{gen\_0} otherwise (e.g. polynomials of degree 0,
$u,v$ in $\Q[X]$).

\fun{GEN}{cleanroots}{GEN x, long prec} returns the complex roots of
the complex polynomial $x$ (with coefficients \typ{INT}, \typ{FRAC},
\typ{REAL} or \typ{COMPLEX} of the above). The roots are returned
as \typ{REAL} or \typ{COMPLEX} of \typ{REAL}s of precision \kbd{prec}
(guaranteeing a non-$0$ imaginary part). See \tet{QX_complex_roots}.

\fun{double}{fujiwara_bound}{GEN x} return a quick upper bound for the
logarithm in base $2$ of the modulus of the largest complex roots of
the polynomial $x$ (complex coefficients).

\fun{double}{fujiwara_bound_real}{GEN x, long sign} return a quick upper
bound for the logarithm in base $2$ of the absolute value of the largest
real root of sign \var{sign} ($1$ or $-1$), for the polynomial $x$ (real
coefficients).

\fun{GEN}{polmod_to_embed}{GEN x, long prec} return the vector of complex
embeddings of the \typ{POLMOD} $x$ (with complex coefficients). Shallow
function, simple complex variant of \tet{conjvec}.

\section{Power series}

\fun{GEN}{sertoser}{GEN x, long prec} return the \typ{SER} $x$ truncated
or extended (with zeros) to \kbd{prec} terms. Shallow function, assume
that $\kbd{prec} \geq 0$.

\fun{GEN}{derivser}{GEN x} returns the derivative of the \typ{SER} \kbd{x}
with respect to its main variable.

\fun{GEN}{integser}{GEN x} returns the primitive of the \typ{SER} \kbd{x}
with respect to its main variable.

\fun{GEN}{truecoeff}{GEN x, long n} returns \kbd{polcoeff0(x,n, -1)}, i.e.
the coefficient of the term of degree \kbd{n} in the main variable.

\fun{GEN}{ser_unscale}{GEN P, GEN h} return $P(h x)$, not memory clean.

\fun{GEN}{ser_normalize}{GEN x} divide $x$ by its ``leading term'' so that
the series is either $0$ or equal to $t^v(1+O(t))$. Shallow function if the
``leading term'' is $1$.

\fun{int}{ser_isexactzero}{GEN x} return $1$ if $x$ is a zero series, all
of whose known coefficients are exact zeroes; this implies that
$\kbd{sign}(x) = 0$ and $\kbd{lg}(x) \leq 3$.

\fun{GEN}{ser_inv}{GEN x} return the inverse of the \typ{SER} $x$ using
Newton iteration. This is in general slower than \kbd{ginv} unless the
precision is huge (hundreds of terms, where the threshold depends strongly
on the base field).

\section{Functions to handle \typ{FFELT}}
These functions define the public interface of the \typ{FFELT} type to use in
generic functions.  However, in specific functions, it is better to use the
functions class \kbd{FpXQ} and/or \kbd{Flxq} as appropriate.

\fun{GEN}{FF_p}{GEN a} returns the characteristic of the definition field of the
\typ{FFELT} element \kbd{a}.

\fun{long}{FF_f}{GEN a} returns the dimension of the definition field over
its prime field; the cardinality of the dimension field is thus $p^f$.

\fun{GEN}{FF_p_i}{GEN a} shallow version of \kbd{FF\_p}.

\fun{GEN}{FF_q}{GEN a} returns the cardinality of the definition field of the
\typ{FFELT} element \kbd{a}.

\fun{GEN}{FF_mod}{GEN a} returns the polynomial (with reduced \typ{INT}
coefficients) defining the finite field, in the variable used to display $a$.

\fun{GEN}{FF_to_FpXQ}{GEN a} converts the \typ{FFELT} \kbd{a} to a polynomial
$P$ with reduced \typ{INT} coefficients such that $a=P(g)$ where $g$ is the
generator of the finite field returned by \kbd{ffgen}, in the variable used to
display $g$.

\fun{GEN}{FF_to_FpXQ_i}{GEN a} shallow version of \kbd{FF\_to\_FpXQ}.

\fun{GEN}{FF_to_F2xq}{GEN a} converts the \typ{FFELT} \kbd{a} to a \kbd{F2x}
$P$ such that $a=P(g)$ where $g$ is the generator of the finite field returned
by \kbd{ffgen}, in the variable used to display $g$. This only work if the
characteristic is $2$.

\fun{GEN}{FF_to_F2xq_i}{GEN a} shallow version of \kbd{FF\_to\_F2xq}.

\fun{GEN}{FF_to_Flxq}{GEN a} converts the \typ{FFELT} \kbd{a} to a \kbd{Flx}
$P$ such that $a=P(g)$ where $g$ is the generator of the finite field returned
by \kbd{ffgen}, in the variable used to display $g$. This only work if the
characteristic is small enough.

\fun{GEN}{FF_to_Flxq_i}{GEN a} shallow version of \kbd{FF\_to\_Flxq}.

\fun{GEN}{p_to_FF}{GEN p, long v} returns a \typ{FFELT} equal to $1$ in the
finite field $\Z/p\Z$. Useful for generic code that wants to handle
(inefficiently) $\Z/p\Z$ as if it were not a prime field.

\fun{GEN}{Tp_to_FF}{GEN T, GEN p} returns a \typ{FFELT} equal to $1$ in the
finite field $\F_p/(T)$, where $T$ is a \kbd{ZX}, assumed to be irreducible
modulo $p$, or \kbd{NULL} in which case the routine acts as \tet{p_to_FF(p,0)}.
No checks.

\fun{GEN}{Fq_to_FF}{GEN x, GEN ff} returns a \typ{FFELT} equal to $x$
in the finite field defined by the \typ{FFELT} \kbd{ff}, where
$x$ is an \kbd{Fq} (either a \typ{INT} or a \kbd{ZX}: a \typ{POL} with
\typ{INT} coefficients). No checks.

\fun{GEN}{FqX_to_FFX}{GEN x, GEN ff} given an \kbd{FqX} $x$,
return the polynomial with \typ{FFELT} coefficients obtained by
applying \tet{Fq_to_FF} coefficientwise. No checks, and no normalization
if the leading coefficient maps to $0$.

\fun{GEN}{FF_1}{GEN a} returns the unity in the definition field of the
\typ{FFELT} element \kbd{a}.

\fun{GEN}{FF_zero}{GEN a} returns the zero element of the definition field of
the \typ{FFELT} element \kbd{a}.

\fun{int}{FF_equal0}{GEN a} returns $1$ if the \typ{FFELT} \kbd{a} is equal
to $0$ else returns $0$.

\fun{int}{FF_equal1}{GEN a} returns $1$ if the \typ{FFELT} \kbd{a} is equal
to $1$ else returns $0$.

\fun{int}{FF_equalm1}{GEN a} returns $-1$ if the \typ{FFELT} \kbd{a} is equal
to $1$ else returns $0$.

\fun{int}{FF_equal}{GEN a, GEN b} return $1$ if the \typ{FFELT} \kbd{a} and
\kbd{b} have the same definition field and are equal, else $0$.

\fun{int}{FF_samefield}{GEN a, GEN b} return $1$ if the \typ{FFELT} \kbd{a} and
\kbd{b} have the same definition field, else $0$.

\fun{int}{Rg_is_FF}{GEN c, GEN *ff} to be called successively on many objects,
setting \kbd{*ff = NULL} (unset) initially. Returns $1$ as long as $c$ is a
\typ{FFELT} defined over the same field as \kbd{*ff} (setting \kbd{*ff = c}
if unset), and $0$ otherwise.

\fun{int}{RgC_is_FFC}{GEN x, GEN *ff} apply \tet{Rg_is_FF} successively to all
components of the \typ{VEC} or \typ{COL} $x$. Return $0$ if one call fails,
and $1$ otherwise.

\fun{int}{RgM_is_FFM}{GEN x, GEN *ff} apply \tet{Rg_is_FF} to all components
of the \typ{MAT}. Return $0$ if one call fails, and $1$ otherwise.

\fun{GEN}{FF_add}{GEN a, GEN b} returns $a+b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.

\fun{GEN}{FF_Z_add}{GEN a, GEN x} returns $a+x$, where \kbd{a} is a
\typ{FFELT}, and \kbd{x} is a \typ{INT}, the computation being
performed in the definition field of \kbd{a}.

\fun{GEN}{FF_Q_add}{GEN a, GEN x} returns $a+x$, where \kbd{a} is a
\typ{FFELT}, and \kbd{x} is a \typ{RFRAC}, the computation being
performed in the definition field of \kbd{a}.

\fun{GEN}{FF_sub}{GEN a, GEN b} returns $a-b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.

\fun{GEN}{FF_mul}{GEN a, GEN b} returns $a\*b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.

\fun{GEN}{FF_Z_mul}{GEN a, GEN b} returns $a\*b$, where \kbd{a} is a
\typ{FFELT}, and \kbd{b} is a \typ{INT}, the computation being
performed in the definition field of \kbd{a}.

\fun{GEN}{FF_div}{GEN a, GEN b} returns $a/b$ where \kbd{a} and \kbd{b} are
\typ{FFELT} having the same definition field.

\fun{GEN}{FF_neg}{GEN a} returns $-a$ where \kbd{a} is a \typ{FFELT}.

\fun{GEN}{FF_neg_i}{GEN a} shallow function returning $-a$ where \kbd{a} is a
\typ{FFELT}.

\fun{GEN}{FF_inv}{GEN a} returns $a^{-1}$ where \kbd{a} is a \typ{FFELT}.

\fun{GEN}{FF_sqr}{GEN a} returns $a^2$ where \kbd{a} is a \typ{FFELT}.

\fun{GEN}{FF_mul2n}{GEN a, long n} returns $a\*2^n$ where \kbd{a} is a
\typ{FFELT}.

\fun{GEN}{FF_pow}{GEN a, GEN n} returns $a^n$ where \kbd{a} is a \typ{FFELT}
and \kbd{n} is a \typ{INT}.

\fun{GEN}{FF_Z_Z_muldiv}{GEN a, GEN x, GEN y} returns $a\*y/z$, where \kbd{a}
is a \typ{FFELT}, and \kbd{x} and \kbd{y} are \typ{INT}, the computation being
performed in the definition field of \kbd{a}.

\fun{GEN}{Z_FF_div}{GEN x, GEN a} return $x/a$ where \kbd{a} is a
\typ{FFELT}, and \kbd{x} is a \typ{INT}, the computation being
performed in the definition field of \kbd{a}.

\fun{GEN}{FF_norm}{GEN a} returns the norm of the \typ{FFELT} \kbd{a} with
respect to its definition field.

\fun{GEN}{FF_trace}{GEN a} returns the trace of the \typ{FFELT} \kbd{a} with
respect to its definition field.

\fun{GEN}{FF_conjvec}{GEN a} returns the vector of conjugates
$[a,a^p,a^{p^2},\ldots,a^{p^{n-1}}]$ where the \typ{FFELT} \kbd{a} belong to a
field with $p^n$ elements.

\fun{GEN}{FF_charpoly}{GEN a} returns the characteristic polynomial) of the
\typ{FFELT} \kbd{a} with respect to its definition field.

\fun{GEN}{FF_minpoly}{GEN a} returns the minimal polynomial of
the \typ{FFELT} \kbd{a}.

\fun{GEN}{FF_sqrt}{GEN a} returns an \typ{FFELT} $b$ such that $a=b^2$ if
it exist, where \kbd{a} is a \typ{FFELT}.

\fun{long}{FF_issquareall}{GEN x, GEN *pt} returns $1$ if \kbd{x} is a
square, and $0$ otherwise. If \kbd{x} is indeed a square, set \kbd{pt} to its
square root.

\fun{long}{FF_issquare}{GEN x} returns $1$ if \kbd{x} is a square and $0$
otherwise.

\fun{long}{FF_ispower}{GEN x, GEN K, GEN *pt} Given $K$ a positive integer,
returns $1$ if \kbd{x} is a $K$-th power, and $0$ otherwise. If \kbd{x} is
indeed a $K$-th power, set \kbd{pt} to its $K$-th root.

\fun{GEN}{FF_sqrtn}{GEN a, GEN n, GEN *zn} returns an \kbd{n}-th root of
$\kbd{a}$ if it exist. If \kbd{zn} is non-\kbd{NULL} set it to a primitive
\kbd{n}-th root of the unity.

\fun{GEN}{FF_log}{GEN a, GEN g, GEN o} the \typ{FFELT} \kbd{g} being a
generator for the definition field of the \typ{FFELT} \kbd{a}, returns a
\typ{INT} $e$ such that $a^e=g$.  If $e$ does not exists, the result is
currently undefined. If \kbd{o} is not \kbd{NULL} it is assumed to be a
factorization of the multiplicative order of \kbd{g} (as set by
\tet{FF_primroot})

\fun{GEN}{FF_order}{GEN a, GEN o} returns the order of the \typ{FFELT} \kbd{a}.
If \kbd{o} is non-\kbd{NULL}, it is assumed that \kbd{o} is a multiple of the
order of \kbd{a}.

\fun{GEN}{FF_primroot}{GEN a, GEN *o} returns a generator of the
multiplicative group of the definition field of the \typ{FFELT} \kbd{a}.
If \kbd{o} is not \kbd{NULL}, set it to the factorization of the order
of the primitive root (to speed up \tet{FF_log}).

\fun{GEN}{FFX_factor}{GEN f, GEN a} returns the factorization of the univariate
polynomial \kbd{f} over the definition field of the \typ{FFELT} \kbd{a}. The
coefficients of \kbd{f} must be of type \typ{INT}, \typ{INTMOD} or \typ{FFELT}
and compatible with \kbd{a}.

\fun{GEN}{FFX_roots}{GEN f, GEN a} returns the roots (\typ{FFELT})
of the univariate polynomial \kbd{f} over the definition field of the
\typ{FFELT} \kbd{a}. The coefficients of \kbd{f} must be of type \typ{INT},
\typ{INTMOD} or \typ{FFELT} and compatible with \kbd{a}.

\fun{GEN}{FFM_FFC_mul}{GEN M, GEN C, GEN ff} returns the product of
the matrix~\kbd{M} (\typ{MAT}) and the column vector~\kbd{C}
(\typ{COL}) over the finite field given by \kbd{ff} (\typ{FFELT}).

\fun{GEN}{FFM_ker}{GEN M, GEN ff} returns the kernel of the \typ{MAT} \kbd{M}
defined over the finite field given by the \typ{FFELT} \kbd{ff} (obtained
by \tet{RgM_is_FFM(M,\&ff)}).

\fun{GEN}{FFM_det}{GEN M, GEN ff}

\fun{GEN}{FFM_image}{GEN M, GEN ff}

\fun{GEN}{FFM_inv}{GEN M, GEN ff}

\fun{GEN}{FFM_mul}{GEN M, GEN N, GEN ff} returns the product of the
matrices \kbd{M} and~\kbd{N} (\typ{MAT}) over the finite field given
by \kbd{ff} (\typ{FFELT}).

\fun{long}{FFM_rank}{GEN M, GEN ff}

\section{Transcendental functions}

The following two functions are only useful when interacting with \kbd{gp},
to manipulate its internal default precision (expressed as a number of
decimal digits, not in words as used everywhere else):

\fun{long}{getrealprecision}{void} returns \kbd{realprecision}.

\fun{long}{setrealprecision}{long n, long *prec} sets the new
\kbd{realprecision} to $n$, which is returned. As a side effect, set
\kbd{prec} to the corresponding number of words \kbd{ndec2prec(n)}.

\subsec{Transcendental functions with \typ{REAL} arguments}

In the following routines, $x$ is assumed to be a \typ{REAL} and the result
is a \typ{REAL} (sometimes a \typ{COMPLEX} with \typ{REAL} components), with
the largest accuracy which can be deduced from the input. The naming scheme
is inconsistent here, since we sometimes use the prefix \kbd{mp} even though
\typ{INT} inputs are forbidden:

\fun{GEN}{sqrtr}{GEN x} returns the square root of $x$.

\fun{GEN}{cbrtr}{GEN x} returns the real cube root of $x$.

\fun{GEN}{sqrtnr}{GEN x, long n} returns the $n$-th root of $x$, assuming
$n\geq 1$ and $x > 0$. Not stack clean.

\fun{GEN}{mpcos[z]}{GEN x[, GEN z]} returns $\cos(x)$.

\fun{GEN}{mpsin[z]}{GEN x[, GEN z]} returns $\sin(x)$.

\fun{GEN}{mplog[z]}{GEN x[, GEN z]} returns $\log(x)$. We must have $x > 0$
since the result must be a \typ{REAL}. Use \kbd{glog} for the general case,
where you want such computations as $\log(-1) = I$.

\fun{GEN}{mpexp[z]}{GEN x[, GEN z]} returns $\exp(x)$.

\fun{GEN}{mpexpm1}{GEN x} returns $\exp(x)-1$, but is more accurate than
\kbd{subrs(mpexp(x), 1)}, which suffers from catastrophic cancellation if
$|x|$ is very small.

\fun{void}{mpsincosm1}{GEN x, GEN *s, GEN *c} sets $s$ and $c$ to
$\sin(x)$ and $\cos(x)-1$ respectively, where $x$ is a \typ{REAL}; the latter
is more accurate than \kbd{subrs(mpcos(y), 1)}, which suffers from
catastrophic cancellation if $|x|$ is very small.

\fun{GEN}{mpveceint1}{GEN C, GEN eC, long n} as \kbd{veceint1}; assumes
that $C > 0$ is a \typ{REAL} and that \kbd{eC} is \kbd{NULL} or \kbd{mpexp(C)}.

\fun{GEN}{mpeint1}{GEN x, GEN expx} returns \kbd{eint1}$(x)$, for a \typ{REAL}
$x\geq 0$, assuming that \kbd{expx} is \kbd{mpexp}$(x)$.

\fun{GEN}{mplambertW}{GEN y} solution $x$ of the implicit equation
$x \exp(x) = y$, for $y > 0$ a \typ{REAL}.

\noindent Useful low-level functions which \emph{disregard} the sign of $x$:

\fun{GEN}{sqrtr_abs}{GEN x} returns $\sqrt{|x|}$ assuming $x\neq 0$.

\fun{GEN}{cbrtr_abs}{GEN x} returns $|x|^{1/3}$ assuming $x\neq 0$.

\fun{GEN}{exp1r_abs}{GEN x} returns $\exp(|x|) - 1$, assuming $x \neq 0$.

\fun{GEN}{logr_abs}{GEN x} returns $\log(|x|)$, assuming $x \neq 0$.

\subsec{Other complex transcendental functions}

\fun{GEN}{szeta}{long s, long prec} returns the value of Riemann's zeta
function at the (possibly negative) integer $s\neq 1$, in relative accuracy
\kbd{prec}.

\fun{GEN}{veczeta}{GEN a, GEN b, long N, long prec} returns in a vector
all the $\zeta(aj + b)$, where $j = 0, 1, \dots, N-1$, where $a$ and $b$ are
real numbers (of arbitrary type, although \typ{INT} is treated more
efficiently) and $b > 1$.

\fun{GEN}{ggamma1m1}{GEN x, long prec} return $\Gamma(1+x) - 1$ assuming
$|x| < 1$. Guard against cancellation when $x$ is small.

\noindent A few variants on sin and cos:

\fun{void}{mpsincos}{GEN x, GEN *s, GEN *c} sets $s$ and $c$ to
$\sin(x)$ and $\cos(x)$ respectively, where $x$ is a \typ{REAL}

\fun{GEN}{expIr}{GEN x} returns $\exp(ix)$, where $x$ is a \typ{REAL}.
The return type is \typ{COMPLEX} unless the imaginary part is equal to $0$
to the current accuracy (its sign is $0$).

\fun{GEN}{expIxy}{GEN x, GEN y, long prec} returns $\exp(ixy)$. Efficient
when $x$ is real and $y$ pure imaginary.

\fun{void}{gsincos}{GEN x, GEN *s, GEN *c, long prec} general case.

\fun{GEN}{rootsof1_cx}{GEN d, long prec} return $e(1/d)$ at precision
\kbd{prec}, $e(x) = \exp(2i\pi x)$.

\fun{GEN}{rootsof1u_cx}{ulong d, long prec} return $e(1/d)$ at
precision \kbd{prec}.

\noindent A generalization of \tet{affrr_fixlg}

\fun{GEN}{affc_fixlg}{GEN x, GEN res} assume \kbd{res} was allocated using
\tet{cgetc}, and that $x$ is either a \typ{REAL} or a \typ{COMPLEX}
with \typ{REAL} components. Assign $x$ to \kbd{res}, first shortening
the components of \kbd{res} if needed (in a \kbd{gerepile}-safe way). Further
convert \kbd{res} to a \typ{REAL} if $x$ is a \typ{REAL}.

\fun{GEN}{trans_eval}{const char *fun, GEN (*f) (GEN, long), GEN x, long prec}
evaluate the transcendental function $f$ (named \kbd{"fun"} at the argument
$x$ and precision \kbd{prec}. This is a quick way to implement a transcendental
function to be made available under GP, starting from a $C$ function
handling only \typ{REAL} and \typ{COMPLEX} arguments. This routine first
converts $x$ to a suitable type:

\item \typ{INT}/\typ{FRAC} to \typ{REAL} of precision \kbd{prec}, \typ{QUAD} to
\typ{REAL} or \typ{COMPLEX} of precision \kbd{prec}.

\item \typ{POLMOD} to a \typ{COL} of complex embeddings (as in \tet{conjvec})

Then evaluates the function at \typ{VEC}, \typ{COL}, \typ{MAT} arguments
coefficientwise.

\subsec{Transcendental functions with \typ{PADIC} arguments}

\fun{GEN}{Qp_exp}{GEN x} shortcut for \kbd{gexp(x, /*ignored*/prec)}

\fun{GEN}{Qp_gamma}{GEN x} shortcut for \kbd{ggamma(x, /*ignored*/prec)}

\fun{GEN}{Qp_log}{GEN x} shortcut for \kbd{glog(x, /*ignored*/prec)}

\fun{GEN}{Qp_sqrt}{GEN x} shortcut for \kbd{gsqrt(x, /*ignored*/prec)}
Return \kbd{NULL} if $x$ is not a square.

\fun{GEN}{Qp_sqrtn}{GEN x, GEN n, GEN *z} shortcut for \kbd{gsqrtn(x, n, z,
/*ignored*/prec)}. Return \kbd{NULL} if $x$ is not an $n$-th power.

\subsec{Cached constants}

The cached constant is returned at its current precision, which may be larger
than \kbd{prec}. One should always use the \kbd{mp\var{xxx}} variant:
\kbd{mppi}, \kbd{mpeuler}, or \kbd{mplog2}.

\fun{GEN}{consteuler}{long prec} precomputes Euler-Mascheroni's constant
at precision \kbd{prec}.

\fun{GEN}{constcatalan}{long prec} precomputes Catalan's constant at precision
\kbd{prec}.

\fun{GEN}{constpi}{long prec} precomputes $\pi$ at precision \kbd{prec}.

\fun{GEN}{constlog2}{long prec} precomputes $\log(2)$ at precision
\kbd{prec}.

\fun{void}{mpbern}{long n, long prec} precomputes the $n$ even
\idx{Bernoulli} numbers $B_2,\dots,B_{2n}$ as \typ{FRAC} or \typ{REAL}s of
precision \kbd{prec}. For any $2 \leq k \leq 2n$, if a floating point
approximation of $B_k$ to accuracy \kbd{prec} is enough to reconstruct it
exactly, a \typ{FRAC} is stored; otherwise a \typ{REAL} at the requested
accuracy. No more than $n$ Bernoulli numbers will ever be stored (by
\tet{bernfrac} or \tet{bernreal}), unless a subsequent call to \kbd{mpbern}
increases the cache. If \kbd{prec} is $0$, the $B_k$ are computed exactly.

The following functions use cached data if \kbd{prec} is smaller than the
precision of the cached value; otherwise the newly computed data replaces the
old cache.

\fun{GEN}{mppi}{long prec} returns $\pi$ at precision \kbd{prec}.

\fun{GEN}{Pi2n}{long n, long prec} returns $2^n\pi$ at precision \kbd{prec}.

\fun{GEN}{PiI2}{long n, long prec} returns the complex number $2\pi i$ at
precision \kbd{prec}.

\fun{GEN}{PiI2n}{long n, long prec} returns the complex number $2^n\pi i$ at
precision \kbd{prec}.

\fun{GEN}{mpeuler}{long prec} returns Euler-Mascheroni's constant at
precision \kbd{prec}.

\fun{GEN}{mpeuler}{long prec} returns Catalan's number at precision \kbd{prec}.

\fun{GEN}{mplog2}{long prec} returns $\log 2$ at precision \kbd{prec}.

\fun{GEN}{bernreal}{long i, long prec} returns the \idx{Bernoulli} number
$B_i$ as a \typ{REAL} at precision \kbd{prec}. If \kbd{mpbern(n,
p)} was called previously with $n \geq i$ and $p \geq \kbd{prec}$, then
the cached value is (converted to a \typ{REAL} of accuracy \kbd{prec} then)
returned. Otherwise, the missing value is computed. In the latter case,
if $n \geq i$, the cached table is updated.

\fun{GEN}{bernfrac}{long i} returns the \idx{Bernoulli} number $B_i$ as a
rational number (\typ{FRAC} or \typ{INT}). If a cached table includes $B_i$
as a rational number, the latter is returned. Otherwise, the missing value is
computed. In the latter case, the cached Bernoulli table may be updated.

\section{Permutations }

\noindent Permutation are represented in two different ways

\item (\kbd{perm}) a \typ{VECSMALL} $p$ representing the bijection $i\mapsto
p[i]$; unless mentioned otherwise, this is the form used in the functions
below for both input and output,

\item (\kbd{cyc}) a \typ{VEC} of \typ{VECSMALL}s representing a product of
disjoint cycles.

\fun{GEN}{identity_perm}{long n} return the identity permutation on $n$
symbols.

\fun{GEN}{cyclic_perm}{long n, long d} return the cyclic permutation mapping
$i$ to $i+d$ (mod $n$) in $S_n$. Assume that $d \leq n$.

\fun{GEN}{perm_mul}{GEN s, GEN t} multiply $s$ and $t$ (composition $s\circ t$)

\fun{GEN}{perm_conj}{GEN s, GEN t} return $sts^{-1}$.

\fun{int}{perm_commute}{GEN p, GEN q} return $1$ if $p$ and $q$ commute, 0
otherwise.

\fun{GEN}{perm_inv}{GEN p} returns the inverse of $p$.

\fun{GEN}{perm_pow}{GEN p, long n} returns $p^n$

\fun{GEN}{cyc_pow_perm}{GEN p, long n} the permutation $p$ is given as
a product of disjoint cycles (\kbd{cyc}); return $p^n$ (as a \kbd{perm}).

\fun{GEN}{cyc_pow}{GEN p, long n} the permutation $p$ is given as
a product of disjoint cycles (\kbd{cyc}); return $p^n$ (as a \kbd{cyc}).

\fun{GEN}{perm_cycles}{GEN p} return the cyclic decomposition of $p$.

\fun{long}{perm_order}{GEN p} returns the order of the permutation $p$
(as the lcm of its cycle lengths).

\fun{GEN}{vecperm_orbits}{GEN p, long n} the permutation $p\in S_n$ being
given as a product of disjoint cycles, return the orbits of the subgroup
generated by $p$ on $\{1,2,\ldots,n\}$.

\fun{GEN}{Z_to_perm}{long n, GEN x} as \kbd{numtoperm}, returning a
\typ{VECSMALL}.

\fun{GEN}{perm_to_Z}{GEN v} as \kbd{permtonum} for a \typ{VECSMALL} input.

\section{Small groups}

The small (finite) groups facility is meant to deal with subgroups of Galois
groups obtained by \tet{galoisinit} and thus is currently limited to weakly
super-solvable groups.

A group \var{grp} of order $n$ is represented by its regular representation
(for an arbitrary ordering of its element) in $S_n$.  A subgroup of such group
is represented by the restriction of the representation to the subgroup.
A \emph{small group} can be either a group or a subgroup. Thus it is embedded
in some $S_n$, where $n$ is the multiple of the order. Such an $n$ is called
the \emph{domain} of the small group. The domain of a trivial subgroup cannot
be derived from the subgroup data, so some functions require the subgroup
domain as argument.

The small group \var{grp} is represented by a \typ{VEC} with two
components:

$\var{grp}[1]$ is a generating subset $[s_1,\ldots,s_g]$ of \var{grp}
expressed as a vector of permutations of length~$n$.

$\var{grp}[2]$ contains the relative orders $[o_1,\ldots,o_g]$ of
the generators $\var{grp}[1]$.

See \tet{galoisinit} for the technical details.

\fun{GEN}{checkgroup}{GEN gal, GEN *elts} checks whether \var{gal} is a
small group or a Galois group. Returns the underlying small
group and set \var{elts} to the list of elements or to \kbd{NULL} if it is not
known.

\fun{GEN}{galois_group}{GEN gal} return the underlying small group of the
Galois group \var{gal}.

\fun{GEN}{cyclicgroup}{GEN g, long s} returns the cyclic group with generator
$g$ of order $s$.

\fun{GEN}{trivialgroup}{void} returns the trivial group.

\fun{GEN}{dicyclicgroup}{GEN g1, GEN g2, long s1, long s2} returns the group
with generators \var{g1}, \var{g2} with respecting relative orders \var{s1},
\var{s2}.

\fun{GEN}{abelian_group}{GEN v} let v be a \typ{VECSMALL} seen as the SNF of
a small abelian group, return its regular representation.

\fun{long}{group_domain}{GEN grp} returns the \kbd{domain} of the
\emph{non-trivial} small group \var{grp}. Return an error if \var{grp} is
trivial.

\fun{GEN}{group_elts}{GEN grp, long n} returns the list of elements of the
small group \var{grp} of domain \var{n} as permutations.

\fun{GEN}{group_set}{GEN grp, long n} returns a \var{F2v} $b$ such that
$b[i]$ is set if and only if the small group \var{grp} of domain \var{n}
contains a permutation sending $1$ to $i$.

\fun{GEN}{groupelts_set}{GEN elts, long n}, where \var{elts} is the list of
elements of a small group of domain \var{n}, returns a \var{F2v} $b$ such that
$b[i]$ is set if and only if the small group contains a permutation sending $1$
to $i$.

\fun{long}{group_order}{GEN grp} returns the order of the small group
\var{grp} (which is the product of the relative orders).

\fun{long}{group_isabelian}{GEN grp} returns $1$ if the small group
\var{grp} is Abelian, else $0$.

\fun{GEN}{group_abelianHNF}{GEN grp, GEN elts} if \var{grp} is not Abelian,
returns \kbd{NULL}, else returns the HNF matrix of \var{grp} with respect to
the generating family $\var{grp}[1]$. If \var{elts} is no \kbd{NULL}, it must
be the list of elements of \var{grp}.

\fun{GEN}{group_abelianSNF}{GEN grp, GEN elts} if \var{grp} is not Abelian,
returns \kbd{NULL}, else returns its cyclic decomposition. If \var{elts} is no
\kbd{NULL}, it must be the list of elements of \var{grp}.

\fun{long}{group_subgroup_isnormal}{GEN G, GEN H}, $H$ being a subgroup of the
small group $G$, returns $1$ if $H$ is normal in $G$, else $0$.

\fun{long}{group_isA4S4}{GEN grp} returns $1$ if the small group
\var{grp} is isomorphic to $A_4$, $2$ if it is isomorphic to $S_4$ and
$0$ else. This is mainly to deal with the idiosyncrasy of the format.

\fun{GEN}{group_leftcoset}{GEN G, GEN g} where $G$ is a small group and $g$ a
permutation of the same domain, the left coset $gG$ as a vector of
permutations.

\fun{GEN}{group_rightcoset}{GEN G, GEN g} where $G$ is a small group and $g$ a
permutation of the same domain, the right coset $Gg$  as a vector of
permutations.

\fun{long}{group_perm_normalize}{GEN G, GEN g} where $G$ is a small group and
$g$ a permutation of the same domain, return $1$ if $gGg^{-1}=G$, else $0$.

\fun{GEN}{group_quotient}{GEN G, GEN H}, where $G$ is a small group and
$H$ is a subgroup of $G$, returns the quotient map $G\rightarrow G/H$
as an abstract data structure.

\fun{GEN}{quotient_perm}{GEN C, GEN g} where $C$ is the quotient map
$G\rightarrow G/H$ for some subgroup $H$ of $G$ and $g$ an element of $G$,
return the image of $g$ by $C$ (i.e. the coset $gH$).

\fun{GEN}{quotient_group}{GEN C, GEN G} where $C$ is the quotient map
$G\rightarrow G/H$ for some \emph{normal} subgroup $H$ of $G$, return the
quotient group $G/H$ as a small group.

\fun{GEN}{quotient_subgroup_lift}{GEN C, GEN H, GEN S} where $C$ is the
quotient map $G\rightarrow G/H$ for some group $G$ normalizing $H$ and $S$ is
a subgroup of $G/H$, return the inverse image of $S$ by $C$.

\fun{GEN}{group_subgroups}{GEN grp} returns the list of subgroups of the
small group \var{grp} as a \typ{VEC}.

\fun{GEN}{subgroups_tableset}{GEN S, long n} where $S$ is a vector of subgroups
of domain $n$, returns a table which matchs the set of elements of the
subgroups against the index of the subgroups.

\fun{long}{tableset_find_index}{GEN tbl, GEN set} searchs the set \kbd{set} in
the table \kbd{tbl} and returns its attached index, or $0$ if not found.

\fun{GEN}{groupelts_abelian_group}{GEN elts} where \var{elts} is the list of
elements of an \emph{Abelian} small group, returns the corresponding
small group.

\fun{GEN}{groupelts_center}{GEN elts} where \var{elts} is the list of elements
of a small group, returns the list of elements of the center of the
group.

\fun{GEN}{group_export}{GEN grp, long format} exports a small group
to another format, see \tet{galoisexport}.

\fun{long}{group_ident}{GEN grp, GEN elts} returns the index of the small group
\var{grp} in the GAP4 Small Group library, see \tet{galoisidentify}. If
\var{elts} is not \kbd{NULL}, it must be the list of elements of \var{grp}.

\fun{long}{group_ident_trans}{GEN grp, GEN elts} returns the index of the
regular representation of the small group \var{grp} in the GAP4 Transitive
Group library, see \tet{polgalois}. If \var{elts} is no \kbd{NULL}, it must be
the list of elements of \var{grp}.

\newpage
\chapter{Standard data structures}

\section{Character strings}

\subsec{Functions returning a \kbd{char *}}

\fun{char*}{pari_strdup}{const char *s} returns a malloc'ed copy of $s$
(uses \kbd{pari\_malloc}).

\fun{char*}{pari_strndup}{const char *s, long n} returns a malloc'ed copy of
at most $n$ chars from $s$ (uses \kbd{pari\_malloc}). If $s$ is longer than
$n$, only $n$ characters are copied and a terminal null byte is added.

\fun{char*}{stack_strdup}{const char *s} returns a copy of $s$, allocated
on the PARI stack (uses \kbd{stack\_malloc}).

\fun{char*}{stack_strcat}{const char *s, const char *t} returns the
concatenation of $s$ and $t$, allocated on the PARI stack (uses
\kbd{stack\_malloc}).

\fun{char*}{stack_sprintf}{const char *fmt, ...} runs \kbd{pari\_sprintf}
on the given arguments, returning a string allocated on the PARI stack.

\fun{char*}{itostr}{GEN x} writes the \typ{INT} $x$ to a \tet{stack_malloc}'ed
string.

\fun{char*}{GENtostr}{GEN x}, using the current default output format
(\kbd{GP\_DATA->fmt}, which contains the output style and the number of
significant digits to print), converts $x$ to a malloc'ed string. Simple
variant of \tet{pari_sprintf}.

\fun{char*}{GENtostr_raw}{GEN x} as \tet{GENtostr} with the following
differences: 1) the output format is \tet{f_RAW}; 2) the result is allocated
on the stack and \emph{must not} be freed.

\fun{char*}{GENtostr_unquoted}{GEN x} as \tet{GENtostr_raw} with the following
additional difference: a \typ{STR} $x$ is printed without enclosing quotes
(to be used by \kbd{print}.

\fun{char*}{GENtoTeXstr}{GEN x}, as \kbd{GENtostr}, except that
\tet{f_TEX} overrides the output format from \kbd{GP\_DATA->fmt}.

\fun{char*}{RgV_to_str}{GEN g, long flag} $g$ being a vector of \kbd{GEN}s,
returns a malloc'ed string, the concatenation of the \kbd{GENtostr} applied
to its elements, except that \typ{STR} are printed without enclosing quotes.
\kbd{flag} determines the output format: \tet{f_RAW}, \tet{f_PRETTYMAT}
or \tet{f_TEX}.

\subsec{Functions returning a \typ{STR}}

\fun{GEN}{strtoGENstr}{const char *s} returns a \typ{STR} with content $s$.

\fun{GEN}{strntoGENstr}{const char *s, long n}
returns a \typ{STR} containing the first $n$ characters of $s$.

\fun{GEN}{chartoGENstr}{char c} returns a \typ{STR} containing the character
$c$.

\fun{GEN}{GENtoGENstr}{GEN x} returns a \typ{STR} containing the printed
form of $x$ (in \tet{raw} format). This is often easier to use that
\tet{GENtostr} (which returns a malloc-ed \kbd{char*}) since there is no need
to free the string after use.

\fun{GEN}{GENtoGENstr_nospace}{GEN x} as \kbd{GENtoGENstr}, removing all
spaces from the output.

\fun{GEN}{Str}{GEN g} as \tet{RgV_to_str} with output format \tet{f_RAW},
but returns a \typ{STR}, not a malloc'ed string.

\fun{GEN}{Strtex}{GEN g} as \tet{RgV_to_str} with output format \tet{f_TEX},
but returns a \typ{STR}, not a malloc'ed string.

\fun{GEN}{Strexpand}{GEN g} as \tet{RgV_to_str} with output format \tet{f_RAW},
performing tilde and environment expansion on the result. Returns a
\typ{STR}, not a malloc'ed string.

\fun{GEN}{gsprintf}{const char *fmt, ...} equivalent to
\kbd{pari\_sprintf(fmt,...}, followed by \tet{strtoGENstr}. Returns a \typ{STR},
not a malloc'ed string.

\fun{GEN}{gvsprintf}{const char *fmt, va_list ap} variadic version of
\tet{gsprintf}

\section{Output}

\subsec{Output contexts}

An output coutext, of type \tet{PariOUT}, is a \kbd{struct}
that models a stream and contains the following function pointers:
\bprog
void (*putch)(char);           /* fputc()-alike */
void (*puts)(const char*);     /* fputs()-alike */
void (*flush)(void);           /* fflush()-alike */
@eprog\noindent
The methods \tet{putch} and \tet{puts} are used to print a character
or a string respectively.  The method \tet{flush} is called to finalize a
messages.

The generic functions \tet{pari_putc}, \tet{pari_puts}, \tet{pari_flush} and
\tet{pari_printf} print according to a \emph{default output context}, which
should be sufficient for most purposes. Lower level functions are available,
which take an explicit output context as first argument:

\fun{void}{out_putc}{PariOUT *out, char c} essentially equivalent to
\kbd{out->putc(c)}. In addition, registers whether the last character printed
was a \kbd{\bs n}.

\fun{void}{out_puts}{PariOUT *out, const char *s} essentially equivalent to
\kbd{out->puts(s)}. In addition, registers whether the last character printed
was a \kbd{\bs n}.

\fun{void}{out_printf}{PariOUT *out, const char *fmt, ...}

\fun{void}{out_vprintf}{PariOUT *out, const char *fmt, va_list ap}

\noindent N.B. The function \kbd{out\_flush} does not exist since it would be
identical to \kbd{out->flush()}

\fun{int}{pari_last_was_newline}{void} returns a non-zero value if the last
character printed via \tet{out_putc} or \tet{out_puts} was \kbd{\bs
n}, and $0$ otherwise.

\fun{void}{pari_set_last_newline}{int last} sets the boolean value
to be returned by the function \tet{pari_last_was_newline} to \var{last}.

\subsec{Default output context} They are defined by the global variables
\tet{pariOut} and \tet{pariErr} for normal outputs and warnings/errors, and you
probably do not want to change them. If you \emph{do} change them, diverting
output in non-trivial ways, this probably means that you are rewriting
\kbd{gp}. For completeness, we document in this section what the default
output contexts do.

\misctitle{pariOut} writes output to the \kbd{FILE*} \tet{pari_outfile},
initialized to \tet{stdout}.  The low-level methods are actually the standard
\kbd{putc} / \kbd{fputs}, plus some magic to handle a log file if one is
open.

\misctitle{pariErr} prints to the \kbd{FILE*} \tet{pari_errfile}, initialized
to \tet{stderr}. The low-level methods are as above.

You can stick with the default \kbd{pariOut} output context and change PARI's
standard output, redirecting \tet{pari_outfile} to another file, using

\fun{void}{switchout}{const char *name} where \kbd{name} is a character string
giving the name of the file you want to write to; the output is
\emph{appended} at the end of the file. To close the file and revert to
outputting to \kbd{stdout}, call \kbd{switchout(NULL)}.

\subsec{PARI colors}
In this section we describe the low-level functions used to implement GP's
color scheme, attached to the \tet{colors} default. The following symbolic
names are attached to gp's output strings:

\item \tet{c_ERR} an error message

\item \tet{c_HIST} a history number (as in \kbd{\%1 = ...})

\item \tet{c_PROMPT} a prompt

\item \tet{c_INPUT} an input line (minus the prompt part)

\item \tet{c_OUTPUT} an output

\item \tet{c_HELP} a help message

\item \tet{c_TIME} a timer

\item \tet{c_NONE} everything else

\emph{If} the \tet{colors} default is set to a non-empty value, before gp
outputs a string, it first outputs an ANSI colors escape sequence ---
understood by most terminals ---, according to the \kbd{colors}
specifications. As long as this is in effect, the following strings are
rendered in color, possibly in bold or underlined.

\fun{void}{term_color}{long c} prints (as if using \tet{pari_puts}) the ANSI
color escape sequence attached to output object \kbd{c}. If \kbd{c} is
\tet{c_NONE}, revert to default printing style.

\fun{void}{out_term_color}{PariOUT *out, long c} as \tet{term_color},
using output context \kbd{out}.

\fun{char*}{term_get_color}{char *s, long c} returns as a character
string the ANSI color escape sequence attached to output object \kbd{c}.
If \kbd{c} is \tet{c_NONE}, the value used to revert to default printing
style is returned. The argument \kbd{s} is either \kbd{NULL} (string
allocated on the PARI stack), or preallocated storage (in which case, it must
be able to hold at least 16 chars, including the final \kbd{\bs 0}).

\subsec{Obsolete output functions}

These variants of \fun{void}{output}{GEN x}, which prints \kbd{x}, followed by
a newline and a buffer flush are complicated to use and less flexible
than what we saw above, or than the \tet{pari_printf} variants. They are
provided for backward compatibility and are scheduled to disappear.

\fun{void}{brute}{GEN x, char format, long dec}

\fun{void}{matbrute}{GEN x, char format, long dec}

\fun{void}{texe}{GEN x, char format, long dec}

\section{Files}

The following routines are trivial wrappers around system functions
(possibly around one of several functions depending on availability).
They are usually integrated within PARI's diagnostics system, printing
messages if \kbd{DEBUGFILES} is high enough.

\fun{int}{pari_is_dir}{const char *name} returns $1$ if \kbd{name} points to
a directory, $0$ otherwise.

\fun{int}{pari_is_file}{const char *name} returns $1$ if \kbd{name} points to
a directory, $0$ otherwise.

\fun{int}{file_is_binary}{FILE *f} returns $1$ if the file $f$ is a binary
file (in the \tet{writebin} sense), $0$ otherwise.

\fun{void}{pari_unlink}{const char *s} deletes the file named $s$. Warn
if the operation fails.

\fun{void}{pari_fread_chars}{void *b, size_t n, FILE *f} read $n$ chars from
stream $f$, storing the result in pre-allocated buffer $b$ (assumed to be
large enough).

\fun{char*}{path_expand}{const char *s} perform tilde and environment expansion
on $s$. Returns a \kbd{malloc}'ed buffer.

\fun{void}{strftime_expand}{const char *s, char *buf, long max} perform
time expansion on $s$, storing the result (at most \kbd{max} chars) in
buffer \kbd{buf}. Trivial wrapper around
\bprog
  time_t t = time(NULL);
  strftime(but, max, s, localtime(&t);
@eprog

\fun{char*}{pari_get_homedir}{const char *user} expands \kbd{\til user}
constructs, returning the home directory of user \kbd{user}, or \kbd{NULL} if
it could not be determined (in particular if the operating system has no such
concept). The return value may point to static area and may be overwritten
by subsequent system calls: use immediately or \kbd{strdup} it.

\fun{int}{pari_stdin_isatty}{void} returns $1$ if our standard input
\kbd{stdin} is attached to a terminal. Trivial wrapper around \kbd{isatty}.

\subsec{pariFILE}

PARI maintains a linked list of open files, to reclaim resources
(file descriptors) on error or interrupts. The corresponding data structure
is a \kbd{pariFILE}, which is a wrapper around a standard \kbd{FILE*},
containing further the file name, its type (regular file, pipe, input or
output file, etc.). The following functions create and manipulate this
structure; they are integrated within PARI's diagnostics system, printing
messages if \kbd{DEBUGFILES} is high enough.

\fun{pariFILE*}{pari_fopen}{const char *s, const char *mode} wrapper
around \kbd{fopen(s, mode)}, return \kbd{NULL} on failure.

\fun{pariFILE*}{pari_fopen_or_fail}{const char *s, const char *mode}
simple wrapper around \kbd{fopen(s, mode)}; error on failure.

\fun{pariFILE*}{pari_fopengz}{const char *s} opens the file whose name is
$s$,  and associates a (read-only) \kbd{pariFILE} with it. If $s$ is a
compressed file (\kbd{.gz} suffix), it is uncompressed on the fly.
If $s$ cannot be opened, also try to open \kbd{$s$.gz}. Returns \kbd{NULL}
on failure.

\fun{void}{pari_fclose}{pariFILE *f} closes
the underlying file descriptor and deletes the \kbd{pariFILE} struct.

\fun{pariFILE*}{pari_safefopen}{const char *s, const char *mode}
creates a \emph{new} file $s$ (a priori for writing) with \kbd{600}
permissions. Error if the file already exists. To avoid symlink attacks,
a symbolic link exists, regardless of where it points to.

\subsec{Temporary files}

PARI has its own idea of the system temp directory derived from an
environment variable (\kbd{\$GPTMPDIR}, else \kbd{\$TMPDIR}), or the first
writable directory among \kbd{/tmp}, \kbd{/var/tmp} and \kbd{.}.

\fun{char*}{pari_unique_dir}{const char *s} creates a ``unique directory''
and return its name built from the string $s$, the user id and process pid
(on Unix systems). This directory is itself located in the temp
directory mentioned above. The name returned is \tet{malloc}'ed.

\fun{char*}{pari_unique_filename}{const char *s} creates a \emph{new} empty
file in the temp directory, whose name contains the id-string $s$ (truncated
to its first $8$ chars), followed by a system-dependent suffix (incorporating
the ids of both the user and the running process, for instance). The function
returns the tempfile name. The name returned is \tet{malloc}'ed.

\section{Errors}\label{se:errors}

This section documents the various error classes, and the corresponding
arguments to \tet{pari_err}. The general syntax is

\fun{void}{pari_err}{numerr,...}

\noindent In the sequel, we mostly use sequences of arguments of the form
\bprog
  const char *s
  const char *fmt, ...
@eprog\noindent where \kbd{fmt} is a PARI
format, producing a string $s$ from the remaining arguments. Since
providing the correct arguments to \tet{pari_err} is quite error-prone, we
also provide specialized routines \kbd{pari\_err\_\var{ERRORCLASS}(\dots)}
instead of \kbd{pari\_err(e\_\var{ERRORCLASS}, \dots)} so that the C compiler
can check their arguments.

\noindent We now inspect the list of valid keywords (error classes) for
\kbd{numerr}, and the corresponding required arguments.

\subsec{Internal errors, ``system'' errors}

\subsubsec{e\_ARCH} A requested feature $s$ is not available on this
architecture or operating system.
\bprog
  pari_err(e_ARCH)
@eprog\noindent prints the error message: \kbd{sorry, '$s$' not available on
this system}.

\subsubsec{e\_BUG} A bug in the PARI library, in function $s$.
\bprog
  pari_err(e_BUG, const char *s)
  pari_err_BUG(const char *s)
@eprog\noindent prints the error message: \kbd{Bug in $s$, please report}.

\subsubsec{e\_FILE} Error while trying to open a file.
\bprog
  pari_err(e_FILE, const char *what, const char *name)
  pari_err_FILE(const char *what, const char *name)
@eprog\noindent prints the error message: \kbd{error opening
\emph{what}: `\emph{name}'}.

\subsubsec{e\_IMPL} A requested feature $s$ is not implemented.
\bprog
  pari_err(e_IMPL, const char *s)
  pari_err_IMPL(const char *s)
@eprog\noindent prints the error message: \kbd{sorry, $s$ is not yet
implemented}.

\subsubsec{e\_PACKAGE} Missing optional package $s$.
\bprog
  pari_err(e_PACKAGE, const char *s)
  pari_err_PACKAGE(const char *s)
@eprog\noindent prints the error message: \kbd{package $s$ is required,
please install it}

\subsec{Syntax errors, type errors}

\subsubsec{e\_DIM} arguments submitted to function $s$ have inconsistent
dimensions. E.g., when solving a linear system, or trying to compute the
determinant of a non-square matrix.
\bprog
  pari_err(e_DIM, const char *s)
  pari_err_DIM(const char *s)
@eprog\noindent prints the error message: \kbd{inconsistent dimensions in $s$}.

\subsubsec{e\_FLAG} A flag argument is out of bounds in function $s$.
\bprog
  pari_err(e_FLAG, const char *s)
  pari_err_FLAG(const char *s)
@eprog\noindent prints the error message: \kbd{invalid flag in $s$}.

\subsubsec{e\_NOTFUNC} Generated by the PARI evaluator; tried to use a
\kbd{GEN} which is not a \typ{CLOSURE} in a function call syntax (as in
\kbd{f = 1; f(2);}).
\bprog
  pari_err(e_NOTFUNC, GEN fun)
@eprog\noindent prints the error message: \kbd{not a function in a function
call}.

\subsubsec{e\_OP} Impossible operation between two objects than cannot be
typecast to a sensible common domain for deeper reasons than a type mismatch,
usually for arithmetic reasons. As in \kbd{O(2) + O(3)}: it is valid to add
two \typ{PADIC}s, provided the underlying prime is the same; so the addition
is not forbidden a priori for type reasons, it only becomes so when
inspecting the objects and trying to perform the operation.
\bprog
  pari_err(e_OP, const char *op, GEN x, GEN y)
  pari_err_OP(const char *op, GEN x, GEN y)
@eprog\noindent As \kbd{e\_TYPE2}, replacing \kbd{forbidden} by
\kbd{inconsistent}.

\subsubsec{e\_PRIORITY} object $o$ in function $s$ contains
variables whose priority is incompatible with the expected operation.
E.g.~\kbd{Pol([x,1], 'y)}: this raises an error because it's not possible to
create a polynomial whose coefficients involve variables with higher priority
than the main variable.
\bprog
  pari_err(e_PRIORITY, const char *s, GEN o, const char *op, long v)
  pari_err_PRIORITY(const char *s, GEN o, const char *op, long v)
@eprog\noindent prints the error message: \kbd{incorrect priority
in $s$, variable $v_o$ \var{op} $v$}, were $v_o$ is \kbd{gvar(o)}.

\subsubsec{e\_SYNTAX} Syntax error, generated by the PARI parser.
\bprog
  pari_err(e_SYNTAX, const char *msg, const char *e, const char *entry)
@eprog\noindent where \kbd{msg} is a complete error message, and \kbd{e} and
\kbd{entry} point into the \emph{same} character string, which is the input
that was incorrectly parsed: \kbd{e} points to the character where the parser
failed, and $\kbd{entry}\leq \kbd{e}$ points somewhat before.

\noindent Prints the error message: \kbd{msg}, followed by a colon, then
a part of the input character string (in general \kbd{entry} itself, but an
initial segment may be truncated if $\kbd{e}-\kbd{entry}$ is large); a caret
points at \kbd{e}, indicating where the error took place.

\subsubsec{e\_TYPE} An argument $x$ of function $s$ had an unexpected type.
(As in \kbd{factor("blah")}.)
\bprog
  pari_err(e_TYPE, const char *s, GEN x)
  pari_err_TYPE(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{incorrect type in $s$
(\typ{$x$})}, where \typ{$x$} is the type of $x$.

\subsubsec{e\_TYPE2} Forbidden operation between two objects than cannot be
typecast to a sensible common domain, because their types do not match up.
(As in \kbd{Mod(1,2) + Pi}.)
\bprog
  pari_err(e_TYPE2, const char *op, GEN x, GEN y)
  pari_err_TYPE2(const char *op, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{forbidden} $s$
\typ{$x$} \var{op} \typ{$y$}, where \typ{$z$} denotes the type of $z$.
Here, $s$ denotes the spelled out name of the operator
$\var{op}\in\{\kbd{+}, \kbd{*}, \kbd{/}, \kbd{\%}, \kbd{=}\}$, e.g.
\emph{addition} for \kbd{"+"} or \emph{assignment} for \kbd{"="}. If \var{op}
is not in the above operator, list, it is taken to be the already spelled out
name of a function, e.g. \kbd{"gcd"}, and the error message becomes
\kbd{forbidden} \var{op} \typ{$x$}, \typ{$y$}.

\subsubsec{e\_VAR} polynomials $x$ and $y$ submitted to function $s$ have
inconsistent variables. E.g., considering the algebraic number
\kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(x\pow2+1)}.
\bprog
  pari_err(e_VAR, const char *s, GEN x, GEN y)
  pari_err_VAR(const char *s, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{inconsistent variables in $s$
$X$ != $Y$}, where $X$ and $Y$ are the names of the variables of $x$ and $y$,
respectively.

\subsec{Overflows}

\subsubsec{e\_COMPONENT} Trying to access an inexistent component in a
vector/matrix/list in a function: the index is less than $1$ or greater
than the allowed length.
\bprog
  pari_err(e_COMPONENT, const char *f, const char *op, GEN lim, GEN x)
  pari_err_COMPONENT(const char *f, const char *op, GEN lim, GEN x)
@eprog\noindent prints the error message: \kbd{non-existent component in $f$:
index \var{op} \var{lim}}. Special case: if $f$ is the empty string (no
meaningful public function name can be used), we ignore it and print the
message: \kbd{non-existent component: index \var{op} \var{lim}}.

\subsubsec{e\_DOMAIN} An argument $x$ is not in the function's domain (as in
\kbd{moebius(0)} or \kbd{zeta(1)}).
\bprog
  pari_err(e_DOMAIN, char *f, char *v, char *op, GEN lim, GEN x)
  pari_err_DOMAIN(char *f, char *v, char *op, GEN lim, GEN x)
@eprog\noindent prints the error message: \kbd{domain error in $f$: $v$
\var{op} \var{lim}}. Special case: if \var{op} is the empty string, we ignore
\var{lim} and print the error message: \kbd{domain error in $f$: $v$ out of
range}.

\subsubsec{e\_MAXPRIME} A function using the precomputed list of prime numbers
ran out of primes.
\bprog
  pari_err(e_MAXPRIME, ulong c)
  pari_err_MAXPRIME(ulong c)
@eprog\noindent prints the error message: \kbd{not enough precomputed primes,
need primelimit \til $c$} if $c$ is non-zero. And simply \kbd{not enough
precomputed primes} otherwise.

\subsubsec{e\_MEM} A call to \tet{pari_malloc} or \tet{pari_realloc} failed.
\bprog
  pari_err(e_MEM)
@eprog\noindent prints the error message: \kbd{not enough memory}.

\subsubsec{e\_OVERFLOW} An object in function $s$ becomes too large to be
represented within PARI's hardcoded limits. (As in \kbd{2\pow2\pow2\pow10}
or \kbd{exp(1e100)}, which overflow in \kbd{lg} and \kbd{expo}.)
\bprog
  pari_err(e_OVERFLOW, const char *s)
  pari_err_OVERFLOW(const char *s)
@eprog\noindent prints the error message: \kbd{overflow in $s$}.

\subsubsec{e\_PREC} Function $s$ fails because input accuracy is too low.
(As in \kbd{floor(1e100)} at default accuracy.)
\bprog
  pari_err(e_PREC, const char *s)
  pari_err_PREC(const char *s)
@eprog\noindent prints the error message: \kbd{precision too low in $s$}.

\subsubsec{e\_STACK} The PARI stack overflows.
\bprog
  pari_err(e_STACK)
@eprog\noindent prints the error message: \kbd{the PARI stack overflows !}
as well as some statistics concerning stack usage.

\subsec{Errors triggered intentionally}

\subsubsec{e\_ALARM} A timeout, generated by the \tet{alarm} function.
\bprog
  pari_err(e_ALARM, const char *fmt, ...)
@eprog\noindent prints the error message: $s$.

\subsubsec{e\_USER} A user error, as triggered by \tet{error}($g_1,\dots,g_n)$
in GP.
\bprog
  pari_err(e_USER, GEN g)
@eprog\noindent prints the error message: \kbd{user error:}, then the
entries of the vector $g$.

\subsec{Mathematical errors}

\subsubsec{e\_CONSTPOL} An argument of function $s$ is a constant polynomial,
which does not make sense. (As in \kbd{galoisinit(Pol(1))}.)
\bprog
  pari_err(e_CONSTPOL, const char *s)
  pari_err_CONSTPOL(const char *s)
@eprog\noindent prints the error message: \kbd{constant polynomial in $s$}.

\subsubsec{e\_COPRIME} Function $s$ expected two coprime arguments, and did
receive $x$, $y$ which were not.
\bprog
  pari_err(e_COPRIME, const char *s, GEN x, GEN y)
  pari_err_COPRIME(const char *s, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{elements not coprime in $s$:
$x, y$}.

\subsubsec{e\_INV} Tried to invert a non-invertible object $x$.
\bprog
  pari_err(e_INV, const char *s, GEN x)
  pari_err_INV(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{impossible inverse in $s$: $x$}.
If $x = \kbd{Mod}(a,b)$ is a \typ{INTMOD} and $a$ is not $0$ mod $b$, this
allows to factor the modulus, as \kbd{gcd}$(a,b)$ is a non-trivial divisor of
$b$.

\subsubsec{e\_IRREDPOL} Function $s$ expected an irreducible polynomial,
and did not receive one. (As in \kbd{nfinit(x\pow2-1)}.)
\bprog
  pari_err(e_IRREDPOL, const char *s, GEN x)
  pari_err_IRREDPOL(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{not an irreducible polynomial
in $s$: $x$}.

\subsubsec{e\_MISC} Generic uncategorized error.
\bprog
  pari_err(e_MISC, const char *fmt, ...)
@eprog\noindent prints the error message: $s$.

\subsubsec{e\_MODULUS} moduli $x$ and $y$ submitted to function $s$ are
inconsistent. E.g., considering the algebraic number
\kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(t\pow3-2)}.
\bprog
  pari_err(e_MODULUS, const char *s, GEN x, GEN y)
  pari_err_MODULUS(const char *s, GEN x, GEN y)
@eprog\noindent prints the error message: \kbd{inconsistent moduli in $s$},
then the moduli.

\subsubsec{e\_PRIME} Function $s$ expected a prime number, and did receive $p$,
which was not. (As in \kbd{idealprimedec(nf, 4)}.)
\bprog
  pari_err(e_PRIME, const char *s, GEN x)
  pari_err_PRIME(const char *s, GEN x)
@eprog\noindent prints the error message: \kbd{not a prime in $s$: $x$}.

\subsubsec{e\_ROOTS0} An argument of function $s$ is a zero polynomial, and
we need to consider its roots. (As in \kbd{polroots(0)}.)
\bprog
  pari_err(e_ROOTS0, const char *s)
  pari_err_ROOTS0(const char *s)
@eprog\noindent prints the error message: \kbd{zero polynomial in $s$}.

\subsubsec{e\_SQRTN} Tried to compute an $n$-th root of $x$, which does not
exist, in function $s$.
(As in \kbd{sqrt(Mod(-1,3))}.)
\bprog
  pari_err(e_SQRTN, GEN x)
  pari_err_SQRTN(GEN x)
@eprog\noindent prints the error message: \kbd{not an n-th power residue in
$s$: $x$}.

\subsec{Miscellaneous functions}

\fun{long}{name_numerr}{const char *s} return the error number corresponding to
an error name. E.g. \kbd{name\_numerr("e\_DIM")} returns \kbd{e\_DIM}.

\fun{const char*}{numerr_name}{long errnum} returns the error name
corresponding to an error number. E.g. \kbd{name\_numerr(e\_DIM)} returns
\kbd{"e\_DIM"}.

\fun{char*}{pari_err2str}{GEN err} returns the error message that would be
printed on \typ{ERROR} \kbd{err}. The name is allocated on the PARI stack and
must not be freed.

\section{Hashtables}
A \tet{hashtable}, or associative array, is a set of pairs $(k,v)$ of keys
and values. PARI implements general extensible hashtables for fast data
retrieval: when creating a table, we may either choose to use the PARI stack,
or \kbd{malloc} so as to be stack-independent. A hashtable is implemented as
a table of linked lists, each list containing all entries sharing the same
hash value. The table length is a prime number, which roughly doubles as the
table overflows by gaining new entries; both the current number of entries
and the threshold before the table grows are stored in the table. Finally the
table remembers the functions used to hash the entries's keys and to test for
equality two entries hashed to the same value.

An entry, or \tet{hashentry}, contains

\item a key/value pair $(k,v)$, both of type \kbd{void*} for maximal
flexibility,

\item the hash value of the key, for the table hash function. This hash is
mapped to a table index (by reduction modulo the table length), but it
contains more information, and is used to bypass costly general equality
tests if possible,

\item a link pointer to the next entry sharing the same table cell.

\bprog
typedef struct {
  void *key, *val;
  ulong hash; /* hash(key) */
  struct hashentry *next;
} hashentry;

typedef struct {
  ulong len; /* table length */
  hashentry **table; /* the table */
  ulong nb, maxnb; /* number of entries stored and max nb before enlarging */
  ulong pindex; /* prime index */
  ulong (*hash) (void *k); /* hash function */
  int (*eq) (void *k1, void *k2); /* equality test */
  int use_stack; /* use the PARI stack, resp. malloc */
} hashtable;
@eprog\noindent

\fun{hashtable*}{hash_create}{size, hash, eq, use_stack}
\vskip -0.5em % switch to K&R style to avoid atrocious line break
\bprog
  ulong size;
  ulong (*hash)(void*);
  int (*eq)(void*,void*);
  int use_stack;
@eprog\noindent
creates a hashtable with enough room to contain
\kbd{size} entries. The functions \kbd{hash} and \kbd{eq} compute the hash
value of keys and test keys for equality, respectively. If \kbd{use\_stack}
is non zero, the resulting table will use the PARI stack; otherwise, we use
\kbd{malloc}.

\fun{hashtable*}{hash_create_ulong}{ulong size, long stack} special case
when the keys are \kbd{ulongs} with ordinary equality test.

\fun{hashtable*}{hash_create_str}{ulong size, long stack} special case
when the keys are character strings with string equality test (and
\tet{hash_str} hash function).

\fun{void}{hash_insert}{hashtable *h, void *k, void *v} inserts $(k,v)$
in hashtable $h$. No copy is made: $k$ and $v$ themselves are stored. The
implementation does not prevent one to insert two entries with equal
keys $k$, but which of the two is affected by later commands is undefined.

\fun{void}{hash_insert2}{hashtable *h, void *k, void *v, ulong hash}
as \kbd{hash\_insert}, assuming \kbd{h->hash(k)} is \kbd{hash}.

\fun{hashentry*}{hash_search}{hashtable *h, void *k} look for an entry
with key $k$ in $h$. Return it if it one exists, and \kbd{NULL} if not.

\fun{hashentry*}{hash_search2}{hashtable *h, void *k, ulong hash} as
\kbd{hash\_search} assuming \kbd{h->hash(k)} is \kbd{hash}.

\fun{hashentry *}{hash_select}{hashtable *h, void *k, void *E, int (*select)(void *, hashentry *)} variant of \tet{hash_search}, useful when entries
with identical keys are inserted: among the entries attached to
key $k$, return one satisfying the selection criterion (such that
\kbd{select(E,e)} is non-zero), or \kbd{NULL} if none exist.

\fun{hashentry*}{hash_remove}{hashtable *h, void *k} deletes an entry $(k,v)$
with key $k$ from $h$ and return it. (Return \kbd{NULL} if none was found.)
Only the linking structures are freed, memory attached to $k$ and $v$
is not reclaimed.

\fun{hashentry*}{hash_remove_select}{hashtable *h, void *k, void *E, int(*select)(void*, hashentry *)}
a variant of \tet{hash_remove}, useful when entries with identical keys are
inserted: among the entries attached to key $k$, return one satisfying the
selection criterion (such that \kbd{select(E,e)} is non-zero) and delete it,
or \kbd{NULL} if none exist. Only the linking structures are freed, memory
attached to $k$ and $v$ is not reclaimed.

\fun{GEN}{hash_keys}{hashtable *h} return in a \typ{VECSMALL} the keys
stored in hashtable $h$.

\fun{GEN}{hash_values}{hashtable *h} return in a \typ{VECSMALL}
the values stored in hashtable $h$.

\fun{void}{hash_destroy}{hashtable *h} deletes the hashtable, by removing all
entries.

\fun{void}{hash_dbg}{hashtable *h} print statistics for hashtable $h$, allows
to evaluate the attached hash function performance on actual data.

Some interesting hash functions are available:

\fun{ulong}{hash_str}{const char *s}

\fun{ulong}{hash_str2}{const char *s} is the historical PARI string hashing
function and seems to be generally inferior to \kbd{hash\_str}.

\fun{ulong}{hash_GEN}{GEN x}

\section{Dynamic arrays}

A \teb{dynamic array} is a generic way to manage stacks of data that need
to grow dynamically. It allocates memory using \kbd{pari\_malloc}, and is
independent of the PARI stack; it even works before the \kbd{pari\_init} call.

\subsec{Initialization}

To create a stack of objects of type \kbd{foo}, we proceed as follows:
\bprog
foo *t_foo;
pari_stack s_foo;
pari_stack_init(&s_foo, sizeof(*t_foo), (void**)t_foo);
@eprog\noindent Think of \kbd{s\_foo} as the controlling interface, and
\kbd{t\_foo} as the (dynamic) array tied to it. The value of \kbd{t\_foo}
may be changed as you add more elements.

\subsec{Adding elements}
The following function pushes an element on the stack.
\bprog
/* access globals t_foo and s_foo */
void push_foo(foo x)
{
  long n = pari_stack_new(&s_foo);
  t_foo[n] = x;
}
@eprog

\subsec{Accessing elements}

Elements are accessed naturally through the \kbd{t\_foo} pointer.
For example this function swaps two elements:
\bprog
void swapfoo(long a, long b)
{
  foo x;
  if (a > s_foo.n || b > s_foo.n) pari_err_BUG("swapfoo");
  x        = t_foo[a];
  t_foo[a] = t_foo[b];
  t_foo[b] = x;
}
@eprog

\subsec{Stack of stacks}
Changing the address of \kbd{t\_foo} is not supported in general.
In particular \kbd{realloc()}'ed array of stacks and stack of stacks are not
supported.

\subsec{Public interface}
Let \kbd{s} be a \kbd{pari\_stack} and \kbd{data} the data linked to it. The
following public fields are defined:

\item \kbd{s.alloc} is the number of elements allocated for \kbd{data}.

\item \kbd{s.n} is the number of elements in the stack and \kbd{data[s.n-1]} is
the topmost element of the stack.  \kbd{s.n} can be changed as long as
$0\leq\kbd{s.n}\leq\kbd{s.alloc}$ holds.

\fun{void}{pari_stack_init}{pari_stack *s, size_t size, void **data} links
\kbd{*s} to the data pointer \kbd{*data}, where \kbd{size} is the size of
data element. The pointer \kbd{*data} is set to \kbd{NULL}, \kbd{s->n} and
\kbd{s->alloc} are set to $0$: the array is empty.

\fun{void}{pari_stack_alloc}{pari_stack *s, long nb} makes room for \kbd{nb}
more elements, i.e.~makes sure that $\kbd{s.alloc}\geq\kbd{s.n} + \kbd{nb}$,
possibly reallocating \kbd{data}.

\fun{long}{pari_stack_new}{pari_stack *s} increases \kbd{s.n} by one unit,
possibly reallocating \kbd{data}, and returns $\kbd{s.n}-1$.

\misctitle{Caveat} The following construction is incorrect because
\kbd{stack\_new} can change the value of \kbd{t\_foo}:
\bprog
t_foo[ pari_stack_new(&s_foo) ] = x;
@eprog

\fun{void}{pari_stack_delete}{pari_stack *s} frees \kbd{data} and resets the
stack to the state immediately following \kbd{stack\_init} (\kbd{s->n} and
\kbd{s->alloc} are set to $0$).

\fun{void *}{pari_stack_pushp}{pari_stack *s, void *u} This function assumes
that \kbd{*data} is of pointer type. Pushes the element \kbd{u} on the stack
\kbd{s}.

\fun{void **}{pari_stack_base}{pari_stack *s} returns the address of \kbd{data},
typecast to a \kbd{void **}.

\section{Vectors and Matrices}

\subsec{Access and extract}
See~\secref{se:clean} and~\secref{se:unclean} for various useful constructors.
Coefficients are accessed and set using \tet{gel}, \tet{gcoeff},
see~\secref{se:accessors}. There are many internal functions to extract or
manipulate subvectors or submatrices but, like the accessors above, none of
them are suitable for \tet{gerepileupto}. Worse, there are no type
verification, nor bound checking, so use at your own risk.

\fun{GEN}{shallowcopy}{GEN x} returns a \kbd{GEN} whose components are the
components of $x$ (no copy is made). The result may now be used to compute in
place without destroying $x$. This is essentially equivalent to
\bprog
  GEN y = cgetg(lg(x), typ(x));
  for (i = 1; i < lg(x); i++) y[i] = x[i];
  return y;
@eprog\noindent
except that \typ{MAT} is treated specially since shallow copies of all columns
are made. The function also works for non-recursive types, but is useless
in that case since it makes a deep copy. If $x$ is known to be a \typ{MAT}, you
may call \tet{RgM_shallowcopy} directly; if $x$ is known not to be a \typ{MAT},
you may call \tet{leafcopy} directly.

\fun{GEN}{RgM_shallowcopy}{GEN x} returns \kbd{shallowcopy(x)}, where $x$
is a \typ{MAT}.

\fun{GEN}{shallowtrans}{GEN x} returns the transpose of $x$, \emph{without}
copying its components, i.~e.,~it returns a \kbd{GEN} whose components are
(physically) the components of $x$. This is the internal function underlying
\tet{gtrans}.

\fun{GEN}{shallowconcat}{GEN x, GEN y} concatenate $x$ and $y$, \emph{without}
copying components, i.~e.,~it returns a \kbd{GEN} whose components are
(physically) the components of $x$ and $y$.

\fun{GEN}{shallowconcat1}{GEN x}
$x$ must be \typ{VEC} or \typ{LIST}, concatenate
its elements from left to right. Shallow version of \kbd{gconcat1}.

\fun{GEN}{shallowmatconcat}{GEN v} shallow version of \kbd{matconcat}.

\fun{GEN}{shallowextract}{GEN x, GEN y} extract components
of the vector or matrix $x$ according to the selection parameter $y$.
This is the shallow analog of \kbd{extract0(x, y, NULL)}, see \tet{vecextract}.
\kbdsidx{extract0}

\fun{GEN}{RgM_minor}{GEN A, long i, long j} given a square \typ{MAT} A,
return the matrix with $i$-th row and $j$-th column removed.

\fun{GEN}{vconcat}{GEN A, GEN B} concatenate vertically the two \typ{MAT} $A$
and $B$ of compatible dimensions. A \kbd{NULL} pointer is accepted for an
empty matrix. See \tet{shallowconcat}.

\fun{GEN}{matslice}{GEN A, long a, long b, long c, long d}
returns the submatrix $A[a..b,c..d]$. Assume $a \leq b$ and  $c \leq d$.

\fun{GEN}{row}{GEN A, long i} return $A[i,]$, the $i$-th row of the \typ{MAT}
$A$.

\fun{GEN}{row_i}{GEN A, long i, long j1, long j2} return part of the $i$-th
row of \typ{MAT}~$A$: $A[i,j_1]$, $A[i,j_1+1]\dots,A[i,j_2]$. Assume $j_1
\leq j_2$.

\fun{GEN}{rowcopy}{GEN A, long i} return the row $A[i,]$ of
the~\typ{MAT}~$A$. This function is memory clean and suitable for
\kbd{gerepileupto}. See \kbd{row} for the shallow equivalent.

\fun{GEN}{rowslice}{GEN A, long i1, long i2} return the \typ{MAT}
formed by the $i_1$-th through $i_2$-th rows of \typ{MAT} $A$. Assume $i_1
\leq i_2$.

\fun{GEN}{rowsplice}{GEN A, long i} return the \typ{MAT} formed from the
coefficients of \typ{MAT} $A$ with $j$-th row removed.

\fun{GEN}{rowpermute}{GEN A, GEN p}, $p$ being a \typ{VECSMALL}
representing a list $[p_1,\dots,p_n]$ of rows of \typ{MAT} $A$, returns the
matrix whose rows are $A[p_1,],\dots, A[p_n,]$.

\fun{GEN}{rowslicepermute}{GEN A, GEN p, long x1, long x2}, short for
\bprog
  rowslice(rowpermute(A,p), x1, x2)
@eprog\noindent
(more efficient).

\fun{GEN}{vecslice}{GEN A, long j1, long j2}, return $A[j_1], \dots,
A[j_2]$. If $A$ is a \typ{MAT}, these correspond to \emph{columns} of $A$.
The object returned has the same type as $A$ (\typ{VEC}, \typ{COL} or
\typ{MAT}). Assume $j_1 \leq j_2$.

\fun{GEN}{vecsplice}{GEN A, long j} return $A$ with $j$-th entry removed
(\typ{VEC}, \typ{COL}) or $j$-th column removed (\typ{MAT}).

\fun{GEN}{vecreverse}{GEN A}. Returns a \kbd{GEN} which has the same
type as $A$ (\typ{VEC}, \typ{COL} or \typ{MAT}), and whose components
are the $A[n],\dots,A[1]$. If $A$ is a \typ{MAT}, these are the
\emph{columns} of $A$.

\fun{void}{vecreverse_inplace}{GEN A} as \kbd{vecreverse}, but reverse
$A$ in place.

\fun{GEN}{vecpermute}{GEN A, GEN p} $p$ is a \typ{VECSMALL} representing
a list $[p_1,\dots,p_n]$ of indices. Returns a \kbd{GEN} which has the same
type as $A$ (\typ{VEC}, \typ{COL} or \typ{MAT}), and whose components
are $A[p_1],\dots,A[p_n]$. If $A$ is a \typ{MAT}, these are the
\emph{columns} of $A$.

\fun{GEN}{vecsmallpermute}{GEN A, GEN p} as \kbd{vecpermute} when \kbd{A} is a
\typ{VECSMALL}.

\fun{GEN}{vecslicepermute}{GEN A, GEN p, long y1, long y2} short for
\bprog
  vecslice(vecpermute(A,p), y1, y2)
@eprog\noindent
(more efficient).

\subsec{Componentwise operations}

The following convenience routines automate trivial loops of the form
\bprog
  for (i = 1; i < lg(a); i++) gel(v,i) = f(gel(a,i), gel(b,i))
@eprog\noindent
for suitable $f$:

\fun{GEN}{vecinv}{GEN a}. Given a vector $a$,
returns the vector whose $i$-th component is \kbd{ginv}$(a[i])$.

\fun{GEN}{vecmul}{GEN a, GEN b}. Given $a$ and $b$ two vectors of the same
length, returns the vector whose $i$-th component is \kbd{gmul}$(a[i], b[i])$.

\fun{GEN}{vecdiv}{GEN a, GEN b}. Given $a$ and $b$ two vectors of the same
length, returns the vector whose $i$-th component is \kbd{gdiv}$(a[i], b[i])$.

\fun{GEN}{vecpow}{GEN a, GEN n}. Given $n$ a \typ{INT}, returns
the vector whose $i$-th component is $a[i]^n$.

\fun{GEN}{vecmodii}{GEN a, GEN b}. Assuming $a$ and $b$ are two \kbd{ZV}
of the same length, returns the vector whose $i$-th component
is \kbd{modii}$(a[i], b[i])$.

Note that \kbd{vecadd} or \kbd{vecsub} do not exist since \kbd{gadd}
and \kbd{gsub} have the expected behavior. On the other hand,
\kbd{ginv} does not accept vector types, hence \kbd{vecinv}.

\subsec{Low-level vectors and columns functions}

These functions handle \typ{VEC} as an abstract container type of
\kbd{GEN}s. No specific meaning is attached to the content. They accept both
\typ{VEC} and \typ{COL} as input, but \kbd{col} functions always return
\typ{COL} and \kbd{vec} functions always return \typ{VEC}.

\misctitle{Note} All the functions below are shallow.

\fun{GEN}{const_col}{long n, GEN x} returns a \typ{COL} of \kbd{n} components
equal to \kbd{x}.

\fun{GEN}{const_vec}{long n, GEN x} returns a \typ{VEC} of \kbd{n} components
equal to \kbd{x}.

\fun{int}{vec_isconst}{GEN v} Returns 1 if all the components of \kbd{v} are
equal, else returns 0.

\fun{void}{vec_setconst}{GEN v, GEN x} $v$ a pre-existing vector. Set all its
components to $x$.

\fun{int}{vec_is1to1}{GEN v}  Returns 1 if the components of \kbd{v} are
pair-wise distinct, i.e. if $i\mapsto v[i]$ is a 1-to-1 mapping, else returns
0.

\fun{GEN}{vec_append}{GEN V, GEN s} append \kbd{s} to the vector \kbd{V}.

\fun{GEN}{vec_shorten}{GEN v, long n} shortens the vector \kbd{v} to \kbd{n}
components.

\fun{GEN}{vec_lengthen}{GEN v, long n} lengthens the vector \kbd{v}
to \kbd{n} components. The extra components are not initialized.

\fun{GEN}{vec_insert}{GEN v, long n, GEN x} inserts $x$ at position $n$ in the vector
$v$.

\section{Vectors of small integers}

\subsec{\typ{VECSMALL}}

These functions handle \typ{VECSMALL} as an abstract container type
of small signed integers. No specific meaning is attached to the content.

\fun{GEN}{const_vecsmall}{long n, long c} returns a \typ{VECSMALL}
of \kbd{n} components equal to \kbd{c}.

\fun{GEN}{vec_to_vecsmall}{GEN z} identical to \kbd{ZV\_to\_zv(z)}.

\fun{GEN}{vecsmall_to_vec}{GEN z} identical to \kbd{zv\_to\_ZV(z)}.

\fun{GEN}{vecsmall_to_col}{GEN z} identical to \kbd{zv\_to\_ZC(z)}.

\fun{GEN}{vecsmall_copy}{GEN x} makes a copy of \kbd{x} on the stack.

\fun{GEN}{vecsmall_shorten}{GEN v, long n} shortens the \typ{VECSMALL} \kbd{v}
to \kbd{n} components.

\fun{GEN}{vecsmall_lengthen}{GEN v, long n} lengthens the \typ{VECSMALL}
\kbd{v} to \kbd{n} components. The extra components are not initialized.

\fun{GEN}{vecsmall_indexsort}{GEN x} performs an indirect sort of the
components of the \typ{VECSMALL} \kbd{x} and return a permutation stored in a
\typ{VECSMALL}.

\fun{void}{vecsmall_sort}{GEN v} sorts the \typ{VECSMALL} \kbd{v} in place.

\fun{void}{vecsmall_reverse}{GEN v} as \kbd{vecreverse} for a \typ{VECSMALL}
\kbd{v}.

\fun{long}{vecsmall_max}{GEN v} returns the maximum of the elements of
\typ{VECSMALL} \kbd{v}, assumed non-empty.

\fun{long}{vecsmall_indexmax}{GEN v} returns the index of the largest
element of \typ{VECSMALL} \kbd{v}, assumed non-empty.

\fun{long}{vecsmall_min}{GEN v} returns the minimum of the elements of
\typ{VECSMALL} \kbd{v}, assumed non-empty.

\fun{long}{vecsmall_indexmin}{GEN v} returns the index of the smallest
element of \typ{VECSMALL} \kbd{v}, assumed non-empty.

\fun{long}{vecsmall_isin}{GEN v, long x} returns the first index $i$
such that \kbd{v[$i$]} is equal to \kbd{x}. Naive search in linear time, does
not assume that \kbd{v} is sorted.

\fun{GEN}{vecsmall_uniq}{GEN v} given a \typ{VECSMALL} \kbd{v}, return
the vector of unique occurrences.

\fun{GEN}{vecsmall_uniq_sorted}{GEN v} same as \kbd{vecsmall\_uniq}, but assumes
 \kbd{v} sorted.

\fun{long}{vecsmall_duplicate}{GEN v} given a \typ{VECSMALL} \kbd{v}, return
$0$ if there is no duplicates, or the index of the first duplicate
(\kbd{vecsmall\_duplicate([1,1])} returns $2$).

\fun{long}{vecsmall_duplicate_sorted}{GEN v} same as
\kbd{vecsmall\_duplicate}, but assume \kbd{v} sorted.

\fun{int}{vecsmall_lexcmp}{GEN x, GEN y} compares two \typ{VECSMALL} lexically.

\fun{int}{vecsmall_prefixcmp}{GEN x, GEN y} truncate the longest \typ{VECSMALL}
to the length of the shortest and compares them lexicographically.

\fun{GEN}{vecsmall_prepend}{GEN V, long s} prepend \kbd{s} to the
\typ{VECSMALL} \kbd{V}.

\fun{GEN}{vecsmall_append}{GEN V, long s} append \kbd{s} to the
\typ{VECSMALL} \kbd{V}.

\fun{GEN}{vecsmall_concat}{GEN u, GEN v} concat the \typ{VECSMALL} \kbd{u}
and \kbd{v}.

\fun{long}{vecsmall_coincidence}{GEN u, GEN v} returns the numbers of indices
where \kbd{u} and \kbd{v} agree.

\fun{long}{vecsmall_pack}{GEN v, long base, long mod} handles the
\typ{VECSMALL} \kbd{v} as the digit of a number in base \kbd{base} and return
this number modulo \kbd{mod}. This can be used as an hash function.

\subsec{Vectors of \typ{VECSMALL}}
These functions manipulate vectors of \typ{VECSMALL} (vecvecsmall).

\fun{GEN}{vecvecsmall_sort}{GEN x} sorts lexicographically the components of
the vector \kbd{x}.

\fun{GEN}{vecvecsmall_sort_uniq}{GEN x} sorts lexicographically the components of
the vector \kbd{x}, removing duplicates entries.

\fun{GEN}{vecvecsmall_indexsort}{GEN x} performs an indirect lexicographic
sorting of the components of the vector \kbd{x} and return a permutation
stored in a \typ{VECSMALL}.

\fun{long}{vecvecsmall_search}{GEN x, GEN y, long flag} \kbd{x} being a sorted
vecvecsmall and \kbd{y} a \typ{VECSMALL}, search \kbd{y} inside \kbd{x}.
\kbd{flag} has the same meaning as for \kbd{setsearch}.

\newpage
\chapter{Functions related to the GP interpreter}

\section{Handling closures}\label{se:closure}

\subsec{Functions to evaluate \typ{CLOSURE}}

\fun{void}{closure_disassemble}{GEN C} print the \typ{CLOSURE} \kbd{C} in
GP assembly format.

\fun{GEN}{closure_callgenall}{GEN C, long n, ...} evaluate the \typ{CLOSURE}
\kbd{C} with the \kbd{n} arguments (of type \kbd{GEN}) following \kbd{n} in
the function call. Assumes \kbd{C} has arity $\geq \kbd{n}$.

\fun{GEN}{closure_callgenvec}{GEN C, GEN args} evaluate the \typ{CLOSURE}
\kbd{C} with the arguments supplied in the vector \kbd{args}. Assumes \kbd{C}
has arity $\geq \kbd{lg(args)-1}$.

\fun{GEN}{closure_callgenvecprec}{GEN C, GEN args, long prec} as
\kbd{closure\_callgenvec} but set the precision locally to \kbd{prec}.

\fun{GEN}{closure_callgen1}{GEN C, GEN x} evaluate the \typ{CLOSURE}
\kbd{C} with argument \kbd{x}. Assumes \kbd{C} has arity $\geq 1$.

\fun{GEN}{closure_callgen1prec}{GEN C, GEN x, long prec} as
\kbd{closure\_callgen1}, but set the precision locally to \kbd{prec}.

\fun{GEN}{closure_callgen2}{GEN C, GEN x, GEN y} evaluate the \typ{CLOSURE}
\kbd{C} with argument \kbd{x}, \kbd{y}. Assumes \kbd{C} has arity $\geq 2$.

\fun{void}{closure_callvoid1}{GEN C, GEN x} evaluate the \typ{CLOSURE}
\kbd{C} with argument \kbd{x} and discard the result. Assumes \kbd{C}
has arity $\geq 1$.

The following technical functions are used to evaluate \emph{inline}
closures and closures of arity 0.

The control flow statements (break, next and return) will cause the
evaluation of the closure to be interrupted; this is called below a
\emph{flow change}. When that occurs, the functions below generally
 return \kbd{NULL}. The caller can then adopt three positions:

\item raises an exception (\kbd{closure\_evalnobrk}).

\item passes through (by returning NULL itself).

\item handles the flow change.

\fun{GEN}{closure_evalgen}{GEN code} evaluates a closure and returns the result,
or \kbd{NULL} if a flow change occurred.

\fun{GEN}{closure_evalnobrk}{GEN code} as \kbd{closure\_evalgen} but raise
an exception if a flow change occurs. Meant for iterators where
interrupting the closure is meaningless, e.g.~\kbd{intnum} or \kbd{sumnum}.

\fun{void}{closure_evalvoid}{GEN code} evaluates a closure whose return
value is ignored. The caller has to deal with eventual flow changes by
calling \kbd{loop\_break}.

The remaining functions below are for exceptional situations:

\fun{GEN}{closure_evalres}{GEN code} evaluates a closure and returns the result.
The difference with \kbd{closure\_evalgen} being that, if the flow end by a
\kbd{return} statement, the result will be the returned value instead of
\kbd{NULL}. Used by the main GP loop.

\fun{GEN}{closure_evalbrk}{GEN code, long *status} as \kbd{closure\_evalres}
but set \kbd{status} to a non-zero value if a flow change occurred. This
variant is not stack clean. Used by the break loop.

\fun{GEN}{closure_trapgen}{long numerr, GEN code} evaluates closure, while
trapping error \kbd{numerr}. Return \kbd{(GEN)1L} if error trapped, and the
result otherwise, or \kbd{NULL} if a flow change occurred. Used by trap.


\subsec{Functions to handle control flow changes}

\fun{long}{loop_break}{void} processes an eventual flow changes inside an
iterator. If this function return $1$, the iterator should stop.

\subsec{Functions to deal with lexical local variables}\label{se:pushlex}

Function using the prototype code \kbd{`V'} need to manually create and delete a
lexical variable for each code \kbd{`V'}, which will be given a number $-1, -2,
\ldots$.

\fun{void}{push_lex}{GEN a, GEN code} creates a new lexical variable whose
initial value is $a$ on the top of the stack. This variable get the number
$-1$, and the number of the other variables is decreased by one unit. When
the first variable of a closure is created, the argument \kbd{code} must be the
closure that references this lexical variable. The argument \kbd{code} must be
\kbd{NULL} for all subsequent variables (if any).  (The closure contains the
debugging data for the variable).

\fun{void}{pop_lex}{long n} deletes the $n$ topmost lexical variables,
increasing the number of other variables by $n$. The argument $n$ must match
the number of variables allocated through \kbd{push\_lex}.

\fun{GEN}{get_lex}{long vn} get the value of the variable with number \kbd{vn}.

\fun{void}{set_lex}{long vn, GEN x} set the value of the variable with number
\kbd{vn}.

\subsec{Functions returning new closures}

\fun{GEN}{compile_str}{const char *s} returns the closure corresponding to the
GP expression $s$.

\fun{GEN}{closure_deriv}{GEN code} returns a closure corresponding to the
numerical derivative of the closure \kbd{code}.

\fun{GEN}{snm_closure}{entree *ep, GEN data}
Let \kbd{data} be a vector of length $m$, \kbd{ep} be an \kbd{entree}
pointing to a C function $f$ of arity $n+m$, returns a \typ{CLOSURE} object
$g$ of arity $n$ such that
$g(x_1,\ldots,x_n)=f(x_1,\ldots,x_n,gel(data,1),...,gel(data,m))$. If
\kbd{data} is \kbd{NULL}, then $m=0$ is assumed.  This function has a low
overhead since it does not copy \kbd{data}.

\fun{GEN}{strtofunction}{char *str} returns a closure corresponding to the
built-in or install'ed function named \kbd{str}.

\fun{GEN}{strtoclosure}{char *str, long n, ...} returns a closure
corresponding to the built-in or install'ed function named \kbd{str} with the
$n$ last parameters set to the $n$ \kbd{GEN}s following $n$, see
\tet{snm_closure}. This function has an higher overhead since it copies the
parameters and does more input validation.

In the example code below, \kbd{agm1} is set to the function
\kbd{x->agm(x,1)} and \kbd{res} is set to \kbd{agm(2,1)}.

\bprog
  GEN agm1 = strtoclosure("agm",1, gen_1);
  GEN res = closure_callgen1(agm1, gen_2);
@eprog

\subsec{Functions used by the gp debugger (break loop)}
\fun{long}{closure_context}{long s} restores the compilation context starting
at frame \kbd{s+1}, and returns the index of the topmost frame. This allow to
compile expressions in the topmost lexical scope.

\fun{void}{closure_err}{void} prints a backtrace of the last $20$ stack frames.

\subsec{Standard wrappers for iterators}
Two families of standard wrappers are provided to interface iterators like
\kbd{intnum} or \kbd{sumnum} with GP.

\subsubsec{Standard wrappers for inline closures}
Theses wrappers are used to implement GP functions taking inline closures as
input. The object \kbd{(GEN)E} must be an inline closure which is evaluated
with the lexical variable number $-1$ set to $x$.

\fun{GEN}{gp_eval}{void *E, GEN x} is used for the prototype code \kbd{`E'}.

\fun{GEN}{gp_evalprec}{void *E, GEN x, long prec} as \kbd{gp\_eval}, but
set the precision locally to \kbd{prec}.

\fun{long}{gp_evalvoid}{void *E, GEN x} is used for the prototype code
\kbd{`I'}. The resulting value is discarded.  Return a non-zero value if a
control-flow instruction request the iterator to terminate immediately.

\fun{long}{gp_evalbool}{void *E, GEN x} returns the boolean
\kbd{gp\_eval(E, x)} evaluates to (i.e. true iff the value is non-zero).

\fun{GEN}{gp_evalupto}{void *E, GEN x} memory-safe version of \kbd{gp\_eval},
\kbd{gcopy}-ing the result, when the evaluator returns components of
previously allocated objects (e.g. member functions).

\subsubsec{Standard wrappers for true closures}
These wrappers are used to implement GP functions taking true closures as
input.

\fun{GEN}{gp_call}{void *E, GEN x} evaluates the closure \kbd{(GEN)E} on $x$.

\fun{GEN}{gp_callprec}{void *E, GEN x, long prec} as \kbd{gp\_call},
but set the precision locally to \kbd{prec}.

\fun{GEN}{gp_call2}{void *E, GEN x, GEN y} evaluates the closure \kbd{(GEN)E}
on $(x,y)$.

\fun{long}{gp_callbool}{void *E, GEN x} evaluates the closure \kbd{(GEN)E} on
$x$, returns \kbd{1} if its result is non-zero, and \kbd{0} otherwise.

\fun{long}{gp_callvoid}{void *E, GEN x} evaluates the closure \kbd{(GEN)E} on
$x$, discarding the result. Return a non-zero value if a control-flow
instruction request the iterator to terminate immediately.

\section{Defaults}

\fun{entree*}{pari_is_default}{const char *s} return the \kbd{entree}
structure attached to $s$ if it is the name of a default, \kbd{NULL}
otherwise.

\fun{GEN}{setdefault}{const char *s, const char *v, long flag} is the
low-level function underlying \kbd{default0}. If $s$ is \kbd{NULL}, call all
default setting functions with string argument \kbd{NULL} and flag
\tet{d_ACKNOWLEDGE}. Otherwise, check whether $s$ corresponds to a default
and call the corresponding default setting function with arguments $v$ and
\fl.

We shall describe these functions below: if $v$ is \kbd{NULL}, we only look
at the default value (and possibly print or return it, depending on
\kbd{flag}); otherwise the value of the default to $v$, possibly after some
translation work. The flag is one of

\item \tet{d_INITRC} called while reading the \kbd{gprc}: print and return
\kbd{gnil}, possibly defer until \kbd{gp} actually starts.

\item \tet{d_RETURN} return the current value, as a \typ{INT} if possible, as
a \typ{STR} otherwise.

\item \tet{d_ACKNOWLEDGE} print the current value, return \kbd{gnil}.

\item \tet{d_SILENT} print nothing, return \kbd{gnil}.

\noindent Low-level functions called by \kbd{setdefault}:


\fun{GEN}{sd_TeXstyle}{const char *v, long flag}

\fun{GEN}{sd_breakloop}{const char *v, long flag}

\fun{GEN}{sd_colors}{const char *v, long flag}

\fun{GEN}{sd_compatible}{const char *v, long flag}

\fun{GEN}{sd_datadir}{const char *v, long flag}

\fun{GEN}{sd_debug}{const char *v, long flag}

\fun{GEN}{sd_debugfiles}{const char *v, long flag}

\fun{GEN}{sd_debugmem}{const char *v, long flag}

\fun{GEN}{sd_echo}{const char *v, long flag}

\fun{GEN}{sd_factor_add_primes}{const char *v, long flag}

\fun{GEN}{sd_factor_proven}{const char *v, long flag}

\fun{GEN}{sd_format}{const char *v, long flag}

\fun{GEN}{sd_graphcolormap}{const char *v, long flag}

\fun{GEN}{sd_graphcolors}{const char *v, long flag}

\fun{GEN}{sd_help}{const char *v, long flag}

\fun{GEN}{sd_histfile}{const char *v, long flag}

\fun{GEN}{sd_histsize}{const char *v, long flag}

\fun{GEN}{sd_lines}{const char *v, long flag}

\fun{GEN}{sd_linewrap}{const char *v, long flag}

\fun{GEN}{sd_log}{const char *v, long flag}

\fun{GEN}{sd_logfile}{const char *v, long flag}

\fun{GEN}{sd_nbthreads}{const char *v, long flag}

\fun{GEN}{sd_new_galois_format}{const char *v, long flag}

\fun{GEN}{sd_output}{const char *v, long flag}

\fun{GEN}{sd_parisize}{const char *v, long flag}

\fun{GEN}{sd_parisizemax}{const char *v, long flag}

\fun{GEN}{sd_path}{const char *v, long flag}

\fun{GEN}{sd_prettyprinter}{const char *v, long flag}

\fun{GEN}{sd_primelimit}{const char *v, long flag}

\fun{GEN}{sd_prompt}{const char *v, long flag}

\fun{GEN}{sd_prompt_cont}{const char *v, long flag}

\fun{GEN}{sd_psfile}{const char *v, long flag}

\fun{GEN}{sd_readline}{const char *v, long flag}

\fun{GEN}{sd_realbitprecision}{const char *v, long flag}

\fun{GEN}{sd_realprecision}{const char *v, long flag}

\fun{GEN}{sd_recover}{const char *v, long flag}

\fun{GEN}{sd_secure}{const char *v, long flag}

\fun{GEN}{sd_seriesprecision}{const char *v, long flag}

\fun{GEN}{sd_simplify}{const char *v, long flag}

\fun{GEN}{sd_sopath}{const char *v, int flag}

\fun{GEN}{sd_strictargs}{const char *v, long flag}

\fun{GEN}{sd_strictmatch}{const char *v, long flag}

\fun{GEN}{sd_timer}{const char *v, long flag}

\fun{GEN}{sd_threadsize}{const char *v, long flag}

\fun{GEN}{sd_threadsizemax}{const char *v, long flag}

\noindent Generic functions used to implement defaults: most of the above
routines are implemented in terms of the following generic ones. In all
routines below

\item \kbd{v} and \kbd{flag} are the arguments passed to \kbd{default}:
\kbd{v} is a new value (or the empty string: no change), and \kbd{flag} is one
of \tet{d_INITRC}, \tet{d_RETURN}, etc.

\item \kbd{s} is the name of the default being changed, used to display error
messages or acknowledgements.

\fun{GEN}{sd_toggle}{const char *v, long flag, const char *s, int *ptn}

\item if \kbd{v} is neither \kbd{"0"} nor \kbd{"1"}, an error is raised using
\tet{pari_err}.

\item \kbd{ptn} points to the current numerical value of the toggle (1 or 0),
and is set to the new value (when \kbd{v} is non-empty).

For instance, here is how the timer default is implemented internally:
\bprog
GEN
sd_timer(const char *v, long flag)
{ return sd_toggle(v,flag,"timer", &(GP_DATA->chrono)); }
@eprog

The exact behavior and return value depends on \kbd{flag}:

\item \tet{d_RETURN}: returns the new toggle value, as a \kbd{GEN}.

\item \tet{d_ACKNOWLEDGE}: prints a message indicating the new toggle value
and return \kbd{gnil}.

\item other cases: print nothing and return \kbd{gnil}.


\fun{GEN}{sd_ulong}{const char *v, long flag, const char *s, ulong *ptn,
ulong Min, ulong Max, const char **msg}\hbadness 10000

\item \kbd{ptn} points to the current numerical value of the toggle, and is set
to the new value (when \kbd{v} is non-empty).

\item \kbd{Min} and \kbd{Max} point to the minimum and maximum values allowed
for the default.

\item \kbd{v} must translate to an integer in the allowed ranger, a suffix
among
\kbd{k}/\kbd{K} ($\times 10^3$),
\kbd{m}/\kbd{M} ($\times 10^6$),
or
\kbd{g}/\kbd{G} ($\times 10^9$) is allowed, but no arithmetic expression.

\item \kbd{msg} is a \kbd[NULL]-terminated array of messages or \kbd{NULL}
(ignored). If \kbd{msg} is not \kbd{NULL}, \kbd{msg}$[i]$ contains
a message attached to the value $i$ of the default. The last entry in the
\kbd{msg} array is used as a message attached to all subsequent ones.

The exact behavior and return value depends on \kbd{flag}:

\item \tet{d_RETURN}: returns the new toggle value, as a \kbd{GEN}.

\item \tet{d_ACKNOWLEDGE}: prints a message indicating the new value,
possibly a message attached to it via the \kbd{msg} argument, and return
\kbd{gnil}.

\item other cases: print nothing and return \kbd{gnil}.

\fun{GEN}{sd_string}{const char *v, long flag, const char *s, char **pstr}
\item \kbd{v} is subjet to environment expansion, then time expansion.

\item \kbd{pstr} points to the current string value, and is set to the new
value (when \kbd{v} is non-empty).

\section{Records and Lazy vectors}
The functions in this section are used to implement \kbd{ell} structures and
analogous objects, which are vectors some of whose components are initialized
to dummy values, later computed on demand. We start by initializing the
structure:

\fun{GEN}{obj_init}{long d, long n} returns an \tev{obj} $S$, a \typ{VEC}
with $d$ regular components, accessed as \kbd{gel(S,1)}, \dots,
\kbd{gel(S,d)}; together with a record of $n$ members, all initialized to
$0$. The arguments $d$ and $n$ must be non-negative.

After \kbd{S = obj\_init(d, n)}, the prototype of our other functions are of
the form
\bprog
  GEN obj_do(GEN S, long tag, ...)
@eprog\noindent The first argument $S$ holds the structure to be managed.
The second argument \var{tag} is the index of the struct member (from $1$ to
$n$) we operate on. We recommend to define an \kbd{enum} and use descriptive
names instead of hardcoded numbers. For instance, if $n = 3$, after defining
\bprog
  enum { TAG_p = 1, TAG_list, TAG_data };
@eprog\noindent one may use \kbd{TAG\_list} or $2$ indifferently as a tag.
The former being preferred, of course.

\misctitle{Technical note}
In the current implementation, $S$ is a \typ{VEC} with $d+1$ entries.
The first $d$ components are ordinary \typ{GEN} entries, which you can
read or assign to in the customary way. But the last component $\kbd{gel(S,
d+1)}$, a \typ{VEC} of length $n$ initialized to \kbd{zerovec}$(n)$, must
be handled in a special way: you should never access or modify its components
directly, only through the API we are about to describe. Indeed, its entries
are meant to contain dynamic data, which will be stored, retrieved and
replaced (for instance by a value computed to a higher accuracy), while
interacting safely with intermediate \kbd{gerepile} calls. This mechanism
allows to simulate C \kbd{struct}s, in a simpler way than with general
hashtables, while remaining compatible with the GP language, which knows
neither structs nor hashtables. It also serialize the structure in an
ordinary \kbd{GEN}, which facilitates copies and garbage collection (use
\kbd{gcopy} or \kbd{gerepile}), rather than having to deal with individual
components of actual C \kbd{struct}s.

\fun{GEN}{obj_reinit}{GEN S} make a shallow copy of $S$, re-initializing
all dynamic components. This allows ``forking'' a lazy vector while
avoiding both a memory leak, and storing pointers to the same data
in different objects (with risks of a double free later).

\fun{GEN}{obj_check}{GEN S, long tag} if the \emph{tag}-component in $S$
is non empty, return it. Otherwise return \kbd{NULL}. The \typ{INT} $0$
(initial value) is used as a sentinel to indicated an empty component.

\fun{GEN}{obj_insert}{GEN S, long tag, GEN O} insert (a clone of) $O$
as \emph{tag}-component of $S$. Any previous value is deleted, and
data pointing to it become invalid.

\fun{GEN}{obj_insert_shallow}{GEN S, long K, GEN O} as \tet{obj_insert},
inserting $O$ as-is, not via a clone.

\fun{GEN}{obj_checkbuild}{GEN S, long tag, GEN (*build)(GEN)} if the
\emph{tag}-component of $S$ is non empty, return it. Otherwise insert
(a clone of) \kbd{build(S)} as \emph{tag}-component in $S$, and return it.

\fun{GEN}{obj_checkbuild_padicprec}{GEN S, long tag, GEN (*build)(GEN,long),
long prec}
if the \emph{tag}-component of $S$ is non empty \emph{and} has relative
$p$-adic precision $\geq \kbd{prec}$, return it. Otherwise insert (a clone
of) \kbd{build(S, prec)} as \emph{tag}-component in $S$, and return it.

\fun{GEN}{obj_checkbuild_realprec}{GEN S, long tag, GEN (*build)(GEN, long),
long prec} if the \emph{tag}-component of $S$ is non empty \emph{and}
satisfies \kbd{gprecision} $\geq \kbd{prec}$, return it. Otherwise insert (a
clone of) \kbd{build(S, prec)} as \emph{tag}-component in $S$, and return it.

\fun{GEN}{obj_checkbuild_prec}{GEN S, long tag, GEN (*build)(GEN,long), GEN
(*gpr)(GEN), long prec} if the \emph{tag}-component of $S$ is non empty
\emph{and} has precision $\kbd{gpr}(x)\geq \kbd{prec}$, return it. Otherwise
insert (a clone of) \kbd{build(S, prec)} as \emph{tag}-component in $S$,
and return it.

\fun{void}{obj_free}{GEN S} destroys all clones stored in the $n$ tagged
components, and replace them by the initial value $0$. The regular entries of
$S$ are unaffected, and $S$ remains a valid object. This is used to
avoid memory leaks.