/usr/share/pari/doc/usersch3.tex is in pari-doc 2.9.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 | % Copyright (c) 2000 The PARI Group
%
% This file is part of the PARI/GP documentation
%
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
\chapter{Functions and Operations Available in PARI and GP}
\label{se:functions}
The functions and operators available in PARI and in the GP/PARI calculator
are numerous and ever-expanding. Here is a description of the ones available
in version \vers. It should be noted that many of these functions accept
quite different types as arguments, but others are more restricted. The list
of acceptable types will be given for each function or class of functions.
Except when stated otherwise, it is understood that a function or operation
which should make natural sense is legal.
On the other hand, many routines list explicit preconditions for some of their
argument, e.g. $p$ is a prime number, or $q$ is a positive definite quadratic
form. For reasons of efficiency, all trust the user input and only perform
minimal sanity checks. When a precondition is not satisfied, any of the
following may occur: a regular exception is raised, the PARI stack overflows, a
\kbd{SIGSEGV} or \kbd{SIGBUS} signal is generated, or we enter an infinite
loop. The function can also quietly return a mathematically meaningless
result: junk in, junk out.
In this chapter, we will describe the functions according to a rough
classification. The general entry looks something like:
\key{foo}$(x,\{\fl=0\})$: short description.
The library syntax is \kbd{GEN foo(GEN x, long fl = 0)}.
\noindent
This means that the GP function \kbd{foo} has one mandatory argument $x$, and
an optional one, $\fl$, whose default value is 0. (The $\{\}$ should not be
typed, it is just a convenient notation we will use throughout to denote
optional arguments.) That is, you can type \kbd{foo(x,2)}, or \kbd{foo(x)},
which is then understood to mean \kbd{foo(x,0)}. As well, a comma or closing
parenthesis, where an optional argument should have been, signals to GP it
should use the default. Thus, the syntax \kbd{foo(x,)} is also accepted as a
synonym for our last expression. When a function has more than one optional
argument, the argument list is filled with user supplied values, in order.
When none are left, the defaults are used instead. Thus, assuming that
\kbd{foo}'s prototype had been
$$\hbox{%
\key{foo}$(\{x=1\},\{y=2\},\{z=3\})$,%
}$$
typing in \kbd{foo(6,4)} would give
you \kbd{foo(6,4,3)}. In the rare case when you want to set some far away
argument, and leave the defaults in between as they stand, you can use the
``empty arg'' trick alluded to above: \kbd{foo(6,,1)} would yield
\kbd{foo(6,2,1)}. By the way, \kbd{foo()} by itself yields
\kbd{foo(1,2,3)} as was to be expected.
In this rather special case of a function having no mandatory argument, you
can even omit the $()$: a standalone \kbd{foo} would be enough (though we
do not recommend it for your scripts, for the sake of clarity). In defining
GP syntax, we strove to put optional arguments at the end of the argument
list (of course, since they would not make sense otherwise), and in order of
decreasing usefulness so that, most of the time, you will be able to ignore
them.
Finally, an optional argument (between braces) followed by a star, like
$\{\var{x}\}*$, means that any number of such arguments (possibly none) can
be given. This is in particular used by the various \kbd{print} routines.
\misctitle{Flags} A \tev{flag} is an argument which, rather than conveying
actual information to the routine, instructs it to change its default
behavior, e.g.~return more or less information. All such
flags are optional, and will be called \fl\ in the function descriptions to
follow. There are two different kind of flags
\item generic: all valid values for the flag are individually
described (``If \fl\ is equal to $1$, then\dots'').
\item binary:\sidx{binary flag} use customary binary notation as a
compact way to represent many toggles with just one integer. Let
$(p_0,\dots,p_n)$ be a list of switches (i.e.~of properties which take either
the value $0$ or~$1$), the number $2^3 + 2^5 = 40$ means that $p_3$ and $p_5$
are set (that is, set to $1$), and none of the others are (that is, they
are set to $0$). This is announced as ``The binary digits of $\fl$ mean 1:
$p_0$, 2: $p_1$, 4: $p_2$'', and so on, using the available consecutive
powers of~$2$.
\misctitle{Mnemonics for flags} Numeric flags as mentioned above are
obscure, error-prone, and quite rigid: should the authors
want to adopt a new flag numbering scheme (for instance when noticing
flags with the same meaning but different numeric values across a set of
routines), it would break backward compatibility. The only advantage of
explicit numeric values is that they are fast to type, so their use is only
advised when using the calculator \kbd{gp}.
As an alternative, one can replace a numeric flag by a character string
containing symbolic identifiers. For a generic flag, the mnemonic
corresponding to the numeric identifier is given after it as in
\bprog
fun(x, {flag = 0} ):
If flag is equal to 1 = AGM, use an agm formula ...
@eprog\noindent
which means that one can use indifferently \kbd{fun($x$, 1)} or
\kbd{fun($x$, "AGM")}.
For a binary flag, mnemonics corresponding to the various toggles are given
after each of them. They can be negated by prepending \kbd{no\_} to the
mnemonic, or by removing such a prefix. These toggles are grouped together
using any punctuation character (such as ',' or ';'). For instance (taken
from description of $\tet{ploth}(X=a,b,\var{expr},\{\fl=0\},\{n=0\})$)
\centerline{Binary digits of flags mean: $1=\kbd{Parametric}$,
$2=\kbd{Recursive}$, \dots}
\noindent so that, instead of $1$, one could use the mnemonic
\kbd{"Parametric; no\_Recursive"}, or simply \kbd{"Parametric"} since
\kbd{Recursive} is unset by default (default value of $\fl$ is $0$,
i.e.~everything unset). People used to the bit-or notation in languages like
C may also use the form \kbd{"Parametric | no\_Recursive"}.
\misctitle{Pointers} \varsidx{pointer} If a parameter in the function
prototype is prefixed with a \& sign, as in
\key{foo}$(x,\&e)$
\noindent it means that, besides the normal return value, the function may
assign a value to $e$ as a side effect. When passing the argument, the \&
sign has to be typed in explicitly. As of version \vers, this \tev{pointer}
argument is optional for all documented functions, hence the \& will always
appear between brackets as in \kbd{Z\_issquare}$(x,\{\&e\})$.
\misctitle{About library programming}
The \var{library} function \kbd{foo}, as defined at the beginning of this
section, is seen to have two mandatory arguments, $x$ and \fl: no function
seen in the present chapter has been implemented so as to accept a variable
number of arguments, so all arguments are mandatory when programming with the
library (usually, variants are provided corresponding to the various flag values).
We include an \kbd{= default value} token in the prototype to signal how a missing
argument should be encoded. Most of the time, it will be a \kbd{NULL} pointer, or
-1 for a variable number. Refer to the \emph{User's Guide to the PARI library}
for general background and details.
\section{Standard monadic or dyadic operators}
\subseckbd{+$/$-} The expressions \kbd{+}$x$ and \kbd{-}$x$ refer
to monadic operators (the first does nothing, the second negates $x$).
The library syntax is \fun{GEN}{gneg}{GEN x} for \kbd{-}$x$.
\subseckbd{+} The expression $x$ \kbd{+} $y$ is the \idx{sum} of $x$ and $y$.
Addition between a scalar type $x$ and a \typ{COL} or \typ{MAT} $y$ returns
respectively $[y[1] + x, y[2],\dots]$ and $y + x \text{Id}$. Other additions
between a scalar type and a vector or a matrix, or between vector/matrices of
incompatible sizes are forbidden.
The library syntax is \fun{GEN}{gadd}{GEN x, GEN y}.
\subseckbd{-} The expression $x$ \kbd{-} $y$ is the \idx{difference} of $x$
and $y$. Subtraction between a scalar type $x$ and a \typ{COL} or \typ{MAT}
$y$ returns respectively $[y[1] - x, y[2],\dots]$ and $y - x \text{Id}$.
Other subtractions between a scalar type and a vector or a matrix, or
between vector/matrices of incompatible sizes are forbidden.
The library syntax is \fun{GEN}{gsub}{GEN x, GEN y} for $x$ \kbd{-} $y$.
\subseckbd{*} The expression $x$ \kbd{*} $y$ is the \idx{product} of $x$
and $y$. Among the prominent impossibilities are multiplication between
vector/matrices of incompatible sizes, between a \typ{INTMOD} or \typ{PADIC}
Restricted to scalars, \kbd{*} is commutative; because of vector and matrix
operations, it is not commutative in general.
Multiplication between two \typ{VEC}s or two \typ{COL}s is not
allowed; to take the \idx{scalar product} of two vectors of the same length,
transpose one of the vectors (using the operator \kbd{\til} or the function
\kbd{mattranspose}, see \secref{se:linear_algebra}) and multiply a line vector
by a column vector:
\bprog
? a = [1,2,3];
? a * a
*** at top-level: a*a
*** ^--
*** _*_: forbidden multiplication t_VEC * t_VEC.
? a * a~
%2 = 14
@eprog
If $x,y$ are binary quadratic forms, compose them; see also
\kbd{qfbnucomp} and \kbd{qfbnupow}. If $x,y$ are \typ{VECSMALL} of the same
length, understand them as permutations and compose them.
The library syntax is \fun{GEN}{gmul}{GEN x, GEN y} for $x$ \kbd{*} $y$.
Also available is \fun{GEN}{gsqr}{GEN x} for $x$ \kbd{*} $x$.
\subseckbd{/} The expression $x$ \kbd{/} $y$ is the \idx{quotient} of $x$
and $y$. In addition to the impossibilities for multiplication, note that if
the divisor is a matrix, it must be an invertible square matrix, and in that
case the result is $x*y^{-1}$. Furthermore note that the result is as exact
as possible: in particular, division of two integers always gives a rational
number (which may be an integer if the quotient is exact) and \emph{not} the
Euclidean quotient (see $x$ \kbd{\bs} $y$ for that), and similarly the
quotient of two polynomials is a rational function in general. To obtain the
approximate real value of the quotient of two integers, add \kbd{0.} to the
result; to obtain the approximate $p$-adic value of the quotient of two
integers, add \kbd{O(p\pow k)} to the result; finally, to obtain the
\idx{Taylor series} expansion of the quotient of two polynomials, add
\kbd{O(X\pow k)} to the result or use the \kbd{taylor} function
(see \secref{se:taylor}). \label{se:gdiv}
The library syntax is \fun{GEN}{gdiv}{GEN x, GEN y} for $x$ \kbd{/} $y$.
\subseckbd{\bs} The expression \kbd{$x$ \bs\ $y$} is the
\idx{Euclidean quotient} of $x$ and $y$. If $y$ is a real scalar, this is
defined as \kbd{floor($x$/$y$)} if $y > 0$, and \kbd{ceil($x$/$y$)} if
$y < 0$ and the division is not exact. Hence the remainder
\kbd{$x$ - ($x$\bs$y$)*$y$} is in $[0, |y|[$.
Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
is applied componentwise.
The library syntax is \fun{GEN}{gdivent}{GEN x, GEN y}
for $x$ \kbd{\bs} $y$.
\subseckbd{\bs/} The expression $x$ \b{/} $y$ evaluates to the rounded
\idx{Euclidean quotient} of $x$ and $y$. This is the same as \kbd{$x$ \bs\ $y$}
except for scalar division: the quotient is such that the corresponding
remainder is smallest in absolute value and in case of a tie the quotient
closest to $+\infty$ is chosen (hence the remainder would belong to
$]{-}|y|/2, |y|/2]$).
When $x$ is a vector or matrix, the operator is applied componentwise.
The library syntax is \fun{GEN}{gdivround}{GEN x, GEN y}
for $x$ \b{/} $y$.
\subseckbd{\%} The expression \kbd{$x$ \% $y$} evaluates to the modular
\idx{Euclidean remainder} of $x$ and $y$, which we now define. When $x$ or $y$
is a non-integral real number, \kbd{$x$\%$y$} is defined as
\kbd{$x$ - ($x$\bs$y$)*$y$}. Otherwise, if $y$ is an integer, this is
the smallest
non-negative integer congruent to $x$ modulo $y$. (This actually coincides
with the previous definition if and only if $x$ is an integer.) If $y$ is a
polynomial, this is the polynomial of smallest degree congruent to
$x$ modulo $y$. For instance:
\bprog
? (1/2) % 3
%1 = 2
? 0.5 % 3
%2 = 0.5000000000000000000000000000
? (1/2) % 3.0
%3 = 1/2
@eprog
Note that when $y$ is an integer and $x$ a polynomial, $y$ is first promoted
to a polynomial of degree $0$. When $x$ is a vector or matrix, the operator
is applied componentwise.
The library syntax is \fun{GEN}{gmod}{GEN x, GEN y}
for $x$ \kbd{\%} $y$.
\subseckbd{\pow} The expression $x\hbox{\kbd{\pow}}n$ is \idx{powering}.
\item If the exponent $n$ is an integer, then exact operations are performed
using binary (left-shift) powering techniques. If $x$ is a $p$-adic number, its
precision will increase if $v_p(n) > 0$. Powering a binary quadratic form
(types \typ{QFI} and \typ{QFR}) returns a representative of the class, which is
always reduced if the input was. (In particular, \kbd{x \pow 1} returns $x$
itself, whether it is reduced or not.)
PARI is able to rewrite the multiplication $x * x$ of two \emph{identical}
objects as $x^2$, or $\kbd{sqr}(x)$. Here, identical means the operands are
two different labels referencing the same chunk of memory; no equality test
is performed. This is no longer true when more than two arguments are
involved.
\item If the exponent $n$ is not an integer, powering is treated as the
transcendental function $\exp(n\log x)$, and in particular acts
componentwise on vector or matrices, even square matrices ! (See
\secref{se:trans}.)
\item As an exception, if the exponent is a rational number $p/q$ and $x$ an
integer modulo a prime or a $p$-adic number, return a solution $y$ of
$y^q=x^p$ if it exists. Currently, $q$ must not have large prime factors.
Beware that
\bprog
? Mod(7,19)^(1/2)
%1 = Mod(11, 19) /* is any square root */
? sqrt(Mod(7,19))
%2 = Mod(8, 19) /* is the smallest square root */
? Mod(7,19)^(3/5)
%3 = Mod(1, 19)
? %3^(5/3)
%4 = Mod(1, 19) /* Mod(7,19) is just another cubic root */
@eprog
\item If the exponent is a negative integer, an \idx{inverse} must be computed.
For non-invertible \typ{INTMOD} $x$, this will fail and implicitly exhibit a
non trivial factor of the modulus:
\bprog
? Mod(4,6)^(-1)
*** at top-level: Mod(4,6)^(-1)
*** ^-----
*** _^_: impossible inverse modulo: Mod(2, 6).
@eprog\noindent
(Here, a factor 2 is obtained directly. In general, take the gcd of the
representative and the modulus.) This is most useful when performing
complicated operations modulo an integer $N$ whose factorization is
unknown. Either the computation succeeds and all is well, or a factor $d$
is discovered and the computation may be restarted modulo $d$ or $N/d$.
For non-invertible \typ{POLMOD} $x$, the behaviour is the same:
\bprog
? Mod(x^2, x^3-x)^(-1)
*** at top-level: Mod(x^2,x^3-x)^(-1)
*** ^-----
*** _^_: impossible inverse in RgXQ_inv: Mod(x^2, x^3 - x).
@eprog\noindent Note that the underlying algorihm (subresultant) assumes
the base ring is a domain:
\bprog
? a = Mod(3*y^3+1, 4); b = y^6+y^5+y^4+y^3+y^2+y+1; c = Mod(a,b);
? c^(-1)
*** at top-level: Mod(a,b)^(-1)
*** ^-----
*** _^_: impossible inverse modulo: Mod(2, 4).
@eprog\noindent
In fact $c$ is invertible, but $\Z/4\Z$ is not a domain and the algorithm
fails. It is possible for the algorithm to succeed in such situations
and any returned result will be correct, but chances are an error
will occur first. In this specific case, one should work with $2$-adics.
In general, one can also try the following approach
\bprog
? inversemod(a, b) =
{ my(m, v = variable(b));
m = polsylvestermatrix(polrecip(a), polrecip(b));
m = matinverseimage(m, matid(#m)[,1]);
Polrev(m[1..poldegree(b)], v);
}
? inversemod(a,b)
%2 = Mod(2,4)*y^5 + Mod(3,4)*y^3 + Mod(1,4)*y^2 + Mod(3,4)*y + Mod(2,4)
@eprog\noindent
This is not guaranteed to work either since \kbd{matinverseimage} must also
invert pivots. See \secref{se:linear_algebra}.
For a \typ{MAT} $x$, the matrix is expected to be square and invertible, except
in the special case \kbd{x\pow(-1)} which returns a left inverse if one exists
(rectangular $x$ with full column rank).
\bprog
? x = Mat([1;2])
%1 =
[1]
[2]
? x^(-1)
%2 =
[1 0]
@eprog
The library syntax is \fun{GEN}{gpow}{GEN x, GEN n, long prec}
for $x\hbox{\kbd{\pow}}n$.
\subsec{cmp$(x,y)$}\kbdsidx{cmp}\label{se:cmp}
Gives the result of a comparison between arbitrary objects $x$ and $y$
(as $-1$, $0$ or $1$). The underlying order relation is transitive,
the function returns $0$ if and only if $x~\kbd{===}~y$, and its
restriction to integers coincides with the customary one. Besides that,
it has no useful mathematical meaning.
In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? cmp(1, 2)
%1 = -1
? cmp(2, 1)
%2 = 1
? cmp(1, 1.0) \\ note that 1 == 1.0, but (1===1.0) is false.
%3 = -1
? cmp(x + Pi, [])
%4 = -1
@eprog\noindent This function is mostly useful to handle sorted lists or
vectors of arbitrary objects. For instance, if $v$ is a vector, the
construction \kbd{vecsort(v, cmp)} is equivalent to \kbd{Set(v)}.
The library syntax is \fun{GEN}{cmp_universal}{GEN x, GEN y}.
\subsec{divrem$(x,y,\{v\})$}\kbdsidx{divrem}\label{se:divrem}
Creates a column vector with two components, the first being the Euclidean
quotient (\kbd{$x$ \bs\ $y$}), the second the Euclidean remainder
(\kbd{$x$ - ($x$\bs$y$)*$y$}), of the division of $x$ by $y$. This avoids the
need to do two divisions if one needs both the quotient and the remainder.
If $v$ is present, and $x$, $y$ are multivariate
polynomials, divide with respect to the variable $v$.
Beware that \kbd{divrem($x$,$y$)[2]} is in general not the same as
\kbd{$x$ \% $y$}; no GP operator corresponds to it:
\bprog
? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^--------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)
@eprog
The library syntax is \fun{GEN}{divrem}{GEN x, GEN y, long v = -1} where \kbd{v} is a variable number.
Also available is \fun{GEN}{gdiventres}{GEN x, GEN y} when $v$ is
not needed.
\subsec{lex$(x,y)$}\kbdsidx{lex}\label{se:lex}
Gives the result of a lexicographic comparison
between $x$ and $y$ (as $-1$, $0$ or $1$). This is to be interpreted in quite
a wide sense: It is admissible to compare objects of different types
(scalars, vectors, matrices), provided the scalars can be compared, as well
as vectors/matrices of different lengths. The comparison is recursive.
In case all components are equal up to the smallest length of the operands,
the more complex is considered to be larger. More precisely, the longest is
the largest; when lengths are equal, we have matrix $>$ vector $>$ scalar.
For example:
\bprog
? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
@eprog
The library syntax is \fun{GEN}{lexcmp}{GEN x, GEN y}.
\subsec{max$(x,y)$}\kbdsidx{max}\label{se:max}
Creates the maximum of $x$ and $y$ when they can be compared.
The library syntax is \fun{GEN}{gmax}{GEN x, GEN y}.
\subsec{min$(x,y)$}\kbdsidx{min}\label{se:min}
Creates the minimum of $x$ and $y$ when they can be compared.
The library syntax is \fun{GEN}{gmin}{GEN x, GEN y}.
\subsec{powers$(x,n,\{\var{x0}\})$}\kbdsidx{powers}\label{se:powers}
For non-negative $n$, return the vector with $n+1$ components
$[1,x,\dots,x^n]$ if \kbd{x0} is omitted, and $[x_0, x_0*x, ..., x_0*x^n]$
otherwise.
\bprog
? powers(Mod(3,17), 4)
%1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]
? powers(Mat([1,2;3,4]), 3)
%2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]
? powers(3, 5, 2)
%3 = [2, 6, 18, 54, 162, 486]
@eprog\noindent When $n < 0$, the function returns the empty vector \kbd{[]}.
The library syntax is \fun{GEN}{gpowers0}{GEN x, long n, GEN x0 = NULL}.
Also available is
\fun{GEN}{gpowers}{GEN x, long n} when \kbd{x0} is \kbd{NULL}.
\subsec{shift$(x,n)$}\kbdsidx{shift}\label{se:shift}
Shifts $x$ componentwise left by $n$ bits if $n\ge0$ and right by $|n|$
bits if $n<0$. May be abbreviated as $x$ \kbd{<<} $n$ or $x$ \kbd{>>} $(-n)$.
A left shift by $n$ corresponds to multiplication by $2^n$. A right shift of an
integer $x$ by $|n|$ corresponds to a Euclidean division of $x$ by $2^{|n|}$
with a remainder of the same sign as $x$, hence is not the same (in general) as
$x \kbd{\bs} 2^n$.
The library syntax is \fun{GEN}{gshift}{GEN x, long n}.
\subsec{shiftmul$(x,n)$}\kbdsidx{shiftmul}\label{se:shiftmul}
Multiplies $x$ by $2^n$. The difference with
\kbd{shift} is that when $n<0$, ordinary division takes place, hence for
example if $x$ is an integer the result may be a fraction, while for shifts
Euclidean division takes place when $n<0$ hence if $x$ is an integer the result
is still an integer.
The library syntax is \fun{GEN}{gmul2n}{GEN x, long n}.
\subsec{sign$(x)$}\kbdsidx{sign}\label{se:sign}
\idx{sign} ($0$, $1$ or $-1$) of $x$, which must be of
type integer, real or fraction; \typ{QUAD} with positive discriminants and
\typ{INFINITY} are also supported.
The library syntax is \fun{GEN}{gsigne}{GEN x}.
\subsec{vecmax$(x,\{\&v\})$}\kbdsidx{vecmax}\label{se:vecmax}
If $x$ is a vector or a matrix, returns the largest entry of $x$,
otherwise returns a copy of $x$. Error if $x$ is empty.
If $v$ is given, set it to the index of a largest entry (indirect maximum),
when $x$ is a vector. If $x$ is a matrix, set $v$ to coordinates $[i,j]$
such that $x[i,j]$ is a largest entry. This flag is ignored if $x$ is not a
vector or matrix.
\bprog
? vecmax([10, 20, -30, 40])
%1 = 40
? vecmax([10, 20, -30, 40], &v); v
%2 = 4
? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]
@eprog
The library syntax is \fun{GEN}{vecmax0}{GEN x, GEN *v = NULL}.
When $v$ is not needed, the function \fun{GEN}{vecmax}{GEN x} is
also available.
\subsec{vecmin$(x,\{\&v\})$}\kbdsidx{vecmin}\label{se:vecmin}
If $x$ is a vector or a matrix, returns the smallest entry of $x$,
otherwise returns a copy of $x$. Error if $x$ is empty.
If $v$ is given, set it to the index of a smallest entry (indirect minimum),
when $x$ is a vector. If $x$ is a matrix, set $v$ to coordinates $[i,j]$ such
that $x[i,j]$ is a smallest entry. This is ignored if $x$ is not a vector or
matrix.
\bprog
? vecmin([10, 20, -30, 40])
%1 = -30
? vecmin([10, 20, -30, 40], &v); v
%2 = 3
? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]
@eprog
The library syntax is \fun{GEN}{vecmin0}{GEN x, GEN *v = NULL}.
When $v$ is not needed, the function \fun{GEN}{vecmin}{GEN x} is also
available.
%SECTION: operators
\subsec{Comparison and Boolean operators}\sidx{Boolean operators} The six
standard \idx{comparison operators} \kbd{<=}, \kbd{<}, \kbd{>=}, \kbd{>},
\kbd{==}, \kbd{!=} are available in GP. The result is 1 if the comparison is
true, 0 if it is false. The operator \kbd{==} is quite liberal : for
instance, the integer 0, a 0 polynomial, and a vector with 0 entries are all
tested equal.
The extra operator \kbd{===} tests whether two objects are identical and is
much stricter than \kbd{==} : objects of different type or length are never
identical.
For the purpose of comparison, \typ{STR} objects are compared using
the standard lexicographic order, and comparing them to objects
of a different type raises an exception.
GP accepts \kbd{<>} as a synonym for \kbd{!=}. On the other hand, \kbd{=} is
definitely \emph{not} a synonym for \kbd{==}: it is the assignment statement.
The standard boolean operators \kbd{||} (\idx{inclusive or}), \kbd{\&\&}
(\idx{and})\sidx{or} and \kbd{!} (\idx{not}) are also available.
\section{Conversions and similar elementary functions or commands}
\label{se:conversion}
\noindent
Many of the conversion functions are rounding or truncating operations. In
this case, if the argument is a rational function, the result is the
Euclidean quotient of the numerator by the denominator, and if the argument
is a vector or a matrix, the operation is done componentwise. This will not
be restated for every function.
\subsec{Col$(x, \{n\})$}\kbdsidx{Col}\label{se:Col}
Transforms the object $x$ into a column vector. The dimension of the
resulting vector can be optionally specified via the extra parameter $n$.
If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
vector has a single component, except when $x$ is
\item a vector or a quadratic form (in which case the resulting vector
is simply the initial object considered as a row vector),
\item a polynomial or a power series. In the case of a polynomial, the
coefficients of the vector start with the leading coefficient of the
polynomial, while for power series only the significant coefficients are
taken into account, but this time by increasing order of degree.
In this last case, \kbd{Vec} is the reciprocal function of \kbd{Pol} and
\kbd{Ser} respectively,
\item a matrix (the column of row vector comprising the matrix is returned),
\item a character string (a vector of individual characters is returned).
In the last two cases (matrix and character string), $n$ is meaningless and
must be omitted or an error is raised. Otherwise, if $n$ is given, $0$
entries are appended at the end of the vector if $n > 0$, and prepended at
the beginning if $n < 0$. The dimension of the resulting vector is $|n|$.
The library syntax is \fun{GEN}{gtocol0}{GEN x, long n}.
\fun{GEN}{gtocol}{GEN x} is also available.
\subsec{Colrev$(x, \{n\})$}\kbdsidx{Colrev}\label{se:Colrev}
As $\kbd{Col}(x, -n)$, then reverse the result. In particular,
\kbd{Colrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.
The library syntax is \fun{GEN}{gtocolrev0}{GEN x, long n}.
\fun{GEN}{gtocolrev}{GEN x} is also available.
\subsec{List$(\{x=[\,]\})$}\kbdsidx{List}\label{se:List}
Transforms a (row or column) vector $x$ into a list, whose components are
the entries of $x$. Similarly for a list, but rather useless in this case.
For other types, creates a list with the single element $x$. Note that,
except when $x$ is omitted, this function creates a small memory leak; so,
either initialize all lists to the empty list, or use them sparingly.
The library syntax is \fun{GEN}{gtolist}{GEN x = NULL}.
The variant \fun{GEN}{mklist}{void} creates an empty list.
\subsec{Map$(\{x\})$}\kbdsidx{Map}\label{se:Map}
A ``Map'' is an associative array, or dictionary: a data
type composed of a collection of (\emph{key}, \emph{value}) pairs, such that
each key appears just once in the collection. This function
converts the matrix $[a_1,b_1;a_2,b_2;\dots;a_n,b_n]$ to the map $a_i\mapsto
b_i$.
\bprog
? M = Map(factor(13!));
? mapget(M,3)
%2 = 5
@eprog\noindent If the argument $x$ is omitted, creates an empty map, which
may be filled later via \tet{mapput}.
The library syntax is \fun{GEN}{gtomap}{GEN x = NULL}.
\subsec{Mat$(\{x=[\,]\})$}\kbdsidx{Mat}\label{se:Mat}
Transforms the object $x$ into a matrix.
If $x$ is already a matrix, a copy of $x$ is created.
If $x$ is a row (resp. column) vector, this creates a 1-row (resp.
1-column) matrix, \emph{unless} all elements are column (resp.~row) vectors
of the same length, in which case the vectors are concatenated sideways
and the attached big matrix is returned.
If $x$ is a binary quadratic form, creates the attached $2\times 2$
matrix. Otherwise, this creates a $1\times 1$ matrix containing $x$.
\bprog
? Mat(x + 1)
%1 =
[x + 1]
? Vec( matid(3) )
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[1 0 0]
[0 1 0]
[0 0 1]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)
%5 =
[1 2]
[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]
[1 3]
@eprog
The library syntax is \fun{GEN}{gtomat}{GEN x = NULL}.
\subsec{Mod$(a,b)$}\kbdsidx{Mod}\label{se:Mod}
In its basic form, creates an intmod or a polmod $(a \mod b)$; $b$ must
be an integer or a polynomial. We then obtain a \typ{INTMOD} and a
\typ{POLMOD} respectively:
\bprog
? t = Mod(2,17); t^8
%1 = Mod(1, 17)
? t = Mod(x,x^2+1); t^2
%2 = Mod(-1, x^2+1)
@eprog\noindent If $a \% b$ makes sense and yields a result of the
appropriate type (\typ{INT} or scalar/\typ{POL}), the operation succeeds as
well:
\bprog
? Mod(1/2, 5)
%3 = Mod(3, 5)
? Mod(7 + O(3^6), 3)
%4 = Mod(1, 3)
? Mod(Mod(1,12), 9)
%5 = Mod(1, 3)
? Mod(1/x, x^2+1)
%6 = Mod(-1, x^2+1)
? Mod(exp(x), x^4)
%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)
@eprog
If $a$ is a complex object, ``base change'' it to $\Z/b\Z$ or $K[x]/(b)$,
which is equivalent to, but faster than, multiplying it by \kbd{Mod(1,b)}:
\bprog
? Mod([1,2;3,4], 2)
%8 =
[Mod(1, 2) Mod(0, 2)]
[Mod(1, 2) Mod(0, 2)]
? Mod(3*x+5, 2)
%9 = Mod(1, 2)*x + Mod(1, 2)
? Mod(x^2 + y*x + y^3, y^2+1)
%10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)
@eprog
This function is not the same as $x$ \kbd{\%} $y$, the result of which
has no knowledge of the intended modulus $y$. Compare
\bprog
? x = 4 % 5; x + 1
%1 = 5
? x = Mod(4,5); x + 1
%2 = Mod(0,5)
@eprog Note that such ``modular'' objects can be lifted via \tet{lift} or
\tet{centerlift}. The modulus of a \typ{INTMOD} or \typ{POLMOD} $z$ can
be recovered via \kbd{$z$.mod}.
The library syntax is \fun{GEN}{gmodulo}{GEN a, GEN b}.
\subsec{Pol$(t,\{v='x\})$}\kbdsidx{Pol}\label{se:Pol}
Transforms the object $t$ into a polynomial with main variable $v$. If $t$
is a scalar, this gives a constant polynomial. If $t$ is a power series with
non-negative valuation or a rational function, the effect is similar to
\kbd{truncate}, i.e.~we chop off the $O(X^k)$ or compute the Euclidean
quotient of the numerator by the denominator, then change the main variable
of the result to $v$.
The main use of this function is when $t$ is a vector: it creates the
polynomial whose coefficients are given by $t$, with $t[1]$ being the leading
coefficient (which can be zero). It is much faster to evaluate
\kbd{Pol} on a vector of coefficients in this way, than the corresponding
formal expression $a_n X^n + \dots + a_0$, which is evaluated naively exactly
as written (linear versus quadratic time in $n$). \tet{Polrev} can be used if
one wants $x[1]$ to be the constant coefficient:
\bprog
? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1
@eprog\noindent
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
\bprog
? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev( Polrev([1,2,3]) )
%2 = [1, 2, 3]
@eprog\noindent
\misctitle{Warning} This is \emph{not} a substitution function. It will not
transform an object containing variables of higher priority than~$v$.
\bprog
? Pol(x + y, y)
*** at top-level: Pol(x+y,y)
*** ^----------
*** Pol: variable must have higher priority in gtopoly.
@eprog
The library syntax is \fun{GEN}{gtopoly}{GEN t, long v = -1} where \kbd{v} is a variable number.
\subsec{Polrev$(t,\{v='x\})$}\kbdsidx{Polrev}\label{se:Polrev}
Transform the object $t$ into a polynomial
with main variable $v$. If $t$ is a scalar, this gives a constant polynomial.
If $t$ is a power series, the effect is identical to \kbd{truncate}, i.e.~it
chops off the $O(X^k)$.
The main use of this function is when $t$ is a vector: it creates the
polynomial whose coefficients are given by $t$, with $t[1]$ being the
constant term. \tet{Pol} can be used if one wants $t[1]$ to be the leading
coefficient:
\bprog
? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3
@eprog
The reciprocal function of \kbd{Pol} (resp.~\kbd{Polrev}) is \kbd{Vec} (resp.~
\kbd{Vecrev}).
The library syntax is \fun{GEN}{gtopolyrev}{GEN t, long v = -1} where \kbd{v} is a variable number.
\subsec{Qfb$(a,b,c,\{D=0.\})$}\kbdsidx{Qfb}\label{se:Qfb}
Creates the binary quadratic form\sidx{binary quadratic form}
$ax^2+bxy+cy^2$. If $b^2-4ac>0$, initialize \idx{Shanks}' distance
function to $D$. Negative definite forms are not implemented,
use their positive definite counterpart instead.
The library syntax is \fun{GEN}{Qfb0}{GEN a, GEN b, GEN c, GEN D = NULL, long prec}.
Also available are
\fun{GEN}{qfi}{GEN a, GEN b, GEN c} (assumes $b^2-4ac<0$) and
\fun{GEN}{qfr}{GEN a, GEN b, GEN c, GEN D} (assumes $b^2-4ac>0$).
\subsec{Ser$(s,\{v='x\},\{d=\var{seriesprecision}\})$}\kbdsidx{Ser}\label{se:Ser}
Transforms the object $s$ into a power series with main variable $v$
($x$ by default) and precision (number of significant terms) equal to
$d \geq 0$ ($d = \kbd{seriesprecision}$ by default). If $s$ is a
scalar, this gives a constant power series in $v$ with precision \kbd{d}.
If $s$ is a polynomial, the polynomial is truncated to $d$ terms if needed
\bprog
? Ser(1, 'y, 5)
%1 = 1 + O(y^5)
? Ser(x^2,, 5)
%2 = x^2 + O(x^7)
? T = polcyclo(100)
%3 = x^40 - x^30 + x^20 - x^10 + 1
? Ser(T, 'x, 11)
%4 = 1 - x^10 + O(x^11)
@eprog\noindent The function is more or less equivalent with multiplication by
$1 + O(v^d)$ in theses cases, only faster.
If $s$ is a vector, on the other hand, the coefficients of the vector are
understood to be the coefficients of the power series starting from the
constant term (as in \tet{Polrev}$(x)$), and the precision $d$ is ignored:
in other words, in this case, we convert \typ{VEC} / \typ{COL} to the power
series whose significant terms are exactly given by the vector entries.
Finally, if $s$ is already a power series in $v$, we return it verbatim,
ignoring $d$ again. If $d$ significant terms are desired in the last two
cases, convert/truncate to \typ{POL} first.
\bprog
? v = [1,2,3]; Ser(v, t, 7)
%5 = 1 + 2*t + 3*t^2 + O(t^3) \\ 3 terms: 7 is ignored!
? Ser(Polrev(v,t), t, 7)
%6 = 1 + 2*t + 3*t^2 + O(t^7)
? s = 1+x+O(x^2); Ser(s, x, 7)
%7 = 1 + x + O(x^2) \\ 2 terms: 7 ignored
? Ser(truncate(s), x, 7)
%8 = 1 + x + O(x^7)
@eprog\noindent
The warning given for \kbd{Pol} also applies here: this is not a substitution
function.
The library syntax is \fun{GEN}{gtoser}{GEN s, long v = -1, long precdl} where \kbd{v} is a variable number.
\subsec{Set$(\{x=[\,]\})$}\kbdsidx{Set}\label{se:Set}
Converts $x$ into a set, i.e.~into a row vector, with strictly increasing
entries with respect to the (somewhat arbitrary) universal comparison function
\tet{cmp}. Standard container types \typ{VEC}, \typ{COL}, \typ{LIST} and
\typ{VECSMALL} are converted to the set with corresponding elements. All
others are converted to a set with one element.
\bprog
? Set([1,2,4,2,1,3])
%1 = [1, 2, 3, 4]
? Set(x)
%2 = [x]
? Set(Vecsmall([1,3,2,1,3]))
%3 = [1, 2, 3]
@eprog
The library syntax is \fun{GEN}{gtoset}{GEN x = NULL}.
\subsec{Str$(\{x\}*)$}\kbdsidx{Str}\label{se:Str}
Converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
To recover an ordinary \kbd{GEN} from a string, apply \kbd{eval} to it. The
arguments of \kbd{Str} are evaluated in string context, see \secref{se:strings}.
\bprog
? x2 = 0; i = 2; Str(x, i)
%1 = "x2"
? eval(%)
%2 = 0
@eprog\noindent
This function is mostly useless in library mode. Use the pair
\tet{strtoGEN}/\tet{GENtostr} to convert between \kbd{GEN} and \kbd{char*}.
The latter returns a malloced string, which should be freed after usage.
%\syn{NO}
\subsec{Strchr$(x)$}\kbdsidx{Strchr}\label{se:Strchr}
Converts $x$ to a string, translating each integer
into a character.
\bprog
? Strchr(97)
%1 = "a"
? Vecsmall("hello world")
%2 = Vecsmall([104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100])
? Strchr(%)
%3 = "hello world"
@eprog
The library syntax is \fun{GEN}{Strchr}{GEN x}.
\subsec{Strexpand$(\{x\}*)$}\kbdsidx{Strexpand}\label{se:Strexpand}
Converts its argument list into a
single character string (type \typ{STR}, the empty string if $x$ is omitted).
Then perform \idx{environment expansion}, see \secref{se:envir}.
This feature can be used to read \idx{environment variable} values.
\bprog
? Strexpand("$HOME/doc")
%1 = "/home/pari/doc"
@eprog
The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}
\subsec{Strtex$(\{x\}*)$}\kbdsidx{Strtex}\label{se:Strtex}
Translates its arguments to TeX
format, and concatenates the results into a single character string (type
\typ{STR}, the empty string if $x$ is omitted).
The individual arguments are read in string context, see \secref{se:strings}.
%\syn{NO}
\subsec{Vec$(x, \{n\})$}\kbdsidx{Vec}\label{se:Vec}
Transforms the object $x$ into a row vector. The dimension of the
resulting vector can be optionally specified via the extra parameter $n$.
If $n$ is omitted or $0$, the dimension depends on the type of $x$; the
vector has a single component, except when $x$ is
\item a vector or a quadratic form: returns the initial object considered as a
row vector,
\item a polynomial or a power series: returns a vector consisting of the coefficients.
In the case of a polynomial, the coefficients of the vector start with the leading
coefficient of the polynomial, while for power series only the significant coefficients
are taken into account, but this time by increasing order of degree.
\kbd{Vec} is the reciprocal function of \kbd{Pol} for a polynomial and of
\kbd{Ser} for a power series,
\item a matrix: returns the vector of columns comprising the matrix,
\item a character string: returns the vector of individual characters,
\item a map: returns the vector of the domain of the map,
\item an error context (\typ{ERROR}): returns the error components, see
\tet{iferr}.
In the last four cases (matrix, character string, map, error), $n$ is
meaningless and must be omitted or an error is raised. Otherwise, if $n$ is
given, $0$ entries are appended at the end of the vector if $n > 0$, and
prepended at the beginning if $n < 0$. The dimension of the resulting vector
is $|n|$. Variant: \fun{GEN}{gtovec}{GEN x} is also available.
The library syntax is \fun{GEN}{gtovec0}{GEN x, long n}.
\subsec{Vecrev$(x, \{n\})$}\kbdsidx{Vecrev}\label{se:Vecrev}
As $\kbd{Vec}(x, -n)$, then reverse the result. In particular,
\kbd{Vecrev} is the reciprocal function of \kbd{Polrev}: the
coefficients of the vector start with the constant coefficient of the
polynomial and the others follow by increasing degree.
The library syntax is \fun{GEN}{gtovecrev0}{GEN x, long n}.
\fun{GEN}{gtovecrev}{GEN x} is also available.
\subsec{Vecsmall$(x, \{n\})$}\kbdsidx{Vecsmall}\label{se:Vecsmall}
Transforms the object $x$ into a row vector of type \typ{VECSMALL}. The
dimension of the resulting vector can be optionally specified via the extra
parameter $n$.
This acts as \kbd{Vec}$(x,n)$, but only on a limited set of objects:
the result must be representable as a vector of small integers.
If $x$ is a character string, a vector of individual characters in ASCII
encoding is returned (\tet{Strchr} yields back the character string).
The library syntax is \fun{GEN}{gtovecsmall0}{GEN x, long n}.
\fun{GEN}{gtovecsmall}{GEN x} is also available.
\subsec{binary$(x)$}\kbdsidx{binary}\label{se:binary}
Outputs the vector of the binary digits of $|x|$. Here $x$ can be an
integer, a real number (in which case the result has two components, one for
the integer part, one for the fractional part) or a vector/matrix.
\bprog
? binary(10)
%1 = [1, 0, 1, 0]
? binary(3.14)
%2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]
? binary([1,2])
%3 = [[1], [1, 0]]
@eprog\noindent By convention, $0$ has no digits:
\bprog
? binary(0)
%4 = []
@eprog
The library syntax is \fun{GEN}{binaire}{GEN x}.
\subsec{bitand$(x,y)$}\kbdsidx{bitand}\label{se:bitand}
Bitwise \tet{and}
\sidx{bitwise and}of two integers $x$ and $y$, that is the integer
$$\sum_i (x_i~\kbd{and}~y_i) 2^i$$
Negative numbers behave $2$-adically, i.e.~the result is the $2$-adic limit
of \kbd{bitand}$(x_n,y_n)$, where $x_n$ and $y_n$ are non-negative integers
tending to $x$ and $y$ respectively. (The result is an ordinary integer,
possibly negative.)
\bprog
? bitand(5, 3)
%1 = 1
? bitand(-5, 3)
%2 = 3
? bitand(-5, -3)
%3 = -7
@eprog
The library syntax is \fun{GEN}{gbitand}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitand}{GEN x, GEN y}, which returns the bitwise \emph{and}
of $|x|$ and $|y|$, two integers.
\subsec{bitneg$(x,\{n=-1\})$}\kbdsidx{bitneg}\label{se:bitneg}
\idx{bitwise negation} of an integer $x$,
truncated to $n$ bits, $n\geq 0$, that is the integer
$$\sum_{i=0}^{n-1} \kbd{not}(x_i) 2^i.$$
The special case $n=-1$ means no truncation: an infinite sequence of
leading $1$ is then represented as a negative number.
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitneg}{GEN x, long n}.
\subsec{bitnegimply$(x,y)$}\kbdsidx{bitnegimply}\label{se:bitnegimply}
Bitwise negated imply of two integers $x$ and
$y$ (or \kbd{not} $(x \Rightarrow y)$), that is the integer $$\sum
(x_i~\kbd{and not}(y_i)) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitnegimply}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitnegimply}{GEN x, GEN y}, which returns the bitwise negated
imply of $|x|$ and $|y|$, two integers.
\subsec{bitor$(x,y)$}\kbdsidx{bitor}\label{se:bitor}
\sidx{bitwise inclusive or}bitwise (inclusive)
\tet{or} of two integers $x$ and $y$, that is the integer $$\sum
(x_i~\kbd{or}~y_i) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitor}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitor}{GEN x, GEN y}, which returns the bitwise \emph{ir}
of $|x|$ and $|y|$, two integers.
\subsec{bitprecision$(x,\{n\})$}\kbdsidx{bitprecision}\label{se:bitprecision}
The function behaves differently according to whether $n$ is
present and positive or not. If $n$ is missing, the function returns the
(floating point) precision in bits of the PARI object $x$. If $x$ is an
exact object, the function returns \kbd{+oo}.
\bprog
? bitprecision(exp(1e-100))
%1 = 512 \\ 512 bits
? bitprecision( [ exp(1e-100), 0.5 ] )
%2 = 128 \\ minimal accuracy among components
? bitprecision(2 + x)
%3 = +oo \\ exact object
@eprog
If $n$ is present and positive, the function creates a new object equal to $x$
with the new bit-precision roughly $n$. In fact, the smallest multiple of 64
(resp.~32 on a 32-bit machine) larger than or equal to $n$.
For $x$ a vector or a matrix, the operation is
done componentwise; for series and polynomials, the operation is done
coefficientwise. For real $x$, $n$ is the number of desired significant
\emph{bits}. If $n$ is smaller than the precision of $x$, $x$ is truncated,
otherwise $x$ is extended with zeros. For exact or non-floating point types,
no change.
\bprog
? bitprecision(Pi, 10) \\ actually 64 bits ~ 19 decimal digits
%1 = 3.141592653589793239
? bitprecision(1, 10)
%2 = 1
? bitprecision(1 + O(x), 10)
%3 = 1 + O(x)
? bitprecision(2 + O(3^5), 10)
%4 = 2 + O(3^5)
@eprog\noindent
The library syntax is \fun{GEN}{bitprecision0}{GEN x, long n}.
\subsec{bittest$(x,n)$}\kbdsidx{bittest}\label{se:bittest}
Outputs the $n^{\text{th}}$ bit of $x$ starting
from the right (i.e.~the coefficient of $2^n$ in the binary expansion of $x$).
The result is 0 or 1.
\bprog
? bittest(7, 0)
%1 = 1 \\ the bit 0 is 1
? bittest(7, 2)
%2 = 1 \\ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \\ the bit 3 is 0
@eprog\noindent
See \secref{se:bitand} for the behavior at negative arguments.
The library syntax is \fun{GEN}{gbittest}{GEN x, long n}.
For a \typ{INT} $x$, the variant \fun{long}{bittest}{GEN x, long n} is
generally easier to use, and if furthermore $n\ge 0$ the low-level function
\fun{ulong}{int_bit}{GEN x, long n} returns \kbd{bittest(abs(x),n)}.
\subsec{bitxor$(x,y)$}\kbdsidx{bitxor}\label{se:bitxor}
Bitwise (exclusive) \tet{or}
\sidx{bitwise exclusive or}of two integers $x$ and $y$, that is the integer
$$\sum (x_i~\kbd{xor}~y_i) 2^i$$
See \secref{se:bitand} for the behavior for negative arguments.
The library syntax is \fun{GEN}{gbitxor}{GEN x, GEN y}.
Also available is
\fun{GEN}{ibitxor}{GEN x, GEN y}, which returns the bitwise \emph{xor}
of $|x|$ and $|y|$, two integers.
\subsec{ceil$(x)$}\kbdsidx{ceil}\label{se:ceil}
Ceiling of $x$. When $x$ is in $\R$, the result is the
smallest integer greater than or equal to $x$. Applied to a rational
function, $\kbd{ceil}(x)$ returns the Euclidean quotient of the numerator by
the denominator.
The library syntax is \fun{GEN}{gceil}{GEN x}.
\subsec{centerlift$(x,\{v\})$}\kbdsidx{centerlift}\label{se:centerlift}
Same as \tet{lift}, except that \typ{INTMOD} and \typ{PADIC} components
are lifted using centered residues:
\item for a \typ{INTMOD} $x\in \Z/n\Z$, the lift $y$ is such that
$-n/2<y\le n/2$.
\item a \typ{PADIC} $x$ is lifted in the same way as above (modulo
$p^\kbd{padicprec(x)}$) if its valuation $v$ is non-negative; if not, returns
the fraction $p^v$ \kbd{centerlift}$(x p^{-v})$; in particular, rational
reconstruction is not attempted. Use \tet{bestappr} for this.
For backward compatibility, \kbd{centerlift(x,'v)} is allowed as an alias
for \kbd{lift(x,'v)}.
\synt{centerlift}{GEN x}.
\subsec{characteristic$(x)$}\kbdsidx{characteristic}\label{se:characteristic}
Returns the characteristic of the base ring over which $x$ is defined (as
defined by \typ{INTMOD} and \typ{FFELT} components). The function raises an
exception if incompatible primes arise from \typ{FFELT} and \typ{PADIC}
components.
\bprog
? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 = 6
@eprog
The library syntax is \fun{GEN}{characteristic}{GEN x}.
\subsec{component$(x,n)$}\kbdsidx{component}\label{se:component}
Extracts the $n^{\text{th}}$-component of $x$. This is to be understood
as follows: every PARI type has one or two initial \idx{code words}. The
components are counted, starting at 1, after these code words. In particular
if $x$ is a vector, this is indeed the $n^{\text{th}}$-component of $x$, if
$x$ is a matrix, the $n^{\text{th}}$ column, if $x$ is a polynomial, the
$n^{\text{th}}$ coefficient (i.e.~of degree $n-1$), and for power series,
the $n^{\text{th}}$ significant coefficient.
For polynomials and power series, one should rather use \tet{polcoeff}, and
for vectors and matrices, the \kbd{[$\,$]} operator. Namely, if $x$ is a
vector, then \tet{x[n]} represents the $n^{\text{th}}$ component of $x$. If
$x$ is a matrix, \tet{x[m,n]} represents the coefficient of row \kbd{m} and
column \kbd{n} of the matrix, \tet{x[m,]} represents the $m^{\text{th}}$
\emph{row} of $x$, and \tet{x[,n]} represents the $n^{\text{th}}$
\emph{column} of $x$.
Using of this function requires detailed knowledge of the structure of the
different PARI types, and thus it should almost never be used directly.
Some useful exceptions:
\bprog
? x = 3 + O(3^5);
? component(x, 2)
%2 = 81 \\ p^(p-adic accuracy)
? component(x, 1)
%3 = 3 \\ p
? q = Qfb(1,2,3);
? component(q, 1)
%5 = 1
@eprog
The library syntax is \fun{GEN}{compo}{GEN x, long n}.
\subsec{conj$(x)$}\kbdsidx{conj}\label{se:conj}
Conjugate of $x$. The meaning of this
is clear, except that for real quadratic numbers, it means conjugation in the
real quadratic field. This function has no effect on integers, reals,
intmods, fractions or $p$-adics. The only forbidden type is polmod
(see \kbd{conjvec} for this).
The library syntax is \fun{GEN}{gconj}{GEN x}.
\subsec{conjvec$(z)$}\kbdsidx{conjvec}\label{se:conjvec}
Conjugate vector representation of $z$. If $z$ is a
polmod, equal to \kbd{Mod}$(a,T)$, this gives a vector of length
$\text{degree}(T)$ containing:
\item the complex embeddings of $z$ if $T$ has rational coefficients,
i.e.~the $a(r[i])$ where $r = \kbd{polroots}(T)$;
\item the conjugates of $z$ if $T$ has some intmod coefficients;
\noindent if $z$ is a finite field element, the result is the vector of
conjugates $[z,z^p,z^{p^2},\ldots,z^{p^{n-1}}]$ where $n=\text{degree}(T)$.
\noindent If $z$ is an integer or a rational number, the result is~$z$. If
$z$ is a (row or column) vector, the result is a matrix whose columns are
the conjugate vectors of the individual elements of $z$.
The library syntax is \fun{GEN}{conjvec}{GEN z, long prec}.
\subsec{denominator$(x)$}\kbdsidx{denominator}\label{se:denominator}
Denominator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is equal to $1$. For polynomials, you
probably want to use
\bprog
denominator( content(x) )
@eprog\noindent
instead. As for modular objects, \typ{INTMOD} and \typ{PADIC} have
denominator $1$, and the denominator of a \typ{POLMOD} is the denominator
of its (minimal degree) polynomial representative.
If $x$ is a recursive structure, for instance a vector or matrix, the lcm
of the denominators of its components (a common denominator) is computed.
This also applies for \typ{COMPLEX}s and \typ{QUAD}s.
\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.
The library syntax is \fun{GEN}{denom}{GEN x}.
\subsec{digits$(x,\{b={10}\})$}\kbdsidx{digits}\label{se:digits}
Outputs the vector of the digits of $|x|$ in base $b$, where $x$ and $b$ are
integers ($b = 10$ by default). See \kbd{fromdigits} for the reverse
operation.
\bprog
? digits(123)
%1 = [1, 2, 3, 0]
? digits(10, 2) \\ base 2
%2 = [1, 0, 1, 0]
@eprog\noindent By convention, $0$ has no digits:
\bprog
? digits(0)
%3 = []
@eprog
The library syntax is \fun{GEN}{digits}{GEN x, GEN b = NULL}.
\subsec{floor$(x)$}\kbdsidx{floor}\label{se:floor}
Floor of $x$. When $x$ is in $\R$, the result is the
largest integer smaller than or equal to $x$. Applied to a rational function,
$\kbd{floor}(x)$ returns the Euclidean quotient of the numerator by the
denominator.
The library syntax is \fun{GEN}{gfloor}{GEN x}.
\subsec{frac$(x)$}\kbdsidx{frac}\label{se:frac}
Fractional part of $x$. Identical to
$x-\text{floor}(x)$. If $x$ is real, the result is in $[0,1[$.
The library syntax is \fun{GEN}{gfrac}{GEN x}.
\subsec{fromdigits$(x,\{b={10}\})$}\kbdsidx{fromdigits}\label{se:fromdigits}
Gives the integer formed by the elements of $x$ seen as the digits of a
number in base $b$ ($b = 10$ by default). This is the reverse of \kbd{digits}:
\bprog
? digits(1234,5)
%1 = [1,4,4,1,4]
? fromdigits([1,4,4,1,4],5)
%2 = 1234
@eprog\noindent By convention, $0$ has no digits:
\bprog
? fromdigits([])
%3 = 0
@eprog
The library syntax is \fun{GEN}{fromdigits}{GEN x, GEN b = NULL}.
\subsec{hammingweight$(x)$}\kbdsidx{hammingweight}\label{se:hammingweight}
If $x$ is a \typ{INT}, return the binary Hamming weight of $|x|$. Otherwise
$x$ must be of type \typ{POL}, \typ{VEC}, \typ{COL}, \typ{VECSMALL}, or
\typ{MAT} and the function returns the number of non-zero coefficients of
$x$.
\bprog
? hammingweight(15)
%1 = 4
? hammingweight(x^100 + 2*x + 1)
%2 = 3
? hammingweight([Mod(1,2), 2, Mod(0,3)])
%3 = 2
? hammingweight(matid(100))
%4 = 100
@eprog
The library syntax is \fun{long}{hammingweight}{GEN x}.
\subsec{imag$(x)$}\kbdsidx{imag}\label{se:imag}
Imaginary part of $x$. When $x$ is a quadratic number, this is the
coefficient of $\omega$ in the ``canonical'' integral basis $(1,\omega)$.
The library syntax is \fun{GEN}{gimag}{GEN x}.
\subsec{length$(x)$}\kbdsidx{length}\label{se:length}
Length of $x$; \kbd{\#}$x$ is a shortcut for \kbd{length}$(x)$.
This is mostly useful for
\item vectors: dimension (0 for empty vectors),
\item lists: number of entries (0 for empty lists),
\item matrices: number of columns,
\item character strings: number of actual characters (without
trailing \kbd{\bs 0}, should you expect it from $C$ \kbd{char*}).
\bprog
? #"a string"
%1 = 8
? #[3,2,1]
%2 = 3
? #[]
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L
%5 = 4
@eprog
The routine is in fact defined for arbitrary GP types, but is awkward and
useless in other cases: it returns the number of non-code words in $x$, e.g.
the effective length minus 2 for integers since the \typ{INT} type has two code
words.
The library syntax is \fun{long}{glength}{GEN x}.
\subsec{lift$(x,\{v\})$}\kbdsidx{lift}\label{se:lift}
If $v$ is omitted, lifts intmods from $\Z/n\Z$ in $\Z$,
$p$-adics from $\Q_p$ to $\Q$ (as \tet{truncate}), and polmods to
polynomials. Otherwise, lifts only polmods whose modulus has main
variable~$v$. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(lift,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(Mod(x,x^2+1))
%4 = x
@eprog
Lifts are performed recursively on an object components, but only
by \emph{one level}: once a \typ{POLMOD} is lifted, the components of
the result are \emph{not} lifted further.
\bprog
? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y*x + Mod(2, 3) \\@com do you understand this one?
? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)
%6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)
? lift(%, y)
%7 = y*x + Mod(2, 3)
@eprog\noindent To recursively lift all components not only by one level,
but as long as possible, use \kbd{liftall}. To lift only \typ{INTMOD}s and
\typ{PADIC}s components, use \tet{liftint}. To lift only \typ{POLMOD}s
components, use \tet{liftpol}. Finally, \tet{centerlift} allows to lift
\typ{INTMOD}s and \typ{PADIC}s using centered residues (lift of smallest
absolute value).
The library syntax is \fun{GEN}{lift0}{GEN x, long v = -1} where \kbd{v} is a variable number.
Also available is \fun{GEN}{lift}{GEN x} corresponding to
\kbd{lift0(x,-1)}.
\subsec{liftall$(x)$}\kbdsidx{liftall}\label{se:liftall}
Recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$,
from $\Q_p$ to $\Q$ (as \tet{truncate}), and polmods to
polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftall,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftall(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + 2*z
@eprog
The library syntax is \fun{GEN}{liftall}{GEN x}.
\subsec{liftint$(x)$}\kbdsidx{liftint}\label{se:liftint}
Recursively lift all components of $x$ from $\Z/n\Z$ to $\Z$ and
from $\Q_p$ to $\Q$ (as \tet{truncate}).
\typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftint,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftint(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)
@eprog
The library syntax is \fun{GEN}{liftint}{GEN x}.
\subsec{liftpol$(x)$}\kbdsidx{liftpol}\label{se:liftpol}
Recursively lift all components of $x$ which are polmods to
polynomials. \typ{FFELT} are not lifted, nor are List elements: you may
convert the latter to vectors first, or use \kbd{apply(liftpol,L)}. More
generally, components for which such lifts are meaningless (e.g. character
strings) are copied verbatim.
\bprog
? liftpol(x * (1 + O(3)) + Mod(2,3))
%1 = (1 + O(3))*x + Mod(2, 3)
? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + Mod(2, 3)*z
@eprog
The library syntax is \fun{GEN}{liftpol}{GEN x}.
\subsec{norm$(x)$}\kbdsidx{norm}\label{se:norm}
Algebraic norm of $x$, i.e.~the product of $x$ with
its conjugate (no square roots are taken), or conjugates for polmods. For
vectors and matrices, the norm is taken componentwise and hence is not the
$L^2$-norm (see \kbd{norml2}). Note that the norm of an element of
$\R$ is its square, so as to be compatible with the complex norm.
The library syntax is \fun{GEN}{gnorm}{GEN x}.
\subsec{numerator$(x)$}\kbdsidx{numerator}\label{se:numerator}
Numerator of $x$. The meaning of this
is clear when $x$ is a rational number or function. If $x$ is an integer
or a polynomial, it is treated as a rational number or function,
respectively, and the result is $x$ itself. For polynomials, you
probably want to use
\bprog
numerator( content(x) )
@eprog\noindent
instead.
In other cases, \kbd{numerator(x)} is defined to be
\kbd{denominator(x)*x}. This is the case when $x$ is a vector or a
matrix, but also for \typ{COMPLEX} or \typ{QUAD}. In particular since a
\typ{PADIC} or \typ{INTMOD} has denominator $1$, its numerator is
itself.
\misctitle{Warning} Multivariate objects are created according to variable
priorities, with possibly surprising side effects ($x/y$ is a polynomial, but
$y/x$ is a rational function). See \secref{se:priority}.
The library syntax is \fun{GEN}{numer}{GEN x}.
\subsec{numtoperm$(n,k)$}\kbdsidx{numtoperm}\label{se:numtoperm}
Generates the $k$-th permutation (as a row vector of length $n$) of the
numbers $1$ to $n$. The number $k$ is taken modulo $n!\,$, i.e.~inverse
function of \tet{permtonum}. The numbering used is the standard lexicographic
ordering, starting at $0$.
The library syntax is \fun{GEN}{numtoperm}{long n, GEN k}.
\subsec{oo}\kbdsidx{oo}\label{se:oo}
Returns an object meaning $+\infty$, for use in functions such as
\kbd{intnum}. It can be negated (\kbd{-oo} represents $-\infty$), and
compared to real numbers (\typ{INT}, \typ{FRAC}, \typ{REAL}), with the
expected meaning: $+\infty$ is greater than any real number and $-\infty$ is
smaller.
The library syntax is \fun{GEN}{mkoo}{}.
\subsec{padicprec$(x,p)$}\kbdsidx{padicprec}\label{se:padicprec}
Returns the absolute $p$-adic precision of the object $x$; this is the
minimum precision of the components of $x$. The result is \tet{+oo} if $x$
is an exact object (as a $p$-adic):
\bprog
? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)
%1 = 4
? padicprec(x + 2, 2)
%2 = +oo
? padicprec(2 + x + O(x^2), 2)
%3 = +oo
@eprog\noindent The function raises an exception if it encounters
an object incompatible with $p$-adic computations:
\bprog
? padicprec(O(3), 2)
*** at top-level: padicprec(O(3),2)
*** ^-----------------
*** padicprec: inconsistent moduli in padicprec: 3 != 2
? padicprec(1.0, 2)
*** at top-level: padicprec(1.0,2)
*** ^----------------
*** padicprec: incorrect type in padicprec (t_REAL).
@eprog
The library syntax is \fun{GEN}{gppadicprec}{GEN x, GEN p}.
Also available is the function \fun{long}{padicprec}{GEN x, GEN p},
which returns \tet{LONG_MAX} if $x = 0$ and the $p$-adic precision as a
\kbd{long} integer.
\subsec{permtonum$(x)$}\kbdsidx{permtonum}\label{se:permtonum}
Given a permutation $x$ on $n$ elements, gives the number $k$ such that
$x=\kbd{numtoperm(n,k)}$, i.e.~inverse function of \tet{numtoperm}.
The numbering used is the standard lexicographic ordering, starting at $0$.
The library syntax is \fun{GEN}{permtonum}{GEN x}.
\subsec{precision$(x,\{n\})$}\kbdsidx{precision}\label{se:precision}
The function behaves differently according to whether $n$ is
present and positive or not. If $n$ is missing, the function returns the
precision in decimal digits of the PARI object $x$. If $x$ is an exact
object, the function returns \kbd{+oo}.
\bprog
? precision(exp(1e-100))
%1 = 154 \\ 154 significant decimal digits
? precision(2 + x)
%2 = +oo \\ exact object
? precision(0.5 + O(x))
%3 = 38 \\ floating point accuracy, NOT series precision
? precision( [ exp(1e-100), 0.5 ] )
%4 = 38 \\ minimal accuracy among components
@eprog
If $n$ is present, the function creates a new object equal to $x$ with a new
floating point precision $n$: $n$ is the number of desired significant
\emph{decimal} digits. If $n$ is smaller than the precision of a \typ{REAL}
component of $x$, it is truncated, otherwise it is extended with zeros.
For exact or non-floating point types, no change.
The library syntax is \fun{GEN}{precision0}{GEN x, long n}.
Also available are \fun{GEN}{gprec}{GEN x, long n} and
\fun{long}{precision}{GEN x}. In both, the accuracy is expressed in
\emph{words} (32-bit or 64-bit depending on the architecture).
\subsec{random$(\{N=2^{{31}}\})$}\kbdsidx{random}\label{se:random}
Returns a random element in various natural sets depending on the
argument $N$.
\item \typ{INT}: returns an integer
uniformly distributed between $0$ and $N-1$. Omitting the argument
is equivalent to \kbd{random(2\pow31)}.
\item \typ{REAL}: returns a real number in $[0,1[$ with the same accuracy as
$N$ (whose mantissa has the same number of significant words).
\item \typ{INTMOD}: returns a random intmod for the same modulus.
\item \typ{FFELT}: returns a random element in the same finite field.
\item \typ{VEC} of length $2$, $N = [a,b]$: returns an integer uniformly
distributed between $a$ and $b$.
\item \typ{VEC} generated by \kbd{ellinit} over a finite field $k$
(coefficients are \typ{INTMOD}s modulo a prime or \typ{FFELT}s): returns a
``random'' $k$-rational \emph{affine} point on the curve. More precisely
if the curve has a single point (at infinity!) we return it; otherwise
we return an affine point by drawing an abscissa uniformly at
random until \tet{ellordinate} succeeds. Note that this is definitely not a
uniform distribution over $E(k)$, but it should be good enough for
applications.
\item \typ{POL} return a random polynomial of degree at most the degree of $N$.
The coefficients are drawn by applying \kbd{random} to the leading
coefficient of $N$.
\bprog
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
@eprog
These variants all depend on a single internal generator, and are
independent from your operating system's random number generators.
A random seed may be obtained via \tet{getrand}, and reset
using \tet{setrand}: from a given seed, and given sequence of \kbd{random}s,
the exact same values will be generated. The same seed is used at each
startup, reseed the generator yourself if this is a problem. Note that
internal functions also call the random number generator; adding such a
function call in the middle of your code will change the numbers produced.
\misctitle{Technical note}
Up to
version 2.4 included, the internal generator produced pseudo-random numbers
by means of linear congruences, which were not well distributed in arithmetic
progressions. We now
use Brent's XORGEN algorithm, based on Feedback Shift Registers, see
\url{http://wwwmaths.anu.edu.au/~brent/random.html}. The generator has period
$2^{4096}-1$, passes the Crush battery of statistical tests of L'Ecuyer and
Simard, but is not suitable for cryptographic purposes: one can reconstruct
the state vector from a small sample of consecutive values, thus predicting
the entire sequence.
The library syntax is \fun{GEN}{genrand}{GEN N = NULL}.
Also available: \fun{GEN}{ellrandom}{GEN E} and \fun{GEN}{ffrandom}{GEN a}.
\subsec{real$(x)$}\kbdsidx{real}\label{se:real}
Real part of $x$. In the case where $x$ is a quadratic number, this is the
coefficient of $1$ in the ``canonical'' integral basis $(1,\omega)$.
The library syntax is \fun{GEN}{greal}{GEN x}.
\subsec{round$(x,\{\&e\})$}\kbdsidx{round}\label{se:round}
If $x$ is in $\R$, rounds $x$ to the nearest integer (rounding to
$+\infty$ in case of ties), then and sets $e$ to the number of error bits,
that is the binary exponent of the difference between the original and the
rounded value (the ``fractional part''). If the exponent of $x$ is too large
compared to its precision (i.e.~$e>0$), the result is undefined and an error
occurs if $e$ was not given.
\misctitle{Important remark} Contrary to the other truncation functions,
this function operates on every coefficient at every level of a PARI object.
For example
$$\text{truncate}\left(\dfrac{2.4*X^2-1.7}{X}\right)=2.4*X,$$
whereas
$$\text{round}\left(\dfrac{2.4*X^2-1.7}{X}\right)=\dfrac{2*X^2-2}{X}.$$
An important use of \kbd{round} is to get exact results after an approximate
computation, when theory tells you that the coefficients must be integers.
The library syntax is \fun{GEN}{round0}{GEN x, GEN *e = NULL}.
Also available are \fun{GEN}{grndtoi}{GEN x, long *e} and
\fun{GEN}{ground}{GEN x}.
\subsec{serprec$(x,v)$}\kbdsidx{serprec}\label{se:serprec}
Returns the absolute precision of $x$ with respect to power series
in the variable $v$; this is the
minimum precision of the components of $x$. The result is \tet{+oo} if $x$
is an exact object (as a series in $v$):
\bprog
? serprec(x + O(y^2), y)
%1 = 2
? serprec(x + 2, x)
%2 = +oo
? serprec(2 + x + O(x^2), y)
%3 = +oo
@eprog
The library syntax is \fun{GEN}{gpserprec}{GEN x, long v} where \kbd{v} is a variable number.
Also available is \fun{long}{serprec}{GEN x, GEN p}, which returns
\tet{LONG_MAX} if $x = 0$ and the series precision as a \kbd{long} integer.
\subsec{simplify$(x)$}\kbdsidx{simplify}\label{se:simplify}
This function simplifies $x$ as much as it can. Specifically, a complex or
quadratic number whose imaginary part is the integer 0 (i.e.~not \kbd{Mod(0,2)}
or \kbd{0.E-28}) is converted to its real part, and a polynomial of degree $0$
is converted to its constant term. Simplifications occur recursively.
This function is especially useful before using arithmetic functions,
which expect integer arguments:
\bprog
? x = 2 + y - y
%1 = 2
? isprime(x)
*** at top-level: isprime(x)
*** ^----------
*** isprime: not an integer argument in an arithmetic function
? type(x)
%2 = "t_POL"
? type(simplify(x))
%3 = "t_INT"
@eprog
Note that GP results are simplified as above before they are stored in the
history. (Unless you disable automatic simplification with \b{y}, that is.)
In particular
\bprog
? type(%1)
%4 = "t_INT"
@eprog
The library syntax is \fun{GEN}{simplify}{GEN x}.
\subsec{sizebyte$(x)$}\kbdsidx{sizebyte}\label{se:sizebyte}
Outputs the total number of bytes occupied by the tree representing the
PARI object $x$.
The library syntax is \fun{long}{gsizebyte}{GEN x}.
Also available is \fun{long}{gsizeword}{GEN x} returning a
number of \emph{words}.
\subsec{sizedigit$(x)$}\kbdsidx{sizedigit}\label{se:sizedigit}
This function is DEPRECATED, essentially meaningless, and provided for
backwards compatibility only. Don't use it!
outputs a quick upper bound for the number of decimal digits of (the
components of) $x$, off by at most $1$. More precisely, for a positive
integer $x$, it computes (approximately) the ceiling of
$$\kbd{floor}(1 + \log_2 x) \log_{10}2,$$
To count the number of decimal digits of a positive integer $x$, use
\kbd{\#digits(x)}. To estimate (recursively) the size of $x$, use
\kbd{normlp(x)}.
The library syntax is \fun{long}{sizedigit}{GEN x}.
\subsec{truncate$(x,\{\&e\})$}\kbdsidx{truncate}\label{se:truncate}
Truncates $x$ and sets $e$ to the number of
error bits. When $x$ is in $\R$, this means that the part after the decimal
point is chopped away, $e$ is the binary exponent of the difference between
the original and the truncated value (the ``fractional part''). If the
exponent of $x$ is too large compared to its precision (i.e.~$e>0$), the
result is undefined and an error occurs if $e$ was not given. The function
applies componentwise on vector / matrices; $e$ is then the maximal number of
error bits. If $x$ is a rational function, the result is the ``integer part''
(Euclidean quotient of numerator by denominator) and $e$ is not set.
Note a very special use of \kbd{truncate}: when applied to a power series, it
transforms it into a polynomial or a rational function with denominator
a power of $X$, by chopping away the $O(X^k)$. Similarly, when applied to
a $p$-adic number, it transforms it into an integer or a rational number
by chopping away the $O(p^k)$.
The library syntax is \fun{GEN}{trunc0}{GEN x, GEN *e = NULL}.
The following functions are also available: \fun{GEN}{gtrunc}{GEN x}
and \fun{GEN}{gcvtoi}{GEN x, long *e}.
\subsec{valuation$(x,p)$}\kbdsidx{valuation}\label{se:valuation}
Computes the highest
exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an
integer, an intmod whose modulus is divisible by $p$, a fraction, a
$q$-adic number with $q=p$, or a polynomial or power series in which case the
valuation is the minimum of the valuation of the coefficients.
If $p$ is of type polynomial, $x$ must be of type polynomial or rational
function, and also a power series if $x$ is a monomial. Finally, the
valuation of a vector, complex or quadratic number is the minimum of the
component valuations.
If $x=0$, the result is \kbd{+oo} if $x$ is an exact object. If $x$ is a
$p$-adic numbers or power series, the result is the exponent of the zero.
Any other type combinations gives an error.
The library syntax is \fun{GEN}{gpvaluation}{GEN x, GEN p}.
Also available is
\fun{long}{gvaluation}{GEN x, GEN p}, which returns \tet{LONG_MAX} if $x = 0$
and the valuation as a \kbd{long} integer.
\subsec{varhigher$(\var{name},\{v\})$}\kbdsidx{varhigher}\label{se:varhigher}
Return a variable \emph{name} whose priority is higher
than the priority of $v$ (of all existing variables if $v$ is omitted).
This is a counterpart to \tet{varlower}.
\bprog
? Pol([x,x], t)
*** at top-level: Pol([x,x],t)
*** ^------------
*** Pol: incorrect priority in gtopoly: variable x <= t
? t = varhigher("t", x);
? Pol([x,x], t)
%3 = x*t + x
@eprog\noindent This routine is useful since new GP variables directly
created by the interpreter always have lower priority than existing
GP variables. When some basic objects already exist in a variable
that is incompatible with some function requirement, you can now
create a new variable with a suitable priority instead of changing variables
in existing objects:
\bprog
? K = nfinit(x^2+1);
? rnfequation(K,y^2-2)
*** at top-level: rnfequation(K,y^2-2)
*** ^--------------------
*** rnfequation: incorrect priority in rnfequation: variable y >= x
? y = varhigher("y", x);
? rnfequation(K, y^2-2)
%3 = y^4 - 2*y^2 + 9
@eprog\noindent
\misctitle{Caution 1}
The \emph{name} is an arbitrary character string, only used for display
purposes and need not be related to the GP variable holding the result, nor
to be a valid variable name. In particular the \emph{name} can
not be used to retrieve the variable, it is not even present in the parser's
hash tables.
\bprog
? x = varhigher("#");
? x^2
%2 = #^2
@eprog
\misctitle{Caution 2} There are a limited number of variables and if no
existing variable with the given display name has the requested
priority, the call to \kbd{varhigher} uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary,
reuse existing names instead and choose sensible priority requirements:
if you only need a variable with higher priority than $x$, state so
rather than creating a new variable with highest priority.
\bprog
\\ quickly use up all variables
? n = 0; while(1,varhigher("tmp"); n++)
*** at top-level: n=0;while(1,varhigher("tmp");n++)
*** ^-------------------
*** varhigher: no more variables available.
*** Break loop: type 'break' to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varhigher("tmp", x); n++)
@eprog
The library syntax is \fun{GEN}{varhigher}{const char *name, long v = -1} where \kbd{v} is a variable number.
\subsec{variable$(\{x\})$}\kbdsidx{variable}\label{se:variable}
Gives the main variable of the object $x$ (the variable with the highest
priority used in $x$), and $p$ if $x$ is a $p$-adic number. Return $0$ if
$x$ has no variable attached to it.
\bprog
? variable(x^2 + y)
%1 = x
? variable(1 + O(5^2))
%2 = 5
? variable([x,y,z,t])
%3 = x
? variable(1)
%4 = 0
@eprog\noindent The construction
\bprog
if (!variable(x),...)
@eprog\noindent can be used to test whether a variable is attached to $x$.
If $x$ is omitted, returns the list of user variables known to the
interpreter, by order of decreasing priority. (Highest priority is initially
$x$, which come first until \tet{varhigher} is used.) If \kbd{varhigher}
or \kbd{varlower} are used, it is quite possible to end up with different
variables (with different priorities) printed in the same way: they
will then appear multiple times in the output:
\bprog
? varhigher("y");
? varlower("y");
? variable()
%4 = [y, x, y]
@eprog\noindent Using \kbd{v = variable()} then \kbd{v[1]}, \kbd{v[2]},
etc.~allows to recover and use existing variables.
The library syntax is \fun{GEN}{gpolvar}{GEN x = NULL}.
However, in library mode, this function should not be used for $x$
non-\kbd{NULL}, since \tet{gvar} is more appropriate. Instead, for
$x$ a $p$-adic (type \typ{PADIC}), $p$ is $gel(x,2)$; otherwise, use
\fun{long}{gvar}{GEN x} which returns the variable number of $x$ if
it exists, \kbd{NO\_VARIABLE} otherwise, which satisfies the property
$\kbd{varncmp}(\kbd{NO\_VARIABLE}, v) > 0$ for all valid variable number
$v$, i.e. it has lower priority than any variable.
\subsec{variables$(\{x\})$}\kbdsidx{variables}\label{se:variables}
Returns the list of all variables occuring in object $x$ (all user
variables known to the interpreter if $x$ is omitted), sorted by
decreasing priority.
\bprog
? variables([x^2 + y*z + O(t), a+x])
%1 = [x, y, z, t, a]
@eprog\noindent The construction
\bprog
if (!variables(x),...)
@eprog\noindent can be used to test whether a variable is attached to $x$.
If \kbd{varhigher} or \kbd{varlower} are used, it is quite possible to end up
with different variables (with different priorities) printed in the same
way: they will then appear multiple times in the output:
\bprog
? y1 = varhigher("y");
? y2 = varlower("y");
? variables(y*y1*y2)
%4 = [y, y, y]
@eprog
The library syntax is \fun{GEN}{variables_vec}{GEN x = NULL}.
Also available is \fun{GEN}{variables_vecsmall}{GEN x} which returns
the (sorted) variable numbers instead of the attached monomials of degree 1.
\subsec{varlower$(\var{name},\{v\})$}\kbdsidx{varlower}\label{se:varlower}
Return a variable \emph{name} whose priority is lower
than the priority of $v$ (of all existing variables if $v$ is omitted).
This is a counterpart to \tet{varhigher}.
New GP variables directly created by the interpreter always
have lower priority than existing GP variables, but it is not easy
to check whether an identifier is currently unused, so that the
corresponding variable has the expected priority when it's created!
Thus, depending on the session history, the same command may fail or succeed:
\bprog
? t; z; \\ now t > z
? rnfequation(t^2+1,z^2-t)
*** at top-level: rnfequation(t^2+1,z^
*** ^--------------------
*** rnfequation: incorrect priority in rnfequation: variable t >= t
@eprog\noindent Restart and retry:
\bprog
? z; t; \\ now z > t
? rnfequation(t^2+1,z^2-t)
%2 = z^4 + 1
@eprog\noindent It is quite annoying for package authors, when trying to
define a base ring, to notice that the package may fail for some users
depending on their session history. The safe way to do this is as follows:
\bprog
? z; t; \\ In new session: now z > t
...
? t = varlower("t", 'z);
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, z, t]
@eprog
\bprog
? t; z; \\ In new session: now t > z
...
? t = varlower("t", 'z); \\ create a new variable, still printed "t"
? rnfequation(t^2+1,z^2-2)
%2 = z^4 - 2*z^2 + 9
? variable()
%3 = [x, y, t, z, t]
@eprog\noindent Now both constructions succeed. Note that in the
first case, \kbd{varlower} is essentially a no-op, the existing variable $t$
has correct priority. While in the second case, two different variables are
displayed as \kbd{t}, one with higher priority than $z$ (created in the first
line) and another one with lower priority (created by \kbd{varlower}).
\misctitle{Caution 1}
The \emph{name} is an arbitrary character string, only used for display
purposes and need not be related to the GP variable holding the result, nor
to be a valid variable name. In particular the \emph{name} can
not be used to retrieve the variable, it is not even present in the parser's
hash tables.
\bprog
? x = varlower("#");
? x^2
%2 = #^2
@eprog
\misctitle{Caution 2} There are a limited number of variables and if no
existing variable with the given display name has the requested
priority, the call to \kbd{varlower} uses up one such slot. Do not create
new variables in this way unless it's absolutely necessary,
reuse existing names instead and choose sensible priority requirements:
if you only need a variable with higher priority than $x$, state so
rather than creating a new variable with highest priority.
\bprog
\\ quickly use up all variables
? n = 0; while(1,varlower("x"); n++)
*** at top-level: n=0;while(1,varlower("x");n++)
*** ^-------------------
*** varlower: no more variables available.
*** Break loop: type 'break' to go back to GP prompt
break> n
65510
\\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1,varlower("tmp", x); n++)
@eprog
The library syntax is \fun{GEN}{varlower}{const char *name, long v = -1} where \kbd{v} is a variable number.
%SECTION: conversions
\section{Transcendental functions}\label{se:trans}
Since the values of transcendental functions cannot be exactly represented,
these functions will always return an inexact object: a real number,
a complex number, a $p$-adic number or a power series. All these objects
have a certain finite precision.
As a general rule, which of course in some cases may have exceptions,
transcendental functions operate in the following way:
\item If the argument is either a real number or an inexact complex number
(like \kbd{1.0 + I} or \kbd{Pi*I} but not \kbd{2 - 3*I}), then the
computation is done with the precision of the argument.
In the example below, we see that changing the precision to $50$ digits does
not matter, because $x$ only had a precision of $19$ digits.
\bprog
? \p 15
realprecision = 19 significant digits (15 digits displayed)
? x = Pi/4
%1 = 0.785398163397448
? \p 50
realprecision = 57 significant digits (50 digits displayed)
? sin(x)
%2 = 0.7071067811865475244
@eprog
Note that even if the argument is real, the result may be complex
(e.g.~$\text{acos}(2.0)$ or $\text{acosh}(0.0)$). See each individual
function help for the definition of the branch cuts and choice of principal
value.
\item If the argument is either an integer, a rational, an exact complex
number or a quadratic number, it is first converted to a real
or complex number using the current \idx{precision}, which can be
view and manipulated using the defaults \tet{realprecision} (in decimal
digits) or \tet{realbitprecision} (in bits). This precision can be changed
indifferently
\item in decimal digits: use \b{p} or \kbd{default(realprecision,...)}.
\item in bits: use \b{pb} or \kbd{default(realbitprecision,...)}.
After this conversion, the computation proceeds as above for real or complex
arguments.
In library mode, the \kbd{realprecision} does not matter; instead the
precision is taken from the \kbd{prec} parameter which every transcendental
function has. As in \kbd{gp}, this \kbd{prec} is not used when the argument
to a function is already inexact. Note that the argument \var{prec} stands
for the length in words of a real number, including codewords. Hence we must
have $\var{prec} \geq 3$. (Some functions allow a \kbd{bitprec} argument
instead which allow finer granularity.)
Some accuracies attainable on 32-bit machines cannot be attained
on 64-bit machines for parity reasons. For example the default \kbd{gp} accuracy
is 28 decimal digits on 32-bit machines, corresponding to \var{prec} having
the value 5, but this cannot be attained on 64-bit machines.
\item If the argument is a polmod (representing an algebraic number),
then the function is evaluated for every possible complex embedding of that
algebraic number. A column vector of results is returned, with one component
for each complex embedding. Therefore, the number of components equals
the degree of the \typ{POLMOD} modulus.
\item If the argument is an intmod or a $p$-adic, at present only a
few functions like \kbd{sqrt} (square root), \kbd{sqr} (square), \kbd{log},
\kbd{exp}, powering, \kbd{teichmuller} (Teichm\"uller character) and
\kbd{agm} (arithmetic-geometric mean) are implemented.
Note that in the case of a $2$-adic number, $\kbd{sqr}(x)$ may not be
identical to $x*x$: for example if $x = 1+O(2^5)$ and $y = 1+O(2^5)$ then
$x*y = 1+O(2^5)$ while $\kbd{sqr}(x) = 1+O(2^6)$. Here, $x * x$ yields the
same result as $\kbd{sqr}(x)$ since the two operands are known to be
\emph{identical}. The same statement holds true for $p$-adics raised to the
power $n$, where $v_p(n) > 0$.
\misctitle{Remark} If we wanted to be strictly consistent with
the PARI philosophy, we should have $x*y = (4 \mod 8)$ and $\kbd{sqr}(x) =
(4 \mod 32)$ when both $x$ and $y$ are congruent to $2$ modulo $4$.
However, since intmod is an exact object, PARI assumes that the modulus
must not change, and the result is hence $(0\, \mod\, 4)$ in both cases. On
the other hand, $p$-adics are not exact objects, hence are treated
differently.
\item If the argument is a polynomial, a power series or a rational function,
it is, if necessary, first converted to a power series using the current
series precision, held in the default \tet{seriesprecision}. This precision
(the number of significant terms) can be changed using \b{ps} or
\kbd{default(seriesprecision,...)}. Then the Taylor series expansion of the
function around $X=0$ (where $X$ is the main variable) is computed to a
number of terms depending on the number of terms of the argument and the
function being computed.
Under \kbd{gp} this again is transparent to the user. When programming in
library mode, however, it is \emph{strongly} advised to perform an explicit
conversion to a power series first, as in \kbd{x = gtoser(x, seriesprec)},
where the number of significant terms \kbd{seriesprec} can be specified
explicitly. If you do not do this, a global variable \kbd{precdl} is used
instead, to convert polynomials and rational functions to a power series with
a reasonable number of terms; tampering with the value of this global
variable is \emph{deprecated} and strongly discouraged.
\item If the argument is a vector or a matrix, the result is the
componentwise evaluation of the function. In particular, transcendental
functions on square matrices, which are not implemented in the present
version \vers, will have a different name if they are implemented some day.
\subseckbd{\pow} If $y$ is not of type integer, \kbd{x\pow y} has the same
effect as \kbd{exp(y*log(x))}. It can be applied to $p$-adic numbers as well
as to the more usual types.\sidx{powering}
The library syntax is \fun{GEN}{gpow}{GEN x, GEN n, long prec}
for $x\hbox{\kbd{\pow}}n$.
\subsec{Catalan}\kbdsidx{Catalan}\label{se:Catalan}
Catalan's constant $G = \sum_{n>=0}\dfrac{(-1)^n}{(2n+1)^2}=0.91596\cdots$.
Note that \kbd{Catalan} is one of the few reserved names which cannot be
used for user variables.
The library syntax is \fun{GEN}{mpcatalan}{long prec}.
\subsec{Euler}\kbdsidx{Euler}\label{se:Euler}
Euler's constant $\gamma=0.57721\cdots$. Note that
\kbd{Euler} is one of the few reserved names which cannot be used for
user variables.
The library syntax is \fun{GEN}{mpeuler}{long prec}.
\subsec{I}\kbdsidx{I}\label{se:I}
The complex number $\sqrt{-1}$.
The library syntax is \fun{GEN}{gen_I}{}.
\subsec{Pi}\kbdsidx{Pi}\label{se:Pi}
The constant $\pi$ ($3.14159\cdots$). Note that \kbd{Pi} is one of the few
reserved names which cannot be used for user variables.
The library syntax is \fun{GEN}{mppi}{long prec}.
\subsec{abs$(x)$}\kbdsidx{abs}\label{se:abs}
Absolute value of $x$ (modulus if $x$ is complex).
Rational functions are not allowed. Contrary to most transcendental
functions, an exact argument is \emph{not} converted to a real number before
applying \kbd{abs} and an exact result is returned if possible.
\bprog
? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724
@eprog\noindent
If $x$ is a polynomial, returns $-x$ if the leading coefficient is
real and negative else returns $x$. For a power series, the constant
coefficient is considered instead.
The library syntax is \fun{GEN}{gabs}{GEN x, long prec}.
\subsec{acos$(x)$}\kbdsidx{acos}\label{se:acos}
Principal branch of $\cos^{-1}(x) = -i \log (x + i\sqrt{1-x^2})$.
In particular, $\Re(\text{acos}(x))\in [0,\pi]$ and if $x\in \R$ and $|x|>1$,
then $\text{acos}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$ , continuous with quadrant II, and $[1,+\infty[$, continuous
with quadrant IV. We have $\text{acos}(x) = \pi/2 - \text{asin}(x)$ for all
$x$.
The library syntax is \fun{GEN}{gacos}{GEN x, long prec}.
\subsec{acosh$(x)$}\kbdsidx{acosh}\label{se:acosh}
Principal branch of $\cosh^{-1}(x) = 2
\log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2})$. In particular,
$\Re(\text{acosh}(x))\geq 0$ and
$\Im(\text{acosh}(x))\in ]-\pi,\pi]$; if $x\in \R$ and $x<1$, then
$\text{acosh}(x)$ is complex.
The library syntax is \fun{GEN}{gacosh}{GEN x, long prec}.
\subsec{agm$(x,y)$}\kbdsidx{agm}\label{se:agm}
Arithmetic-geometric mean of $x$ and $y$. In the
case of complex or negative numbers, the optimal AGM is returned
(the largest in absolute value over all choices of the signs of the square
roots). $p$-adic or power series arguments are also allowed. Note that
a $p$-adic agm exists only if $x/y$ is congruent to 1 modulo $p$ (modulo
16 for $p=2$). $x$ and $y$ cannot both be vectors or matrices.
The library syntax is \fun{GEN}{agm}{GEN x, GEN y, long prec}.
\subsec{arg$(x)$}\kbdsidx{arg}\label{se:arg}
Argument of the complex number $x$, such that $-\pi < \arg(x) \le \pi$.
The library syntax is \fun{GEN}{garg}{GEN x, long prec}.
\subsec{asin$(x)$}\kbdsidx{asin}\label{se:asin}
Principal branch of $\sin^{-1}(x) = -i \log(ix + \sqrt{1 - x^2})$.
In particular, $\Re(\text{asin}(x))\in [-\pi/2,\pi/2]$ and if $x\in \R$ and
$|x|>1$ then $\text{asin}(x)$ is complex. The branch cut is in two pieces:
$]-\infty,-1]$, continuous with quadrant II, and $[1,+\infty[$ continuous
with quadrant IV. The function satisfies $i \text{asin}(x) =
\text{asinh}(ix)$.
The library syntax is \fun{GEN}{gasin}{GEN x, long prec}.
\subsec{asinh$(x)$}\kbdsidx{asinh}\label{se:asinh}
Principal branch of $\sinh^{-1}(x) = \log(x + \sqrt{1+x^2})$. In
particular $\Im(\text{asinh}(x))\in [-\pi/2,\pi/2]$.
The branch cut is in two pieces: $]-i \infty ,-i]$, continuous with quadrant
III and $[+i,+i \infty[$, continuous with quadrant I.
The library syntax is \fun{GEN}{gasinh}{GEN x, long prec}.
\subsec{atan$(x)$}\kbdsidx{atan}\label{se:atan}
Principal branch of $\text{tan}^{-1}(x) = \log ((1+ix)/(1-ix)) /
2i$. In particular the real part of $\text{atan}(x)$ belongs to
$]-\pi/2,\pi/2[$.
The branch cut is in two pieces:
$]-i\infty,-i[$, continuous with quadrant IV, and $]i,+i \infty[$ continuous
with quadrant II. The function satisfies $\text{atan}(x) =
-i\text{atanh}(ix)$ for all $x\neq \pm i$.
The library syntax is \fun{GEN}{gatan}{GEN x, long prec}.
\subsec{atanh$(x)$}\kbdsidx{atanh}\label{se:atanh}
Principal branch of $\text{tanh}^{-1}(x) = \log ((1+x)/(1-x)) / 2$. In
particular the imaginary part of $\text{atanh}(x)$ belongs to
$[-\pi/2,\pi/2]$; if $x\in \R$ and $|x|>1$ then $\text{atanh}(x)$ is complex.
The library syntax is \fun{GEN}{gatanh}{GEN x, long prec}.
\subsec{bernfrac$(x)$}\kbdsidx{bernfrac}\label{se:bernfrac}
Bernoulli number\sidx{Bernoulli numbers} $B_x$,
where $B_0=1$, $B_1=-1/2$, $B_2=1/6$,\dots, expressed as a rational number.
The argument $x$ should be of type integer.
The library syntax is \fun{GEN}{bernfrac}{long x}.
\subsec{bernpol$(n, \{v = 'x\})$}\kbdsidx{bernpol}\label{se:bernpol}
\idx{Bernoulli polynomial} $B_n$ in variable $v$.
\bprog
? bernpol(1)
%1 = x - 1/2
? bernpol(3)
%2 = x^3 - 3/2*x^2 + 1/2*x
@eprog
The library syntax is \fun{GEN}{bernpol}{long n, long v = -1} where \kbd{v} is a variable number.
\subsec{bernreal$(x)$}\kbdsidx{bernreal}\label{se:bernreal}
Bernoulli number\sidx{Bernoulli numbers}
$B_x$, as \kbd{bernfrac}, but $B_x$ is returned as a real number
(with the current precision).
The library syntax is \fun{GEN}{bernreal}{long x, long prec}.
\subsec{bernvec$(x)$}\kbdsidx{bernvec}\label{se:bernvec}
This routine is obsolete, kept for backward compatibility only.
The library syntax is \fun{GEN}{bernvec}{long x}.
\subsec{besselh1$(\var{nu},x)$}\kbdsidx{besselh1}\label{se:besselh1}
$H^1$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{hbessel1}{GEN nu, GEN x, long prec}.
\subsec{besselh2$(\var{nu},x)$}\kbdsidx{besselh2}\label{se:besselh2}
$H^2$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{hbessel2}{GEN nu, GEN x, long prec}.
\subsec{besseli$(\var{nu},x)$}\kbdsidx{besseli}\label{se:besseli}
$I$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).
The library syntax is \fun{GEN}{ibessel}{GEN nu, GEN x, long prec}.
\subsec{besselj$(\var{nu},x)$}\kbdsidx{besselj}\label{se:besselj}
$J$-Bessel function of index \var{nu} and
argument $x$. If $x$ converts to a power series, the initial factor
$(x/2)^\nu/\Gamma(\nu+1)$ is omitted (since it cannot be represented in PARI
when $\nu$ is not integral).
The library syntax is \fun{GEN}{jbessel}{GEN nu, GEN x, long prec}.
\subsec{besseljh$(n,x)$}\kbdsidx{besseljh}\label{se:besseljh}
$J$-Bessel function of half integral index.
More precisely, $\kbd{besseljh}(n,x)$ computes $J_{n+1/2}(x)$ where $n$
must be of type integer, and $x$ is any element of $\C$. In the
present version \vers, this function is not very accurate when $x$ is small.
The library syntax is \fun{GEN}{jbesselh}{GEN n, GEN x, long prec}.
\subsec{besselk$(\var{nu},x)$}\kbdsidx{besselk}\label{se:besselk}
$K$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{kbessel}{GEN nu, GEN x, long prec}.
\subsec{besseln$(\var{nu},x)$}\kbdsidx{besseln}\label{se:besseln}
$N$-Bessel function of index \var{nu} and argument $x$.
The library syntax is \fun{GEN}{nbessel}{GEN nu, GEN x, long prec}.
\subsec{cos$(x)$}\kbdsidx{cos}\label{se:cos}
Cosine of $x$.
The library syntax is \fun{GEN}{gcos}{GEN x, long prec}.
\subsec{cosh$(x)$}\kbdsidx{cosh}\label{se:cosh}
Hyperbolic cosine of $x$.
The library syntax is \fun{GEN}{gcosh}{GEN x, long prec}.
\subsec{cotan$(x)$}\kbdsidx{cotan}\label{se:cotan}
Cotangent of $x$.
The library syntax is \fun{GEN}{gcotan}{GEN x, long prec}.
\subsec{cotanh$(x)$}\kbdsidx{cotanh}\label{se:cotanh}
Hyperbolic cotangent of $x$.
The library syntax is \fun{GEN}{gcotanh}{GEN x, long prec}.
\subsec{dilog$(x)$}\kbdsidx{dilog}\label{se:dilog}
Principal branch of the dilogarithm of $x$,
i.e.~analytic continuation of the power series $\log_2(x)=\sum_{n\ge1}x^n/n^2$.
The library syntax is \fun{GEN}{dilog}{GEN x, long prec}.
\subsec{eint1$(x,\{n\})$}\kbdsidx{eint1}\label{se:eint1}
Exponential integral $\int_x^\infty \dfrac{e^{-t}}{t}\,dt =
\kbd{incgam}(0, x)$, where the latter expression extends the function
definition from real $x > 0$ to all complex $x \neq 0$.
If $n$ is present, we must have $x > 0$; the function returns the
$n$-dimensional vector $[\kbd{eint1}(x),\dots,\kbd{eint1}(nx)]$. Contrary to
other transcendental functions, and to the default case ($n$ omitted), the
values are correct up to a bounded \emph{absolute}, rather than relative,
error $10^{-n}$, where $n$ is \kbd{precision}$(x)$ if $x$ is a \typ{REAL}
and defaults to \kbd{realprecision} otherwise. (In the most important
application, to the computation of $L$-functions via approximate functional
equations, those values appear as weights in long sums and small individual
relative errors are less useful than controlling the absolute error.) This is
faster than repeatedly calling \kbd{eint1($i$ * x)}, but less precise.
The library syntax is \fun{GEN}{veceint1}{GEN x, GEN n = NULL, long prec}.
Also available is \fun{GEN}{eint1}{GEN x, long prec}.
\subsec{erfc$(x)$}\kbdsidx{erfc}\label{se:erfc}
Complementary error function, analytic continuation of
$(2/\sqrt\pi)\int_x^\infty e^{-t^2}\,dt = \kbd{incgam}(1/2,x^2)/\sqrt\pi$,
where the latter expression extends the function definition from real $x$ to
all complex $x \neq 0$.
The library syntax is \fun{GEN}{gerfc}{GEN x, long prec}.
\subsec{eta$(z,\{\fl=0\})$}\kbdsidx{eta}\label{se:eta}
Variants of \idx{Dedekind}'s $\eta$ function.
If $\fl = 0$, return $\prod_{n=1}^\infty(1-q^n)$, where $q$ depends on $x$
in the following way:
\item $q = e^{2i\pi x}$ if $x$ is a \emph{complex number} (which must then
have positive imaginary part); notice that the factor $q^{1/24}$ is
missing!
\item $q = x$ if $x$ is a \typ{PADIC}, or can be converted to a
\emph{power series} (which must then have positive valuation).
If $\fl$ is non-zero, $x$ is converted to a complex number and we return the
true $\eta$ function, $q^{1/24}\prod_{n=1}^\infty(1-q^n)$,
where $q = e^{2i\pi x}$.
The library syntax is \fun{GEN}{eta0}{GEN z, long flag, long prec}.
Also available is \fun{GEN}{trueeta}{GEN x, long prec} ($\fl=1$).
\subsec{exp$(x)$}\kbdsidx{exp}\label{se:exp}
Exponential of $x$.
$p$-adic arguments with positive valuation are accepted.
The library syntax is \fun{GEN}{gexp}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_exp}{GEN x} is also available.
\subsec{expm1$(x)$}\kbdsidx{expm1}\label{se:expm1}
Return $\exp(x)-1$, computed in a way that is also accurate
when the real part of $x$ is near $0$.
A naive direct computation would suffer from catastrophic cancellation;
PARI's direct computation of $\exp(x)$ alleviates this well known problem at
the expense of computing $\exp(x)$ to a higher accuracy when $x$ is small.
Using \kbd{expm1} is recommended instead:
\bprog
? default(realprecision, 10000); x = 1e-100;
? a = expm1(x);
time = 4 ms.
? b = exp(x)-1;
time = 28 ms.
? default(realprecision, 10040); x = 1e-100;
? c = expm1(x); \\ reference point
? abs(a-c)/c \\ relative error in expm1(x)
%7 = 0.E-10017
? abs(b-c)/c \\ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919
@eprog\noindent As the example above shows, when $x$ is near $0$,
\kbd{expm1} is both faster and more accurate than \kbd{exp(x)-1}.
The library syntax is \fun{GEN}{gexpm1}{GEN x, long prec}.
\subsec{gamma$(s)$}\kbdsidx{gamma}\label{se:gamma}
For $s$ a complex number, evaluates Euler's gamma
function \sidx{gamma-function}
$$\Gamma(s)=\int_0^\infty t^{s-1}\exp(-t)\,dt.$$
Error if $s$ is a non-positive integer, where $\Gamma$ has a pole.
For $s$ a \typ{PADIC}, evaluates the Morita gamma function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
extending $\Gamma_p(k)=(-1)^k \prod_{j<k}'j$, where the prime means that $p$
does not divide $j$.
\bprog
? gamma(1/4 + O(5^10))
%1= 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%,4)
%2 = x^4 + 4*x^2 + 5
@eprog
The library syntax is \fun{GEN}{ggamma}{GEN s, long prec}.
For a \typ{PADIC} $x$, the function \fun{GEN}{Qp_gamma}{GEN x} is
also available.
\subsec{gammah$(x)$}\kbdsidx{gammah}\label{se:gammah}
Gamma function evaluated at the argument $x+1/2$.
The library syntax is \fun{GEN}{ggammah}{GEN x, long prec}.
\subsec{gammamellininv$(G,t,\{m=0\})$}\kbdsidx{gammamellininv}\label{se:gammamellininv}
Returns the value at $t$ of the inverse Mellin transform
$G$ initialized by \tet{gammamellininvinit}.
\bprog
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
@eprog
The alternative shortcut
\bprog
gammamellininv(A,t,m)
@eprog\noindent for
\bprog
gammamellininv(gammamellininvinit(A,m), t)
@eprog\noindent is available.
The library syntax is \fun{GEN}{gammamellininv}{GEN G, GEN t, long m, long bitprec}.
\subsec{gammamellininvasymp$(A,n,\{m=0\})$}\kbdsidx{gammamellininvasymp}\label{se:gammamellininvasymp}
Return the first $n$ terms of the asymptotic expansion at infinity
of the $m$-th derivative $K^{(m)}(t)$ of the inverse Mellin transform of the
function
$$f(s) = \Gamma_\R(s+a_1)\*\ldots\*\Gamma_\R(s+a_d)\;,$$
where \kbd{A} is the vector $[a_1,\ldots,a_d]$ and
$\Gamma_\R(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}).
The result is a vector
$[M[1]...M[n]]$ with M[1]=1, such that
$$K^{(m)}(t)=\sqrt{2^{d+1}/d}t^{a+m(2/d-1)}e^{-d\pi t^{2/d}}
\sum_{n\ge0} M[n+1] (\pi t^{2/d})^{-n} $$
with $a=(1-d+\sum_{1\le j\le d}a_j)/d$.
The library syntax is \fun{GEN}{gammamellininvasymp}{GEN A, long precdl, long n}.
\subsec{gammamellininvinit$(A,\{m=0\})$}\kbdsidx{gammamellininvinit}\label{se:gammamellininvinit}
Initialize data for the computation by \tet{gammamellininv} of
the $m$-th derivative of the inverse Mellin transform of the function
$$f(s) = \Gamma_\R(s+a_1)\*\ldots\*\Gamma_\R(s+a_d)$$
where \kbd{A} is the vector $[a_1,\ldots,a_d]$ and
$\Gamma_\R(s)=\pi^{-s/2}\*\Gamma(s/2)$ (Euler's \kbd{gamma}). This is the
special case of Meijer's $G$ functions used to compute $L$-values via the
approximate functional equation.
\misctitle{Caveat} Contrary to the PARI convention, this function
guarantees an \emph{absolute} (rather than relative) error bound.
For instance, the inverse Mellin transform of $\Gamma_\R(s)$ is
$2\exp(-\pi z^2)$:
\bprog
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
@eprog
The inverse Mellin transform of $\Gamma_\R(s+1)$ is
$2 z\exp(-\pi z^2)$, and its second derivative is
$ 4\pi z \exp(-\pi z^2)(2\pi z^2 - 3)$:
\bprog
? G = gammamellininvinit([1], 2);
? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);
? b(z) = gammamellininv(G,z);
? t(z) = b(z) - a(z);
? t(3/2)
%3 = -1.4693679385278593850 E-39
@eprog
The library syntax is \fun{GEN}{gammamellininvinit}{GEN A, long m, long bitprec}.
\subsec{hyperu$(a,b,x)$}\kbdsidx{hyperu}\label{se:hyperu}
$U$-confluent hypergeometric function with
parameters $a$ and $b$. The parameters $a$ and $b$ can be complex but
the present implementation requires $x$ to be positive.
The library syntax is \fun{GEN}{hyperu}{GEN a, GEN b, GEN x, long prec}.
\subsec{incgam$(s,x,\{g\})$}\kbdsidx{incgam}\label{se:incgam}
Incomplete gamma function $\int_x^\infty e^{-t}t^{s-1}\,dt$, extended by
analytic continuation to all complex $x, s$ not both $0$. The relative error
is bounded in terms of the precision of $s$ (the accuracy of $x$ is ignored
when determining the output precision). When $g$ is given, assume that
$g=\Gamma(s)$. For small $|x|$, this will speed up the computation.
The library syntax is \fun{GEN}{incgam0}{GEN s, GEN x, GEN g = NULL, long prec}.
Also available is \fun{GEN}{incgam}{GEN s, GEN x, long prec}.
\subsec{incgamc$(s,x)$}\kbdsidx{incgamc}\label{se:incgamc}
Complementary incomplete gamma function.
The arguments $x$ and $s$ are complex numbers such that $s$ is not a pole of
$\Gamma$ and $|x|/(|s|+1)$ is not much larger than 1 (otherwise the
convergence is very slow). The result returned is $\int_0^x
e^{-t}t^{s-1}\,dt$.
The library syntax is \fun{GEN}{incgamc}{GEN s, GEN x, long prec}.
\subsec{lambertw$(y)$}\kbdsidx{lambertw}\label{se:lambertw}
Lambert $W$ function, solution of the implicit equation $xe^x=y$,
for $y > 0$.
The library syntax is \fun{GEN}{glambertW}{GEN y, long prec}.
\subsec{lngamma$(x)$}\kbdsidx{lngamma}\label{se:lngamma}
Principal branch of the logarithm of the gamma function of $x$. This
function is analytic on the complex plane with non-positive integers
removed, and can have much larger arguments than \kbd{gamma} itself.
For $x$ a power series such that $x(0)$ is not a pole of \kbd{gamma},
compute the Taylor expansion. (PARI only knows about regular power series
and can't include logarithmic terms.)
\bprog
? lngamma(1+x+O(x^2))
%1 = -0.57721566490153286060651209008240243104*x + O(x^2)
? lngamma(x+O(x^2))
*** at top-level: lngamma(x+O(x^2))
*** ^-----------------
*** lngamma: domain error in lngamma: valuation != 0
? lngamma(-1+x+O(x^2))
*** lngamma: Warning: normalizing a series with 0 leading term.
*** at top-level: lngamma(-1+x+O(x^2))
*** ^--------------------
*** lngamma: domain error in intformal: residue(series, pole) != 0
@eprog
The library syntax is \fun{GEN}{glngamma}{GEN x, long prec}.
\subsec{log$(x)$}\kbdsidx{log}\label{se:log}
Principal branch of the natural logarithm of
$x \in \C^*$, i.e.~such that $\Im(\log(x))\in{} ]-\pi,\pi]$.
The branch cut lies
along the negative real axis, continuous with quadrant 2, i.e.~such that
$\lim_{b\to 0^+} \log (a+bi) = \log a$ for $a \in\R^*$. The result is complex
(with imaginary part equal to $\pi$) if $x\in \R$ and $x < 0$. In general,
the algorithm uses the formula
$$\log(x) \approx {\pi\over 2\text{agm}(1, 4/s)} - m \log 2, $$
if $s = x 2^m$ is large enough. (The result is exact to $B$ bits provided
$s > 2^{B/2}$.) At low accuracies, the series expansion near $1$ is used.
$p$-adic arguments are also accepted for $x$, with the convention that
$\log(p)=0$. Hence in particular $\exp(\log(x))/x$ is not in general equal to
1 but to a $(p-1)$-th root of unity (or $\pm1$ if $p=2$) times a power of $p$.
The library syntax is \fun{GEN}{glog}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_log}{GEN x} is also available.
\subsec{polylog$(m,x,\{\fl=0\})$}\kbdsidx{polylog}\label{se:polylog}
One of the different polylogarithms, depending on \fl:
If $\fl=0$ or is omitted: $m^\text{th}$ polylogarithm of $x$, i.e.~analytic
continuation of the power series $\text{Li}_m(x)=\sum_{n\ge1}x^n/n^m$
($x < 1$). Uses the functional equation linking the values at $x$ and $1/x$
to restrict to the case $|x|\leq 1$, then the power series when
$|x|^2\le1/2$, and the power series expansion in $\log(x)$ otherwise.
Using $\fl$, computes a modified $m^\text{th}$ polylogarithm of $x$.
We use Zagier's notations; let $\Re_m$ denote $\Re$ or $\Im$ depending
on whether $m$ is odd or even:
If $\fl=1$: compute $\tilde D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1} \dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
+\dfrac{(-\log|x|)^{m-1}}{m!}\log|1-x|\right).$$
If $\fl=2$: compute $D_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{(-\log|x|)^k}{k!}\text{Li}_{m-k}(x)
-\dfrac{1}{2}\dfrac{(-\log|x|)^m}{m!}\right).$$
If $\fl=3$: compute $P_m(x)$, defined for $|x|\le1$ by
$$\Re_m\left(\sum_{k=0}^{m-1}\dfrac{2^kB_k}{k!}(\log|x|)^k\text{Li}_{m-k}(x)
-\dfrac{2^{m-1}B_m}{m!}(\log|x|)^m\right).$$
These three functions satisfy the functional equation
$f_m(1/x) = (-1)^{m-1}f_m(x)$.
The library syntax is \fun{GEN}{polylog0}{long m, GEN x, long flag, long prec}.
Also available is
\fun{GEN}{gpolylog}{long m, GEN x, long prec} (\fl = 0).
\subsec{psi$(x)$}\kbdsidx{psi}\label{se:psi}
The $\psi$-function of $x$, i.e.~the logarithmic derivative
$\Gamma'(x)/\Gamma(x)$.
The library syntax is \fun{GEN}{gpsi}{GEN x, long prec}.
\subsec{sin$(x)$}\kbdsidx{sin}\label{se:sin}
Sine of $x$.
The library syntax is \fun{GEN}{gsin}{GEN x, long prec}.
\subsec{sinc$(x)$}\kbdsidx{sinc}\label{se:sinc}
Cardinal sine of $x$, i.e. $\sin(x)/x$ if $x\neq 0$, $1$ otherwise.
Note that this function also allows to compute
$$(1-\cos(x)) / x^2 = \kbd{sinc}(x/2)^2 / 2$$
accurately near $x = 0$.
The library syntax is \fun{GEN}{gsinc}{GEN x, long prec}.
\subsec{sinh$(x)$}\kbdsidx{sinh}\label{se:sinh}
Hyperbolic sine of $x$.
The library syntax is \fun{GEN}{gsinh}{GEN x, long prec}.
\subsec{sqr$(x)$}\kbdsidx{sqr}\label{se:sqr}
Square of $x$. This operation is not completely
straightforward, i.e.~identical to $x * x$, since it can usually be
computed more efficiently (roughly one-half of the elementary
multiplications can be saved). Also, squaring a $2$-adic number increases
its precision. For example,
\bprog
? (1 + O(2^4))^2
%1 = 1 + O(2^5)
? (1 + O(2^4)) * (1 + O(2^4))
%2 = 1 + O(2^4)
@eprog\noindent
Note that this function is also called whenever one multiplies two objects
which are known to be \emph{identical}, e.g.~they are the value of the same
variable, or we are computing a power.
\bprog
? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)
? (1 + O(2^4))^4
%4 = 1 + O(2^6)
@eprog\noindent
(note the difference between \kbd{\%2} and \kbd{\%3} above).
The library syntax is \fun{GEN}{gsqr}{GEN x}.
\subsec{sqrt$(x)$}\kbdsidx{sqrt}\label{se:sqrt}
Principal branch of the square root of $x$, defined as $\sqrt{x} =
\exp(\log x / 2)$. In particular, we have
$\text{Arg}(\text{sqrt}(x))\in{} ]-\pi/2, \pi/2]$, and if $x\in \R$ and $x<0$,
then the result is complex with positive imaginary part.
Intmod a prime $p$, \typ{PADIC} and \typ{FFELT} are allowed as arguments. In
the first 2 cases (\typ{INTMOD}, \typ{PADIC}), the square root (if it
exists) which is returned is the one whose first $p$-adic digit is in the
interval $[0,p/2]$. For other arguments, the result is undefined.
The library syntax is \fun{GEN}{gsqrt}{GEN x, long prec}.
For a \typ{PADIC} $x$, the function
\fun{GEN}{Qp_sqrt}{GEN x} is also available.
\subsec{sqrtn$(x,n,\{\&z\})$}\kbdsidx{sqrtn}\label{se:sqrtn}
Principal branch of the $n$th root of $x$,
i.e.~such that $\text{Arg}(\text{sqrtn}(x))\in{} ]-\pi/n, \pi/n]$. Intmod
a prime and $p$-adics are allowed as arguments.
If $z$ is present, it is set to a suitable root of unity allowing to
recover all the other roots. If it was not possible, z is
set to zero. In the case this argument is present and no $n$th root exist,
$0$ is returned instead of raising an error.
\bprog
? sqrtn(Mod(2,7), 2)
%1 = Mod(3, 7)
? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)
? sqrtn(Mod(2,7), 3)
*** at top-level: sqrtn(Mod(2,7),3)
*** ^-----------------
*** sqrtn: nth-root does not exist in gsqrtn.
? sqrtn(Mod(2,7), 3, &z)
%2 = 0
? z
%3 = 0
@eprog
The following script computes all roots in all possible cases:
\bprog
sqrtnall(x,n)=
{ my(V,r,z,r2);
r = sqrtn(x,n, &z);
if (!z, error("Impossible case in sqrtn"));
if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
r2 = r*z; n = 1;
while (r2!=r, r2*=z;n++));
V = vector(n); V[1] = r;
for(i=2, n, V[i] = V[i-1]*z);
V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
@eprog\noindent
The library syntax is \fun{GEN}{gsqrtn}{GEN x, GEN n, GEN *z = NULL, long prec}.
If $x$ is a \typ{PADIC}, the function
\fun{GEN}{Qp_sqrtn}{GEN x, GEN n, GEN *z} is also available.
\subsec{tan$(x)$}\kbdsidx{tan}\label{se:tan}
Tangent of $x$.
The library syntax is \fun{GEN}{gtan}{GEN x, long prec}.
\subsec{tanh$(x)$}\kbdsidx{tanh}\label{se:tanh}
Hyperbolic tangent of $x$.
The library syntax is \fun{GEN}{gtanh}{GEN x, long prec}.
\subsec{teichmuller$(x,\{\var{tab}\})$}\kbdsidx{teichmuller}\label{se:teichmuller}
Teichm\"uller character of the $p$-adic number $x$, i.e. the unique
$(p-1)$-th root of unity congruent to $x / p^{v_p(x)}$ modulo $p$.
If $x$ is of the form $[p,n]$, for a prime $p$ and integer $n$,
return the lifts to $\Z$ of the images of $i + O(p^n)$ for
$i = 1, \dots, p-1$, i.e. all roots of $1$ ordered by residue class modulo
$p$. Such a vector can be fed back to \kbd{teichmuller}, as the
optional argument \kbd{tab}, to speed up later computations.
\bprog
? z = teichmuller(2 + O(101^5))
%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
? z^100
%2 = 1 + O(101^5)
? T = teichmuller([101, 5]);
? teichmuller(2 + O(101^5), T)
%4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
@eprog\noindent As a rule of thumb, if more than
$$p \,/\, 2(\log_2(p) + \kbd{hammingweight}(p))$$
values of \kbd{teichmuller} are to be computed, then it is worthwile to
initialize:
\bprog
? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
time = 60 ms.
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))
time = 1,293 ms.
? 1 + 2*(log(p)/log(2) + hammingweight(p))
%8 = 22.316[...]
@eprog\noindent Here the precompuation induces a speedup by a factor
$1293/ 60 \approx 21.5$.
\misctitle{Caveat}
If the accuracy of \kbd{tab} (the argument $n$ above) is lower than the
precision of $x$, the \emph{former} is used, i.e. the cached value is not
refined to higher accuracy. It the accuracy of \kbd{tab} is larger, then
the precision of $x$ is used:
\bprog
? Tlow = teichmuller([101, 2]); \\ lower accuracy !
? teichmuller(2 + O(101^5), Tlow)
%10 = 2 + 83*101 + O(101^5) \\ no longer a root of 1
? Thigh = teichmuller([101, 10]); \\ higher accuracy
? teichmuller(2 + O(101^5), Thigh)
%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
@eprog
The library syntax is \fun{GEN}{teichmuller}{GEN x, GEN tab = NULL}.
Also available are the functions \fun{GEN}{teich}{GEN x} (\kbd{tab} is
\kbd{NULL}) as well as
\fun{GEN}{teichmullerinit}{long p, long n}.
\subsec{theta$(q,z)$}\kbdsidx{theta}\label{se:theta}
Jacobi sine theta-function
$$ \theta_1(z, q) = 2q^{1/4} \sum_{n\geq 0} (-1)^n q^{n(n+1)} \sin((2n+1)z).$$
The library syntax is \fun{GEN}{theta}{GEN q, GEN z, long prec}.
\subsec{thetanullk$(q,k)$}\kbdsidx{thetanullk}\label{se:thetanullk}
$k$-th derivative at $z=0$ of $\kbd{theta}(q,z)$.
The library syntax is \fun{GEN}{thetanullk}{GEN q, long k, long prec}.
\fun{GEN}{vecthetanullk}{GEN q, long k, long prec} returns the vector
of all $\dfrac{d^i\theta}{dz^i}(q,0)$ for all odd $i = 1, 3, \dots, 2k-1$.
\fun{GEN}{vecthetanullk_tau}{GEN tau, long k, long prec} returns
\kbd{vecthetanullk\_tau} at $q = \exp(2i\pi \kbd{tau})$.
\subsec{weber$(x,\{\fl=0\})$}\kbdsidx{weber}\label{se:weber}
One of Weber's three $f$ functions.
If $\fl=0$, returns
$$f(x)=\exp(-i\pi/24)\cdot\eta((x+1)/2)\,/\,\eta(x) \quad\hbox{such that}\quad
j=(f^{24}-16)^3/f^{24}\,,$$
where $j$ is the elliptic $j$-invariant (see the function \kbd{ellj}).
If $\fl=1$, returns
$$f_1(x)=\eta(x/2)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_1^{24}+16)^3/f_1^{24}\,.$$
Finally, if $\fl=2$, returns
$$f_2(x)=\sqrt{2}\eta(2x)\,/\,\eta(x)\quad\hbox{such that}\quad
j=(f_2^{24}+16)^3/f_2^{24}.$$
Note the identities $f^8=f_1^8+f_2^8$ and $ff_1f_2=\sqrt2$.
The library syntax is \fun{GEN}{weber0}{GEN x, long flag, long prec}.
Also available are \fun{GEN}{weberf}{GEN x, long prec},
\fun{GEN}{weberf1}{GEN x, long prec} and \fun{GEN}{weberf2}{GEN x, long prec}.
\subsec{zeta$(s)$}\kbdsidx{zeta}\label{se:zeta}
For $s$ a complex number, Riemann's zeta
function \sidx{Riemann zeta-function} $\zeta(s)=\sum_{n\ge1}n^{-s}$,
computed using the \idx{Euler-Maclaurin} summation formula, except
when $s$ is of type integer, in which case it is computed using
Bernoulli numbers\sidx{Bernoulli numbers} for $s\le0$ or $s>0$ and
even, and using modular forms for $s>0$ and odd.
For $s$ a $p$-adic number, Kubota-Leopoldt zeta function at $s$, that
is the unique continuous $p$-adic function on the $p$-adic integers
that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative
integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if
$p$ is odd (resp. $p = 2$).
The library syntax is \fun{GEN}{gzeta}{GEN s, long prec}.
\subsec{zetamult$(s)$}\kbdsidx{zetamult}\label{se:zetamult}
For $s$ a vector of positive integers such that $s[1] \geq 2$,
returns the multiple zeta value (MZV)
$$\zeta(s_1,\dots, s_k) = \sum_{n_1>\dots>n_k>0} n_1^{-s_1}\dots n_k^{-s_k}.$$
\bprog
? zetamult([2,1]) - zeta(3) \\ Euler's identity
%1 = 0.E-38
@eprog
The library syntax is \fun{GEN}{zetamult}{GEN s, long prec}.
%SECTION: transcendental
\section{Arithmetic functions}\label{se:arithmetic}
These functions are by definition functions whose natural domain of
definition is either $\Z$ (or $\Z_{>0}$). The way these functions are used is
completely different from transcendental functions in that there are no
automatic type conversions: in general only integers are accepted as
arguments. An integer argument $N$ can be given in the following alternate
formats:
\item \typ{MAT}: its factorization \kbd{fa = factor($N$)},
\item \typ{VEC}: a pair \kbd{[$N$, fa]} giving both the integer and
its factorization.
This allows to compute different arithmetic functions at a given $N$
while factoring the latter only once.
\bprog
? N = 10!; faN = factor(N);
? eulerphi(N)
%2 = 829440
? eulerphi(faN)
%3 = 829440
? eulerphi(S = [N, faN])
%4 = 829440
? sigma(S)
%5 = 15334088
@eprog
\subsec{Arithmetic functions and the factoring engine}
All arithmetic functions in the narrow sense of the word~--- Euler's
totient\sidx{Euler totient function} function, the \idx{Moebius} function,
the sums over divisors or powers of divisors etc.--- call, after trial
division by small primes, the same versatile factoring machinery described
under \kbd{factorint}. It includes \idx{Shanks SQUFOF}, \idx{Pollard Rho},
\idx{ECM} and \idx{MPQS} stages, and has an early exit option for the
functions \teb{moebius} and (the integer function underlying)
\teb{issquarefree}. This machinery relies on a fairly strong
probabilistic primality test, see \kbd{ispseudoprime}, but you may also set
\bprog
default(factor_proven, 1)
@eprog\noindent to ensure that all tentative factorizations are fully proven.
This should not slow down PARI too much, unless prime numbers with
hundreds of decimal digits occur frequently in your application.
\subsec{Orders in finite groups and Discrete Logarithm functions}
\label{se:DLfun}
The following functions compute the order of an element in a finite group:
\kbd{ellorder} (the rational points on an elliptic curve defined over a
finite field), \kbd{fforder} (the multiplicative group of a finite field),
\kbd{znorder} (the invertible elements in $\Z/n\Z$). The following functions
compute discrete logarithms in the same groups (whenever this is meaningful)
\kbd{elllog}, \kbd{fflog}, \kbd{znlog}.
All such functions allow an optional argument specifying an integer
$N$, representing the order of the group. (The \emph{order} functions also
allows any non-zero multiple of the order, with a minor loss of efficiency.)
That optional argument follows the same format as given above:
\item \typ{INT}: the integer $N$,
\item \typ{MAT}: the factorization \kbd{fa = factor($N$)},
\item \typ{VEC}: this is the preferred format and provides both the
integer $N$ and its factorization in a two-component vector
\kbd{[$N$, fa]}.
When the group is fixed and many orders or discrete logarithms will be
computed, it is much more efficient to initialize this data once and for all
and pass it to the relevant functions, as in
\bprog
? p = nextprime(10^40);
? v = [p-1, factor(p-1)]; \\ data for discrete log & order computations
? znorder(Mod(2,p), v)
%3 = 500000000000000000000000000028
? g = znprimroot(p);
? znlog(2, g, v)
%5 = 543038070904014908801878611374
@eprog
\subsec{Dirichlet characters}\label{se:dirichletchar}
The finite abelian group $G = (\Z/N\Z)^*$ can be written $G = \oplus_{i\leq
n} (\Z/d_i\Z) g_i$, with $d_n \mid \dots \mid d_2 \mid d_1$ (SNF condition),
all $d_i > 0$, and $\prod_i d_i = \phi(N)$.
The SNF condition makes the $d_i$ unique, but the generators $g_i$, of
respective order $d_i$, are definitely not unique. The $\oplus$ notation
means that all elements of $G$ can be written uniquely as $\prod_i g_i^{n_i}$
where $n_i \in \Z/d_i\Z$. The $g_i$ are the so-called \tev{SNF generators}
of $G$.
\item a \tev{character} on the abelian group
$\oplus (\Z/d_j\Z) g_j$
is given by a row vector $\chi = [a_1,\ldots,a_n]$ of integers $0\leq a_i <
d_i$ such that $\chi(g_j) = e(a_j / d_j)$ for all $j$, with the standard
notation $e(x) := \exp(2i\pi x)$.
In other words,
$\chi(\prod g_j^{n_j}) = e(\sum a_j n_j / d_j)$.
This will be generalized to more general abelian groups in later sections
(Hecke characters), but in the present case of $(\Z/N\Z)^*$, there is a useful
alternate convention : namely, it is not necessary to impose the SNF
condition and we can use Chinese reminders instead. If $N = \prod p^{e_p}$ is
the factorization of $N$ into primes, the so-called \tev{Conrey generators}
of $G$ are the generators of the $(\Z/p^{e_p}\Z)^*$ lifted to $(\Z/N\Z)^*$ by
requesting that they be congruent to $1$ modulo $N/p^{e_p}$ (for $p$ odd we
take the smallest positive primitive root, and for $p = 2$ we take $-1$ if
$e_2 > 1$ and additionally $5$ if $e_2 > 2$). We can again write $G =
\oplus_{i\leq n} (\Z/D_i\Z) G_i$, where again $\prod_i D_i = \phi(N)$. These
generators don't satisfy the SNF condition in general since their orders are
now $(p-1)p^{e_p-1}$ for $p$ odd; for $p = 2$, the generator $-1$ has order
$2$ and $5$ has order $2^{e_2-2}$ $(e_2 > 2)$. Nevertheless, any $m\in
(\Z/N\Z)^*$ can be uniquely decomposed as $\prod G_i^{m_i}$ for some $m_i$
modulo $D_i$ and we can define a character by $\chi(G_j) = e(m_j / D_j)$ for
all $j$.
\item The \emph{column vector} of the $m_j$, $0 \leq m_j < D_j$ is called the
\tev{Conrey logarithm} of $m$ (discrete logarithm in terms of the Conrey
generators). Note that discrete logarithms in PARI/GP are always expressed as
\typ{COL}s.
\item The attached character is called the \tev{Conrey character}
attached to $m$.
To sum up a Dirichlet character can be defined by a \typ{INT} (the Conrey
label $m$), a \typ{COL} (the Conrey logarithm of $m$, in terms of the Conrey
generators) or a \typ{VEC} (in terms of the SNF generators). The \typ{COL}
format, i.e. Conrey logarithms, is the preferred (fastest) representation.
Concretely, this works as follows:
\kbd{G = idealstar(,N)} initializes $(\Z/N\Z)^*$, which must be given as
first arguments to all functions handling Dirichlet characters.
\kbd{znconreychar} transforms \typ{INT} and \typ{COL} to a SNF character.
\kbd{znconreylog} transforms \typ{INT} and \typ{VEC} to a Conrey logarithm.
\kbd{znconreyexp} transforms \typ{VEC} and \typ{COL} to a Conrey label.
Also available are \kbd{charconj}, \kbd{chardiv}, \kbd{charmul},
\kbd{charker}, \kbd{chareval}, \kbd{charorder}, \kbd{zncharinduce},
\kbd{znconreyconductor} (also computes the primitive character attached to
the input character). The prefix \kbd{char} indicates that the function
applies to all characters, the prefix \kbd{znchar} that it is specific to
Dirichlet characters (on $(\Z/N\Z)^*$) and the prefix \kbd{znconrey} that it
is specific to Conrey representation.
\bigskip
\subsec{addprimes$(\{x=[\,]\})$}\kbdsidx{addprimes}\label{se:addprimes}
Adds the integers contained in the
vector $x$ (or the single integer $x$) to a special table of
``user-defined primes'', and returns that table. Whenever \kbd{factor} is
subsequently called, it will trial divide by the elements in this table.
If $x$ is empty or omitted, just returns the current list of extra
primes.
The entries in $x$ must be primes: there is no internal check, even if
the \tet{factor_proven} default is set. To remove primes from the list use
\kbd{removeprimes}.
The library syntax is \fun{GEN}{addprimes}{GEN x = NULL}.
\subsec{bestappr$(x, \{B\})$}\kbdsidx{bestappr}\label{se:bestappr}
Using variants of the extended Euclidean algorithm, returns a rational
approximation $a/b$ to $x$, whose denominator is limited
by $B$, if present. If $B$ is omitted, return the best approximation
affordable given the input accuracy; if you are looking for true rational
numbers, presumably approximated to sufficient accuracy, you should first
try that option. Otherwise, $B$ must be a positive real scalar (impose
$0 < b \leq B$).
\item If $x$ is a \typ{REAL} or a \typ{FRAC}, this function uses continued
fractions.
\bprog
? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]
@eprog
By definition, $a/b$ is the best rational approximation to $x$ if
$|b x - a| < |v x - u|$ for all integers $(u,v)$ with $0 < v \leq B$.
(Which implies that $n/d$ is a convergent of the continued fraction of $x$.)
\item If $x$ is a \typ{INTMOD} modulo $N$ or a \typ{PADIC} of precision $N =
p^k$, this function performs rational modular reconstruction modulo $N$. The
routine then returns the unique rational number $a/b$ in coprime integers
$|a| < N/2B$ and $b\leq B$ which is congruent to $x$ modulo $N$. Omitting
$B$ amounts to choosing it of the order of $\sqrt{N/2}$. If rational
reconstruction is not possible (no suitable $a/b$ exists), returns $[]$.
\bprog
? bestappr(Mod(18526731858, 11^10))
%1 = 1/7
? bestappr(Mod(18526731858, 11^20))
%2 = []
? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))
%2 = -1/3
@eprog\noindent In most concrete uses, $B$ is a prime power and we performed
Hensel lifting to obtain $x$.
The function applies recursively to components of complex objects
(polynomials, vectors, \dots). If rational reconstruction fails for even a
single entry, return $[]$.
The library syntax is \fun{GEN}{bestappr}{GEN x, GEN B = NULL}.
\subsec{bestapprPade$(x, \{B\})$}\kbdsidx{bestapprPade}\label{se:bestapprPade}
Using variants of the extended Euclidean algorithm, returns a rational
function approximation $a/b$ to $x$, whose denominator is limited
by $B$, if present. If $B$ is omitted, return the best approximation
affordable given the input accuracy; if you are looking for true rational
functions, presumably approximated to sufficient accuracy, you should first
try that option. Otherwise, $B$ must be a non-negative real
(impose $0 \leq \text{degree}(b) \leq B$).
\item If $x$ is a \typ{POLMOD} modulo $N$ this function performs rational
modular reconstruction modulo $N$. The routine then returns the unique
rational function $a/b$ in coprime polynomials, with $\text{degree}(b)\leq B$
and $\text{degree}(a)$ minimal, which is congruent to $x$ modulo $N$.
Omitting $B$ amounts to choosing it equal to the floor of
$\text{degree}(N) / 2$. If rational reconstruction is not possible (no
suitable $a/b$ exists), returns $[]$.
\bprog
? T = Mod(x^3 + x^2 + x + 3, x^4 - 2);
? bestapprPade(T)
%2 = (2*x - 1)/(x - 1)
? U = Mod(1 + x + x^2 + x^3 + x^5, x^9);
? bestapprPade(U) \\ internally chooses B = 4
%3 = []
? bestapprPade(U, 5) \\ with B = 5, a solution exists
%4 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)
@eprog
\item If $x$ is a \typ{RFRAC} or \typ{SER}, this function implicitly
converts the input to \typ{POLMOD} modulo $N = t^k$
fractions.
\bprog
? T = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + O(x^7);
? bestapprPade(T)
%1 = 1/(-x + 1)
@eprog\noindent
The function applies recursively to components of complex objects
(polynomials, vectors, \dots). If rational reconstruction fails for even a
single entry, return $[]$.
The library syntax is \fun{GEN}{bestapprPade}{GEN x, long B}.
\subsec{bezout$(x,y)$}\kbdsidx{bezout}\label{se:bezout}
Deprecated alias for \kbd{gcdext}
The library syntax is \fun{GEN}{gcdext0}{GEN x, GEN y}.
\subsec{bigomega$(x)$}\kbdsidx{bigomega}\label{se:bigomega}
Number of prime divisors of the integer $|x|$ counted with
multiplicity:
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? bigomega(392)
%2 = 5; \\ = 3+2
? omega(392)
%3 = 2; \\ without multiplicity
@eprog
The library syntax is \fun{long}{bigomega}{GEN x}.
\subsec{binomial$(x,y)$}\kbdsidx{binomial}\label{se:binomial}
\idx{binomial coefficient} $\binom{x}{y}$.
Here $y$ must be an integer, but $x$ can be any PARI object.
The library syntax is \fun{GEN}{binomial}{GEN x, long y}.
The function
\fun{GEN}{binomialuu}{ulong n, ulong k} is also available, and so is
\fun{GEN}{vecbinome}{long n}, which returns a vector $v$
with $n+1$ components such that $v[k+1] = \kbd{binomial}(n,k)$ for $k$ from
$0$ up to $n$.
\subsec{charconj$(\var{cyc},\var{chi})$}\kbdsidx{charconj}\label{se:charconj}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.
This function returns the conjugate character.
\bprog
? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)
%2 = [14, 4]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charconj(bnf, [1])
%5 = [2]
@eprog\noindent For Dirichlet characters (when \kbd{cyc} is
\kbd{idealstar(,q)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}:
\bprog
? G = idealstar(,8); \\ (Z/8Z)^*
? charorder(G, 3) \\ Conrey label
%2 = 2
? chi = znconreylog(G, 3);
? charorder(G, chi) \\ Conrey logarithm
%4 = 2
@eprog
The library syntax is \fun{GEN}{charconj0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charconj}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).
\subsec{chardiv$(\var{cyc}, a,b)$}\kbdsidx{chardiv}\label{se:chardiv}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $a = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.
Given two characters $a$ and $b$, return the character
$a / b = a \overline{b}$.
\bprog
? cyc = [15,5]; a = [1,1]; b = [2,4];
? chardiv(cyc, a,b)
%2 = [14, 2]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? chardiv(bnf, [1], [2])
%5 = [2]
@eprog\noindent For Dirichlet characters on $(\Z/N\Z)^*$, additional
representations are available (Conrey labels, Conrey logarithm),
see \secref{se:dirichletchar} or \kbd{??character}.
If the two characters are in the same format, the
result is given in the same format, otherwise a Conrey logarithm is used.
\bprog
? G = idealstar(,100);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? chardiv(G, b,b)
%6 = 1 \\ Conrey label
? chardiv(G, a,b)
%7 = [0, 5]~ \\ Conrey log
? chardiv(G, a,c)
%7 = [0, 14]~ \\ Conrey log
@eprog
The library syntax is \fun{GEN}{chardiv0}{GEN cyc, GEN a, GEN b}.
Also available is
\fun{GEN}{chardiv}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
be a vector of elementary divisors and $a, b$ are compatible characters
(no checks).
\subsec{chareval$(G, \var{chi}, x, \{z\}))$}\kbdsidx{chareval}\label{se:chareval}
Let $G$ be an abelian group structure affording a discrete logarithm
method, e.g $G = \kbd{idealstar}(,N)$ for $(\Z/N\Z)^*$ or a \kbd{bnr}
structure, let $x$ be an element of $G$ and let \var{chi} be a character of
$G$ (see the note below for details). This function returns the value of
\var{chi} at $x$.
\misctitle{Note on characters}
Let $K$ be some field. If $G$ is an abelian group,
let $\chi: G \to K^*$ be a character of finite order and let $o$ be a
multiple of the character order such that $\chi(n) = \zeta^{c(n)}$ for some
fixed $\zeta\in K^*$ of multiplicative order $o$ and a unique morphism $c: G
\to (\Z/o\Z,+)$. Our usual convention is to write
$$G = (\Z/o_1\Z) g_1 \oplus \cdots \oplus (\Z/o_d\Z) g_d$$
for some generators $(g_i)$ of respective order $d_i$, where the group has
exponent $o := \text{lcm}_i o_i$. Since $\zeta^o = 1$, the vector $(c_i)$ in
$\prod (\Z/o_i\Z)$ defines a character $\chi$ on $G$ via $\chi(g_i) =
\zeta^{c_i (o/o_i)}$ for all $i$. Classical Dirichlet characters have values
in $K = \C$ and we can take $\zeta = \exp(2i\pi/o)$.
\misctitle{Note on Dirichlet characters}
In the special case where \var{bid} is attached to $G = (\Z/q\Z)^*$
(as per \kbd{bid = idealstar(,q)}), the Dirichlet
character \var{chi} can be written in one of the usual 3 formats: a \typ{VEC}
in terms of \kbd{bid.gen} as above, a \typ{COL} in terms of the Conrey
generators, or a \typ{INT} (Conrey label);
see \secref{se:dirichletchar} or \kbd{??character}.
The character value is encoded as follows, depending on the optional
argument $z$:
\item If $z$ is omitted: return the rational number $c(x)/o$ for $x$ coprime
to $q$, where we normalize $0\leq c(x) < o$. If $x$ can not be mapped to the
group (e.g. $x$ is not coprime to the conductor of a Dirichlet or Hecke
character) we return the sentinel value $-1$.
\item If $z$ is an integer $o$, then we assume that $o$ is a multiple of the
character order and we return the integer $c(x)$ when $x$ belongs
to the group, and the sentinel value $-1$ otherwise.
\item $z$ can be of the form $[\var{zeta}, o]$, where \var{zeta}
is an $o$-th root of $1$ and $o$ is a multiple of the character order.
We return $\zeta^{c(x)}$ if $x$ belongs to the group, and the sentinel
value $0$ otherwise. (Note that this coincides with the usual extension
of Dirichlet characters to $\Z$, or of Hecke characters to general ideals.)
\item Finally, $z$ can be of the form $[\var{vzeta}, o]$, where
\var{vzeta} is a vector of powers $\zeta^0, \dots, \zeta^{o-1}$
of some $o$-th root of $1$ and $o$ is a multiple of the character order.
As above, we return $\zeta^{c(x)}$ after a table lookup. Or the sentinel
value $0$.
The library syntax is \fun{GEN}{chareval}{GEN G, GEN chi, GEN x, GEN z) = NULL}.
\subsec{charker$(\var{cyc},\var{chi})$}\kbdsidx{charker}\label{se:charker}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.
This function returns the kernel of $\chi$, as a matrix $K$ in HNF which is a
left-divisor of \kbd{matdiagonal(d)}. Its columns express in terms of
the $g_j$ the generators of the subgroup. The determinant of $K$ is the
kernel index.
\bprog
? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)
%2 =
[15 12]
[ 0 1]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charker(bnf, [1])
%5 =
[3]
@eprog\noindent Note that for Dirichlet characters (when \kbd{cyc} is
\kbd{idealstar(,q)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}.
\bprog
? G = idealstar(,8); \\ (Z/8Z)^*
? charker(G, 1) \\ Conrey label for trivial character
%2 =
[1 0]
[0 1]
@eprog
The library syntax is \fun{GEN}{charker0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charker}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).
\subsec{charmul$(\var{cyc}, a,b)$}\kbdsidx{charmul}\label{se:charmul}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $a = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.
Given two characters $a$ and $b$, return the product character $ab$.
\bprog
? cyc = [15,5]; a = [1,1]; b = [2,4];
? charmul(cyc, a,b)
%2 = [3, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charmul(bnf, [1], [2])
%5 = [0]
@eprog\noindent For Dirichlet characters on $(\Z/N\Z)^*$, additional
representations are available (Conrey labels, Conrey logarithm), see
\secref{se:dirichletchar} or \kbd{??character}. If the two characters are in
the same format, their
product is given in the same format, otherwise a Conrey logarithm is used.
\bprog
? G = idealstar(,100);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \\ usual representation for characters
? b = 7; \\ Conrey label;
? c = znconreylog(G, 11); \\ Conrey log
? charmul(G, b,b)
%6 = 49 \\ Conrey label
? charmul(G, a,b)
%7 = [0, 15]~ \\ Conrey log
? charmul(G, a,c)
%7 = [0, 6]~ \\ Conrey log
@eprog
The library syntax is \fun{GEN}{charmul0}{GEN cyc, GEN a, GEN b}.
Also available is
\fun{GEN}{charmul}{GEN cyc, GEN a, GEN b}, when \kbd{cyc} is known to
be a vector of elementary divisors and $a, b$ are compatible characters
(no checks).
\subsec{charorder$(\var{cyc},\var{chi})$}\kbdsidx{charorder}\label{se:charorder}
Let \var{cyc} represent a finite abelian group by its elementary
divisors, i.e. $(d_j)$ represents $\sum_{j \leq k} \Z/d_j\Z$ with $d_k
\mid \dots \mid d_1$; any object which has a \kbd{.cyc} method is also
allowed, e.g.~the output of \kbd{znstar} or \kbd{bnrinit}. A character
on this group is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$, where $g_j$ denotes
the generator (of order $d_j$) of the $j$-th cyclic component.
This function returns the order of the character \kbd{chi}.
\bprog
? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)
%2 = 15
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charorder(bnf, [1])
%5 = 3
@eprog\noindent For Dirichlet characters (when \kbd{cyc} is
\kbd{idealstar(,q)}), characters in Conrey representation are available,
see \secref{se:dirichletchar} or \kbd{??character}:
\bprog
? G = idealstar(,100); \\ (Z/100Z)^*
? charorder(G, 7) \\ Conrey label
%2 = 4
@eprog
The library syntax is \fun{GEN}{charorder0}{GEN cyc, GEN chi}.
Also available is
\fun{GEN}{charorder}{GEN cyc, GEN chi}, when \kbd{cyc} is known to
be a vector of elementary divisors and \kbd{chi} a compatible character
(no checks).
\subsec{chinese$(x,\{y\})$}\kbdsidx{chinese}\label{se:chinese}
If $x$ and $y$ are both intmods or both polmods, creates (with the same
type) a $z$ in the same residue class as $x$ and in the same residue class as
$y$, if it is possible.
\bprog
? chinese(Mod(1,2), Mod(2,3))
%1 = Mod(5, 6)
? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))
%2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)
@eprog\noindent
This function also allows vector and matrix arguments, in which case the
operation is recursively applied to each component of the vector or matrix.
\bprog
? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]
@eprog\noindent
For polynomial arguments in the same variable, the function is applied to each
coefficient; if the polynomials have different degrees, the high degree terms
are copied verbatim in the result, as if the missing high degree terms in the
polynomial of lowest degree had been \kbd{Mod(0,1)}. Since the latter
behavior is usually \emph{not} the desired one, we propose to convert the
polynomials to vectors of the same length first:
\bprog
? P = x+1; Q = x^2+2*x+1;
? chinese(P*Mod(1,2), Q*Mod(1,3))
%4 = Mod(1, 3)*x^2 + Mod(5, 6)*x + Mod(3, 6)
? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]
? Pol(%)
%6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)
@eprog
If $y$ is omitted, and $x$ is a vector, \kbd{chinese} is applied recursively
to the components of $x$, yielding a residue belonging to the same class as all
components of $x$.
Finally $\kbd{chinese}(x,x) = x$ regardless of the type of $x$; this allows
vector arguments to contain other data, so long as they are identical in both
vectors.
The library syntax is \fun{GEN}{chinese}{GEN x, GEN y = NULL}.
\fun{GEN}{chinese1}{GEN x} is also available.
\subsec{content$(x)$}\kbdsidx{content}\label{se:content}
Computes the gcd of all the coefficients of $x$,
when this gcd makes sense. This is the natural definition
if $x$ is a polynomial (and by extension a power series) or a
vector/matrix. This is in general a weaker notion than the \emph{ideal}
generated by the coefficients:
\bprog
? content(2*x+y)
%1 = 1 \\ = gcd(2,y) over Q[y]
@eprog
If $x$ is a scalar, this simply returns the absolute value of $x$ if $x$ is
rational (\typ{INT} or \typ{FRAC}), and either $1$ (inexact input) or $x$
(exact input) otherwise; the result should be identical to \kbd{gcd(x, 0)}.
The content of a rational function is the ratio of the contents of the
numerator and the denominator. In recursive structures, if a
matrix or vector \emph{coefficient} $x$ appears, the gcd is taken
not with $x$, but with its content:
\bprog
? content([ [2], 4*matid(3) ])
%1 = 2
@eprog\noindent The content of a \typ{VECSMALL} is computed assuming the
entries are signed integers.
The library syntax is \fun{GEN}{content}{GEN x}.
\subsec{contfrac$(x,\{b\},\{\var{nmax}\})$}\kbdsidx{contfrac}\label{se:contfrac}
Returns the row vector whose components are the partial quotients of the
\idx{continued fraction} expansion of $x$. In other words, a result
$[a_0,\dots,a_n]$ means that $x \approx a_0+1/(a_1+\dots+1/a_n)$. The
output is normalized so that $a_n \neq 1$ (unless we also have $n = 0$).
The number of partial quotients $n+1$ is limited by \kbd{nmax}. If
\kbd{nmax} is omitted, the expansion stops at the last significant partial
quotient.
\bprog
? \p19
realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \\ n = 2
%2 = [3, 7, 15]
@eprog\noindent
$x$ can also be a rational function or a power series.
If a vector $b$ is supplied, the numerators are equal to the coefficients
of $b$, instead of all equal to $1$ as above; more precisely, $x \approx
(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$; for a numerical continued fraction
($x$ real), the $a_i$ are integers, as large as possible; if $x$ is a
rational function, they are polynomials with $\deg a_i = \deg b_i + 1$.
The length of the result is then equal to the length of $b$, unless the next
partial quotient cannot be reliably computed, in which case the expansion
stops. This happens when a partial remainder is equal to zero (or too small
compared to the available significant digits for $x$ a \typ{REAL}).
A direct implementation of the numerical continued fraction
\kbd{contfrac(x,b)} described above would be
\bprog
\\ "greedy" generalized continued fraction
cf(x, b) =
{ my( a= vector(#b), t );
x *= b[1];
for (i = 1, #b,
a[i] = floor(x);
t = x - a[i]; if (!t || i == #b, break);
x = b[i+1] / t;
); a;
}
@eprog\noindent There is some degree of freedom when choosing the $a_i$; the
program above can easily be modified to derive variants of the standard
algorithm. In the same vein, although no builtin
function implements the related \idx{Engel expansion} (a special kind of
\idx{Egyptian fraction} decomposition: $x = 1/a_1 + 1/(a_1a_2) + \dots$ ),
it can be obtained as follows:
\bprog
\\ n terms of the Engel expansion of x
engel(x, n = 10) =
{ my( u = x, a = vector(n) );
for (k = 1, n,
a[k] = ceil(1/u);
u = u*a[k] - 1;
if (!u, break);
); a
}
@eprog
\misctitle{Obsolete hack} (don't use this): if $b$ is an integer, \var{nmax}
is ignored and the command is understood as \kbd{contfrac($x,, b$)}.
The library syntax is \fun{GEN}{contfrac0}{GEN x, GEN b = NULL, long nmax}.
Also available are \fun{GEN}{gboundcf}{GEN x, long nmax},
\fun{GEN}{gcf}{GEN x} and \fun{GEN}{gcf2}{GEN b, GEN x}.
\subsec{contfracpnqn$(x, \{n=-1\})$}\kbdsidx{contfracpnqn}\label{se:contfracpnqn}
When $x$ is a vector or a one-row matrix, $x$
is considered as the list of partial quotients $[a_0,a_1,\dots,a_n]$ of a
rational number, and the result is the 2 by 2 matrix
$[p_n,p_{n-1};q_n,q_{n-1}]$ in the standard notation of continued fractions,
so $p_n/q_n=a_0+1/(a_1+\dots+1/a_n)$. If $x$ is a matrix with two rows
$[b_0,b_1,\dots,b_n]$ and $[a_0,a_1,\dots,a_n]$, this is then considered as a
generalized continued fraction and we have similarly
$p_n/q_n=(1/b_0)(a_0+b_1/(a_1+\dots+b_n/a_n))$. Note that in this case one
usually has $b_0=1$.
If $n \geq 0$ is present, returns all convergents from $p_0/q_0$ up to
$p_n/q_n$. (All convergents if $x$ is too small to compute the $n+1$
requested convergents.)
\bprog
? a=contfrac(Pi,20)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2, 2, 2]
? contfracpnqn(a,3)
%2 =
[3 22 333 355]
[1 7 106 113]
? contfracpnqn(a,7)
%3 =
[3 22 333 355 103993 104348 208341 312689]
[1 7 106 113 33102 33215 66317 99532]
@eprog
The library syntax is \fun{GEN}{contfracpnqn}{GEN x, long n}.
also available is \fun{GEN}{pnqn}{GEN x} for $n = -1$.
\subsec{core$(n,\{\fl=0\})$}\kbdsidx{core}\label{se:core}
If $n$ is an integer written as
$n=df^2$ with $d$ squarefree, returns $d$. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. By convention, we write $0 = 0
\times 1^2$, so \kbd{core(0, 1)} returns $[0,1]$.
The library syntax is \fun{GEN}{core0}{GEN n, long flag}.
Also available are \fun{GEN}{core}{GEN n} ($\fl = 0$) and
\fun{GEN}{core2}{GEN n} ($\fl = 1$)
\subsec{coredisc$(n,\{\fl=0\})$}\kbdsidx{coredisc}\label{se:coredisc}
A \emph{fundamental discriminant} is an integer of the form $t\equiv 1
\mod 4$ or $4t \equiv 8,12 \mod 16$, with $t$ squarefree (i.e.~$1$ or the
discriminant of a quadratic number field). Given a non-zero integer
$n$, this routine returns the (unique) fundamental discriminant $d$
such that $n=df^2$, $f$ a positive rational number. If $\fl$ is non-zero,
returns the two-element row vector $[d,f]$. If $n$ is congruent to
0 or 1 modulo 4, $f$ is an integer, and a half-integer otherwise.
By convention, \kbd{coredisc(0, 1))} returns $[0,1]$.
Note that \tet{quaddisc}$(n)$ returns the same value as \kbd{coredisc}$(n)$,
and also works with rational inputs $n\in\Q^*$.
The library syntax is \fun{GEN}{coredisc0}{GEN n, long flag}.
Also available are \fun{GEN}{coredisc}{GEN n} ($\fl = 0$) and
\fun{GEN}{coredisc2}{GEN n} ($\fl = 1$)
\subsec{dirdiv$(x,y)$}\kbdsidx{dirdiv}\label{se:dirdiv}
$x$ and $y$ being vectors of perhaps different
lengths but with $y[1]\neq 0$ considered as \idx{Dirichlet series}, computes
the quotient of $x$ by $y$, again as a vector.
The library syntax is \fun{GEN}{dirdiv}{GEN x, GEN y}.
\subsec{direuler$(p=a,b,\var{expr},\{c\})$}\kbdsidx{direuler}\label{se:direuler}
Computes the \idx{Dirichlet series} attached to the
\idx{Euler product} of expression \var{expr} as $p$ ranges through the primes
from $a$
to $b$. \var{expr} must be a polynomial or rational function in another
variable than $p$ (say $X$) and $\var{expr}(X)$ is understood as the local
factor $\var{expr}(p^{-s})$.
The series is output as a vector of coefficients. If $c$ is omitted, output
the first $b$ coefficients of the series; otherwise, output the first $c$
coefficients. The following command computes the \teb{sigma} function,
attached to $\zeta(s)\zeta(s-1)$:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)))
%1 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18]
? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 5) \\ fewer terms
%2 = [1, 3, 4, 7, 6]
@eprog\noindent Setting $c < b$ is useless (the same effect would be
achieved by setting $b = c)$. If $c > b$, the computed coefficients are
``missing'' Euler factors:
\bprog
? direuler(p=2, 10, 1/((1-X)*(1-p*X)), 15) \\ more terms, no longer = sigma !
%3 = [1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 0, 28, 0, 24, 24]
@eprog
\synt{direuler}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b}
\subsec{dirmul$(x,y)$}\kbdsidx{dirmul}\label{se:dirmul}
$x$ and $y$ being vectors of perhaps different lengths representing
the \idx{Dirichlet series} $\sum_n x_n n^{-s}$ and $\sum_n y_n n^{-s}$,
computes the product of $x$ by $y$, again as a vector.
\bprog
? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
@eprog\noindent
The product
length is the minimum of $\kbd{\#}x\kbd{*}v(y)$ and $\kbd{\#}y\kbd{*}v(x)$,
where $v(x)$ is the index of the first non-zero coefficient.
\bprog
? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]
@eprog
The library syntax is \fun{GEN}{dirmul}{GEN x, GEN y}.
\subsec{divisors$(x)$}\kbdsidx{divisors}\label{se:divisors}
Creates a row vector whose components are the
divisors of $x$. The factorization of $x$ (as output by \tet{factor}) can
be used instead.
By definition, these divisors are the products of the irreducible
factors of $n$, as produced by \kbd{factor(n)}, raised to appropriate
powers (no negative exponent may occur in the factorization). If $n$ is
an integer, they are the positive divisors, in increasing order.
The library syntax is \fun{GEN}{divisors}{GEN x}.
\subsec{eulerphi$(x)$}\kbdsidx{eulerphi}\label{se:eulerphi}
Euler's $\phi$ (totient)\sidx{Euler totient function} function of the
integer $|x|$, in other words $|(\Z/x\Z)^*|$.
\bprog
? eulerphi(40)
%1 = 16
@eprog\noindent
According to this definition we let $\phi(0) := 2$, since $\Z^* = \{-1,1\}$;
this is consistent with \kbd{znstar(0)}: we have
\kbd{znstar$(n)$.no = eulerphi(n)} for all $n\in\Z$.
The library syntax is \fun{GEN}{eulerphi}{GEN x}.
\subsec{factor$(x,\{\var{lim}\})$}\kbdsidx{factor}\label{se:factor}
General factorization function, where $x$ is a
rational (including integers), a complex number with rational
real and imaginary parts, or a rational function (including polynomials).
The result is a two-column matrix: the first contains the irreducibles
dividing $x$ (rational or Gaussian primes, irreducible polynomials),
and the second the exponents. By convention, $0$ is factored as $0^1$.
\misctitle{$\Q$ and $\Q(i)$}
See \tet{factorint} for more information about the algorithms used.
The rational or Gaussian primes are in fact \var{pseudoprimes}
(see \kbd{ispseudoprime}), a priori not rigorously proven primes. In fact,
any factor which is $\leq 2^{64}$ (whose norm is $\leq 2^{64}$ for an
irrational Gaussian prime) is a genuine prime. Use \kbd{isprime} to prove
primality of other factors, as in
\bprog
? fa = factor(2^2^7 + 1)
%1 =
[59649589127497217 1]
[5704689200685129054721 1]
? isprime( fa[,1] )
%2 = [1, 1]~ \\ both entries are proven primes
@eprog\noindent
Another possibility is to set the global default \tet{factor_proven}, which
will perform a rigorous primality proof for each pseudoprime factor.
A \typ{INT} argument \var{lim} can be added, meaning that we look only for
prime factors $p < \var{lim}$. The limit \var{lim} must be non-negative.
In this case, all but the last factor are proven primes, but the remaining
factor may actually be a proven composite! If the remaining factor is less
than $\var{lim}^2$, then it is prime.
\bprog
? factor(2^2^7 +1, 10^5)
%3 =
[340282366920938463463374607431768211457 1]
@eprog\noindent
\misctitle{Deprecated feature} Setting $\var{lim}=0$ is the same
as setting it to $\kbd{primelimit} + 1$. Don't use this: it is unwise to
rely on global variables when you can specify an explicit argument.
\smallskip
This routine uses trial division and perfect power tests, and should not be
used for huge values of \var{lim} (at most $10^9$, say):
\kbd{factorint(, 1 + 8)} will in general be faster. The latter does not
guarantee that all small
prime factors are found, but it also finds larger factors, and in a much more
efficient way.
\bprog
? F = (2^2^7 + 1) * 1009 * 100003; factor(F, 10^5) \\ fast, incomplete
time = 0 ms.
%4 =
[1009 1]
[34029257539194609161727850866999116450334371 1]
? factor(F, 10^9) \\ very slow
time = 6,892 ms.
%6 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factorint(F, 1+8) \\ much faster, all small primes were found
time = 12 ms.
%7 =
[1009 1]
[100003 1]
[340282366920938463463374607431768211457 1]
? factor(F) \\ complete factorisation
time = 112 ms.
%8 =
[1009 1]
[100003 1]
[59649589127497217 1]
[5704689200685129054721 1]
@eprog\noindent Over $\Q$, the prime factors are sorted in increasing order.
\misctitle{Rational functions}
The polynomials or rational functions to be factored must have scalar
coefficients. In particular PARI does not know how to factor
\emph{multivariate} polynomials. The following domains are currently
supported: $\Q$, $\R$, $\C$, $\Q_p$, finite fields and number fields. See
\tet{factormod} and \tet{factorff} for the algorithms used over finite
fields, \tet{nffactor} for the algorithms over number fields. The irreducible
factors are sorted by increasing degree.
The routine guesses a sensible ring over which to factor: the
smallest ring containing all coefficients, taking into account quotient
structures induced by \typ{INTMOD}s and \typ{POLMOD}s (e.g.~if a coefficient
in $\Z/n\Z$ is known, all rational numbers encountered are first mapped to
$\Z/n\Z$; different moduli will produce an error). Factoring modulo a
non-prime number is not supported; to factor in $\Q_p$, use \typ{PADIC}
coefficients not \typ{INTMOD} modulo $p^n$.
\bprog
? T = x^2+1;
? factor(T); \\ over Q
? factor(T*Mod(1,3)) \\ over F_3
? factor(T*ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T*Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T*(1 + O(3^6)) \\ over Q_3, precision 6
? factor(T*1.) \\ over R, current precision
? factor(T*(1.+0.*I)) \\ over C
? factor(T*Mod(1, y^3-2)) \\ over Q(2^{1/3})
@eprog\noindent In most cases, it is clearer and simpler to call an
explicit variant than to rely on the generic \kbd{factor} function and
the above detection mechanism:
\bprog
? factormod(T, 3) \\ over F_3
? factorff(T, 3, t^2+t+2)) \\ over F_{3^2}
? factorpadic(T, 3,6) \\ over Q_3, precision 6
? nffactor(y^3-2, T) \\ over Q(2^{1/3})
? polroots(T) \\ over C
? polrootsreal(T) \\ over R (real polynomial)
@eprog
\misctitle{Note about inseparable polynomials} Polynomials with inexact
coefficients (e.g. floating point or $p$-adic numbers) are assumed to be
squarefree: in fact, there exist a squarefree polynomial arbitrarily close
to the input, and they cannot be distinguished at the input accuracy. This
means that irreducible factors are repeated according to their apparent
multiplicity. On the contrary, using a specialized function such as
\kbd{factorpadic} with an \emph{exact} rational input yields the correct
multiplicity when the (now exact) input is not separable. Compare:
\bprog
? factor(z^2 * (1 + O(5^2)))
%1 =
[(1 + O(5^2))*z + O(5^2) 1]
[(1 + O(5^2))*z + O(5^2) 1]
? factorpadic(z^2, 5, 2)
%2 =
[1 + O(5^2))*z + O(5^2) 2]
@eprog
\misctitle{Note about contents}
Factorization of polynomials is done up to
multiplication by a constant. In particular, the factors of rational
polynomials will have integer coefficients, and the content of a polynomial
or rational function is discarded and not included in the factorization. If
needed, you can always ask for the content explicitly:
\bprog
? factor(t^2 + 5/2*t + 1)
%1 =
[2*t + 1 1]
[t + 2 1]
? content(t^2 + 5/2*t + 1)
%2 = 1/2
@eprog
The library syntax is \fun{GEN}{gp_factor0}{GEN x, GEN lim = NULL}.
This function should only be used by the \kbd{gp} interface. Use
directly \fun{GEN}{factor}{GEN x} or \fun{GEN}{boundfact}{GEN x, ulong lim}.
The obsolete function \fun{GEN}{factor0}{GEN x, long lim} is kept for
backward compatibility.
\subsec{factorback$(f,\{e\})$}\kbdsidx{factorback}\label{se:factorback}
Gives back the factored object
corresponding to a factorization. The integer $1$ corresponds to the empty
factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced with any \kbd{factor} command. A few
examples:
\bprog
? factor(12)
%1 =
[2 2]
[3 1]
? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \\ 2^3 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30
@eprog
The library syntax is \fun{GEN}{factorback2}{GEN f, GEN e = NULL}.
Also available is \fun{GEN}{factorback}{GEN f} (case $e = \kbd{NULL}$).
\subsec{factorcantor$(x,p)$}\kbdsidx{factorcantor}\label{se:factorcantor}
Factors the polynomial $x$ modulo the
prime $p$, using distinct degree plus
\idx{Cantor-Zassenhaus}\sidx{Zassenhaus}. The coefficients of $x$ must be
operation-compatible with $\Z/p\Z$. The result is a two-column matrix, the
first column being the irreducible polynomials dividing $x$, and the second
the exponents. If you want only the \emph{degrees} of the irreducible
polynomials (for example for computing an $L$-function), use
$\kbd{factormod}(x,p,1)$. Note that the \kbd{factormod} algorithm is
usually faster than \kbd{factorcantor}.
The library syntax is \fun{GEN}{factcantor}{GEN x, GEN p}.
\subsec{factorff$(x,\{p\},\{a\})$}\kbdsidx{factorff}\label{se:factorff}
Factors the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$. The result
is a two-column matrix: the first column contains the irreducible factors of
$x$, and the second their exponents. If all the coefficients of $x$ are in
$\F_p$, a much faster algorithm is applied, using the computation of
isomorphisms between finite fields.
Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients; the function then becomes identical to \kbd{factor}:
\bprog
? factorff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25
%1 =
[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
+ Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
[Mod(Mod(1, 5), Mod(1, 5)*y^2 + Mod(3, 5))*x
+ Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)) 1]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? factorff(x^2 + 1) \\ not enough information to determine the base field
*** at top-level: factorff(x^2+1)
*** ^---------------
*** factorff: incorrect type in factorff.
? factorff(x^2 + t^0) \\ make sure a coeff. is a t_FFELT
%3 =
[x + 2 1]
[x + 3 1]
? factorff(x^2 + t + 1)
%11 =
[x + (2*t + 1) 1]
[x + (3*t + 4) 1]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.
The library syntax is \fun{GEN}{factorff}{GEN x, GEN p = NULL, GEN a = NULL}.
\subsec{factorial$(x)$}\kbdsidx{factorial}\label{se:factorial}
Factorial of $x$. The expression $x!$ gives a result which is an integer,
while $\kbd{factorial}(x)$ gives a real number.
The library syntax is \fun{GEN}{mpfactr}{long x, long prec}.
\fun{GEN}{mpfact}{long x} returns $x!$ as a \typ{INT}.
\subsec{factorint$(x,\{\fl=0\})$}\kbdsidx{factorint}\label{se:factorint}
Factors the integer $n$ into a product of
pseudoprimes (see \kbd{ispseudoprime}), using a combination of the
\idx{Shanks SQUFOF} and \idx{Pollard Rho} method (with modifications due to
Brent), \idx{Lenstra}'s \idx{ECM} (with modifications by Montgomery), and
\idx{MPQS} (the latter adapted from the \idx{LiDIA} code with the kind
permission of the LiDIA maintainers), as well as a search for pure powers.
The output is a two-column matrix as for \kbd{factor}: the first column
contains the ``prime'' divisors of $n$, the second one contains the
(positive) exponents.
By convention $0$ is factored as $0^1$, and $1$ as the empty factorization;
also the divisors are by default not proven primes is they are larger than
$2^{64}$, they only failed the BPSW compositeness test (see
\tet{ispseudoprime}). Use \kbd{isprime} on the result if you want to
guarantee primality or set the \tet{factor_proven} default to $1$.
Entries of the private prime tables (see \tet{addprimes}) are also included
as is.
This gives direct access to the integer factoring engine called by most
arithmetical functions. \fl\ is optional; its binary digits mean 1: avoid
MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid
Rho and SQUFOF, 8: don't run final ECM (as a result, a huge composite may be
declared to be prime). Note that a (strong) probabilistic primality test is
used; thus composites might not be detected, although no example is known.
You are invited to play with the flag settings and watch the internals at
work by using \kbd{gp}'s \tet{debug} default parameter (level 3 shows
just the outline, 4 turns on time keeping, 5 and above show an increasing
amount of internal details).
The library syntax is \fun{GEN}{factorint}{GEN x, long flag}.
\subsec{factormod$(x,p,\{\fl=0\})$}\kbdsidx{factormod}\label{se:factormod}
Factors the polynomial $x$ modulo the prime integer $p$, using
\idx{Berlekamp}. The coefficients of $x$ must be operation-compatible with
$\Z/p\Z$. The result is a two-column matrix, the first column being the
irreducible polynomials dividing $x$, and the second the exponents. If $\fl$
is non-zero, outputs only the \emph{degrees} of the irreducible polynomials
(for example, for computing an $L$-function). A different algorithm for
computing the mod $p$ factorization is \kbd{factorcantor} which is sometimes
faster.
The library syntax is \fun{GEN}{factormod0}{GEN x, GEN p, long flag}.
\subsec{ffgen$(q,\{v\})$}\kbdsidx{ffgen}\label{se:ffgen}
Return a \typ{FFELT} generator for the finite field with $q$ elements;
$q = p^f$ must be a prime power. This functions computes an irreducible
monic polynomial $P\in\F_p[X]$ of degree~$f$ (via \tet{ffinit}) and
returns $g = X \pmod{P(X)}$. If \kbd{v} is given, the variable name is used
to display $g$, else the variable $x$ is used.
\bprog
? g = ffgen(8, 't);
? g.mod
%2 = t^3 + t^2 + 1
? g.p
%3 = 2
? g.f
%4 = 3
? ffgen(6)
*** at top-level: ffgen(6)
*** ^--------
*** ffgen: not a prime number in ffgen: 6.
@eprog\noindent Alternative syntax: instead of a prime power $q=p^f$, one may
input the pair $[p,f]$:
\bprog
? g = ffgen([2,4], 't);
? g.p
%2 = 2
? g.mod
%3 = t^4 + t^3 + t^2 + t + 1
@eprog\noindent Finally, one may input
directly the polynomial $P$ (monic, irreducible, with \typ{INTMOD}
coefficients), and the function returns the generator $g = X \pmod{P(X)}$,
inferring $p$ from the coefficients of $P$. If \kbd{v} is given, the
variable name is used to display $g$, else the variable of the polynomial
$P$ is used. If $P$ is not irreducible, we create an invalid object and
behaviour of functions dealing with the resulting \typ{FFELT}
is undefined; in fact, it is much more costly to test $P$ for
irreducibility than it would be to produce it via \kbd{ffinit}.
The library syntax is \fun{GEN}{ffgen}{GEN q, long v = -1} where \kbd{v} is a variable number.
To create a generator for a prime finite field, the function
\fun{GEN}{p_to_GEN}{GEN p, long v} returns \kbd{1+ffgen(x*Mod(1,p),v)}.
\subsec{ffinit$(p,n,\{v='x\})$}\kbdsidx{ffinit}\label{se:ffinit}
Computes a monic polynomial of degree $n$ which is irreducible over
$\F_p$, where $p$ is assumed to be prime. This function uses a fast variant
of Adleman and Lenstra's algorithm.
It is useful in conjunction with \tet{ffgen}; for instance if
\kbd{P = ffinit(3,2)}, you can represent elements in $\F_{3^2}$ in term of
\kbd{g = ffgen(P,'t)}. This can be abbreviated as
\kbd{g = ffgen(3\pow2, 't)}, where the defining polynomial $P$ can be later
recovered as \kbd{g.mod}.
The library syntax is \fun{GEN}{ffinit}{GEN p, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{fflog$(x,g,\{o\})$}\kbdsidx{fflog}\label{se:fflog}
Discrete logarithm of the finite field element $x$ in base $g$, i.e.~
an $e$ in $\Z$ such that $g^e = o$. If
present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord} is the
order of $g$. It may be set as a side effect of calling \tet{ffprimroot}.
If no $o$ is given, assume that $g$ is a primitive root. The result is
undefined if $e$ does not exist. This function uses
\item a combination of generic discrete log algorithms (see \tet{znlog})
\item a cubic sieve index calculus algorithm for large fields of degree at
least $5$.
\item Coppersmith's algorithm for fields of characteristic at most $5$.
\bprog
? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \\@com \emph{not} a primitive root.
? fflog(t^10,t)
%3 = 10
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \\ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806
? fflog(g^10000, g, o)
%8 = 10000
@eprog
The library syntax is \fun{GEN}{fflog}{GEN x, GEN g, GEN o = NULL}.
\subsec{ffnbirred$(q,n,\{\var{fl}=0\})$}\kbdsidx{ffnbirred}\label{se:ffnbirred}
Computes the number of monic irreducible polynomials over $\F_q$ of degree exactly $n$,
($\fl=0$ or omitted) or at most $n$ ($\fl=1$).
The library syntax is \fun{GEN}{ffnbirred0}{GEN q, long n, long fl}.
Also available are
\fun{GEN}{ffnbirred}{GEN q, long n} (for $\fl=0$)
and \fun{GEN}{ffsumnbirred}{GEN q, long n} (for $\fl=1$).
\subsec{fforder$(x,\{o\})$}\kbdsidx{fforder}\label{se:fforder}
Multiplicative order of the finite field element $x$. If $o$ is
present, it represents a multiple of the order of the element,
see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[N, factor(N)]}, where \kbd{N} is the cardinality
of the multiplicative group of the underlying finite field.
\bprog
? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o); \\@com o will be useful!
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \\@com noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403
@eprog
The library syntax is \fun{GEN}{fforder}{GEN x, GEN o = NULL}.
\subsec{ffprimroot$(x, \{\&o\})$}\kbdsidx{ffprimroot}\label{se:ffprimroot}
Return a primitive root of the multiplicative
group of the definition field of the finite field element $x$ (not necessarily
the same as the field generated by $x$). If present, $o$ is set to
a vector \kbd{[ord, fa]}, where \kbd{ord} is the order of the group
and \kbd{fa} its factorisation \kbd{factor(ord)}. This last parameter is
useful in \tet{fflog} and \tet{fforder}, see \secref{se:DLfun}.
\bprog
? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000950003610006859006516052476098
? o[2]
%4 =
[2 1]
[7 2]
[31 1]
[41 1]
[67 1]
[1523 1]
[10498781 1]
[15992881 1]
[46858913131 1]
? fflog(g^1000000, g, o)
time = 1,312 ms.
%5 = 1000000
@eprog
The library syntax is \fun{GEN}{ffprimroot}{GEN x, GEN *o = NULL}.
\subsec{fibonacci$(x)$}\kbdsidx{fibonacci}\label{se:fibonacci}
$x^{\text{th}}$ Fibonacci number.
The library syntax is \fun{GEN}{fibo}{long x}.
\subsec{gcd$(x,\{y\})$}\kbdsidx{gcd}\label{se:gcd}
Creates the greatest common divisor of $x$ and $y$.
If you also need the $u$ and $v$ such that $x*u + y*v = \gcd(x,y)$,
use the \tet{bezout} function. $x$ and $y$ can have rather quite general
types, for instance both rational numbers. If $y$ is omitted and $x$ is a
vector, returns the $\text{gcd}$ of all components of $x$, i.e.~this is
equivalent to \kbd{content(x)}.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the GCD is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{gcd(x, y[i])}, resp.~\kbd{gcd(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{gcd} is not
commutative.
The algorithm used is a naive \idx{Euclid} except for the following inputs:
\item integers: use modified right-shift binary (``plus-minus''
variant).
\item univariate polynomials with coefficients in the same number
field (in particular rational): use modular gcd algorithm.
\item general polynomials: use the \idx{subresultant algorithm} if
coefficient explosion is likely (non modular coefficients).
If $u$ and $v$ are polynomials in the same variable with \emph{inexact}
coefficients, their gcd is defined to be scalar, so that
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%3 = 4
@eprog\noindent A good quantitative check to decide whether such a
gcd ``should be'' non-trivial, is to use \tet{polresultant}: a value
close to $0$ means that a small deformation of the inputs has non-trivial gcd.
You may also use \tet{gcdext}, which does try to compute an approximate gcd
$d$ and provides $u$, $v$ to check whether $u x + v y$ is close to $d$.
The library syntax is \fun{GEN}{ggcd0}{GEN x, GEN y = NULL}.
Also available are \fun{GEN}{ggcd}{GEN x, GEN y}, if \kbd{y} is not
\kbd{NULL}, and \fun{GEN}{content}{GEN x}, if $\kbd{y} = \kbd{NULL}$.
\subsec{gcdext$(x,y)$}\kbdsidx{gcdext}\label{se:gcdext}
Returns $[u,v,d]$ such that $d$ is the gcd of $x,y$,
$x*u+y*v=\gcd(x,y)$, and $u$ and $v$ minimal in a natural sense.
The arguments must be integers or polynomials. \sidx{extended gcd}
\sidx{Bezout relation}
\bprog
? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]
? d
%2 = 2
? gcdext(x^2-x, x^2+x-2)
%3 = [-1/2, 1/2, x - 1]
@eprog
If $x,y$ are polynomials in the same variable and \emph{inexact}
coefficients, then compute $u,v,d$ such that $x*u+y*v = d$, where $d$
approximately divides both and $x$ and $y$; in particular, we do not obtain
\kbd{gcd(x,y)} which is \emph{defined} to be a scalar in this case:
\bprog
? a = x + 0.0; gcd(a,a)
%1 = 1
? gcdext(a,a)
%2 = [0, 1, x + 0.E-28]
? gcdext(x-Pi, 6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]
@eprog\noindent For inexact inputs, the output is thus not well defined
mathematically, but you obtain explicit polynomials to check whether the
approximation is close enough for your needs.
The library syntax is \fun{GEN}{gcdext0}{GEN x, GEN y}.
\subsec{hilbert$(x,y,\{p\})$}\kbdsidx{hilbert}\label{se:hilbert}
\idx{Hilbert symbol} of $x$ and $y$ modulo the prime $p$, $p=0$ meaning
the place at infinity (the result is undefined if $p\neq 0$ is not prime).
It is possible to omit $p$, in which case we take $p = 0$ if both $x$
and $y$ are rational, or one of them is a real number. And take $p = q$
if one of $x$, $y$ is a \typ{INTMOD} modulo $q$ or a $q$-adic. (Incompatible
types will raise an error.)
The library syntax is \fun{long}{hilbert}{GEN x, GEN y, GEN p = NULL}.
\subsec{isfundamental$(x)$}\kbdsidx{isfundamental}\label{se:isfundamental}
True (1) if $x$ is equal to 1 or to the discriminant of a quadratic
field, false (0) otherwise.
The library syntax is \fun{long}{isfundamental}{GEN x}.
\subsec{ispolygonal$(x,s,\{\&N\})$}\kbdsidx{ispolygonal}\label{se:ispolygonal}
True (1) if the integer $x$ is an s-gonal number, false (0) if not.
The parameter $s > 2$ must be a \typ{INT}. If $N$ is given, set it to $n$
if $x$ is the $n$-th $s$-gonal number.
\bprog
? ispolygonal(36, 3, &N)
%1 = 1
? N
@eprog
The library syntax is \fun{long}{ispolygonal}{GEN x, GEN s, GEN *N = NULL}.
\subsec{ispower$(x,\{k\},\{\&n\})$}\kbdsidx{ispower}\label{se:ispower}
If $k$ is given, returns true (1) if $x$ is a $k$-th power, false
(0) if not. What it means to be a $k$-th power depends on the type of
$x$; see \tet{issquare} for details.
If $k$ is omitted, only integers and fractions are allowed for $x$ and the
function returns the maximal $k \geq 2$ such that $x = n^k$ is a perfect
power, or 0 if no such $k$ exist; in particular \kbd{ispower(-1)},
\kbd{ispower(0)}, and \kbd{ispower(1)} all return $0$.
If a third argument $\&n$ is given and $x$ is indeed a $k$-th power, sets
$n$ to a $k$-th root of $x$.
\noindent For a \typ{FFELT} \kbd{x}, instead of omitting \kbd{k} (which is
not allowed for this type), it may be natural to set
\bprog
k = (x.p ^ x.f - 1) / fforder(x)
@eprog
The library syntax is \fun{long}{ispower}{GEN x, GEN k = NULL, GEN *n = NULL}.
Also available is
\fun{long}{gisanypower}{GEN x, GEN *pty} ($k$ omitted).
\subsec{ispowerful$(x)$}\kbdsidx{ispowerful}\label{se:ispowerful}
True (1) if $x$ is a powerful integer, false (0) if not;
an integer is powerful if and only if its valuation at all primes dividing
$x$ is greater than 1.
\bprog
? ispowerful(50)
%1 = 0
? ispowerful(100)
%2 = 1
? ispowerful(5^3*(10^1000+1)^2)
%3 = 1
@eprog
The library syntax is \fun{long}{ispowerful}{GEN x}.
\subsec{isprime$(x,\{\fl=0\})$}\kbdsidx{isprime}\label{se:isprime}
True (1) if $x$ is a prime
number, false (0) otherwise. A prime number is a positive integer having
exactly two distinct divisors among the natural numbers, namely 1 and
itself.
This routine proves or disproves rigorously that a number is prime, which can
be very slow when $x$ is indeed prime and has more than $1000$ digits, say.
Use \tet{ispseudoprime} to quickly check for compositeness. See also
\kbd{factor}. It accepts vector/matrices arguments, and is then applied
componentwise.
If $\fl=0$, use a combination of Baillie-PSW pseudo primality test (see
\tet{ispseudoprime}), Selfridge ``$p-1$'' test if $x-1$ is smooth enough, and
Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general $x$.
If $\fl=1$, use Selfridge-Pocklington-Lehmer ``$p-1$'' test and output a
primality certificate as follows: return
\item 0 if $x$ is composite,
\item 1 if $x$ is small enough that passing Baillie-PSW test guarantees
its primality (currently $x < 2^{64}$, as checked by Jan Feitsma),
\item $2$ if $x$ is a large prime whose primality could only sensibly be
proven (given the algorithms implemented in PARI) using the APRCL test.
\item Otherwise ($x$ is large and $x-1$ is smooth) output a three column
matrix as a primality certificate. The first column contains prime
divisors $p$ of $x-1$ (such that $\prod p^{v_p(x-1)} > x^{1/3}$), the second
the corresponding elements $a_p$ as in Proposition~8.3.1 in GTM~138 , and the
third the output of isprime(p,1).
The algorithm fails if one of the pseudo-prime factors is not prime, which is
exceedingly unlikely and well worth a bug report. Note that if you monitor
\kbd{isprime} at a high enough debug level, you may see warnings about
untested integers being declared primes. This is normal: we ask for partial
factorisations (sufficient to prove primality if the unfactored part is not
too large), and \kbd{factor} warns us that the cofactor hasn't been tested.
It may or may not be tested later, and may or may not be prime. This does
not affect the validity of the whole \kbd{isprime} procedure.
If $\fl=2$, use APRCL.
The library syntax is \fun{GEN}{gisprime}{GEN x, long flag}.
\subsec{isprimepower$(x,\{\&n\})$}\kbdsidx{isprimepower}\label{se:isprimepower}
If $x = p^k$ is a prime power ($p$ prime, $k > 0$), return $k$, else
return 0. If a second argument $\&n$ is given and $x$ is indeed
the $k$-th power of a prime $p$, sets $n$ to $p$.
The library syntax is \fun{long}{isprimepower}{GEN x, GEN *n = NULL}.
\subsec{ispseudoprime$(x,\{\fl\})$}\kbdsidx{ispseudoprime}\label{se:ispseudoprime}
True (1) if $x$ is a strong pseudo
prime (see below), false (0) otherwise. If this function returns false, $x$
is not prime; if, on the other hand it returns true, it is only highly likely
that $x$ is a prime number. Use \tet{isprime} (which is of course much
slower) to prove that $x$ is indeed prime.
The function accepts vector/matrices arguments, and is then applied
componentwise.
If $\fl = 0$, checks whether $x$ has no small prime divisors (up to $101$
included) and is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime.
Such a pseudo prime passes a Rabin-Miller test for base $2$,
followed by a Lucas test for the sequence $(P,-1)$, $P$ smallest
positive integer such that $P^2 - 4$ is not a square mod $x$).
There are no known composite numbers passing the above test, although it is
expected that infinitely many such numbers exist. In particular, all
composites $\leq 2^{64}$ are correctly detected (checked using
\url{http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html}).
If $\fl > 0$, checks whether $x$ is a strong Miller-Rabin pseudo prime for
$\fl$ randomly chosen bases (with end-matching to catch square roots of $-1$).
The library syntax is \fun{GEN}{gispseudoprime}{GEN x, long flag}.
\subsec{ispseudoprimepower$(x,\{\&n\})$}\kbdsidx{ispseudoprimepower}\label{se:ispseudoprimepower}
If $x = p^k$ is a pseudo-prime power ($p$ pseudo-prime as per
\tet{ispseudoprime}, $k > 0$), return $k$, else
return 0. If a second argument $\&n$ is given and $x$ is indeed
the $k$-th power of a prime $p$, sets $n$ to $p$.
More precisely, $k$ is always the largest integer such that $x = n^k$ for
some integer $n$ and, when $n \leq 2^{64}$ the function returns $k > 0$ if and
only if $n$ is indeed prime. When $n > 2^{64}$ is larger than the threshold,
the function may return $1$ even though $n$ is composite: it only passed
an \kbd{ispseudoprime(n)} test.
The library syntax is \fun{long}{ispseudoprimepower}{GEN x, GEN *n = NULL}.
\subsec{issquare$(x,\{\&n\})$}\kbdsidx{issquare}\label{se:issquare}
True (1) if $x$ is a square, false (0)
if not. What ``being a square'' means depends on the type of $x$: all
\typ{COMPLEX} are squares, as well as all non-negative \typ{REAL}; for
exact types such as \typ{INT}, \typ{FRAC} and \typ{INTMOD}, squares are
numbers of the form $s^2$ with $s$ in $\Z$, $\Q$ and $\Z/N\Z$ respectively.
\bprog
? issquare(3) \\ as an integer
%1 = 0
? issquare(3.) \\ as a real number
%2 = 1
? issquare(Mod(7, 8)) \\ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \\ in Q_13
%4 = 0
@eprog
If $n$ is given, a square root of $x$ is put into $n$.
\bprog
? issquare(4, &n)
%1 = 1
? n
%2 = 2
@eprog
For polynomials, either we detect that the characteristic is 2 (and check
directly odd and even-power monomials) or we assume that $2$ is invertible
and check whether squaring the truncated power series for the square root
yields the original input.
For \typ{POLMOD} $x$, we only support \typ{POLMOD}s of \typ{INTMOD}s
encoding finite fields, assuming without checking that the intmod modulus
$p$ is prime and that the polmod modulus is irreducible modulo $p$.
\bprog
? issquare(Mod(Mod(2,3), x^2+1), &n)
%1 = 1
? n
%2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))
@eprog
The library syntax is \fun{long}{issquareall}{GEN x, GEN *n = NULL}.
Also available is \fun{long}{issquare}{GEN x}. Deprecated
GP-specific functions \fun{GEN}{gissquare}{GEN x} and
\fun{GEN}{gissquareall}{GEN x, GEN *pt} return \kbd{gen\_0} and \kbd{gen\_1}
instead of a boolean value.
\subsec{issquarefree$(x)$}\kbdsidx{issquarefree}\label{se:issquarefree}
True (1) if $x$ is squarefree, false (0) if not. Here $x$ can be an
integer or a polynomial with coefficients in an integral domain.
\bprog
? issquarefree(12)
%1 = 0
? issquarefree(6)
%2 = 1
? issquarefree(x^3+x^2)
%3 = 0
? issquarefree(Mod(1,4)*(x^2+x+1)) \\ Z/4Z is not a domain !
*** at top-level: issquarefree(Mod(1,4)*(x^2+x+1))
*** ^--------------------------------
*** issquarefree: impossible inverse in Fp_inv: Mod(2, 4).
@eprog\noindent A polynomial is declared squarefree if \kbd{gcd}$(x,x')$ is
$1$. In particular a non-zero polynomial with inexact coefficients is
considered to be squarefree. Note that this may be inconsistent with
\kbd{factor}, which first rounds the input to some exact approximation before
factoring in the apropriate domain; this is correct when the input is not
close to an inseparable polynomial (the resultant of $x$ and $x'$ is not
close to $0$).
The library syntax is \fun{long}{issquarefree}{GEN x}.
\subsec{istotient$(x,\{\&N\})$}\kbdsidx{istotient}\label{se:istotient}
True (1) if $x = \phi(n)$ for some integer $n$, false (0)
if not.
\bprog
? istotient(14)
%1 = 0
? istotient(100)
%2 = 0
@eprog
If $N$ is given, set $N = n$ as well.
\bprog
? istotient(4, &n)
%1 = 1
? n
%2 = 10
@eprog
The library syntax is \fun{long}{istotient}{GEN x, GEN *N = NULL}.
\subsec{kronecker$(x,y)$}\kbdsidx{kronecker}\label{se:kronecker}
\idx{Kronecker symbol} $(x|y)$, where $x$ and $y$ must be of type integer. By
definition, this is the extension of \idx{Legendre symbol} to $\Z \times \Z$
by total multiplicativity in both arguments with the following special rules
for $y = 0, -1$ or $2$:
\item $(x|0) = 1$ if $|x| = 1$ and $0$ otherwise.
\item $(x|-1) = 1$ if $x \geq 0$ and $-1$ otherwise.
\item $(x|2) = 0$ if $x$ is even and $1$ if $x = 1,-1 \mod 8$ and $-1$
if $x=3,-3 \mod 8$.
The library syntax is \fun{long}{kronecker}{GEN x, GEN y}.
\subsec{lcm$(x,\{y\})$}\kbdsidx{lcm}\label{se:lcm}
Least common multiple of $x$ and $y$, i.e.~such
that $\lcm(x,y)*\gcd(x,y) = x*y$, up to units. If $y$ is omitted and $x$
is a vector, returns the $\text{lcm}$ of all components of $x$.
For integer arguments, return the non-negative \text{lcm}.
When $x$ and $y$ are both given and one of them is a vector/matrix type,
the LCM is again taken recursively on each component, but in a different way.
If $y$ is a vector, resp.~matrix, then the result has the same type as $y$,
and components equal to \kbd{lcm(x, y[i])}, resp.~\kbd{lcm(x, y[,i])}. Else
if $x$ is a vector/matrix the result has the same type as $x$ and an
analogous definition. Note that for these types, \kbd{lcm} is not
commutative.
Note that \kbd{lcm(v)} is quite different from
\bprog
l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
@eprog\noindent
Indeed, \kbd{lcm(v)} is a scalar, but \kbd{l} may not be (if one of
the \kbd{v[i]} is a vector/matrix). The computation uses a divide-conquer tree
and should be much more efficient, especially when using the GMP
multiprecision kernel (and more subquadratic algorithms become available):
\bprog
? v = vector(10^5, i, random);
? lcm(v);
time = 546 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 4,561 ms.
@eprog
The library syntax is \fun{GEN}{glcm0}{GEN x, GEN y = NULL}.
\subsec{logint$(x,b,\{\&z\})$}\kbdsidx{logint}\label{se:logint}
Return the largest integer $e$ so that $b^e \leq x$, where the
parameters $b > 1$ and $x > 0$ are both integers. If the parameter $z$ is
present, set it to $b^e$.
\bprog
? logint(1000, 2)
%1 = 9
? 2^9
%2 = 512
? logint(1000, 2, &z)
%3 = 9
? z
%4 = 512
@eprog\noindent The number of digits used to write $b$ in base $x$ is
\kbd{1 + logint(x,b)}:
\bprog
? #digits(1000!, 10)
%5 = 2568
? logint(1000!, 10)
%6 = 2567
@eprog\noindent This function may conveniently replace
\bprog
floor( log(x) / log(b) )
@eprog\noindent which may not give the correct answer since PARI
does not guarantee exact rounding.
The library syntax is \fun{long}{logint0}{GEN x, GEN b, GEN *z = NULL}.
\subsec{moebius$(x)$}\kbdsidx{moebius}\label{se:moebius}
\idx{Moebius} $\mu$-function of $|x|$. $x$ must be of type integer.
The library syntax is \fun{long}{moebius}{GEN x}.
\subsec{nextprime$(x)$}\kbdsidx{nextprime}\label{se:nextprime}
Finds the smallest pseudoprime (see
\tet{ispseudoprime}) greater than or equal to $x$. $x$ can be of any real
type. Note that if $x$ is a pseudoprime, this function returns $x$ and not
the smallest pseudoprime strictly larger than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.
The library syntax is \fun{GEN}{nextprime}{GEN x}.
\subsec{numbpart$(n)$}\kbdsidx{numbpart}\label{se:numbpart}
Gives the number of unrestricted partitions of
$n$, usually called $p(n)$ in the literature; in other words the number of
nonnegative integer solutions to $a+2b+3c+\cdots=n$. $n$ must be of type
integer and $n<10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and
$p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula.
To explicitly enumerate them, see \tet{partitions}.
The library syntax is \fun{GEN}{numbpart}{GEN n}.
\subsec{numdiv$(x)$}\kbdsidx{numdiv}\label{se:numdiv}
Number of divisors of $|x|$. $x$ must be of type integer.
The library syntax is \fun{GEN}{numdiv}{GEN x}.
\subsec{omega$(x)$}\kbdsidx{omega}\label{se:omega}
Number of distinct prime divisors of $|x|$. $x$ must be of type integer.
\bprog
? factor(392)
%1 =
[2 3]
[7 2]
? omega(392)
%2 = 2; \\ without multiplicity
? bigomega(392)
%3 = 5; \\ = 3+2, with multiplicity
@eprog
The library syntax is \fun{long}{omega}{GEN x}.
\subsec{partitions$(k,\{a=k\},\{n=k\}))$}\kbdsidx{partitions}\label{se:partitions}
Returns the vector of partitions of the integer $k$ as a sum of positive
integers (parts); for $k < 0$, it returns the empty set \kbd{[]}, and for $k
= 0$ the trivial partition (no parts). A partition is given by a
\typ{VECSMALL}, where parts are sorted in nondecreasing order:
\bprog
? partitions(3)
%1 = [Vecsmall([3]), Vecsmall([1, 2]), Vecsmall([1, 1, 1])]
@eprog\noindent correspond to $3$, $1+2$ and $1+1+1$. The number
of (unrestricted) partitions of $k$ is given
by \tet{numbpart}:
\bprog
? #partitions(50)
%1 = 204226
? numbpart(50)
%2 = 204226
@eprog
\noindent Optional parameters $n$ and $a$ are as follows:
\item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
partitions to length less than $\var{nmax}$ (resp. length between
$\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
entries.
\item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
$\var{amax}$).
\bprog
? partitions(4, 2) \\ parts bounded by 2
%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(4,, 2) \\ at most 2 parts
%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
? partitions(4,[0,3], 2) \\ at most 2 parts
%3 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
@eprog\noindent
By default, parts are positive and we remove zero entries unless
$amin\leq0$, in which case $nmin$ is ignored and $X$ is of constant length
$\var{nmax}$:
\bprog
? partitions(4, [0,3]) \\ parts between 0 and 3
%1 = [Vecsmall([0, 0, 1, 3]), Vecsmall([0, 0, 2, 2]),\
Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1])]
@eprog
The library syntax is \fun{GEN}{partitions}{long k, GEN a = NULL, GEN n) = NULL}.
\subsec{polrootsff$(x,\{p\},\{a\})$}\kbdsidx{polrootsff}\label{se:polrootsff}
Returns the vector of distinct roots of the polynomial $x$ in the field
$\F_q$ defined by the irreducible polynomial $a$ over $\F_p$. The
coefficients of $x$ must be operation-compatible with $\Z/p\Z$.
Either $a$ or $p$ can omitted (in which case both are ignored) if x has
\typ{FFELT} coefficients:
\bprog
? polrootsff(x^2 + 1, 5, y^2+3) \\ over F_5[y]/(y^2+3) ~ F_25
%1 = [Mod(Mod(3, 5), Mod(1, 5)*y^2 + Mod(3, 5)),
Mod(Mod(2, 5), Mod(1, 5)*y^2 + Mod(3, 5))]
? t = ffgen(y^2 + Mod(3,5), 't); \\ a generator for F_25 as a t_FFELT
? polrootsff(x^2 + 1) \\ not enough information to determine the base field
*** at top-level: polrootsff(x^2+1)
*** ^-----------------
*** polrootsff: incorrect type in factorff.
? polrootsff(x^2 + t^0) \\ make sure one coeff. is a t_FFELT
%3 = [3, 2]
? polrootsff(x^2 + t + 1)
%4 = [2*t + 1, 3*t + 4]
@eprog\noindent
Notice that the second syntax is easier to use and much more readable.
The library syntax is \fun{GEN}{polrootsff}{GEN x, GEN p = NULL, GEN a = NULL}.
\subsec{precprime$(x)$}\kbdsidx{precprime}\label{se:precprime}
Finds the largest pseudoprime (see
\tet{ispseudoprime}) less than or equal to $x$. $x$ can be of any real type.
Returns 0 if $x\le1$. Note that if $x$ is a prime, this function returns $x$
and not the largest prime strictly smaller than $x$. To rigorously prove that
the result is prime, use \kbd{isprime}.
The library syntax is \fun{GEN}{precprime}{GEN x}.
\subsec{prime$(n)$}\kbdsidx{prime}\label{se:prime}
The $n^{\text{th}}$ prime number
\bprog
? prime(10^9)
%1 = 22801763489
@eprog\noindent Uses checkpointing and a naive $O(n)$ algorithm.
The library syntax is \fun{GEN}{prime}{long n}.
\subsec{primepi$(x)$}\kbdsidx{primepi}\label{se:primepi}
The prime counting function. Returns the number of
primes $p$, $p \leq x$.
\bprog
? primepi(10)
%1 = 4;
? primes(5)
%2 = [2, 3, 5, 7, 11]
? primepi(10^11)
%3 = 4118054813
@eprog\noindent Uses checkpointing and a naive $O(x)$ algorithm.
The library syntax is \fun{GEN}{primepi}{GEN x}.
\subsec{primes$(n)$}\kbdsidx{primes}\label{se:primes}
Creates a row vector whose components are the first $n$ prime numbers.
(Returns the empty vector for $n \leq 0$.) A \typ{VEC} $n = [a,b]$ is also
allowed, in which case the primes in $[a,b]$ are returned
\bprog
? primes(10) \\ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29]) \\ the primes up to 29
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])
%3 = [17, 19, 23, 29]
@eprog
The library syntax is \fun{GEN}{primes0}{GEN n}.
\subsec{qfbclassno$(D,\{\fl=0\})$}\kbdsidx{qfbclassno}\label{se:qfbclassno}
Ordinary class number of the quadratic order of discriminant $D$, for
``small'' values of $D$.
\item if $D > 0$ or $\fl = 1$, use a $O(|D|^{1/2})$
algorithm (compute $L(1,\chi_D)$ with the approximate functional equation).
This is slower than \tet{quadclassunit} as soon as $|D| \approx 10^2$ or
so and is not meant to be used for large $D$.
\item if $D < 0$ and $\fl = 0$ (or omitted), use a $O(|D|^{1/4})$
algorithm (Shanks's baby-step/giant-step method). It should
be faster than \tet{quadclassunit} for small values of $D$, say
$|D| < 10^{18}$.
\misctitle{Important warning} In the latter case, this function only
implements part of \idx{Shanks}'s method (which allows to speed it up
considerably). It gives unconditionnally correct results for $|D| < 2\cdot
10^{10}$, but may give incorrect results for larger values if the class
group has many cyclic factors. We thus recommend to double-check results
using the function \kbd{quadclassunit}, which is about 2 to 3 times slower in
the above range, assuming GRH. We currently have no counter-examples but
they should exist: we'd appreciate a bug report if you find one.
\misctitle{Warning} Contrary to what its name implies, this routine does not
compute the number of classes of binary primitive forms of discriminant $D$,
which is equal to the \emph{narrow} class number. The two notions are the same
when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D
> 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the
ordinary class number. This is a problem which we cannot fix for backward
compatibility reasons. Use the following routine if you are only interested
in the number of classes of forms:
\bprog
QFBclassno(D) =
qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
@eprog\noindent
Here are a few examples:
\bprog
? qfbclassno(400000028)
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \\@com{ much faster}
%2 = 1
? qfbclassno(-400000028)
time = 0 ms.
%3 = 7253 \\@com{ correct, and fast enough}
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253
@eprog\noindent
See also \kbd{qfbhclassno}.
The library syntax is \fun{GEN}{qfbclassno0}{GEN D, long flag}.
The following functions are also available:
\fun{GEN}{classno}{GEN D} ($\fl = 0$)
\fun{GEN}{classno2}{GEN D} ($\fl = 1$).
\noindent Finally
\fun{GEN}{hclassno}{GEN D} computes the class number of an imaginary
quadratic field by counting reduced forms, an $O(|D|)$ algorithm.
\subsec{qfbcompraw$(x,y)$}\kbdsidx{qfbcompraw}\label{se:qfbcompraw}
\idx{composition} of the binary quadratic forms $x$ and $y$, without
\idx{reduction} of the result. This is useful e.g.~to compute a generating
element of an ideal. The result is undefined if $x$ and $y$ do not have the
same discriminant.
The library syntax is \fun{GEN}{qfbcompraw}{GEN x, GEN y}.
\subsec{qfbhclassno$(x)$}\kbdsidx{qfbhclassno}\label{se:qfbhclassno}
\idx{Hurwitz class number} of $x$, where
$x$ is non-negative and congruent to 0 or 3 modulo 4. For $x > 5\cdot
10^5$, we assume the GRH, and use \kbd{quadclassunit} with default
parameters.
The library syntax is \fun{GEN}{hclassno}{GEN x}.
\subsec{qfbnucomp$(x,y,L)$}\kbdsidx{qfbnucomp}\label{se:qfbnucomp}
\idx{composition} of the primitive positive
definite binary quadratic forms $x$ and $y$ (type \typ{QFI}) using the NUCOMP
and NUDUPL algorithms of \idx{Shanks}, \`a la Atkin. $L$ is any positive
constant, but for optimal speed, one should take $L=|D/4|^{1/4}$, i.e.
\kbd{sqrtnint(abs(D)>>2,4)}, where $D$ is the common discriminant of $x$ and
$y$. When $x$ and $y$ do not have the same discriminant, the result is
undefined.
The current implementation is slower than the generic routine for small $D$,
and becomes faster when $D$ has about $45$ bits.
The library syntax is \fun{GEN}{nucomp}{GEN x, GEN y, GEN L}.
Also available is \fun{GEN}{nudupl}{GEN x, GEN L} when $x=y$.
\subsec{qfbnupow$(x,n,\{L\})$}\kbdsidx{qfbnupow}\label{se:qfbnupow}
$n$-th power of the primitive positive definite
binary quadratic form $x$ using \idx{Shanks}'s NUCOMP and NUDUPL algorithms;
if set, $L$ should be equal to \kbd{sqrtnint(abs(D)>>2,4)}, where $D < 0$ is
the discriminant of $x$.
The current implementation is slower than the generic routine for small
discriminant $D$, and becomes faster for $D \approx 2^{45}$.
The library syntax is \fun{GEN}{nupow}{GEN x, GEN n, GEN L = NULL}.
\subsec{qfbpowraw$(x,n)$}\kbdsidx{qfbpowraw}\label{se:qfbpowraw}
$n$-th power of the binary quadratic form
$x$, computed without doing any \idx{reduction} (i.e.~using \kbd{qfbcompraw}).
Here $n$ must be non-negative and $n<2^{31}$.
The library syntax is \fun{GEN}{qfbpowraw}{GEN x, long n}.
\subsec{qfbprimeform$(x,p)$}\kbdsidx{qfbprimeform}\label{se:qfbprimeform}
Prime binary quadratic form of discriminant
$x$ whose first coefficient is $p$, where $|p|$ is a prime number.
By abuse of notation,
$p = \pm 1$ is also valid and returns the unit form. Returns an
error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$.
(Negative definite \typ{QFI} are not implemented.) In the case where $x>0$,
the ``distance'' component of the form is set equal to zero according to the
current precision.
The library syntax is \fun{GEN}{primeform}{GEN x, GEN p, long prec}.
\subsec{qfbred$(x,\{\fl=0\},\{d\},\{\var{isd}\},\{\var{sd}\})$}\kbdsidx{qfbred}\label{se:qfbred}
Reduces the binary quadratic form $x$ (updating Shanks's distance function
if $x$ is indefinite). The binary digits of $\fl$ are toggles meaning
\quad 1: perform a single \idx{reduction} step
\quad 2: don't update \idx{Shanks}'s distance
The arguments $d$, \var{isd}, \var{sd}, if present, supply the values of the
discriminant, $\floor{\sqrt{d}}$, and $\sqrt{d}$ respectively
(no checking is done of these facts). If $d<0$ these values are useless,
and all references to Shanks's distance are irrelevant.
The library syntax is \fun{GEN}{qfbred0}{GEN x, long flag, GEN d = NULL, GEN isd = NULL, GEN sd = NULL}.
Also available are
\fun{GEN}{redimag}{GEN x} (for definite $x$),
\noindent and for indefinite forms:
\fun{GEN}{redreal}{GEN x}
\fun{GEN}{rhoreal}{GEN x} (= \kbd{qfbred(x,1)}),
\fun{GEN}{redrealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,2,,isd)}),
\fun{GEN}{rhorealnod}{GEN x, GEN isd} (= \kbd{qfbred(x,3,,isd)}).
\subsec{qfbredsl2$(x,\{\var{data}\})$}\kbdsidx{qfbredsl2}\label{se:qfbredsl2}
Reduction of the (real or imaginary) binary quadratic form $x$, return
$[y,g]$ where $y$ is reduced and $g$ in $\text{SL}(2,\Z)$ is such that
$g \cdot x = y$; \var{data}, if
present, must be equal to $[D, \kbd{sqrtint}(D)]$, where $D > 0$ is the
discriminant of $x$. In case $x$ is \typ{QFR}, the distance component is
unaffected.
The library syntax is \fun{GEN}{qfbredsl2}{GEN x, GEN data = NULL}.
\subsec{qfbsolve$(Q,p)$}\kbdsidx{qfbsolve}\label{se:qfbsolve}
Solve the equation $Q(x,y)=p$ over the integers,
where $Q$ is a binary quadratic form and $p$ a prime number.
Return $[x,y]$ as a two-components vector, or zero if there is no solution.
Note that this function returns only one solution and not all the solutions.
Let $D = \disc Q$. The algorithm used runs in probabilistic polynomial time
in $p$ (through the computation of a square root of $D$ modulo $p$); it is
polynomial time in $D$ if $Q$ is imaginary, but exponential time if $Q$ is
real (through the computation of a full cycle of reduced forms). In the
latter case, note that \tet{bnfisprincipal} provides a solution in heuristic
subexponential time in $D$ assuming the GRH.
The library syntax is \fun{GEN}{qfbsolve}{GEN Q, GEN p}.
\subsec{quadclassunit$(D,\{\fl=0\},\{\var{tech}=[\,]\})$}\kbdsidx{quadclassunit}\label{se:quadclassunit}
\idx{Buchmann-McCurley}'s sub-exponential algorithm for computing the
class group of a quadratic order of discriminant $D$.
This function should be used instead of \tet{qfbclassno} or \tet{quadregula}
when $D<-10^{25}$, $D>10^{10}$, or when the \emph{structure} is wanted. It
is a special case of \tet{bnfinit}, which is slower, but more robust.
The result is a vector $v$ whose components should be accessed using member
functions:
\item \kbd{$v$.no}: the class number
\item \kbd{$v$.cyc}: a vector giving the structure of the class group as a
product of cyclic groups;
\item \kbd{$v$.gen}: a vector giving generators of those cyclic groups (as
binary quadratic forms).
\item \kbd{$v$.reg}: the regulator, computed to an accuracy which is the
maximum of an internal accuracy determined by the program and the current
default (note that once the regulator is known to a small accuracy it is
trivial to compute it to very high accuracy, see the tutorial).
The $\fl$ is obsolete and should be left alone. In older versions,
it supposedly computed the narrow class group when $D>0$, but this did not
work at all; use the general function \tet{bnfnarrow}.
Optional parameter \var{tech} is a row vector of the form $[c_1, c_2]$,
where $c_1 \leq c_2$ are non-negative real numbers which control the execution
time and the stack size, see \ref{se:GRHbnf}. The parameter is used as a
threshold to balance the relation finding phase against the final linear
algebra. Increasing the default $c_1$ means that relations are easier
to find, but more relations are needed and the linear algebra will be
harder. The default value for $c_1$ is $0$ and means that it is taken equal
to $c_2$. The parameter $c_2$ is mostly obsolete and should not be changed,
but we still document it for completeness: we compute a tentative class
group by generators and relations using a factorbase of prime ideals
$\leq c_1 (\log |D|)^2$, then prove that ideals of norm
$\leq c_2 (\log |D|)^2$ do
not generate a larger group. By default an optimal $c_2$ is chosen, so that
the result is provably correct under the GRH --- a famous result of Bach
states that $c_2 = 6$ is fine, but it is possible to improve on this
algorithmically. You may provide a smaller $c_2$, it will be ignored
(we use the provably correct
one); you may provide a larger $c_2$ than the default value, which results
in longer computing times for equally correct outputs (under GRH).
The library syntax is \fun{GEN}{quadclassunit0}{GEN D, long flag, GEN tech = NULL, long prec}.
If you really need to experiment with the \var{tech} parameter, it is
usually more convenient to use
\fun{GEN}{Buchquad}{GEN D, double c1, double c2, long prec}
\subsec{quaddisc$(x)$}\kbdsidx{quaddisc}\label{se:quaddisc}
Discriminant of the \'etale algebra $\Q(\sqrt{x})$, where $x\in\Q^*$.
This is the same as \kbd{coredisc}$(d)$ where $d$ is the integer square-free
part of $x$, so x=$d f^2$ with $f\in \Q^*$ and $d\in\Z$.
This returns $0$ for $x = 0$, $1$ for $x$ square and the discriminant of the
quadratic field $\Q(\sqrt{x})$ otherwise.
\bprog
? quaddisc(7)
%1 = 28
? quaddisc(-7)
%2 = -7
@eprog
The library syntax is \fun{GEN}{quaddisc}{GEN x}.
\subsec{quadgen$(D)$}\kbdsidx{quadgen}\label{se:quadgen}
Creates the quadratic
number\sidx{omega} $\omega=(a+\sqrt{D})/2$ where $a=0$ if $D\equiv0\mod4$,
$a=1$ if $D\equiv1\mod4$, so that $(1,\omega)$ is an integral basis for the
quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or
1 modulo 4, which is not a square.
The library syntax is \fun{GEN}{quadgen}{GEN D}.
\subsec{quadhilbert$(D)$}\kbdsidx{quadhilbert}\label{se:quadhilbert}
Relative equation defining the
\idx{Hilbert class field} of the quadratic field of discriminant $D$.
If $D < 0$, uses complex multiplication (\idx{Schertz}'s variant).
If $D > 0$ \idx{Stark units} are used and (in rare cases) a
vector of extensions may be returned whose compositum is the requested class
field. See \kbd{bnrstark} for details.
The library syntax is \fun{GEN}{quadhilbert}{GEN D, long prec}.
\subsec{quadpoly$(D,\{v='x\})$}\kbdsidx{quadpoly}\label{se:quadpoly}
Creates the ``canonical'' quadratic
polynomial (in the variable $v$) corresponding to the discriminant $D$,
i.e.~the minimal polynomial of $\kbd{quadgen}(D)$. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square.
The library syntax is \fun{GEN}{quadpoly0}{GEN D, long v = -1} where \kbd{v} is a variable number.
\subsec{quadray$(D,f)$}\kbdsidx{quadray}\label{se:quadray}
Relative equation for the ray
class field of conductor $f$ for the quadratic field of discriminant $D$
using analytic methods. A \kbd{bnf} for $x^2 - D$ is also accepted in place
of $D$.
For $D < 0$, uses the $\sigma$ function and Schertz's method.
For $D>0$, uses Stark's conjecture, and a vector of relative equations may be
returned. See \tet{bnrstark} for more details.
The library syntax is \fun{GEN}{quadray}{GEN D, GEN f, long prec}.
\subsec{quadregulator$(x)$}\kbdsidx{quadregulator}\label{se:quadregulator}
Regulator of the quadratic field of positive discriminant $x$. Returns
an error if $x$ is not a discriminant (fundamental or not) or if $x$ is a
square. See also \kbd{quadclassunit} if $x$ is large.
The library syntax is \fun{GEN}{quadregulator}{GEN x, long prec}.
\subsec{quadunit$(D)$}\kbdsidx{quadunit}\label{se:quadunit}
Fundamental unit\sidx{fundamental units} of the
real quadratic field $\Q(\sqrt D)$ where $D$ is the positive discriminant
of the field. If $D$ is not a fundamental discriminant, this probably gives
the fundamental unit of the corresponding order. $D$ must be an integer
congruent to 0 or 1 modulo 4, which is not a square; the result is a
quadratic number (see \secref{se:quadgen}).
The library syntax is \fun{GEN}{quadunit}{GEN D}.
\subsec{ramanujantau$(n)$}\kbdsidx{ramanujantau}\label{se:ramanujantau}
Compute the value of Ramanujan's tau function at an individual $n$,
assuming the truth of the GRH (to compute quickly class numbers of imaginary
quadratic fields using \tet{quadclassunit}).
Algorithm in $\tilde{O}(n^{1/2})$ using $O(\log n)$ space. If all values up
to $N$ are required, then
$$\sum \tau(n)q^n = q \prod_{n\geq 1} (1-q^n)^{24}$$
will produce them in time $\tilde{O}(N)$, against $\tilde{O}(N^{3/2})$ for
individual calls to \kbd{ramanujantau}; of course the space complexity then
becomes $\tilde{O}(N)$.
\bprog
? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
? N = 10^4; v = tauvec(N);
time = 26 ms.
? ramanujantau(N)
%3 = -482606811957501440000
? w = vector(N, n, ramanujantau(n)); \\ much slower !
time = 13,190 ms.
? v == w
%4 = 1
@eprog
The library syntax is \fun{GEN}{ramanujantau}{GEN n}.
\subsec{randomprime$(\{N = 2^{{31}}\})$}\kbdsidx{randomprime}\label{se:randomprime}
Returns a strong pseudo prime (see \tet{ispseudoprime}) in $[2,N-1]$.
A \typ{VEC} $N = [a,b]$ is also allowed, with $a \leq b$ in which case a
pseudo prime $a \leq p \leq b$ is returned; if no prime exists in the
interval, the function will run into an infinite loop. If the upper bound
is less than $2^{64}$ the pseudo prime returned is a proven prime.
The library syntax is \fun{GEN}{randomprime}{GEN N = NULL}.
\subsec{removeprimes$(\{x=[\,]\})$}\kbdsidx{removeprimes}\label{se:removeprimes}
Removes the primes listed in $x$ from
the prime number table. In particular \kbd{removeprimes(addprimes())} empties
the extra prime table. $x$ can also be a single integer. List the current
extra primes if $x$ is omitted.
The library syntax is \fun{GEN}{removeprimes}{GEN x = NULL}.
\subsec{sigma$(x,\{k=1\})$}\kbdsidx{sigma}\label{se:sigma}
Sum of the $k^{\text{th}}$ powers of the positive divisors of $|x|$. $x$
and $k$ must be of type integer.
The library syntax is \fun{GEN}{sumdivk}{GEN x, long k}.
Also available is \fun{GEN}{sumdiv}{GEN n}, for $k = 1$.
\subsec{sqrtint$(x)$}\kbdsidx{sqrtint}\label{se:sqrtint}
Returns the integer square root of $x$, i.e. the largest integer $y$
such that $y^2 \leq x$, where $x$ a non-negative integer.
\bprog
? N = 120938191237; sqrtint(N)
%1 = 347761
? sqrt(N)
%2 = 347761.68741970412747602130964414095216
@eprog
The library syntax is \fun{GEN}{sqrtint}{GEN x}.
\subsec{sqrtnint$(x,n)$}\kbdsidx{sqrtnint}\label{se:sqrtnint}
Returns the integer $n$-th root of $x$, i.e. the largest integer $y$ such
that $y^n \leq x$, where $x$ is a non-negative integer.
\bprog
? N = 120938191237; sqrtnint(N, 5)
%1 = 164
? N^(1/5)
%2 = 164.63140849829660842958614676939677391
@eprog\noindent The special case $n = 2$ is \tet{sqrtint}
The library syntax is \fun{GEN}{sqrtnint}{GEN x, long n}.
\subsec{stirling$(n,k,\{\fl=1\})$}\kbdsidx{stirling}\label{se:stirling}
\idx{Stirling number} of the first kind $s(n,k)$ ($\fl=1$, default) or
of the second kind $S(n,k)$ (\fl=2), where $n$, $k$ are non-negative
integers. The former is $(-1)^{n-k}$ times the
number of permutations of $n$ symbols with exactly $k$ cycles; the latter is
the number of ways of partitioning a set of $n$ elements into $k$ non-empty
subsets. Note that if all $s(n,k)$ are needed, it is much faster to compute
$$\sum_k s(n,k) x^k = x(x-1)\dots(x-n+1).$$
Similarly, if a large number of $S(n,k)$ are needed for the same $k$,
one should use
$$\sum_n S(n,k) x^n = \dfrac{x^k}{(1-x)\dots(1-kx)}.$$
(Should be implemented using a divide and conquer product.) Here are
simple variants for $n$ fixed:
\bprog
/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )
/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(Q = x^(n-1), t);
vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]));
}
@eprog
The library syntax is \fun{GEN}{stirling}{long n, long k, long flag}.
Also available are \fun{GEN}{stirling1}{ulong n, ulong k}
($\fl=1$) and \fun{GEN}{stirling2}{ulong n, ulong k} ($\fl=2$).
\subsec{sumdedekind$(h,k)$}\kbdsidx{sumdedekind}\label{se:sumdedekind}
Returns the \idx{Dedekind sum} attached to the integers $h$ and $k$,
corresponding to a fast implementation of
\bprog
s(h,k) = sum(n = 1, k-1, (n/k)*(frac(h*n/k) - 1/2))
@eprog
The library syntax is \fun{GEN}{sumdedekind}{GEN h, GEN k}.
\subsec{sumdigits$(n,\{B={10}\})$}\kbdsidx{sumdigits}\label{se:sumdigits}
Sum of digits in the integer $n$, when written in base $B > 1$.
\bprog
? sumdigits(123456789)
%1 = 45
? sumdigits(123456789, 2)
%1 = 16
@eprog\noindent Note that the sum of bits in $n$ is also returned by
\tet{hammingweight}. This function is much faster than
\kbd{vecsum(digits(n,B))} when $B$ is $10$ or a power of $2$, and only
slightly faster in other cases.
The library syntax is \fun{GEN}{sumdigits0}{GEN n, GEN B = NULL}.
Also available is \fun{GEN}{sumdigits}{GEN n}, for $B = 10$.
\subsec{zncharinduce$(G, \var{chi}, N)$}\kbdsidx{zncharinduce}\label{se:zncharinduce}
Let $G$ be attached to $(\Z/q\Z)^*$ (as per \kbd{G = idealstar(,q)})
and let \kbd{chi} be a Dirichlet character on $(\Z/q\Z)^*$, given by
\item a \typ{VEC}: a standard character on \kbd{bid.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
Let $N$ be a multiple of $q$, return the character modulo $N$ induced by
\kbd{chi}. As usual for arithmetic functions, the new modulus $N$ can be
given as a \typ{INT}, via a factorization matrix or a pair
\kbd{[N, factor(N)]}, or by \kbd{idealstar(,N)}.
\bprog
? G = idealstar(,4);
? chi = znconreylog(G,1); \\ trivial character mod 4
? zncharinduce(G, chi, 80) \\ now mod 80
%3 = [0, 0, 0]~
? zncharinduce(G, 1, 80) \\ same using directly Conrey label
%4 = [0, 0, 0]~
? G2 = idealstar(,80);
? zncharinduce(G, 1, G2) \\ same
%4 = [0, 0, 0]~
? chi = zncharinduce(G, 3, G2) \\ induce the non-trivial character mod 4
%5 = [1, 0, 0]~
? znconreyconductor(G2, chi, &chi0)
%6 = [4, Mat([2, 2])]
? chi0
%7 = [1]~
@eprog\noindent Here is a larger example:
\bprog
? G = idealstar(,126000);
? label = 1009;
? chi = znconreylog(G, label)
%3 = [0, 0, 0, 14, 0]~
? N0 = znconreyconductor(G, label, &chi0)
%4 = [125, Mat([5, 3])]
? chi0 \\ primitive character mod 5^3 attached to chi
%5 = [14]~
? G0 = idealstar(,N0);
? zncharinduce(G0, chi0, G) \\ induce back
%7 = [0, 0, 0, 14, 0]~
? znconreyexp(G, %)
%8 = 1009
@eprog
The library syntax is \fun{GEN}{zncharinduce}{GEN G, GEN chi, GEN N}.
\subsec{zncharisodd$(G, \var{chi})$}\kbdsidx{zncharisodd}\label{se:zncharisodd}
Let $G$ be attached to $(\Z/N\Z)^*$ (as per \kbd{G = idealstar(,N)})
and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^*$, given by
\item a \typ{VEC}: a standard character on \kbd{bid.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
Return $1$ if and only if \kbd{chi}$(-1) = -1$ and $0$ otherwise.
\bprog
? G = idealstar(,8);
? zncharisodd(G, 1) \\ trivial character
%2 = 0
? zncharisodd(G, 3)
%3 = 1
? chareval(G, 3, -1)
%4 = 1/2
@eprog
The library syntax is \fun{long}{zncharisodd}{GEN G, GEN chi}.
\subsec{znchartokronecker$(G, \var{chi}, \{\fl=0\})$}\kbdsidx{znchartokronecker}\label{se:znchartokronecker}
Let $G$ be attached to $(\Z/N\Z)^*$ (as per \kbd{G = idealstar(,N)})
and let \kbd{chi} be a Dirichlet character on $(\Z/N\Z)^*$, given by
\item a \typ{VEC}: a standard character on \kbd{bid.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
If $\fl = 0$, return the discriminant $D$ if \kbd{chi} is real equal to the
Kronecker symbol $(D/.)$ and $0$ otherwise. The discriminant $D$ is
fundamental if and only if \kbd{chi} is primitive.
If $\fl = 1$, return the fundamental discriminant attached to the
corresponding primitive character.
\bprog
? G = idealstar(,8); CHARS = [1,3,5,7]; \\ Conrey labels
? apply(t->znchartokronecker(G,t), CHARS)
%2 = [4, -8, 8, -4]
? apply(t->znchartokronecker(G,t,1), CHARS)
%3 = [1, -8, 8, -4]
@eprog
The library syntax is \fun{GEN}{znchartokronecker}{GEN G, GEN chi, long flag}.
\subsec{znconreychar$(\var{bid},m)$}\kbdsidx{znconreychar}\label{se:znconreychar}
Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}), this function returns the Dirichlet character
attached to $m \in (\Z/q\Z)^*$ via Conrey's logarithm, which
establishes a ``canonical'' bijection between $(\Z/q\Z)^*$ and its dual.
Let $q = \prod_p p^{e_p}$ be the factorization of $q$ into distinct primes.
For all odd $p$ with $e_p > 0$, let $g_p$ be the element in $(\Z/q\Z)^*$
which is
\item congruent to $1$ mod $q/p^{e_p}$,
\item congruent mod $p^{e_p}$ to the smallest integer whose order
is $\phi(p^{e_p})$.
For $p = 2$, we let $g_4$ (if $2^{e_2} \geq 4$) and $g_8$ (if furthermore
($2^{e_2} \geq 8$) be the elements in $(\Z/q\Z)^*$ which
are
\item congruent to $1$ mod $q/2^{e_2}$,
\item $g_4 = -1 \mod 2^{e_2}$,
\item $g_8 = 5 \mod 2^{e_2}$.
Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2}\geq 2$) are
independent
generators of $(\Z/q\Z)^*$, i.e. every $m$ in $(\Z/q\Z)^*$ can be written
uniquely as $\prod_p g_p^{m_p}$, where $m_p$ is defined modulo the order
$o_p$ of $g_p$
and $p \in S_q$, the set of prime divisors of $q$ together with $4$
if $4 \mid q$ and $8$ if $8 \mid q$. Note that the $g_p$ are in general
\emph{not} SNF
generators as produced by \kbd{znstar} or \kbd{idealstar} whenever
$\omega(q) \geq 2$, although their number is the same. They however allow
to handle the finite abelian group $(\Z/q\Z)^*$ in a fast and elegant
way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)
The Conrey logarithm of $m$ is the vector $(m_p)_{p\in S_q}$, obtained
via \tet{znconreylog}. The Conrey character $\chi_q(m,\cdot)$ attached to
$m$ mod $q$ maps
each $g_p$, $p\in S_q$ to $e(m_p / o_p)$, where $e(x) = \exp(2i\pi x)$.
This function returns the Conrey character expressed in the standard PARI
way in terms of the SNF generators \kbd{bid.gen}.
\misctitle{Note} It is useless to include the generators
in the \var{bid}, except for debugging purposes: they are well defined from
elementary matrix operations and Chinese remaindering, their explicit value
as elements in $(\Z/q\Z)^*$ is never used.
\bprog
? G = idealstar(,8,2); /*add generators for debugging:*/
? G.cyc
%2 = [2, 2] \\ Z/2 x Z/2
? G.gen
%3 = [7, 3]
? znconreychar(G,1) \\ 1 is always the trivial character
%4 = [0, 0]
? znconreychar(G,2) \\ 2 is not coprime to 8 !!!
*** at top-level: znconreychar(G,2)
*** ^-----------------
*** znconreychar: elements not coprime in Zideallog:
2
8
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreychar(G,3)
%5 = [0, 1]
? znconreychar(G,5)
%6 = [1, 1]
? znconreychar(G,7)
%7 = [1, 0]
@eprog\noindent We indeed get all 4 characters of $(\Z/8\Z)^*$.
For convenience, we allow to input the \emph{Conrey logarithm} of $m$
instead of $m$:
\bprog
? G = idealstar(,55);
? znconreychar(G,7)
%2 = [7, 0]
? znconreychar(G, znconreylog(G,7))
%3 = [7, 0]
@eprog
The library syntax is \fun{GEN}{znconreychar}{GEN bid, GEN m}.
\subsec{znconreyconductor$(\var{bid},\var{chi}, \{\&\var{chi0}\})$}\kbdsidx{znconreyconductor}\label{se:znconreyconductor}
Let \var{bid} be attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}) and \kbd{chi} be a Dirichlet character on
$(\Z/q\Z)^*$, given by
\item a \typ{VEC}: a standard character on \kbd{bid.gen},
\item a \typ{INT} or a \typ{COL}: a Conrey index in $(\Z/q\Z)^*$ or its
Conrey logarithm;
see \secref{se:dirichletchar} or \kbd{??character}.
Return the conductor of \kbd{chi}, as the \typ{INT} \kbd{bid.mod}
if \kbd{chi} is primitive, and as a pair \kbd{[N, faN]} (with \kbd{faN} the
factorization of $N$) otherwise.
If \kbd{chi0} is present, set it to the Conrey logarithm of the attached
primitive character.
\bprog
? G = idealstar(,126000);
? znconreyconductor(G,11) \\ primitive
%2 = 126000
? znconreyconductor(G,1) \\ trivial character, not primitive!
%3 = [1, matrix(0,2)]
? N0 = znconreyconductor(G,1009, &chi0) \\ character mod 5^3
%4 = [125, Mat([5, 3])]
? chi0
%5 = [14]~
? G0 = idealstar(,N0); \\ format [N,factor(N)] accepted
? znconreyexp(G0, chi0)
%7 = 9
? znconreyconductor(G0, chi0) \\ now primitive, as expected
%8 = 125
@eprog\noindent The group \kbd{G0} is not computed as part of
\kbd{znconreyconductor} because it needs to be computed only once per
conductor, not once per character.
The library syntax is \fun{GEN}{znconreyconductor}{GEN bid, GEN chi, GEN *chi0 = NULL}.
\subsec{znconreyexp$(\var{bid}, \var{chi})$}\kbdsidx{znconreyexp}\label{se:znconreyexp}
Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}), this function returns the Conrey exponential of
the character \var{chi}: it returns the integer
$m \in (\Z/q\Z)^*$ such that \kbd{znconreylog(\var{bid}, $m$)} is \var{chi}.
The character \var{chi} is given either as a
\item \typ{VEC}: in terms of the generators \kbd{\var{bid}.gen};
\item \typ{COL}: a Conrey logarithm.
\bprog
? G = idealstar(,126000)
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G,%)
%3 = 1
? G.cyc \\ SNF generators
%4 = [300, 12, 2, 2, 2]
? chi = [100, 1, 0, 1, 0]; \\ some random character on SNF generators
? znconreylog(G, chi) \\ in terms of Conrey generators
%6 = [0, 3, 3, 0, 2]~
? znconreyexp(G, %) \\ apply to a Conrey log
%7 = 18251
? znconreyexp(G, chi) \\ ... or a char on SNF generators
%8 = 18251
? znconreychar(G,%)
%9 = [100, 1, 0, 1, 0]
@eprog
The library syntax is \fun{GEN}{znconreyexp}{GEN bid, GEN chi}.
\subsec{znconreylog$(\var{bid},m)$}\kbdsidx{znconreylog}\label{se:znconreylog}
Given a \var{bid} attached to $(\Z/q\Z)^*$ (as per
\kbd{bid = idealstar(,q)}), this function returns the Conrey logarithm of
$m \in (\Z/q\Z)^*$.
Let $q = \prod_p p^{e_p}$ be the factorization of $q$ into distinct primes,
where we assume $e_2 = 0$ or $e_2 \geq 2$. (If $e_2 = 1$, we can ignore $2$
from the factorization, as if we replaced $q$ by $q/2$, since $(\Z/q\Z)^*
\sim (\Z/(q/2)\Z)^*$.)
For all odd $p$ with $e_p > 0$, let $g_p$ be the element in $(\Z/q\Z)^*$
which is
\item congruent to $1$ mod $q/p^{e_p}$,
\item congruent mod $p^{e_p}$ to the smallest integer whose order
is $\phi(p^{e_p})$ for $p$ odd,
For $p = 2$, we let $g_4$ (if $2^{e_2} \geq 4$) and $g_8$ (if furthermore
($2^{e_2} \geq 8$) be the elements in $(\Z/q\Z)^*$ which
are
\item congruent to $1$ mod $q/2^{e_2}$,
\item $g_4 = -1 \mod 2^{e_2}$,
\item $g_8 = 5 \mod 2^{e_2}$.
Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2}\geq 2$) are
independent
generators of $\Z/q\Z^*$, i.e. every $m$ in $(\Z/q\Z)^*$ can be written
uniquely as $\prod_p g_p^{m_p}$, where $m_p$ is defined modulo the
order $o_p$ of $g_p$
and $p \in S_q$, the set of prime divisors of $q$ together with $4$
if $4 \mid q$ and $8$ if $8 \mid q$.
Note that the $g_p$ are in general \emph{not} SNF
generators as produced by \kbd{znstar} or \kbd{idealstar} whenever
$\omega(q) \geq 2$, although their number is the same. They however allow
to handle the finite abelian group $(\Z/q\Z)^*$ in a fast and elegant
way. (Which unfortunately does not generalize to ray class groups or Hecke
characters.)
The Conrey logarithm of $m$ is the vector $(m_p)_{p\in S_q}$. The inverse
function \tet{znconreyexp} recovers the Conrey label $m$ from a character.
\bprog
? G = idealstar(,126000);
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)
%3 = 1
? znconreylog(G,2) \\ 2 is not coprime to modulus !!!
*** at top-level: znconreylog(G,2)
*** ^-----------------
*** znconreylog: elements not coprime in Zideallog:
2
126000
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreylog(G,11) \\ wrt. Conrey generators
%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G) \\ wrt. SNF generators
%5 = [178, 3, -75, 1, 0]~
@eprog\noindent
For convenience, we allow to input the ordinary discrete log of $m$,
$\kbd{ideallog(,m,bid)}$, which allows to convert discrete logs
from \kbd{bid.gen} generators to Conrey generators.
\bprog
? znconreylog(G, log11)
%7 = [0, 3, 1, 76, 4]~
@eprog\noindent We also allow a character (\typ{VEC}) on \kbd{bid.gen} and
return its representation on the Conrey generators.
\bprog
? G.cyc
%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];
? znconreylog(G, chi)
%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149
? znconreychar(G, n)
%12 = [10, 1, 0, 1, 1]
@eprog
The library syntax is \fun{GEN}{znconreylog}{GEN bid, GEN m}.
\subsec{zncoppersmith$(P, N, X, \{B=N\})$}\kbdsidx{zncoppersmith}\label{se:zncoppersmith}
$N$ being an integer and $P\in \Z[X]$, finds all integers $x$ with
$|x| \leq X$ such that
$$\gcd(N, P(x)) \geq B,$$
using \idx{Coppersmith}'s algorithm (a famous application of the \idx{LLL}
algorithm). $X$ must be smaller than $\exp(\log^2 B / (\deg(P) \log N))$:
for $B = N$, this means $X < N^{1/\deg(P)}$. Some $x$ larger than $X$ may
be returned if you are very lucky. The smaller $B$ (or the larger $X$), the
slower the routine will be. The strength of Coppersmith method is the
ability to find roots modulo a general \emph{composite} $N$: if $N$ is a prime
or a prime power, \tet{polrootsmod} or \tet{polrootspadic} will be much
faster.
We shall now present two simple applications. The first one is
finding non-trivial factors of $N$, given some partial information on the
factors; in that case $B$ must obviously be smaller than the largest
non-trivial divisor of $N$.
\bprog
setrand(1); \\ to make the example reproducible
interval = [10^30, 10^31];
p = randomprime(interval);
q = randomprime(interval); N = p*q;
p0 = p % 10^20; \\ assume we know 1) p > 10^29, 2) the last 19 digits of p
L = zncoppersmith(10^19*x + p0, N, 10^12, 10^29)
\\ result in 10ms.
%6 = [738281386540]
? gcd(L[1] * 10^19 + p0, N) == p
%7 = 1
@eprog\noindent and we recovered $p$, faster than by trying all
possibilities $ < 10^{12}$.
The second application is an attack on RSA with low exponent, when the
message $x$ is short and the padding $P$ is known to the attacker. We use
the same RSA modulus $N$ as in the first example:
\bprog
setrand(1);
P = random(N); \\ known padding
e = 3; \\ small public encryption exponent
X = floor(N^0.3); \\ N^(1/e - epsilon)
x0 = random(X); \\ unknown short message
C = lift( (Mod(x0,N) + P)^e ); \\ known ciphertext, with padding P
zncoppersmith((P + x)^3 - C, N, X)
\\ result in 244ms.
%14 = [2679982004001230401]
? %[1] == x0
%15 = 1
@eprog\noindent
We guessed an integer of the order of $10^{18}$, almost instantly.
The library syntax is \fun{GEN}{zncoppersmith}{GEN P, GEN N, GEN X, GEN B = NULL}.
\subsec{znlog$(x,g,\{o\})$}\kbdsidx{znlog}\label{se:znlog}
This functions allows two distinct modes of operation depending
on $g$:
\item if $g$ is the output of \tet{znstar} (with initialization),
we compute the discrete logarithm of $x$ with respect to the generators
contained in the structure. See \tet{ideallog} for details.
\item else $g$ is an explicit element in $(\Z/N\Z)^*$, we compute the
discrete logarithm of $x$ in $(\Z/N\Z)^*$ in base $g$. The rest of this
entry describes the latter possibility.
The result is $[]$ when $x$ is not a power of $g$, though the function may
also enter an infinite loop in this case.
If present, $o$ represents the multiplicative order of $g$, see
\secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the order of $g$.
This provides a definite speedup when the discrete log problem is simple:
\bprog
? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];
? for(i=1,10^4, znlog(i, g, o))
time = 205 ms.
? for(i=1,10^4, znlog(i, g))
time = 244 ms. \\ a little slower
@eprog
The result is undefined if $g$ is not invertible mod $N$ or if the supplied
order is incorrect.
This function uses
\item a combination of generic discrete log algorithms (see below).
\item in $(\Z/N\Z)^*$ when $N$ is prime: a linear sieve index calculus
method, suitable for $N < 10^{50}$, say, is used for large prime divisors of
the order.
The generic discrete log algorithms are:
\item Pohlig-Hellman algorithm, to reduce to groups of prime order $q$,
where $q | p-1$ and $p$ is an odd prime divisor of $N$,
\item Shanks baby-step/giant-step ($q < 2^{32}$ is small),
\item Pollard rho method ($q > 2^{32}$).
The latter two algorithms require $O(\sqrt{q})$ operations in the group on
average, hence will not be able to treat cases where $q > 10^{30}$, say.
In addition, Pollard rho is not able to handle the case where there are no
solutions: it will enter an infinite loop.
\bprog
? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)
? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1
? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)
%7 = 110
? znlog(6, Mod(2,3)) \\ no solution
%8 = []
@eprog\noindent For convenience, $g$ is also allowed to be a $p$-adic number:
\bprog
? g = 3+O(5^10); znlog(2, g)
%1 = 1015243
? g^%
%2 = 2 + O(5^10)
@eprog
The library syntax is \fun{GEN}{znlog0}{GEN x, GEN g, GEN o = NULL}.
The function
\fun{GEN}{znlog}{GEN x, GEN g, GEN o} is also available
\subsec{znorder$(x,\{o\})$}\kbdsidx{znorder}\label{se:znorder}
$x$ must be an integer mod $n$, and the
result is the order of $x$ in the multiplicative group $(\Z/n\Z)^*$. Returns
an error if $x$ is not invertible.
The parameter o, if present, represents a non-zero
multiple of the order of $x$, see \secref{se:DLfun}; the preferred format for
this parameter is \kbd{[ord, factor(ord)]}, where \kbd{ord = eulerphi(n)}
is the cardinality of the group.
The library syntax is \fun{GEN}{znorder}{GEN x, GEN o = NULL}.
Also available is \fun{GEN}{order}{GEN x}.
\subsec{znprimroot$(n)$}\kbdsidx{znprimroot}\label{se:znprimroot}
Returns a primitive root (generator) of $(\Z/n\Z)^*$, whenever this
latter group is cyclic ($n = 4$ or $n = 2p^k$ or $n = p^k$, where $p$ is an
odd prime and $k \geq 0$). If the group is not cyclic, the result is
undefined. If $n$ is a prime power, then the smallest positive primitive
root is returned. This may not be true for $n = 2p^k$, $p$ odd.
Note that this function requires factoring $p-1$ for $p$ as above,
in order to determine the exact order of elements in
$(\Z/n\Z)^*$: this is likely to be costly if $p$ is large.
The library syntax is \fun{GEN}{znprimroot}{GEN n}.
\subsec{znstar$(n,\{\fl=0\})$}\kbdsidx{znstar}\label{se:znstar}
Gives the structure of the multiplicative group $(\Z/n\Z)^*$.
The output $G$ depends on the value of \fl:
\item $\fl = 0$ (default), an abelian group structure $[h,d,g]$,
where $h = \phi(n)$ is the order (\kbd{G.no}), $d$ (\kbd{G.cyc})
is a $k$-component row-vector $d$ of integers $d_i$ such that $d_i>1$,
$d_i \mid d_{i-1}$ for $i \ge 2$ and
$$ (\Z/n\Z)^* \simeq \prod_{i=1}^k (\Z/d_i\Z), $$
and $g$ (\kbd{G.gen}) is a $k$-component row vector giving generators of
the image of the cyclic groups $\Z/d_i\Z$.
\item $\fl = 1$ the result is a \kbd{bid} structure without generators
(which are well defined but not explicitly computed, which saves time);
this allows computing discrite logarithms using \tet{znlog} (also in the
non-cyclic case!).
\item $\fl = 2$ same as $\fl = 1$ with generators.
\bprog
? G = znstar(40)
%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]
? G.no \\ eulerphi(40)
%2 = 16
? G.cyc \\ cycle structure
%3 = [4, 2, 2]
? G.gen \\ generators for the cyclic components
%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]
? apply(znorder, G.gen)
%5 = [4, 2, 2]
@eprog\noindent According to the above definitions, \kbd{znstar(0)} is
\kbd{[2, [2], [-1]]}, corresponding to $\Z^*$.
The library syntax is \fun{GEN}{znstar0}{GEN n, long flag}.
Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{ZNstar}{GEN N, long flag}, where \kbd{flag} is
an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
(return a full \kbd{bid}, not a group), possibly $0$. This offers
one more combination: no gen and no init.
%SECTION: number_theoretical
\section{Elliptic curves}
\subsec{Elliptic curve structures} %GPHELPskip
An elliptic curve is given by a Weierstrass model\sidx{Weierstrass equation}
$$
y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6,
$$
whose discriminant is non-zero. Affine points on \kbd{E} are represented as
two-component vectors \kbd{[x,y]}; the point at infinity, i.e.~the identity
element of the group law, is represented by the one-component vector
\kbd{[0]}.
Given a vector of coefficients $[a_1,a_2,a_3,a_4,a_6]$, the function
\tet{ellinit} initializes and returns an \tev{ell} structure. (An additional
optional argument allows to specify the base field in case it cannot be
inferred from the curve coefficients.) This structure contains data needed by
elliptic curve related functions, and is generally passed as a first argument.
Expensive data are skipped on initialization: they will be dynamically
computed when (and if) needed, and then inserted in the structure. The
precise layout of the \tev{ell} structure is left undefined and should never
be used directly. The following \idx{member functions} are available,
depending on the underlying domain.
\subsubsec{All domains} %GPHELPskip
\item \tet{a1}, \tet{a2}, \tet{a3}, \tet{a4}, \tet{a6}: coefficients of the
elliptic curve.
\item \tet{b2}, \tet{b4}, \tet{b6}, \tet{b8}: $b$-invariants of the curve; in
characteristic $\neq 2$, for $Y = 2y + a_1x+a3$, the curve equation becomes
$$ Y^2 = 4 x^3 + b_2 x^2 + 2b_4 x + b_6 =: g(x). $$
\item \tet{c4}, \tet{c6}: $c$-invariants of the curve; in characteristic $\neq
2,3$, for $X = x + b_2/12$ and $Y = 2y + a_1x+a3$, the curve equation becomes
$$ Y^2 = 4 X^3 - (c_4/12) X - (c_6/216). $$
\item \tet{disc}: discriminant of the curve. This is only required to be
non-zero, not necessarily a unit.
\item \tet{j}: $j$-invariant of the curve.
\noindent These are used as follows:
\bprog
? E = ellinit([0,0,0, a4,a6]);
? E.b4
%2 = 2*a4
? E.disc
%3 = -64*a4^3 - 432*a6^2
@eprog
\subsubsec{Curves over $\R$} %GPHELPskip
This in particular includes curves defined over $\Q$. All member functions in
this section return data, as it is currently stored in the structure, if
present; and otherwise compute it to the default accuracy, that was fixed
\emph{at the time of ellinit} (via a \typ{REAL} $D$ domain argument, or
\kbd{realprecision} by default). The function \tet{ellperiods} allows to
recompute (and cache) the following data to \emph{current}
\kbd{realprecision}.
\item \tet{area}: volume of the complex lattice defining $E$.
\item \tet{roots} is a vector whose three components contain the complex
roots of the right hand side $g(x)$ of the attached $b$-model $Y^2 = g(x)$.
If the roots are all real, they are ordered by decreasing value. If only one
is real, it is the first component.
\item \tet{omega}: $[\omega_1,\omega_2]$, periods forming a basis of the
complex lattice defining $E$. The first component $\omega_1$ is the
(positive) real period, in other words the integral of the N\'eron
differential $dx/(2y+a_1x+a_3)$
over the connected component of the identity component of $E(\R)$.
The second component $\omega_2$ is a complex period, such that
$\tau=\dfrac{\omega_1}{\omega_2}$ belongs to Poincar\'e's
half-plane (positive imaginary part); not necessarily to the standard
fundamental domain. It is normalized so that $\Im(\omega_2) < 0$
and either $\Re(\omega_2) = 0$, when \kbd{E.disc > 0} ($E(\R)$ has two connected
components), or $\Re(\omega_2) = \omega_1/2$
\item \tet{eta} is a row vector containing the quasi-periods $\eta_1$ and
$\eta_2$ such that $\eta_i = 2\zeta(\omega_i/2)$, where $\zeta$ is the
Weierstrass zeta function attached to the period lattice; see
\tet{ellzeta}. In particular, the Legendre relation holds: $\eta_2\omega_1 -
\eta_1\omega_2 = 2\pi i$.
\misctitle{Warning} As for the orientation of the basis of the period lattice,
beware that many sources use the inverse convention where $\omega_2/\omega_1$
has positive imaginary part and our $\omega_2$ is the negative of theirs. Our
convention $\tau = \omega_1/\omega_2$ ensures that the action of $\text{PSL}_2$ is the natural
one:
$$[a,b;c,d]\cdot\tau = (a\tau+b)/(c\tau+d)
= (a \omega_1 + b\omega_2)/(c\omega_1 + d\omega_2),$$
instead of a twisted one. (Our $tau$ is $-1/\tau$ in the above inverse
convention.)
\subsubsec{Curves over $\Q_p$} %GPHELPskip
We advise to input a model defined over $\Q$ for such curves. In any case,
if you input an approximate model with \typ{PADIC} coefficients, it will be
replaced by a lift to $\Q$ (an exact model ``close'' to the one that was
input) and all quantities will then be computed in terms of this lifted
model.
For the time being only curves with multiplicative reduction (split or
non-split), i.e. $v_p(j) < 0$, are supported by non-trivial functions. In
this case the curve is analytically isomorphic to $\bar{\Q}_p^*/q^\Z :=
E_q(\bar{\Q}_p)$, for some $p$-adic integer $q$ (the Tate period). In
particular, we have $j(q) = j(E)$.
\item \tet{p} is the residual characteristic
\item \tet{roots} is a vector with a single component, equal to the $p$-adic
root $e_1$ of the right hand side $g(x)$ of the attached $b$-model $Y^2
= g(x)$. The point $(e_1,0)$ corresponds to $-1 \in \bar{\Q}_p^*/q^\Z$
under the Tate parametrization.
\item \tet{tate} returns $[u^2,u,q,[a,b],L, Ei]$ in the notation of Henniart-Mestre
(CRAS t. 308, p.~391--395, 1989): $q$ is as above, $u\in \Q_p(\sqrt{-c_6})$
is such that $\phi^* dx/(2y + a_1x+a3) = u dt/t$, where $\phi: E_q\to E$
is an isomorphism (well defined up to sign) and $dt/t$ is the canonical
invariant differential on the Tate curve; $u^2\in\Q_p$ does not depend on
$\phi$. (Technicality: if $u\not\in\Q_p$, it is stored as a quadratic
\typ{POLMOD}.)
The parameters $[a,b]$ satisfy $4u^2 b \cdot \text{agm}(\sqrt{a/b},1)^2 = 1$
as in Theorem~2 (\emph{loc.~cit.}).
\kbd{Ei} describes the sequence of 2-isogenous curves (with kernel generated
by $[0,0]$) $E_i: y^2=x(x+A_i)(x+A_i-B_i)$ converging quadratically towards
the singular curve $E_\infty$. Finally, $L$ is Mazur-Tate-Teitelbaum's
${\cal L}$-invariant, equal to $\log_p q / v_p(q)$.
\subsubsec{Curves over $\F_q$} %GPHELPskip
\item \tet{p} is the characteristic of $\F_q$.
\item \tet{no} is $\#E(\F_q)$.
\item \tet{cyc} gives the cycle structure of $E(\F_q)$.
\item \tet{gen} returns the generators of $E(\F_q)$.
\item \tet{group} returns $[\kbd{no},\kbd{cyc},\kbd{gen}]$, i.e. $E(\F_q)$
as an abelian group structure.
\subsubsec{Curves over $\Q$} %GPHELPskip
All functions should return a correct result, whether the model is minimal or
not, but it is a good idea to stick to minimal models whenever
$\gcd(c_4,c_6)$ is easy to factor (minor speed-up). The construction
\bprog
E = ellminimalmodel(E0, &v)
@eprog\noindent replaces the original model $E_0$ by a minimal model $E$,
and the variable change $v$ allows to go between the two models:
\bprog
ellchangepoint(P0, v)
ellchangepointinv(P, v)
@eprog\noindent respectively map the point $P_0$ on $E_0$ to its image on
$E$, and the point $P$ on $E$ to its pre-image on $E_0$.
A few routines --- namely \tet{ellgenerators}, \tet{ellidentify},
\tet{ellsearch}, \tet{forell} --- require the optional package \tet{elldata}
(John Cremona's database) to be installed. In that case, the function
\tet{ellinit} will allow alternative inputs, e.g.~\kbd{ellinit("11a1")}.
Functions using this package need to load chunks of a large database in
memory and require at least 2MB stack to avoid stack overflows.
\item \tet{gen} returns the generators of $E(\Q)$, if known (from John
Cremona's database)
\subsubsec{Curves over number fields} %GPHELPskip
\item \tet{nf} return the \var{nf} structure attached to the number field
over which $E$ is defined.
\item \tet{bnf} return the \var{bnf} structure attached to the number field
over which $E$ is defined or raise an error (if only an \var{nf} is available).
\subsec{ellL1$(e, \{r = 0\})$}\kbdsidx{ellL1}\label{se:ellL1}
Returns the value at $s=1$ of the derivative of order $r$ of the
$L$-function of the elliptic curve $e$.
\bprog
? e = ellinit("11a1"); \\ order of vanishing is 0
? ellL1(e)
%2 = 0.2538418608559106843377589233
? e = ellinit("389a1"); \\ order of vanishing is 2
? ellL1(e)
%4 = -5.384067311837218089235032414 E-29
? ellL1(e, 1)
%5 = 0
? ellL1(e, 2)
%6 = 1.518633000576853540460385214
@eprog\noindent
The main use of this function, after computing at \emph{low} accuracy the
order of vanishing using \tet{ellanalyticrank}, is to compute the
leading term at \emph{high} accuracy to check (or use) the Birch and
Swinnerton-Dyer conjecture:
\bprog
? \p18
realprecision = 18 significant digits
? e = ellinit("5077a1"); ellanalyticrank(e)
time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
realprecision = 202 significant digits (200 digits displayed)
? ellL1(e, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797@com$[\dots]$
@eprog
The library syntax is \fun{GEN}{ellL1_bitprec}{GEN e, long r, long bitprec}.
\subsec{elladd$(E,\var{z1},\var{z2})$}\kbdsidx{elladd}\label{se:elladd}
Sum of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
The library syntax is \fun{GEN}{elladd}{GEN E, GEN z1, GEN z2}.
\subsec{ellak$(E,n)$}\kbdsidx{ellak}\label{se:ellak}
Computes the coefficient $a_n$ of the $L$-function of the elliptic curve
$E/\Q$, i.e.~coefficients of a newform of weight 2 by the modularity theorem
(\idx{Taniyama-Shimura-Weil conjecture}). $E$ must be an \kbd{ell} structure
over $\Q$ as output by \kbd{ellinit}. $E$ must be given by an integral model,
not necessarily minimal, although a minimal model will make the function
faster.
\bprog
? E = ellinit([0,1]);
? ellak(E, 10)
%2 = 0
? e = ellinit([5^4,5^6]); \\ not minimal at 5
? ellak(e, 5) \\ wasteful but works
%3 = -3
? E = ellminimalmodel(e); \\ now minimal
? ellak(E, 5)
%5 = -3
@eprog\noindent If the model is not minimal at a number of bad primes, then
the function will be slower on those $n$ divisible by the bad primes.
The speed should be comparable for other $n$:
\bprog
? for(i=1,10^6, ellak(E,5))
time = 820 ms.
? for(i=1,10^6, ellak(e,5)) \\ 5 is bad, markedly slower
time = 1,249 ms.
? for(i=1,10^5,ellak(E,5*i))
time = 977 ms.
? for(i=1,10^5,ellak(e,5*i)) \\ still slower but not so much on average
time = 1,008 ms.
@eprog
The library syntax is \fun{GEN}{akell}{GEN E, GEN n}.
\subsec{ellan$(E,n)$}\kbdsidx{ellan}\label{se:ellan}
Computes the vector of the first $n$ Fourier coefficients $a_k$
corresponding to the elliptic curve $E$ defined over a number field.
If $E$ is defined over $\Q$, the curve may be given by an
arbitrary model, not necessarily minimal,
although a minimal model will make the function faster. Over a more general
number field, the model must be locally minimal at all primes above $2$
and $3$.
The library syntax is \fun{GEN}{ellan}{GEN E, long n}.
Also available is \fun{GEN}{ellanQ_zv}{GEN e, long n}, which
returns a \typ{VECSMALL} instead of a \typ{VEC}, saving on memory.
\subsec{ellanalyticrank$(e, \{\var{eps}\})$}\kbdsidx{ellanalyticrank}\label{se:ellanalyticrank}
Returns the order of vanishing at $s=1$ of the $L$-function of the
elliptic curve $e$ and the value of the first non-zero derivative. To
determine this order, it is assumed that any value less than \kbd{eps} is
zero. If no value of \kbd{eps} is given, a value of half the current
precision is used.
\bprog
? e = ellinit("11a1"); \\ rank 0
? ellanalyticrank(e)
%2 = [0, 0.2538418608559106843377589233]
? e = ellinit("37a1"); \\ rank 1
? ellanalyticrank(e)
%4 = [1, 0.3059997738340523018204836835]
? e = ellinit("389a1"); \\ rank 2
? ellanalyticrank(e)
%6 = [2, 1.518633000576853540460385214]
? e = ellinit("5077a1"); \\ rank 3
? ellanalyticrank(e)
%8 = [3, 10.39109940071580413875185035]
@eprog
The library syntax is \fun{GEN}{ellanalyticrank_bitprec}{GEN e, GEN eps = NULL, long bitprec}.
\subsec{ellap$(E,\{p\})$}\kbdsidx{ellap}\label{se:ellap}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
a number field or a finite field $\F_q$. The argument $p$ is best left
omitted if the curve is defined over a finite field, and must be a prime
number or a maximal ideal otherwise. This function computes the trace of
Frobenius $t$ for the elliptic curve $E$, defined by the equation $\#E(\F_q)
= q+1 - t$ (for primes of good reduction).
When the characteristic of the finite field is large, the availability of
the \kbd{seadata} package will speed the computation.
If the curve is defined over $\Q$, $p$ must be explicitly given and the
function computes the trace of the reduction over $\F_p$.
The trace of Frobenius is also the $a_p$ coefficient in the curve $L$-series
$L(E,s) = \sum_n a_n n^{-s}$, whence the function name. The equation must be
integral at $p$ but need not be minimal at $p$; of course, a minimal model
will be more efficient.
\bprog
? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellap(E, 7) \\ 7 necessary here
%2 = -4 \\ #E(F_7) = 7+1-(-4) = 12
? ellcard(E, 7)
%3 = 12 \\ OK
? E = ellinit([0,1], 11); \\ defined over F_11
? ellap(E) \\ no need to repeat 11
%4 = 0
? ellap(E, 11) \\ ... but it also works
%5 = 0
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellap(E,13)
*** ^-----------
*** ellap: inconsistent moduli in Rg_to_Fp:
11
13
? Fq = ffgen(ffinit(11,3), 'a); \\ defines F_q := F_{11^3}
? E = ellinit([a+1,a], Fq); \\ y^2 = x^3 + (a+1)x + a, defined over F_q
? ellap(E)
%8 = -3
@eprog
If the curve is defined over a more general number field than $\Q$,
the maximal ideal $p$ must be explicitly given in \kbd{idealprimedec}
format. If $p$ is above $2$ or $3$, the function currently assumes (without
checking) that the given model is locally minimal at $p$. There is no
restriction at other primes.
\bprog
? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(K, E.disc)
%2 =
[ [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]
[[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
? ellap(E, fa[1,1])
%3 = -1 \\ non-split multiplicative reduction
? ellap(E, fa[2,1])
%4 = 1 \\ split multiplicative reduction
? P17 = idealprimedec(K,17)[1];
? ellap(E, P17)
%6 = 6 \\ good reduction
? E2 = ellchangecurve(E, [17,0,0,0]);
? ellap(E2, P17)
%8 = 6 \\ same, starting from a non-miminal model
? P3 = idealprimedec(K,3)[1];
? E3 = ellchangecurve(E, [3,0,0,0]);
? ellap(E, P3) \\ OK: E is minimal at P3
%11 = -2
? ellap(E3, P3) \\ junk: E3 is not minimal at P3 | 3
%12 = 0
@eprog
\misctitle{Algorithms used} If $E/\F_q$ has CM by a principal imaginary
quadratic order we use a fast explicit formula (involving essentially
Kronecker symbols and Cornacchia's algorithm), in $O(\log q)^2$.
Otherwise, we use Shanks-Mestre's baby-step/giant-step method, which runs in
time $\tilde{O}(q^{1/4})$ using $\tilde{O}(q^{1/4})$ storage, hence becomes
unreasonable when $q$ has about 30~digits. Above this range, the \tet{SEA}
algorithm becomes available, heuristically in $\tilde{O}(\log q)^4$, and
primes of the order of 200~digits become feasible. In small
characteristic we use Mestre's (p=2), Kohel's (p=3,5,7,13), Satoh-Harley
(all in $\tilde{O}(p^{2}\*n^2)$) or Kedlaya's (in $\tilde{O}(p\*n^3)$)
algorithms.
The library syntax is \fun{GEN}{ellap}{GEN E, GEN p = NULL}.
\subsec{ellbil$(E,\var{z1},\var{z2})$}\kbdsidx{ellbil}\label{se:ellbil}
Deprecated alias for \kbd{ellheight(E,P,Q)}.
The library syntax is \fun{GEN}{bilhell}{GEN E, GEN z1, GEN z2, long prec}.
\subsec{ellcard$(E,\{p\})$}\kbdsidx{ellcard}\label{se:ellcard}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
$\Q$ or a finite field $\F_q$. The argument $p$ is best left omitted if the
curve is defined over a finite field, and must be a prime number otherwise.
This function computes the order of the group $E(\F_q)$ (as would be
computed by \tet{ellgroup}).
When the characteristic of the finite field is large, the availability of
the \kbd{seadata} package will speed the computation.
If the curve is defined over $\Q$, $p$ must be explicitly given and the
function computes the cardinality of the reduction over $\F_p$; the
equation need not be minimal at $p$, but a minimal model will be more
efficient. The reduction is allowed to be singular, and we return the order
of the group of non-singular points in this case.
The library syntax is \fun{GEN}{ellcard}{GEN E, GEN p = NULL}.
Also available is \fun{GEN}{ellcard}{GEN E, GEN p} where $p$ is not
\kbd{NULL}.
\subsec{ellchangecurve$(E,v)$}\kbdsidx{ellchangecurve}\label{se:ellchangecurve}
Changes the data for the elliptic curve $E$
by changing the coordinates using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$
and $y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$.
$E$ must be an \kbd{ell} structure as output by \kbd{ellinit}. The special
case $v = 1$ is also used instead of $[1,0,0,0]$ to denote the
trivial coordinate change.
The library syntax is \fun{GEN}{ellchangecurve}{GEN E, GEN v}.
\subsec{ellchangepoint$(x,v)$}\kbdsidx{ellchangepoint}\label{se:ellchangepoint}
Changes the coordinates of the point or
vector of points $x$ using the vector \kbd{v=[u,r,s,t]}, i.e.~if $x'$ and
$y'$ are the new coordinates, then $x=u^2x'+r$, $y=u^3y'+su^2x'+t$ (see also
\kbd{ellchangecurve}).
\bprog
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1]
@eprog
The library syntax is \fun{GEN}{ellchangepoint}{GEN x, GEN v}.
The reciprocal function \fun{GEN}{ellchangepointinv}{GEN x, GEN ch}
inverts the coordinate change.
\subsec{ellchangepointinv$(x,v)$}\kbdsidx{ellchangepointinv}\label{se:ellchangepointinv}
Changes the coordinates of the point or vector of points $x$ using
the inverse of the isomorphism attached to \kbd{v=[u,r,s,t]},
i.e.~if $x'$ and $y'$ are the old coordinates, then $x=u^2x'+r$,
$y=u^3y'+su^2x'+t$ (inverse of \kbd{ellchangepoint}).
\bprog
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
%3 = [-2, 3]
? ellisoncurve(E, P)
%4 = 1
? ellchangepointinv(P,v)
%5 = [0, 1] \\ we get back P0
@eprog
The library syntax is \fun{GEN}{ellchangepointinv}{GEN x, GEN v}.
\subsec{ellconvertname$(\var{name})$}\kbdsidx{ellconvertname}\label{se:ellconvertname}
Converts an elliptic curve name, as found in the \tet{elldata} database,
from a string to a triplet $[\var{conductor}, \var{isogeny class},
\var{index}]$. It will also convert a triplet back to a curve name.
Examples:
\bprog
? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"
@eprog
The library syntax is \fun{GEN}{ellconvertname}{GEN name}.
\subsec{elldivpol$(E,n,\{v='x\})$}\kbdsidx{elldivpol}\label{se:elldivpol}
$n$-division polynomial $f_n$ for the curve $E$ in the
variable $v$. In standard notation, for any affine point $P = (X,Y)$ on the
curve, we have
$$[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)$$
for some polynomials $\phi_n,\omega_n,\psi_n$ in
$\Z[a_1,a_2,a_3,a_4,a_6][X,Y]$. We have $f_n(X) = \psi_n(X)$ for $n$ odd, and
$f_n(X) = \psi_n(X,Y) (2Y + a_1X+a_3)$ for $n$ even. We have
$$ f_1 = 1,\quad f_2 = 4X^3 + b_2X^2 + 2b_4 X + b_6, \quad f_3 = 3 X^4 + b_2 X^3 + 3b_4 X^2 + 3 b_6 X + b8, $$
$$ f_4 = f_2(2X^6 + b_2 X^5 + 5b_4 X^4 + 10 b_6 X^3 + 10 b_8 X^2 +
(b_2b_8-b_4b_6)X + (b_8b_4 - b_6^2)), \dots $$
For $n \geq 2$, the roots of $f_n$ are the $X$-coordinates of points in $E[n]$.
The library syntax is \fun{GEN}{elldivpol}{GEN E, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{elleisnum$(w,k,\{\fl=0\})$}\kbdsidx{elleisnum}\label{se:elleisnum}
$k$ being an even positive integer, computes the numerical value of the
Eisenstein series of weight $k$ at the lattice $w$, as given by
\tet{ellperiods}, namely
$$
(2i \pi/\omega_2)^k
\Big(1 + 2/\zeta(1-k) \sum_{n\geq 1} n^{k-1}q^n / (1-q^n)\Big),
$$
where $q = \exp(2i\pi \tau)$ and $\tau:=\omega_1/\omega_2$ belongs to the
complex upper half-plane. It is also possible to directly input $w =
[\omega_1,\omega_2]$, or an elliptic curve $E$ as given by \kbd{ellinit}.
\bprog
? w = ellperiods([1,I]);
? elleisnum(w, 4)
%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)
%3 = -3.977978632282564763 E-33
? E = ellinit([1, 0]);
? elleisnum(E, 4, 1)
%5 = -47.999999999999999999999999999999999998
@eprog
When \fl\ is non-zero and $k=4$ or 6, returns the elliptic invariants $g_2$
or $g_3$, such that
$$y^2 = 4x^3 - g_2 x - g_3$$
is a Weierstrass equation for $E$.
The library syntax is \fun{GEN}{elleisnum}{GEN w, long k, long flag, long prec}.
\subsec{elleta$(w)$}\kbdsidx{elleta}\label{se:elleta}
Returns the quasi-periods $[\eta_1,\eta_2]$
attached to the lattice basis $\var{w} = [\omega_1, \omega_2]$.
Alternatively, \var{w} can be an elliptic curve $E$ as output by
\kbd{ellinit}, in which case, the quasi periods attached to the period
lattice basis \kbd{$E$.omega} (namely, \kbd{$E$.eta}) are returned.
\bprog
? elleta([1, I])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
@eprog
The library syntax is \fun{GEN}{elleta}{GEN w, long prec}.
\subsec{ellformaldifferential$(E, \{n=\var{seriesprecision}\}, \{t = 'x\})$}\kbdsidx{ellformaldifferential}\label{se:ellformaldifferential}
Let $\omega := dx / (2y+a_1x+a_3)$ be the invariant differential form
attached to the model $E$ of some elliptic curve (\kbd{ellinit} form),
and $\eta := x(t)\omega$. Return $n$ terms (\tet{seriesprecision} by default)
of $f(t),g(t)$ two power series in the formal parameter $t=-x/y$ such that
$\omega = f(t) dt$, $\eta = g(t) dt$:
$$f(t) = 1+a_1 t + (a_1^2 + a_2) t^2 + \dots,\quad
g(t) = t^{-2} +\dots $$
\bprog
? E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);
? f
%2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)
? g
%3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)
@eprog
The library syntax is \fun{GEN}{ellformaldifferential}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformalexp$(E, \{n = \var{seriesprecision}\}, \{z = 'x\})$}\kbdsidx{ellformalexp}\label{se:ellformalexp}
The elliptic formal exponential \kbd{Exp} attached to $E$ is the
isomorphism from the formal additive law to the formal group of $E$. It is
normalized so as to be the inverse of the elliptic logarithm (see
\tet{ellformallog}): $\kbd{Exp} \circ L = \Id$. Return $n$ terms of this
power series:
\bprog
? E=ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
%1 = z + 2/5*z^5 - 3/28*z^7 + 2/15*z^9 + O(z^11)
? L = ellformallog(E,10,'t);
? subst(Exp,z,L)
%3 = t + O(t^11)
@eprog
The library syntax is \fun{GEN}{ellformalexp}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformallog$(E, \{n = \var{seriesprecision}\}, \{v = 'x\})$}\kbdsidx{ellformallog}\label{se:ellformallog}
The formal elliptic logarithm is a series $L$ in $t K[[t]]$
such that $d L = \omega = dx / (2y + a_1x + a_3)$, the canonical invariant
differential attached to the model $E$. It gives an isomorphism
from the formal group of $E$ to the additive formal group.
\bprog
? E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
%1 = t - 2/5*t^5 + 3/28*t^7 + 2/3*t^9 + O(t^10)
? [f,g] = ellformaldifferential(E,8,'t);
? L' - f
%3 = O(t^8)
@eprog
The library syntax is \fun{GEN}{ellformallog}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformalpoint$(E, \{n = \var{seriesprecision}\}, \{v = 'x\})$}\kbdsidx{ellformalpoint}\label{se:ellformalpoint}
If $E$ is an elliptic curve, return the coordinates $x(t), y(t)$ in the
formal group of the elliptic curve $E$ in the formal parameter $t = -x/y$
at $\infty$:
$$ x = t^{-2} -a_1 t^{-1} - a_2 - a_3 t + \dots $$
$$ y = - t^{-3} -a_1 t^{-2} - a_2t^{-1} -a_3 + \dots $$
Return $n$ terms (\tet{seriesprecision} by default) of these two power
series, whose coefficients are in $\Z[a_1,a_2,a_3,a_4,a_6]$.
\bprog
? E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
? x
%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
? y
%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
? E = ellinit([0,1/2]); ellformalpoint(E,7)
%4 = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]
@eprog
The library syntax is \fun{GEN}{ellformalpoint}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellformalw$(E, \{n = \var{seriesprecision}\}, \{t = 'x\})$}\kbdsidx{ellformalw}\label{se:ellformalw}
Return the formal power series $w$ attached to the elliptic curve $E$,
in the variable $t$:
$$ w(t) = t^3 + a_1 t^4 + (a_2 + a_1^2) t^5 + \cdots + O(t^{n+3}),$$
which is the formal expansion of $-1/y$ in the formal parameter $t := -x/y$
at $\infty$ (take $n = \tet{seriesprecision}$ if $n$ is omitted). The
coefficients of $w$ belong to $\Z[a_1,a_2,a_3,a_4,a_6]$.
\bprog
? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
%1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)
@eprog
The library syntax is \fun{GEN}{ellformalw}{GEN E, long precdl, long n = -1} where \kbd{n} is a variable number.
\subsec{ellfromeqn$(P)$}\kbdsidx{ellfromeqn}\label{se:ellfromeqn}
Given a genus $1$ plane curve, defined by the affine equation $f(x,y) = 0$,
return the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of a Weierstrass equation
for its Jacobian. This allows to recover a Weierstrass model for an elliptic
curve given by a general plane cubic or by a binary quartic or biquadratic
model. The function implements the $f \mapsto f^*$ formulae of Artin, Tate
and Villegas (Advances in Math. 198 (2005), pp. 366--382).
In the example below, the function is used to convert between twisted Edwards
coordinates and Weierstrass coordinates.
\bprog
? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]
? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);
? isprime(ellcard(E) / 8)
%3 = 1
@eprog
The elliptic curve attached to the sum of two cubes is given by
\bprog
? ellfromeqn(x^3+y^3 - a)
%1 = [0, 0, -9*a, 0, -27*a^2]
@eprog
\misctitle{Congruent number problem:}
Let $n$ be an integer, if $a^2+b^2=c^2$ and $a\*b=2\*n$,
then by substituting $b$ by $2\*n/a$ in the first equation,
we get $((a^2+(2\*n/a)^2)-c^2)\*a^2 = 0$.
We set $x=a$, $y=a\*c$.
\bprog
? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
%1 = [0, 0, 0, -16*n^2, 0]
@eprog
For example $23$ is congruent since the curve has a point of infinite order,
namely:
\bprog
? ellheegner( ellinit(subst(En, n, 23)) )
%2 = [168100/289, 68053440/4913]
@eprog
The library syntax is \fun{GEN}{ellfromeqn}{GEN P}.
\subsec{ellfromj$(j)$}\kbdsidx{ellfromj}\label{se:ellfromj}
Returns the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of a fixed elliptic curve
with $j$-invariant $j$.
The library syntax is \fun{GEN}{ellfromj}{GEN j}.
\subsec{ellgenerators$(E)$}\kbdsidx{ellgenerators}\label{se:ellgenerators}
If $E$ is an elliptic curve over the rationals, return a $\Z$-basis of the
free part of the \idx{Mordell-Weil group} attached to $E$. This relies on
the \tet{elldata} database being installed and referencing the curve, and so
is only available for curves over $\Z$ of small conductors.
If $E$ is an elliptic curve over a finite field $\F_q$ as output by
\tet{ellinit}, return a minimal set of generators for the group $E(\F_q)$.
The library syntax is \fun{GEN}{ellgenerators}{GEN E}.
\subsec{ellglobalred$(E)$}\kbdsidx{ellglobalred}\label{se:ellglobalred}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit} attached
to an elliptic curve defined over a number field. This function calculates
the arithmetic conductor and the global \idx{Tamagawa number} $c$.
The result $[N,v,c,F,L]$ is slightly different if $E$ is defined
over $\Q$ (domain $D = 1$ in \kbd{ellinit}) or over a number field
(domain $D$ is a number field structure, including \kbd{nfinit(x)}
representing $\Q$ !):
\item $N$ is the arithmetic conductor of the curve,
\item $v$ is an obsolete field, left in place for backward compatibility.
If $E$ is defined over $\Q$, $v$ gives the coordinate change for $E$ to the
standard minimal integral model (\tet{ellminimalmodel} provides it in a
cheaper way); if $E$ is defined over another number field, $v$ gives a
coordinate change to an integral model (\tet{ellintegralmodel} provides it
in a cheaper way).
\item $c$ is the product of the local Tamagawa numbers $c_p$, a quantity
which enters in the \idx{Birch and Swinnerton-Dyer conjecture},
\item $F$ is the factorization of $N$,
\item $L$ is a vector, whose $i$-th entry contains the local data
at the $i$-th prime ideal divisor of $N$, i.e.
\kbd{L[i] = elllocalred(E,F[i,1])}. If $E$ is defined over $\Q$, the local
coordinate change has been deleted and replaced by a 0; if $E$ is defined
over another number field the local coordinate change to a local minimal
model is given relative to the integral model afforded by $v$ (so either
start from an integral model so that $v$ be trivial, or apply $v$ first).
The library syntax is \fun{GEN}{ellglobalred}{GEN E}.
\subsec{ellgroup$(E,\{p\},\{\fl\})$}\kbdsidx{ellgroup}\label{se:ellgroup}
Let $E$ be an \kbd{ell} structure as output by \kbd{ellinit}, defined over
$\Q$ or a finite field $\F_q$. The argument $p$ is best left omitted if the
curve is defined over a finite field, and must be a prime number otherwise.
This function computes the structure of the group $E(\F_q) \sim \Z/d_1\Z
\times \Z/d_2\Z$, with $d_2\mid d_1$.
If the curve is defined over $\Q$, $p$ must be explicitly given and the
function computes the structure of the reduction over $\F_p$; the
equation need not be minimal at $p$, but a minimal model will be more
efficient. The reduction is allowed to be singular, and we return the
structure of the (cyclic) group of non-singular points in this case.
If the flag is $0$ (default), return $[d_1]$ or $[d_1, d_2]$, if $d_2>1$.
If the flag is $1$, return a triple $[h,\var{cyc},\var{gen}]$, where
$h$ is the curve cardinality, \var{cyc} gives the group structure as a
product of cyclic groups (as per $\fl = 0$). More precisely, if $d_2 > 1$,
the output is $[d_1d_2, [d_1,d_2],[P,Q]]$ where $P$ is
of order $d_1$ and $[P,Q]$ generates the curve.
\misctitle{Caution} It is not guaranteed that $Q$ has order $d_2$, which in
the worst case requires an expensive discrete log computation. Only that
\kbd{ellweilpairing(E, P, Q, d1)} has order $d_2$.
\bprog
? E = ellinit([0,1]); \\ y^2 = x^3 + 0.x + 1, defined over Q
? ellgroup(E, 7)
%2 = [6, 2] \\ Z/6 x Z/2, non-cyclic
? E = ellinit([0,1] * Mod(1,11)); \\ defined over F_11
? ellgroup(E) \\ no need to repeat 11
%4 = [12]
? ellgroup(E, 11) \\ ... but it also works
%5 = [12]
? ellgroup(E, 13) \\ ouch, inconsistent input!
*** at top-level: ellgroup(E,13)
*** ^--------------
*** ellgroup: inconsistent moduli in Rg_to_Fp:
11
13
? ellgroup(E, 7, 1)
%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]
@eprog\noindent
If $E$ is defined over $\Q$, we allow singular reduction and in this case we
return the structure of the group of non-singular points, satisfying
$\#E_{ns}(\F_p) = p - a_p$.
\bprog
? E = ellinit([0,5]);
? ellgroup(E, 5, 1)
%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
? ellap(E, 5)
%3 = 0 \\ additive reduction at 5
? E = ellinit([0,-1,0,35,0]);
? ellgroup(E, 5, 1)
%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
? ellap(E, 5)
%6 = 1 \\ split multiplicative reduction at 5
? ellgroup(E, 7, 1)
%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
? ellap(E, 7)
%8 = -1 \\ non-split multiplicative reduction at 7
@eprog
The library syntax is \fun{GEN}{ellgroup0}{GEN E, GEN p = NULL, long flag}.
Also available is \fun{GEN}{ellgroup}{GEN E, GEN p}, corresponding
to \fl = 0.
\subsec{ellheegner$(E)$}\kbdsidx{ellheegner}\label{se:ellheegner}
Let $E$ be an elliptic curve over the rationals, assumed to be of
(analytic) rank $1$. This returns a non-torsion rational point on the curve,
whose canonical height is equal to the product of the elliptic regulator by the
analytic Sha.
This uses the Heegner point method, described in Cohen GTM 239; the complexity
is proportional to the product of the square root of the conductor and the
height of the point (thus, it is preferable to apply it to strong Weil curves).
\bprog
? E = ellinit([-157^2,0]);
? u = ellheegner(E); print(u[1], "\n", u[2])
69648970982596494254458225/166136231668185267540804
538962435089604615078004307258785218335/67716816556077455999228495435742408
? ellheegner(ellinit([0,1])) \\ E has rank 0 !
*** at top-level: ellheegner(E=ellinit
*** ^--------------------
*** ellheegner: The curve has even analytic rank.
@eprog
The library syntax is \fun{GEN}{ellheegner}{GEN E}.
\subsec{ellheight$(E,P,\{Q\})$}\kbdsidx{ellheight}\label{se:ellheight}
Global N\'eron-Tate height $h(P)$ of the point $P$ on the elliptic curve
$E/\Q$, using the normalization in Cremona's \emph{Algorithms for modular
elliptic curves}. $E$ must be an \kbd{ell} as output by \kbd{ellinit}; it
needs not be given by a minimal model although the computation will be faster
if it is.
If the argument $Q$ is present, computes the value of the bilinear
form $(h(P+Q)-h(P-Q)) / 4$.
The library syntax is \fun{GEN}{ellheight0}{GEN E, GEN P, GEN Q = NULL, long prec}.
Also available is \fun{GEN}{ellheight}{GEN E, GEN P, long prec}
($Q$ omitted).
\subsec{ellheightmatrix$(E,x)$}\kbdsidx{ellheightmatrix}\label{se:ellheightmatrix}
$x$ being a vector of points, this
function outputs the Gram matrix of $x$ with respect to the N\'eron-Tate
height, in other words, the $(i,j)$ component of the matrix is equal to
\kbd{ellbil($E$,x[$i$],x[$j$])}. The rank of this matrix, at least in some
approximate sense, gives the rank of the set of points, and if $x$ is a
basis of the \idx{Mordell-Weil group} of $E$, its determinant is equal to
the regulator of $E$. Note our height normalization follows Cremona's
\emph{Algorithms for modular elliptic curves}: this matrix should be divided
by 2 to be in accordance with, e.g., Silverman's normalizations.
The library syntax is \fun{GEN}{ellheightmatrix}{GEN E, GEN x, long prec}.
\subsec{ellidentify$(E)$}\kbdsidx{ellidentify}\label{se:ellidentify}
Look up the elliptic curve $E$, defined by an arbitrary model over $\Q$,
in the \tet{elldata} database.
Return \kbd{[[N, M, G], C]} where $N$ is the curve name in Cremona's
elliptic curve database, $M$ is the minimal model, $G$ is a $\Z$-basis of
the free part of the \idx{Mordell-Weil group} $E(\Q)$ and $C$ is the
change of coordinates change, suitable for \kbd{ellchangecurve}.
The library syntax is \fun{GEN}{ellidentify}{GEN E}.
\subsec{ellinit$(x,\{D=1\})$}\kbdsidx{ellinit}\label{se:ellinit}
Initialize an \tet{ell} structure, attached to the elliptic curve $E$.
$E$ is either
\item a $5$-component vector $[a_1,a_2,a_3,a_4,a_6]$ defining the elliptic
curve with Weierstrass equation
$$ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6, $$
\item a $2$-component vector $[a_4,a_6]$ defining the elliptic
curve with short Weierstrass equation
$$ Y^2 = X^3 + a_4 X + a_6, $$
\item a character string in Cremona's notation, e.g. \kbd{"11a1"}, in which
case the curve is retrieved from the \tet{elldata} database if available.
The optional argument $D$ describes the domain over which the curve is
defined:
\item the \typ{INT} $1$ (default): the field of rational numbers $\Q$.
\item a \typ{INT} $p$, where $p$ is a prime number: the prime finite field
$\F_p$.
\item an \typ{INTMOD} \kbd{Mod(a, p)}, where $p$ is a prime number: the
prime finite field $\F_p$.
\item a \typ{FFELT}, as returned by \tet{ffgen}: the corresponding finite
field $\F_q$.
\item a \typ{PADIC}, $O(p^n)$: the field $\Q_p$, where $p$-adic quantities
will be computed to a relative accuracy of $n$ digits. We advise to input a
model defined over $\Q$ for such curves. In any case, if you input an
approximate model with \typ{PADIC} coefficients, it will be replaced by a lift
to $\Q$ (an exact model ``close'' to the one that was input) and all quantities
will then be computed in terms of this lifted model, at the given accuracy.
\item a \typ{REAL} $x$: the field $\C$ of complex numbers, where floating
point quantities are by default computed to a relative accuracy of
\kbd{precision}$(x)$. If no such argument is given, the value of
\kbd{realprecision} at the time \kbd{ellinit} is called will be used.
\item a number field $K$, given by a \kbd{nf} or \kbd{bnf} structure; a
\kbd{bnf} is required for \kbd{ellminimalmodel}.
\item a prime ideal $\goth{p}$, given by a \kbd{prid} structure; valid if
$x$ is a curve defined over a number field $K$ and the equation is integral
and minimal at $\goth{p}$.
This argument $D$ is indicative: the curve coefficients are checked for
compatibility, possibly changing $D$; for instance if $D = 1$ and
an \typ{INTMOD} is found. If inconsistencies are detected, an error is
raised:
\bprog
? ellinit([1 + O(5), 1], O(7));
*** at top-level: ellinit([1+O(5),1],O
*** ^--------------------
*** ellinit: inconsistent moduli in ellinit: 7 != 5
@eprog\noindent If the curve coefficients are too general to fit any of the
above domain categories, only basic operations, such as point addition, will
be supported later.
If the curve (seen over the domain $D$) is singular, fail and return an
empty vector $[]$.
\bprog
? E = ellinit([0,0,0,0,1]); \\ y^2 = x^3 + 1, over Q
? E = ellinit([0,1]); \\ the same curve, short form
? E = ellinit("36a1"); \\ sill the same curve, Cremona's notations
? E = ellinit([0,1], 2) \\ over F2: singular curve
%4 = []
? E = ellinit(['a4,'a6] * Mod(1,5)); \\ over F_5[a4,a6], basic support !
@eprog\noindent
The result of \tet{ellinit} is an \tev{ell} structure. It contains at least
the following information in its components:
%
$$ a_1,a_2,a_3,a_4,a_6,b_2,b_4,b_6,b_8,c_4,c_6,\Delta,j.$$
%
All are accessible via member functions. In particular, the discriminant is
\kbd{$E$.disc}, and the $j$-invariant is \kbd{$E$.j}.
\bprog
? E = ellinit([a4, a6]);
? E.disc
%2 = -64*a4^3 - 432*a6^2
? E.j
%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)
@eprog
Further components contain domain-specific data, which are in general dynamic:
only computed when needed, and then cached in the structure.
\bprog
? E = ellinit([2,3], 10^60+7); \\ E over F_p, p large
? ellap(E)
time = 4,440 ms.
%2 = -1376268269510579884904540406082
? ellcard(E); \\ now instantaneous !
time = 0 ms.
? ellgenerators(E);
time = 5,965 ms.
? ellgenerators(E); \\ second time instantaneous
time = 0 ms.
@eprog
See the description of member functions related to elliptic curves at the
beginning of this section.
The library syntax is \fun{GEN}{ellinit}{GEN x, GEN D = NULL, long prec}.
\subsec{ellintegralmodel$(E,\{\&v\})$}\kbdsidx{ellintegralmodel}\label{se:ellintegralmodel}
Let $E$ be an \kbd{ell} structure over a number field $K$. This function
returns an integral model. If $v$ is present, sets $v = [u,0,0,0]$ to the
corresponding change of variable: the return value is identical to that of
\kbd{ellchangecurve(E, v)}.
The library syntax is \fun{GEN}{ellintegralmodel}{GEN E, GEN *v = NULL}.
\subsec{ellisdivisible$(E,P,n,\{\&Q\}))$}\kbdsidx{ellisdivisible}\label{se:ellisdivisible}
Given $E/K$ a number field and $P$ in $E(K)$
return $1$ if $P = [n]R$ for some $R$ in $E(K)$ and set $Q$ to one such $R$;
and return $0$ otherwise. The integer $n \geq 0$ may be given as
\kbd{ellxn(E,n)}, if many points need to be tested.
\bprog
? K = nfinit(polcyclo(11,t));
? E = ellinit([0,-1,1,0,0], K);
? P = [0,0];
? ellorder(E,P)
%4 = 5
? ellisdivisible(E,P,5, &Q)
%5 = 1
? lift(Q)
%6 = [-t^7-t^6-t^5-t^4+1, -t^9-2*t^8-2*t^7-3*t^6-3*t^5-2*t^4-2*t^3-t^2-1]
? ellorder(E, Q)
%7 = 25
@eprog\noindent The algebraic complexity of the underlying algorithm is in
$O(n^4)$, so it is advisable to first factor $n$, then use a chain of checks
attached to the prime divisors of $n$: the function will do it itself unless
$n$ is given in \kbd{ellxn} form.
The library syntax is \fun{long}{ellisdivisible}{GEN E, GEN P, GEN n, GEN *Q) = NULL}.
\subsec{ellisogeny$(E, G, \{\var{only\_image} = 0\}, \{x = 'x\}, \{y = 'y\})$}\kbdsidx{ellisogeny}\label{se:ellisogeny}
Given an elliptic curve $E$, a finite subgroup $G$ of $E$ is given either
as a generating point $P$ (for a cyclic $G$) or as a polynomial whose roots
vanish on the $x$-coordinates of the non-zero elements of $G$ (general case
and more efficient if available). This function returns the
$[a_1,a_2,a_3,a_4,a_6]$ invariants of the quotient elliptic curve $E/G$ and
(if \var{only\_image} is zero (the default)) a vector of rational
functions $[f, g, h]$ such that the isogeny $E \to E/G$ is given by $(x,y)
\mapsto (f(x)/h(x)^2, g(x,y)/h(x)^3)$.
\bprog
? E = ellinit([0,1]);
? elltors(E)
%2 = [6, [6], [[2, 3]]]
? ellisogeny(E, [2,3], 1) \\ Weierstrass model for E/<P>
%3 = [0, 0, 0, -135, -594]
? ellisogeny(E,[-1,0])
%4 = [[0,0,0,-15,22], [x^3+2*x^2+4*x+3, y*x^3+3*y*x^2-2*y, x+1]]
@eprog
The library syntax is \fun{GEN}{ellisogeny}{GEN E, GEN G, long only_image, long x = -1, long y = -1} where \kbd{x}, \kbd{y} are variable numbers.
\subsec{ellisogenyapply$(f, g)$}\kbdsidx{ellisogenyapply}\label{se:ellisogenyapply}
Given an isogeny of elliptic curves $f:E'\to E$ (being the result of a call
to \tet{ellisogeny}), apply $f$ to $g$:
\item if $g$ is a point $P$ in the domain of $f$, return the image $f(P)$;
\item if $g:E''\to E'$ is a compatible isogeny, return the composite
isogeny $f \circ g: E''\to E$.
\bprog
? one = ffgen(101, 't)^0;
? E = ellinit([6, 53, 85, 32, 34] * one);
? P = [84, 71] * one;
? ellorder(E, P)
%4 = 5
? [F, f] = ellisogeny(E, P); \\ f: E->F = E/<P>
? ellisogenyapply(f, P)
%6 = [0]
? F = ellinit(F);
? Q = [89, 44] * one;
? ellorder(F, Q)
%9 = 2
? [G, g] = ellisogeny(F, Q); \\ g: F->G = F/<Q>
? gof = ellisogenyapply(g, f); \\ gof: E -> G
@eprog
The library syntax is \fun{GEN}{ellisogenyapply}{GEN f, GEN g}.
\subsec{ellisomat$(E, \{\var{fl}=0\})$}\kbdsidx{ellisomat}\label{se:ellisomat}
Given an elliptic curve $E$ defined over $\Q$, compute representatives of the
isomorphism classes of elliptic curves $\Q$-isogenous to $E$. The function
returns a vector $[L,M]$ where $L$ is a list of triples $[E_i, f_i, g_i]$,
where $E_i$ is an elliptic curve in $[a_4,a_6]$ form, $f_i: E \to E_i$
is a rational isogeny, $g_i: E_i \to E$ is the dual isogeny of $f_i$,
and $M$ is the matrix such that $M_{i,j}$ is the degree of the isogeny between
$E_i$ and $E_j$. Furthermore the first curve $E_1$ is isomorphic to $E$
by $f_1$. If the flag $\var{fl}=1$, the $f_i$ and $g_i$ are not computed,
which saves time, and $L$ is the list of the curves $E_i$.
\bprog
? E = ellinit("14a1");
? [L,M] = ellisomat(E);
? LE = apply(x->x[1], L) \\ list of curves
%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
[-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-47449331/864]]
? L[2][2] \\ isogeny f_2
%4 = [x^3+3/4*x^2+19/2*x-311/12,
1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
? L[2][3] \\ dual isogeny g_2
%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
-1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x
+(-3601/64*y+16947/512),x-3/4]
? apply(E->ellidentify(ellinit(E))[1][1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
? M
%7 =
[1 3 3 2 6 6]
[3 1 9 6 2 18]
[3 9 1 6 18 2]
[2 6 6 1 3 3]
[6 2 18 3 1 9]
[6 18 2 3 9 1]
@eprog
The library syntax is \fun{GEN}{ellisomat}{GEN E, long fl}.
\subsec{ellisoncurve$(E,z)$}\kbdsidx{ellisoncurve}\label{se:ellisoncurve}
Gives 1 (i.e.~true) if the point $z$ is on the elliptic curve $E$, 0
otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to
take this into account, i.e.~an imprecise equality is checked, not a precise
one. It is allowed for $z$ to be a vector of points in which case a vector
(of the same type) is returned.
The library syntax is \fun{GEN}{ellisoncurve}{GEN E, GEN z}.
Also available is \fun{int}{oncurve}{GEN E, GEN z} which does not
accept vectors of points.
\subsec{ellissupersingular$(E,\{p\})$}\kbdsidx{ellissupersingular}\label{se:ellissupersingular}
Return 1 if the elliptic curve $E$ defined over a number field
or a finite field is supersingular at $p$, and $0$ otherwise.
If the curve is defined over a number field, $p$ must be explicitly given,
and must be a prime number, resp.~a maximal ideal, if the curve is defined
over $\Q$, resp.~a general number field: we return $1$ if and only if $E$
has supersingular good reduction at $p$.
Alternatively, $E$ can be given by its $j$-invariant in a finite field. In
this case $p$ must be omitted.
\bprog
? g = ffprimroot(ffgen(7^5))
%1 = x^3 + 2*x^2 + 3*x + 1
? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]
%2 = [6]
? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
? E = ellinit([y,1], K);
? ellissupersingular(E, P)
%5 = 1
@eprog
The library syntax is \fun{GEN}{ellissupersingular}{GEN E, GEN p = NULL}.
Also available is
\fun{int}{elljissupersingular}{GEN j} where $j$ is a $j$-invariant of a curve
over a finite field.
\subsec{ellj$(x)$}\kbdsidx{ellj}\label{se:ellj}
Elliptic $j$-invariant. $x$ must be a complex number
with positive imaginary part, or convertible into a power series or a
$p$-adic number with positive valuation.
The library syntax is \fun{GEN}{jell}{GEN x, long prec}.
\subsec{elllocalred$(E,p)$}\kbdsidx{elllocalred}\label{se:elllocalred}
Calculates the \idx{Kodaira} type of the local fiber of the elliptic curve
$E$ at $p$. $E$ must be an \kbd{ell} structure as output by
\kbd{ellinit}, over $\Q$ ($p$ a rational prime) or a number field $K$ ($p$
a maximal ideal given by a \kbd{prid} structure), and is assumed to have all
its coefficients $a_i$ integral.
The result is a 4-component vector $[f,kod,v,c]$. Here $f$ is the exponent of
$p$ in the arithmetic conductor of $E$, and $kod$ is the Kodaira type which
is coded as follows:
1 means good reduction (type I$_0$), 2, 3 and 4 mean types II, III and IV
respectively, $4+\nu$ with $\nu>0$ means type I$_\nu$;
finally the opposite values $-1$, $-2$, etc.~refer to the starred types
I$_0^*$, II$^*$, etc. The third component $v$ is itself a vector $[u,r,s,t]$
giving the coordinate changes done during the local reduction;
$u = 1$ if and only if the given equation was already minimal at $p$.
Finally, the last component $c$ is the local \idx{Tamagawa number} $c_p$.
The library syntax is \fun{GEN}{elllocalred}{GEN E, GEN p}.
\subsec{elllog$(E,P,G,\{o\})$}\kbdsidx{elllog}\label{se:elllog}
Given two points $P$ and $G$ on the elliptic curve $E/\F_q$, returns the
discrete logarithm of $P$ in base $G$, i.e. the smallest non-negative
integer $n$ such that $P = [n]G$.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
If present, $o$ represents the order of $G$, see \secref{se:DLfun};
the preferred format for this parameter is \kbd{[N, factor(N)]}, where $N$
is the order of $G$.
If no $o$ is given, assume that $G$ generates the curve.
The function also assumes that $P$ is a multiple of $G$.
\bprog
? a = ffgen(ffinit(2,8),'a);
? E = ellinit([a,1,0,0,1]); \\ over F_{2^8}
? x = a^3; y = ellordinate(E,x)[1];
? P = [x,y]; G = ellmul(E, P, 113);
? ord = [242, factor(242)]; \\ P generates a group of order 242. Initialize.
? ellorder(E, G, ord)
%4 = 242
? e = elllog(E, P, G, ord)
%5 = 15
? ellmul(E,G,e) == P
%6 = 1
@eprog
The library syntax is \fun{GEN}{elllog}{GEN E, GEN P, GEN G, GEN o = NULL}.
\subsec{elllseries$(E,s,\{A=1\})$}\kbdsidx{elllseries}\label{se:elllseries}
This function is deprecated, use \kbd{lfun(E,s)} instead.
$E$ being an elliptic curve, given by an arbitrary model over $\Q$ as output
by \kbd{ellinit}, this function computes the value of the $L$-series of $E$ at
the (complex) point $s$. This function uses an $O(N^{1/2})$ algorithm, where
$N$ is the conductor.
The optional parameter $A$ fixes a cutoff point for the integral and is best
left omitted; the result must be independent of $A$, up to
\kbd{realprecision}, so this allows to check the function's accuracy.
The library syntax is \fun{GEN}{elllseries}{GEN E, GEN s, GEN A = NULL, long prec}.
\subsec{ellminimalmodel$(E,\{\&v\})$}\kbdsidx{ellminimalmodel}\label{se:ellminimalmodel}
Let $E$ be an \kbd{ell} structure over a number field $K$. This function
determines whether $E$ admits a global minimal integral model. If so, it
returns it and sets $v = [u,r,s,t]$ to the corresponding change of variable:
the return value is identical to that of \kbd{ellchangecurve(E, v)}.
Else return the (non-principal) Weierstrass class of $E$, i.e. the class of
$\prod \goth{p}^{(v_{\goth{p}}{\Delta} - \delta_{\goth{p}}) / 12}$ where
$\Delta = \kbd{E.disc}$ is the model's discriminant and
$\goth{p} ^ \delta_{\goth{p}}$ is the local minimal discriminant.
This function requires either that $E$ be defined
over the rational field $\Q$ (with domain $D = 1$ in \kbd{ellinit}),
in which case a global minimal model always exists, or over a number
field given by a \var{bnf} structure. The Weierstrass class is given in
\kbd{bnfisprincipal} format, i.e. in terms of the \kbd{K.gen} generators.
The resulting model has integral coefficients and is everywhere minimal, the
coefficients $a_1$ and $a_3$ are reduced modulo $2$ (in terms of the fixed
integral basis \kbd{K.zk}) and $a_2$ is reduced modulo $3$. Over $\Q$, we
further require that $a_1$ and $a_3$ be $0$ or $1$, that $a_2$ be $0$ or $\pm
1$ and that $u > 0$ in the change of variable: both the model and the change
of variable $v$ are then unique.\sidx{minimal model}
\bprog
? e = ellinit([6,6,12,55,233]); \\ over Q
? E = ellminimalmodel(e, &v);
? E[1..5]
%3 = [0, 0, 0, 1, 1]
? v
%4 = [2, -5, -3, 9]
@eprog
\bprog
? K = bnfinit(a^2-65); \\ over a non-principal number field
? K.cyc
%2 = [2]
? u = Mod(8+a, K.pol);
? E = ellinit([1,40*u+1,0,25*u^2,0], K);
? ellminimalmodel(E) \\ no global minimal model exists over Z_K
%6 = [1]~
@eprog
The library syntax is \fun{GEN}{ellminimalmodel}{GEN E, GEN *v = NULL}.
\subsec{ellminimaltwist$(E, \{\fl=0\})$}\kbdsidx{ellminimaltwist}\label{se:ellminimaltwist}
Let $E$ be an elliptic curve defined over $\Q$, return
a discriminant $D$ such that the twist of $E$ by $D$ is minimal among all
possible quadratic twists, i.e. if $\fl=0$, its minimal model has minimal
discriminant, or if $\fl=1$, it has minimal conductor.
In the example below, we find a curve with $j$-invariant $3$ and minimal
conductor.
\bprog
? E=ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E)[1]
%2 = 357075
? D = ellminimaltwist(E,1)
%3 = -15
? E2=ellminimalmodel(ellinit(elltwist(E,D)));
? ellglobalred(E2)[1]
%5 = 14283
@eprog
The library syntax is \fun{GEN}{ellminimaltwist0}{GEN E, long flag}.
Also available are
\fun{GEN}{ellminimaltwist}{E} for $\fl=0$, and
\fun{GEN}{ellminimaltwistcond}{E} for $\fl=1$.
\subsec{ellmoddegree$(e)$}\kbdsidx{ellmoddegree}\label{se:ellmoddegree}
$e$ being an elliptic curve defined over $\Q$ output by \kbd{ellinit},
compute the modular degree of $e$ divided by the square of
the Manin constant. Return $[D, err]$, where $D$ is a rational number and
err is exponent of the truncation error.
The library syntax is \fun{GEN}{ellmoddegree}{GEN e, long bitprec}.
\subsec{ellmodulareqn$(N,\{x\},\{y\})$}\kbdsidx{ellmodulareqn}\label{se:ellmodulareqn}
Given a prime $N < 500$, return a vector $[P,t]$ where $P(x,y)$
is a modular equation of level $N$, i.e.~a bivariate polynomial with integer
coefficients; $t$ indicates the type of this equation: either
\emph{canonical} ($t = 0$) or \emph{Atkin} ($t = 1$). This function requires
the \kbd{seadata} package and its only use is to give access to the package
contents. See \tet{polmodular} for a more general and more flexible function.
Let $j$ be the $j$-invariant function. The polynomial $P$ satisfies
the functional equation,
$$ P(f,j) = P(f \mid W_N, j \mid W_N) = 0 $$
for some modular function $f = f_N$ (hand-picked for each fixed $N$ to
minimize its size, see below), where $W_N(\tau) = -1 / (N\*\tau)$ is the
Atkin-Lehner involution. These two equations allow to compute the values of
the classical modular polynomial $\Phi_N$, such that $\Phi_N(j(\tau),
j(N\tau)) = 0$, while being much smaller than the latter. More precisely, we
have $j(W_N(\tau)) = j(N\*\tau)$; the function $f$ is invariant under
$\Gamma_0(N)$ and also satisfies
\item for Atkin type: $f \mid W_N = f$;
\item for canonical type: let $s = 12/\gcd(12,N-1)$, then
$f \mid W_N = N^s / f$. In this case, $f$ has a simple definition:
$f(\tau) = N^s \* \big(\eta(N\*\tau) / \eta(\tau) \big)^{2\*s}$,
where $\eta$ is Dedekind's eta function.
The following GP function returns values of the classical modular polynomial
by eliminating $f_N(\tau)$ in the above functional equation,
for $N\leq 31$ or $N\in\{41,47,59,71\}$.
\bprog
classicaleqn(N, X='X, Y='Y)=
{
my([P,t] = ellmodulareqn(N), Q, d);
if (poldegree(P,'y) > 2, error("level unavailable in classicaleqn"));
if (t == 0, \\ Canonical
my(s = 12/gcd(12,N-1));
Q = 'x^(N+1) * substvec(P,['x,'y],[N^s/'x,Y]);
d = N^(s*(2*N+1)) * (-1)^(N+1);
, \\ Atkin
Q = subst(P,'y,Y);
d = (X-Y)^(N+1));
polresultant(subst(P,'y,X), Q) / d;
}
@eprog
The library syntax is \fun{GEN}{ellmodulareqn}{long N, long x = -1, long y = -1} where \kbd{x}, \kbd{y} are variable numbers.
\subsec{ellmul$(E,z,n)$}\kbdsidx{ellmul}\label{se:ellmul}
Computes $[n]z$, where $z$ is a point on the elliptic curve $E$. The
exponent $n$ is in $\Z$, or may be a complex quadratic integer if the curve $E$
has complex multiplication by $n$ (if not, an error message is issued).
\bprog
? Ei = ellinit([1,0]); z = [0,0];
? ellmul(Ei, z, 10)
%2 = [0] \\ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \\ Ei has complex multiplication by Z[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0] \\ an alternative syntax for the same query
? Ej = ellinit([0,1]); z = [-1,0];
? ellmul(Ej, z, I)
*** at top-level: ellmul(Ej,z,I)
*** ^--------------
*** ellmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]
@eprog
The simple-minded algorithm for the CM case assumes that we are in
characteristic $0$, and that the quadratic order to which $n$ belongs has
small discriminant.
The library syntax is \fun{GEN}{ellmul}{GEN E, GEN z, GEN n}.
\subsec{ellneg$(E,z)$}\kbdsidx{ellneg}\label{se:ellneg}
Opposite of the point $z$ on elliptic curve $E$.
The library syntax is \fun{GEN}{ellneg}{GEN E, GEN z}.
\subsec{ellnonsingularmultiple$(E,P)$}\kbdsidx{ellnonsingularmultiple}\label{se:ellnonsingularmultiple}
Given an elliptic curve $E/\Q$ (more precisely, a model defined over $\Q$
of a curve) and a rational point $P \in E(\Q)$, returns the pair $[R,n]$,
where $n$ is the least positive integer such that $R := [n]P$ has good
reduction at every prime. More precisely, its image in a minimal model is
everywhere non-singular.
\bprog
? e = ellinit("57a1"); P = [2,-2];
? ellnonsingularmultiple(e, P)
%2 = [[1, -1], 2]
? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnonsingularmultiple(e, P);
? n
%5 = 12
@eprog
The library syntax is \fun{GEN}{ellnonsingularmultiple}{GEN E, GEN P}.
\subsec{ellorder$(E,z,\{o\})$}\kbdsidx{ellorder}\label{se:ellorder}
Gives the order of the point $z$ on the elliptic
curve $E$, defined over a finite field or a number field.
Return (the impossible value) zero if the point has infinite order.
\bprog
? E = ellinit([-157^2,0]); \\ the "157-is-congruent" curve
? P = [2,2]; ellorder(E, P)
%2 = 2
? P = ellheegner(E); ellorder(E, P) \\ infinite order
%3 = 0
? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])
%5 = 25
? E = ellinit(ellfromj(ffgen(5^10)));
? ellcard(E)
%7 = 9762580
? P = random(E); ellorder(E, P)
%8 = 4881290
? p = 2^160+7; E = ellinit([1,2], p);
? N = ellcard(E)
%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E)))
time = 260 ms.
@eprog
The parameter $o$, is now mostly useless, and kept for backward
compatibility. If present, it represents a non-zero multiple of the order
of $z$, see \secref{se:DLfun}; the preferred format for this parameter is
\kbd{[ord, factor(ord)]}, where \kbd{ord} is the cardinality of the curve.
It is no longer needed since PARI is now able to compute it over large
finite fields (was restricted to small prime fields at the time this feature
was introduced), \emph{and} caches the result in $E$ so that it is computed
and factored only once. Modifying the last example, we see that including
this extra parameter provides no improvement:
\bprog
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.
@eprog
The library syntax is \fun{GEN}{ellorder}{GEN E, GEN z, GEN o = NULL}.
The obsolete form \fun{GEN}{orderell}{GEN e, GEN z} should no longer be
used.
\subsec{ellordinate$(E,x)$}\kbdsidx{ellordinate}\label{se:ellordinate}
Gives a 0, 1 or 2-component vector containing
the $y$-coordinates of the points of the curve $E$ having $x$ as
$x$-coordinate.
The library syntax is \fun{GEN}{ellordinate}{GEN E, GEN x, long prec}.
\subsec{ellpadicL$(E, p, n, \{s = 0\}, \{r = 0\}, \{D = 1\})$}\kbdsidx{ellpadicL}\label{se:ellpadicL}
Returns the value (or $r$-th derivative) on a character $\chi^s$ of
$\Z_p^*$ of the $p$-adic $L$-function of the elliptic curve $E/\Q$, twisted by
$D$, given modulo $p^n$.
\misctitle{Characters} The set of continuous characters of
$\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ is identified to $\Z_p^*$ via the
cyclotomic character $\chi$ with values in $\overline{\Q_p}^*$. Denote by
$\tau:\Z_p^*\to\Z_p^*$ the Teichm\"uller character, with values
in the $(p-1)$-th roots of $1$ for $p\neq 2$, and $\{-1,1\}$ for $p = 2$;
finally, let
$\langle\chi\rangle =\chi \tau^{-1}$, with values in $1 + 2p\Z_p$.
In GP, the continuous character of
$\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$ given by $\langle\chi\rangle^{s_1}
\tau^{s_2}$ is represented by the pair of integers $s=(s_1,s_2)$, with $s_1
\in \Z_p$ and $s_2 \bmod p-1$ for $p > 2$, (resp. mod $2$ for $p = 2$); $s$
may be also an integer, representing $(s,s)$ or $\chi^s$.
\misctitle{The $p$-adic $L$ function}
The $p$-adic $L$ function $L_p$ is defined on the set of continuous
characters of $\text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$, as $\int_{\Z_p^*}
\chi^s d \mu$ for a certain $p$-adic distribution $\mu$ on $\Z_p^*$. The
derivative is given by
$$L_p^{(r)}(E, \chi^s) = \int_{\Z_p^*} \log_p^r(a) \chi^s(a) d\mu(a).$$
More precisely:
\item When $E$ has good supersingular reduction, $L_p$ takes its
values in $\Q_p \otimes H^1_{dR}(E/\Q)$ and satisfies
$$(1-p^{-1} F)^{-2} L_p(E, \chi^0)= (L(E,1) / \Omega) \cdot \omega$$
where $F$ is the Frobenius, $L(E,1)$ is the value of the complex $L$
function at $1$, $\omega$ is the N\'eron differential
and $\Omega$ the attached period on $E(\R)$. Here, $\chi^0$ represents
the trivial character.
The function returns the components of $L_p^{(r)}(E,\chi^s)$ in
the basis $(\omega, F(\omega))$.
\item When $E$ has ordinary good reduction, this method only defines
the projection of $L_p(E,\chi^s)$ on the $\alpha$-eigenspace,
where $\alpha$ is the unit eigenvalue for $F$. This is what the function
returns. We have
$$(1- \alpha^{-1})^{-2} L_{p,\alpha}(E,\chi^0)= L(E,1) / \Omega.$$
Two supersingular examples:
\bprog
? cxL(e) = bestappr( ellL1(e) / e.omega[1] );
? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0
? L = ellpadicL(e,p,4);
? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
? (1-p^(-1)*F)^-2 * L / cxL(e)
%5 = [1 + O(3^5), O(3^5)]~ \\ [1,0]~
? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4);
? F = [0,-p; 1,ellap(e,p)];
? (1-p^(-1)*F)^-2*L~ / cxL(e)
%9 = [1 + O(3^4), O(3^5)]~
@eprog
Good ordinary reduction:
\bprog
? e = ellinit("17a1"); p=5; ap = ellap(e,p)
%1 = -2 \\ ordinary
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];
? (1-al^(-1))^(-2) * L / cxL(e)
%4 = 1 + O(5^4)
@eprog
Twist and Teichm\"uller:
\bprog
? e = ellinit("17a1"); p=5; \\ ordinary
\\ 2nd derivative at tau^1, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)
%2 = 2*5^2 + 5^3 + O(5^4)
@eprog
This function is a special case of \tet{mspadicL}, and it also appears
as the first term of \tet{mspadicseries}:
\bprog
? e = ellinit("17a1"); p=5;
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? [M,phi] = msfromell(e, 1);
? Mp = mspadicinit(M, p, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6)
? mspadicseries(mu)
%7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))
+ (3 + 3*5 + 5^2 + 5^3 + O(5^4))*x
+ (2 + 3*5 + 5^2 + O(5^3))*x^2
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3
+ (3 + 2*5 + O(5^2))*x^4 + O(x^5)
@eprog\noindent These are more cumbersome than \kbd{ellpadicL} but allow to
compute at different characters, or successive derivatives, or to
twist by a quadratic character essentially for the cost of a single call to
\kbd{ellpadicL} due to precomputations.
The library syntax is \fun{GEN}{ellpadicL}{GEN E, GEN p, long n, GEN s = NULL, long r, GEN D = NULL}.
\subsec{ellpadicfrobenius$(E,p,n)$}\kbdsidx{ellpadicfrobenius}\label{se:ellpadicfrobenius}
If $p>2$ is a prime and $E$ is a elliptic curve on $\Q$ with good
reduction at $p$, return the matrix of the Frobenius endomorphism $\varphi$ on
the crystalline module $D_p(E)= \Q_p \otimes H^1_{dR}(E/\Q)$ with respect to
the basis of the given model $(\omega, \eta=x\*\omega)$, where
$\omega = dx/(2\*y+a_1\*x+a_3)$ is the invariant differential.
The characteristic polynomial of $\varphi$ is $x^2 - a_p\*x + p$.
The matrix is computed to absolute $p$-adic precision $p^n$.
\bprog
? E = ellinit([1,-1,1,0,0]);
? F = ellpadicfrobenius(E,5,3);
? lift(F)
%3 =
[120 29]
[ 55 5]
? charpoly(F)
%4 = x^2 + O(5^3)*x + (5 + O(5^3))
? ellap(E, 5)
%5 = 0
@eprog
The library syntax is \fun{GEN}{ellpadicfrobenius}{GEN E, long p, long n}.
\subsec{ellpadicheight$(E, p,n, P,\{Q\})$}\kbdsidx{ellpadicheight}\label{se:ellpadicheight}
Cyclotomic $p$-adic height of the rational point $P$ on the elliptic curve
$E$ (defined over $\Q$), given to $n$ $p$-adic digits.
If the argument $Q$ is present, computes the value of the bilinear
form $(h(P+Q)-h(P-Q)) / 4$.
Let $D_{dR}(E) := H^1_{dR}(E) \otimes_\Q \Q_p$ be the $\Q_p$ vector space
spanned by $\omega$
(invariant differential $dx/(2y+a_1x+a3)$ related to the given model) and
$\eta = x \omega$. Then the cyclotomic $p$-adic height associates to
$P\in E(\Q)$ an element $f \omega + g\eta$ in $D_{dR}$.
This routine returns the vector $[f, g]$ to $n$ $p$-adic digits.
If $P\in E(\Q)$ is in the kernel of reduction mod $p$ and if its reduction
at all finite places is non singular, then $g = -(\log_E P)^2$, where
$\log_E$ is the logarithm for the formal group of $E$ at $p$.
If furthermore the model is of the form $Y^2 = X^3 + a X + b$ and $P = (x,y)$,
then
$$ f = \log_p(\kbd{denominator}(x)) - 2 \log_p(\sigma(P))$$
where $\sigma(P)$ is given by \kbd{ellsigma}$(E,P)$.
Recall (\emph{Advanced topics in the arithmetic of elliptic
curves}, Theorem~3.2) that the local height function over the complex numbers
is of the form
$$ \lambda(z) = -\log (|\kbd{E.disc}|) / 6 + \Re(z \eta(z)) - 2 \log(
\sigma(z). $$
(N.B. our normalization for local and global heights is twice that of
Silverman's).
\bprog
? E = ellinit([1,-1,1,0,0]); P = [0,0];
? ellpadicheight(E,5,4, P)
%2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^6)]
? E = ellinit("11a1"); P = [5,5]; \\ torsion point
? ellpadicheight(E,19,6, P)
%4 = O(19^6)
? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadicheight(E,3,5, P)
%6 = [2*3^2 + 2*3^3 + 3^4 + O(3^5), 2*3^2 + 3^4 + 2*3^5 + 3^6 + O(3^7)]
? ellpadicheight(E,3,5, P, elladd(E,P,P))
@eprog
One can replace the parameter $p$ prime by a vector $[p,[a,b]]$, in which
case the routine returns the $p$-adic number $af + bg$.
When $E$ has good ordinary reduction at $p$, the ``canonical''
$p$-adic height is given by
\bprog
s2 = ellpadics2(E,p,n);
ellpadicheight(E, [p,[1,-s2]], n, P)
@eprog\noindent Since $s_2$ does not depend on $P$, it is preferable to
compute it only once:
\bprog
? E = ellinit("5077a1"); p = 5; n = 7;
? s2 = ellpadics2(E,p,n);
? M = ellpadicheightmatrix(E,[p,[1,-s2]], n, E.gen);
? matdet(M) \\ p-adic regulator
%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 5^6 + O(5^7)
@eprog
The library syntax is \fun{GEN}{ellpadicheight0}{GEN E, GEN p, long n, GEN P, GEN Q = NULL}.
\subsec{ellpadicheightmatrix$(E,p,n,v)$}\kbdsidx{ellpadicheightmatrix}\label{se:ellpadicheightmatrix}
$v$ being a vector of points, this function outputs the Gram matrix of
$v$ with respect to the cyclotomic $p$-adic height, given to $n$ $p$-adic
digits; in other words, the $(i,j)$ component of the matrix is equal to
\kbd{ellpadicheight}$(E,p,n, v[i],v[j]) = [f,g]$.
See \tet{ellpadicheight}; in particular one can replace the parameter $p$
prime by a vector $[p,[a,b]]$, in which case the routine returns the matrix
containing the $p$-adic numbers $af + bg$.
The library syntax is \fun{GEN}{ellpadicheightmatrix}{GEN E, GEN p, long n, GEN v}.
\subsec{ellpadiclog$(E,p,n,P)$}\kbdsidx{ellpadiclog}\label{se:ellpadiclog}
Given $E$ defined over $K = \Q$ or $\Q_p$ and $P = [x,y]$ on $E(K)$ in the
kernel of reduction mod $p$, let $t(P) = -x/y$ be the formal group
parameter; this function returns $L(t)$, where $L$ denotes the formal
logarithm (mapping the formal group of $E$ to the additive formal group)
attached to the canonical invariant differential:
$dL = dx/(2y + a_1x + a_3)$.
The library syntax is \fun{GEN}{ellpadiclog}{GEN E, GEN p, long n, GEN P}.
\subsec{ellpadics2$(E,p,n)$}\kbdsidx{ellpadics2}\label{se:ellpadics2}
If $p>2$ is a prime and $E/\Q$ is a elliptic curve with ordinary good
reduction at $p$, returns the slope of the unit eigenvector
of \kbd{ellpadicfrobenius(E,p,n)}, i.e. the action of Frobenius $\varphi$ on
the crystalline module $D_p(E)= \Q_p \otimes H^1_{dR}(E/\Q)$ in the basis of
the given model $(\omega, \eta=x\*\omega)$, where $\omega$ is the invariant
differential $dx/(2\*y+a_1\*x+a_3)$. In other words, $\eta + s_2\omega$
is an eigenvector for the unit eigenvalue of $\varphi$.
This slope is the unique $c \in 3^{-1}\Z_p$ such that the odd solution
$\sigma(t) = t + O(t^2)$ of
$$ - d(\dfrac{1}{\sigma} \dfrac{d \sigma}{\omega})
= (x(t) + c) \omega$$
is in $t\Z_p[[t]]$.
It is equal to $b_2/12 - E_2/12$ where $E_2$ is the value of the Katz
$p$-adic Eisenstein series of weight 2 on $(E,\omega)$. This is
used to construct a canonical $p$-adic height when $E$ has good ordinary
reduction at $p$ as follows
\bprog
s2 = ellpadics2(E,p,n);
h(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);
@eprog\noindent Since $s_2$ does not depend on the point $P$, we compute it
only once.
The library syntax is \fun{GEN}{ellpadics2}{GEN E, GEN p, long n}.
\subsec{ellperiods$(w, \{\fl = 0\})$}\kbdsidx{ellperiods}\label{se:ellperiods}
Let $w$ describe a complex period lattice ($w = [w_1,w_2]$
or an \kbd{ellinit} structure). Returns normalized periods $[W_1,W_2]$ generating
the same lattice such that $\tau := W_1/W_2$ has positive imaginary part
and lies in the standard fundamental domain for $\text{SL}_2(\Z)$.
If $\fl = 1$, the function returns $[[W_1,W_2], [\eta_1,\eta_2]]$, where
$\eta_1$ and $\eta_2$ are the quasi-periods attached to
$[W_1,W_2]$, satisfying $\eta_1 W_2 - \eta_2 W_1 = 2 i \pi$.
The output of this function is meant to be used as the first argument
given to ellwp, ellzeta, ellsigma or elleisnum. Quasi-periods are
needed by ellzeta and ellsigma only.
The library syntax is \fun{GEN}{ellperiods}{GEN w, long flag, long prec}.
\subsec{ellpointtoz$(E,P)$}\kbdsidx{ellpointtoz}\label{se:ellpointtoz}
If $E/\C \simeq \C/\Lambda$ is a complex elliptic curve ($\Lambda =
\kbd{E.omega}$),
computes a complex number $z$, well-defined modulo the lattice $\Lambda$,
corresponding to the point $P$; i.e.~such that
$P = [\wp_\Lambda(z),\wp'_\Lambda(z)]$
satisfies the equation
$$y^2 = 4x^3 - g_2 x - g_3,$$
where $g_2$, $g_3$ are the elliptic invariants.
If $E$ is defined over $\R$ and $P\in E(\R)$, we have more precisely, $0 \leq
\Re(t) < w1$ and $0 \leq \Im(t) < \Im(w2)$, where $(w1,w2)$ are the real and
complex periods of $E$.
\bprog
? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellpointtoz(E, [0]) \\ the point at infinity
%5 = 0
@eprog
If $E/\Q_p$ has multiplicative reduction, then $E/\bar{\Q_p}$ is analytically
isomorphic to $\bar{\Q}_p^*/q^\Z$ (Tate curve) for some $p$-adic integer $q$.
The behaviour is then as follows:
\item If the reduction is split ($E.\kbd{tate[2]}$ is a \typ{PADIC}), we have
an isomorphism $\phi: E(\Q_p) \simeq \Q_p^*/q^\Z$ and the function returns
$\phi(P)\in \Q_p$.
\item If the reduction is \emph{not} split ($E.\kbd{tate[2]}$ is a
\typ{POLMOD}), we only have an isomorphism $\phi: E(K) \simeq K^*/q^\Z$ over
the unramified quadratic extension $K/\Q_p$. In this case, the output
$\phi(P)\in K$ is a \typ{POLMOD}.
\bprog
? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction
%2 = "t_PADIC"
? ellmul(E, P, 5) \\ P has order 5
%3 = [0]
? z = ellpointtoz(E, [0,0])
%4 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? z^5
%5 = 1 + O(11^9)
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \\ lift all p-adics
%8 = Mod(8*u + 7, u^2 + 437)
@eprog
The library syntax is \fun{GEN}{zell}{GEN E, GEN P, long prec}.
\subsec{ellpow$(E,z,n)$}\kbdsidx{ellpow}\label{se:ellpow}
Deprecated alias for \kbd{ellmul}.
The library syntax is \fun{GEN}{ellmul}{GEN E, GEN z, GEN n}.
\subsec{ellrootno$(E,\{p\})$}\kbdsidx{ellrootno}\label{se:ellrootno}
$E$ being an \kbd{ell} structure over $\Q$ as output by \kbd{ellinit},
this function computes the local root number of its $L$-series at the place
$p$ (at the infinite place if $p = 0$). If $p$ is omitted, return the global
root number. Note that the global root number is the sign of the functional
equation and conjecturally is the parity of the rank of the
\idx{Mordell-Weil group}. The equation for $E$ needs not be minimal at $p$,
but if the model is already minimal the function will run faster.
The library syntax is \fun{long}{ellrootno}{GEN E, GEN p = NULL}.
\subsec{ellsea$(E,\{\var{tors}=0\})$}\kbdsidx{ellsea}\label{se:ellsea}
Let $E$ be an \var{ell} structure as output by \kbd{ellinit}, defined over
a finite field $\F_q$. This low-level function computes the order of the
group $E(\F_q)$ using the SEA algorithm; compared to the high-level
function \kbd{ellcard}, which includes SEA among its choice of algorithms,
the \kbd{tors} argument allows to speed up a search for curves having almost
prime order.
When \kbd{tors} is set to a non-zero value, the function returns $0$ as soon
as it detects that the order has a small prime factor not dividing \kbd{tors};
SEA considers modular polynomials of increasing prime degree $\ell$ and we
return $0$ as soon as we hit an $\ell$ (coprime to \kbd{tors}) dividing
$\#E(\F_q)$:
\bprog
? ellsea(ellinit([1,1], 2^56+3477), 1)
%1 = 72057594135613381
? forprime(p=2^128,oo, q = ellcard(ellinit([1,1],p)); if(isprime(q),break))
time = 6,571 ms.
? forprime(p=2^128,oo, q = ellsea(ellinit([1,1],p),1);if(isprime(q),break))
time = 522 ms.
@eprog\noindent
In particular, set \kbd{tors} to $1$ if you want a curve with prime order,
to $2$ if you want to allow a cofactor which is a power of two (e.g. for
Edwards's curves), etc. The early exit on bad curves yields a massive
speedup compared to running the cardinal algorithm to completion.
The following function returns a curve of prime order over $\F_p$.
\bprog
cryptocurve(p) =
{
while(1,
my(E, N, j = Mod(random(p), p));
E = ellinit(ellfromj(j));
N = ellsea(E, 1); if(!N, continue);
if (isprime(N), return(E));
\\ try the quadratic twist for free
if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
);
}
? p = randomprime([2^255, 2^256]);
? E = cryptocurve(p); \\ insist on prime order
%2 = 47,447ms
@eprog\noindent The same example without early abort (using \kbd{ellsea(E,1)}
instead of \kbd{ellsea(E)}) runs for about 5 minutes before finding a
suitable curve.
The availability of the \kbd{seadata} package will speed up the computation,
and is strongly recommended. The generic function \kbd{ellcard} should be
preferred when you only want to compute the cardinal of a given curve without
caring about it having almost prime order:
\item If the characteristic is too small ($p \leq 7$) or the field
cardinality is tiny ($q \leq 523$) the generic algorithm
\kbd{ellcard} is used instead and the \kbd{tors} argument is ignored.
(The reason for this is that SEA is not implemented for $p \leq 7$ and
that if $q \leq 523$ it is likely to run into an infinite loop.)
\item If the field cardinality is smaller than about $2^{50}$, the
generic algorithm will be faster.
\item Contrary to \kbd{ellcard}, \kbd{ellsea} does not store the computed
cardinality in $E$.
The library syntax is \fun{GEN}{ellsea}{GEN E, ulong tors}.
\subsec{ellsearch$(N)$}\kbdsidx{ellsearch}\label{se:ellsearch}
This function finds all curves in the \tet{elldata} database satisfying
the constraint defined by the argument $N$:
\item if $N$ is a character string, it selects a given curve, e.g.
\kbd{"11a1"}, or curves in the given isogeny class, e.g. \kbd{"11a"}, or
curves with given conductor, e.g. \kbd{"11"};
\item if $N$ is a vector of integers, it encodes the same constraints
as the character string above, according to the \tet{ellconvertname}
correspondance, e.g. \kbd{[11,0,1]} for \kbd{"11a1"}, \kbd{[11,0]} for
\kbd{"11a"} and \kbd{[11]} for \kbd{"11"};
\item if $N$ is an integer, curves with conductor $N$ are selected.
If $N$ codes a full curve name, for instance \kbd{"11a1"} or \kbd{[11,0,1]},
the output format is $[N, [a_1,a_2,a_3,a_4,a_6], G]$ where
$[a_1,a_2,a_3,a_4,a_6]$ are the coefficients of the Weierstrass equation of
the curve and $G$ is a $\Z$-basis of the free part of the
\idx{Mordell-Weil group} attached to the curve.
\bprog
? ellsearch("11a3")
%1 = ["11a3", [0, -1, 1, 0, 0], []]
? ellsearch([11,0,3])
%2 = ["11a3", [0, -1, 1, 0, 0], []]
@eprog\noindent
If $N$ is not a full curve name, then the output is a vector of all matching
curves in the above format:
\bprog
? ellsearch("11a")
%1 = [["11a1", [0, -1, 1, -10, -20], []],
["11a2", [0, -1, 1, -7820, -263580], []],
["11a3", [0, -1, 1, 0, 0], []]]
? ellsearch("11b")
%2 = []
@eprog
The library syntax is \fun{GEN}{ellsearch}{GEN N}.
Also available is \fun{GEN}{ellsearchcurve}{GEN N} that only
accepts complete curve names (as \typ{STR}).
\subsec{ellsigma$(L,\{z='x\},\{\fl=0\})$}\kbdsidx{ellsigma}\label{se:ellsigma}
Computes the value at $z$ of the Weierstrass $\sigma$ function attached to
the lattice $L$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
is useful, otherwise there are recomputed from scratch for each new $z$.
$$ \sigma(z, L) = z \prod_{\omega\in L^*} \left(1 -
\dfrac{z}{\omega}\right)e^{\dfrac{z}{\omega} + \dfrac{z^2}{2\omega^2}}.$$
It is also possible to directly input $L = [\omega_1,\omega_2]$,
or an elliptic curve $E$ as given by \kbd{ellinit} ($L = \kbd{E.omega}$).
\bprog
? w = ellperiods([1,I], 1);
? ellsigma(w, 1/2)
%2 = 0.47494937998792065033250463632798296855
? E = ellinit([1,0]);
? ellsigma(E) \\ at 'x, implicitly at default seriesprecision
%4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)
@eprog
If $\fl=1$, computes an arbitrary determination of $\log(\sigma(z))$.
The library syntax is \fun{GEN}{ellsigma}{GEN L, GEN z = NULL, long flag, long prec}.
\subsec{ellsub$(E,\var{z1},\var{z2})$}\kbdsidx{ellsub}\label{se:ellsub}
Difference of the points $z1$ and $z2$ on the
elliptic curve corresponding to $E$.
The library syntax is \fun{GEN}{ellsub}{GEN E, GEN z1, GEN z2}.
\subsec{elltaniyama$(E, \{d = \var{seriesprecision}\})$}\kbdsidx{elltaniyama}\label{se:elltaniyama}
Computes the modular parametrization of the elliptic curve $E/\Q$,
where $E$ is an \kbd{ell} structure as output by \kbd{ellinit}. This returns
a two-component vector $[u,v]$ of power series, given to $d$ significant
terms (\tet{seriesprecision} by default), characterized by the following two
properties. First the point $(u,v)$ satisfies the equation of the elliptic
curve. Second, let $N$ be the conductor of $E$ and $\Phi: X_0(N)\to E$
be a modular parametrization; the pullback by $\Phi$ of the
N\'eron differential $du/(2v+a_1u+a_3)$ is equal to $2i\pi
f(z)dz$, a holomorphic differential form. The variable used in the power
series for $u$ and $v$ is $x$, which is implicitly understood to be equal to
$\exp(2i\pi z)$.
The algorithm assumes that $E$ is a \emph{strong} \idx{Weil curve}
and that the Manin constant is equal to 1: in fact, $f(x) = \sum_{n > 0}
\kbd{ellan}(E, n) x^n$.
The library syntax is \fun{GEN}{elltaniyama}{GEN E, long precdl}.
\subsec{elltatepairing$(E, P, Q, m)$}\kbdsidx{elltatepairing}\label{se:elltatepairing}
Computes the Tate pairing of the two points $P$ and $Q$ on the elliptic
curve $E$. The point $P$ must be of $m$-torsion.
The library syntax is \fun{GEN}{elltatepairing}{GEN E, GEN P, GEN Q, GEN m}.
\subsec{elltors$(E)$}\kbdsidx{elltors}\label{se:elltors}
If $E$ is an elliptic curve defined over a number field or a finite field,
outputs the torsion subgroup of $E$ as a 3-component vector \kbd{[t,v1,v2]},
where \kbd{t} is the order of the torsion group, \kbd{v1} gives the structure
of the torsion group as a product of cyclic groups (sorted by decreasing
order), and \kbd{v2} gives generators for these cyclic groups. $E$ must be an
\kbd{ell} structure as output by \kbd{ellinit}.
\bprog
? E = ellinit([-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]
@eprog\noindent
Here, the torsion subgroup is isomorphic to $\Z/2\Z \times \Z/2\Z$, with
generators $[0,0]$ and $[1,0]$.
The library syntax is \fun{GEN}{elltors}{GEN E}.
\subsec{elltwist$(E,\{P\})$}\kbdsidx{elltwist}\label{se:elltwist}
Returns the coefficients $[a_1,a_2,a_3,a_4,a_6]$ of the twist of the
elliptic curve $E$ by the quadratic extension of the coefficient ring
defined by $P$ (when $P$ is a polynomial) or \kbd{quadpoly(P)} when $P$ is an
integer. If $E$ is defined over a finite field, then $P$ can be omitted,
in which case a random model of the unique non-trivial twist is returned.
If $E$ is defined over a number field, the model should be replaced by a
minimal model (if one exists).
Example: Twist by discriminant $-3$:
\bprog
? elltwist(ellinit([0,a2,0,a4,a6]),-3)
%1 = [0,-3*a2,0,9*a4,-27*a6]
@eprog
Twist by the Artin-Shreier extension given by $x^2+x+T$ in
characteristic $2$:
\bprog
? lift(elltwist(ellinit([a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))
%1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]
@eprog
Twist of an elliptic curve defined over a finite field:
\bprog
? E=ellinit([1,7]*Mod(1,19));lift(elltwist(E))
%1 = [0,0,0,11,12]
@eprog
The library syntax is \fun{GEN}{elltwist}{GEN E, GEN P = NULL}.
\subsec{ellweilpairing$(E, P, Q, m)$}\kbdsidx{ellweilpairing}\label{se:ellweilpairing}
Computes the Weil pairing of the two points of $m$-torsion $P$ and $Q$
on the elliptic curve $E$.
The library syntax is \fun{GEN}{ellweilpairing}{GEN E, GEN P, GEN Q, GEN m}.
\subsec{ellwp$(w,\{z='x\},\{\fl=0\})$}\kbdsidx{ellwp}\label{se:ellwp}
Computes the value at $z$ of the Weierstrass $\wp$ function attached to
the lattice $w$ as given by \tet{ellperiods}. It is also possible to
directly input $w = [\omega_1,\omega_2]$, or an elliptic curve $E$ as given
by \kbd{ellinit} ($w = \kbd{E.omega}$).
\bprog
? w = ellperiods([1,I]);
? ellwp(w, 1/2)
%2 = 6.8751858180203728274900957798105571978
? E = ellinit([1,1]);
? ellwp(E, 1/2)
%4 = 3.9413112427016474646048282462709151389
@eprog\noindent One can also compute the series expansion around $z = 0$:
\bprog
? E = ellinit([1,0]);
? ellwp(E) \\ 'x implicitly at default seriesprecision
%5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)
? ellwp(E, x + O(x^12)) \\ explicit precision
%6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)
@eprog
Optional \fl\ means 0 (default): compute only $\wp(z)$, 1: compute
$[\wp(z),\wp'(z)]$.
The library syntax is \fun{GEN}{ellwp0}{GEN w, GEN z = NULL, long flag, long prec}.
For $\fl = 0$, we also have
\fun{GEN}{ellwp}{GEN w, GEN z, long prec}, and
\fun{GEN}{ellwpseries}{GEN E, long v, long precdl} for the power series in
variable $v$.
\subsec{ellxn$(E,n,\{v='x\})$}\kbdsidx{ellxn}\label{se:ellxn}
In standard notation, for any affine point $P = (v,w)$ on the
curve $E$, we have
$$[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)$$
for some polynomials $\phi_n,\omega_n,\psi_n$ in
$\Z[a_1,a_2,a_3,a_4,a_6][v,w]$. This function returns
$[\phi_n(P),\psi_n(P)^2]$, which give the numerator and denominator of
the abcissa of $[n]P$ and depend only on $v$.
The library syntax is \fun{GEN}{ellxn}{GEN E, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{ellzeta$(w,\{z='x\})$}\kbdsidx{ellzeta}\label{se:ellzeta}
Computes the value at $z$ of the Weierstrass $\zeta$ function attached to
the lattice $w$ as given by \tet{ellperiods}$(,1)$: including quasi-periods
is useful, otherwise there are recomputed from scratch for each new $z$.
$$ \zeta(z, L) = \dfrac{1}{z} + z^2\sum_{\omega\in L^*}
\dfrac{1}{\omega^2(z-\omega)}.$$
It is also possible to directly input $w = [\omega_1,\omega_2]$,
or an elliptic curve $E$ as given by \kbd{ellinit} ($w = \kbd{E.omega}$).
The quasi-periods of $\zeta$, such that
$$\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2 $$
for integers $a$ and $b$ are obtained as $\eta_i = 2\zeta(\omega_i/2)$.
Or using directly \tet{elleta}.
\bprog
? w = ellperiods([1,I],1);
? ellzeta(w, 1/2)
%2 = 1.5707963267948966192313216916397514421
? E = ellinit([1,0]);
? ellzeta(E, E.omega[1]/2)
%4 = 0.84721308479397908660649912348219163647
@eprog\noindent One can also compute the series expansion around $z = 0$
(the quasi-periods are useless in this case):
\bprog
? E = ellinit([0,1]);
? ellzeta(E) \\ at 'x, implicitly at default seriesprecision
%4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)
? ellzeta(E, x + O(x^20)) \\ explicit precision
%5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)
@eprog\noindent
The library syntax is \fun{GEN}{ellzeta}{GEN w, GEN z = NULL, long prec}.
\subsec{ellztopoint$(E,z)$}\kbdsidx{ellztopoint}\label{se:ellztopoint}
$E$ being an \var{ell} as output by
\kbd{ellinit}, computes the coordinates $[x,y]$ on the curve $E$
corresponding to the complex or $p$-adic parameter $z$. Hence this is the
inverse function of \kbd{ellpointtoz}.
\item If $E$ is defined over a $p$-adic field and has multiplicative
reduction, then $z$ is understood as an element on the
Tate curve $\bar{Q}_p^* / q^\Z$.
\bprog
? E = ellinit([0,-1,1,0,0], O(11^5));
? [u2,u,q] = E.tate; type(u)
%2 = "t_PADIC" \\ split multiplicative reduction
? z = ellpointtoz(E, [0,0])
%3 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? ellztopoint(E,z)
%4 = [O(11^9), O(11^9)]
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \\ non-split: t_POLMOD with t_PADIC coefficients
? P = ellztopoint(E, z);
? P[1] \\ y coordinate is analogous, more complicated
%8 = Mod(O(2^4)*x + (2^-1 + O(2^5)), x^2 + (1 + 2^2 + 2^4 + 2^5 + O(2^7)))
@eprog
\item If $E$ is defined over the complex numbers (for instance over $\Q$),
$z$ is understood as a complex number in $\C/\Lambda_E$. If the
short Weierstrass equation is $y^2 = 4x^3 - g_2x - g_3$, then $[x,y]$
represents the Weierstrass $\wp$-function\sidx{Weierstrass $\wp$-function}
and its derivative. For a general Weierstrass equation we have
$$x = \wp(z) - b_2/12,\quad y = \wp'(z) - (a_1 x + a_3)/2.$$
If $z$ is in the lattice defining $E$ over $\C$, the result is the point at
infinity $[0]$.
\bprog
? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellztopoint(E, 0)
%5 = [0] \\ point at infinity
@eprog
The library syntax is \fun{GEN}{pointell}{GEN E, GEN z, long prec}.
\subsec{genus2red$(\var{PQ},\{p\})$}\kbdsidx{genus2red}\label{se:genus2red}
Let $PQ$ be a polynomial $P$, resp. a vector $[P,Q]$ of polynomials, with
rational coefficients.
Determines the reduction at $p > 2$ of the (proper, smooth) genus~2
curve $C/\Q$, defined by the hyperelliptic equation $y^2 = P(x)$, resp.
$y^2 + Q(x)*y = P(x)$.
(The special fiber $X_p$ of the minimal regular model $X$ of $C$ over $\Z$.)
If $p$ is omitted, determines the reduction type for all (odd) prime
divisors of the discriminant.
\noindent This function was rewritten from an implementation of Liu's
algorithm by Cohen and Liu (1994), \kbd{genus2reduction-0.3}, see
\url{http://www.math.u-bordeaux.fr/~liu/G2R/}.
\misctitle{CAVEAT} The function interface may change: for the
time being, it returns $[N,\var{FaN}, T, V]$
where $N$ is either the local conductor at $p$ or the
global conductor, \var{FaN} is its factorization, $y^2 = T$ defines a
minimal model over $\Z[1/2]$ and $V$ describes the reduction type at the
various considered~$p$. Unfortunately, the program is not complete for
$p = 2$, and we may return the odd part of the conductor only: this is the
case if the factorization includes the (impossible) term $2^{-1}$; if the
factorization contains another power of $2$, then this is the exact local
conductor at $2$ and $N$ is the global conductor.
\bprog
? default(debuglevel, 1);
? genus2red(x^6 + 3*x^3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: [III{9}] page 184, [3, 3], f = 10
%1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []],
["[III{9}] page 184", [3, 3]]]]
? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x); \\ X_1(13), global reduction
p = 13
(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
reduction at p: [I{0}-II-0] page 159, [], f = 2
? N
%3 = 169
? FaN
%4 = Mat([13, 2]) \\ in particular, good reduction at 2 !
? T
%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
? V
%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], ["[I{0}-II-0] page 159", []]]]
@eprog\noindent
We now first describe the format of the vector $V = V_p$ in the case where
$p$ was specified (local reduction at~$p$): it is a triple $[p, \var{stable},
\var{red}]$. The component $\var{stable} = [\var{type}, \var{vecj}]$ contains
information about the stable reduction after a field extension;
depending on \var{type}s, the stable reduction is
\item 1: smooth (i.e. the curve has potentially good reduction). The
Jacobian $J(C)$ has potentially good reduction.
\item 2: an elliptic curve $E$ with an ordinary double point; \var{vecj}
contains $j$ mod $p$, the modular invariant of $E$. The (potential)
semi-abelian reduction of $J(C)$ is the extension of an elliptic curve (with
modular invariant $j$ mod $p$) by a torus.
\item 3: a projective line with two ordinary double points. The Jacobian
$J(C)$ has potentially multiplicative reduction.
\item 4: the union of two projective lines crossing transversally at three
points. The Jacobian $J(C)$ has potentially multiplicative reduction.
\item 5: the union of two elliptic curves $E_1$ and $E_2$ intersecting
transversally at one point; \var{vecj} contains their modular invariants
$j_1$ and $j_2$, which may live in a quadratic extension of $\F_p$ and need
not be distinct. The Jacobian $J(C)$ has potentially good reduction,
isomorphic to the product of the reductions of $E_1$ and $E_2$.
\item 6: the union of an elliptic curve $E$ and a projective line which has
an ordinary double point, and these two components intersect transversally
at one point; \var{vecj} contains $j$ mod $p$, the modular invariant of $E$.
The (potential) semi-abelian reduction of $J(C)$ is the extension of an
elliptic curve (with modular invariant $j$ mod $p$) by a torus.
\item 7: as in type 6, but the two components are both singular. The
Jacobian $J(C)$ has potentially multiplicative reduction.
The component $\var{red} = [\var{NUtype}, \var{neron}]$ contains two data
concerning the reduction at $p$ without any ramified field extension.
The \var{NUtype} is a \typ{STR} describing the reduction at $p$ of $C$,
following Namikawa-Ueno, \emph{The complete classification of fibers in
pencils of curves of genus two}, Manuscripta Math., vol. 9, (1973), pages
143-186. The reduction symbol is followed by the corresponding page number
or page range in this article.
The second datum \var{neron} is the group of connected components (over an
algebraic closure of $\F_p$) of the N\'eron model of $J(C)$, given as a
finite abelian group (vector of elementary divisors).
\smallskip
If $p = 2$, the \var{red} component may be omitted altogether (and
replaced by \kbd{[]}, in the case where the program could not compute it.
When $p$ was not specified, $V$ is the vector of all $V_p$, for all
considered $p$.
\misctitle{Notes about Namikawa-Ueno types}
\item A lower index is denoted between braces: for instance,
\kbd{[I\obr2\cbr-II-5]} means \kbd{[I\_2-II-5]}.
\item If $K$ and $K'$ are Kodaira symbols for singular fibers of elliptic
curves, then \kbd{[$K$-$K'$-m]} and \kbd{[$K'$-$K$-m]} are the same.
We define a total ordering on Kodaira symbol by fixing $\kbd{I} < \kbd{I*} <
\kbd{II} < \kbd{II*}, \dots$. If the reduction type is the same, we order by
the number of components, e.g. $\kbd{I}_2 < \kbd{I}_4$, etc.
Then we normalize our output so that $K \leq K'$.
\item \kbd{[$K$-$K'$-$-1$]} is \kbd{[$K$-$K'$-$\alpha$]} in the notation of
Namikawa-Ueno.
\item The figure \kbd{[2I\_0-m]} in Namikawa-Ueno, page 159, must be denoted
by \kbd{[2I\_0-(m+1)]}.
The library syntax is \fun{GEN}{genus2red}{GEN PQ, GEN p = NULL}.
\subsec{hyperellcharpoly$(X)$}\kbdsidx{hyperellcharpoly}\label{se:hyperellcharpoly}
$X$ being a non-singular hyperelliptic curve defined over a finite field,
return the characteristic polynomial of the Frobenius automorphism.
$X$ can be given either by a squarefree polynomial $P$ such that
$X: y^2 = P(x)$ or by a vector $[P,Q]$ such that
$X: y^2 + Q(x)\*y = P(x)$ and $Q^2+4\*P$ is squarefree.
The library syntax is \fun{GEN}{hyperellcharpoly}{GEN X}.
\subsec{hyperellpadicfrobenius$(Q,p,n)$}\kbdsidx{hyperellpadicfrobenius}\label{se:hyperellpadicfrobenius}
Let $X$ be the curve defined by $y^2=Q(x)$, where $Q$ is a polynomial of
degree $d$ over $\Q$ and $p\ge d$ a prime such that $X$ has good reduction
at $p$ return the matrix of the Frobenius endomorphism $\varphi$ on the
crystalline module $D_p(X) = \Q_p \otimes H^1_{dR}(X/\Q)$ with respect to the
basis of the given model $(\omega, x\*\omega,\ldots,x^{g-1}\*\omega)$, where
$\omega = dx/(2\*y)$ is the invariant differential, where $g$ is the genus of
$X$ (either $d=2\*g+1$ or $d=2\*g+2$). The characteristic polynomial of
$\varphi$ is the numerator of the zeta-function of the reduction of the curve
$X$ modulo $p$. The matrix is computed to absolute $p$-adic precision $p^n$.
The library syntax is \fun{GEN}{hyperellpadicfrobenius}{GEN Q, ulong p, long n}.
%SECTION: elliptic_curves
\section{$L$-functions}
This section describes routines related to $L$-functions. We first introduce
the basic concept and notations, then explain how to represent them in GP.
Let $\Gamma_\R(s) = \pi^{-s/2}\Gamma(s/2)$, where $\Gamma$ is Euler's gamma
function. Given $d \geq 1$ and a $d$-tuple $A=[\alpha_1,\dots,\alpha_d]$ of
complex numbers, we let $\gamma_A(s) = \prod_{\alpha \in A} \Gamma_\R(s +
\alpha)$.
Given a sequence $a = (a_n)_{n\geq 1}$ of complex numbers (such that $a_1 = 1$),
a positive \emph{conductor} $N \in \Z$, and a \emph{gamma factor}
$\gamma_A$ as above, we consider the Dirichlet series
$$ L(a,s) = \sum_{n\geq 1} a_n n^{-s} $$
and the attached completed function
$$ \Lambda(a,s) = N^{s/2}\gamma_A(s) \cdot L(a,s). $$
Such a datum defines an \emph{$L$-function} if it satisfies the three
following assumptions:
\item [Convergence] The $a_n = O_\epsilon(n^{k_1+\epsilon})$ have polynomial
growth, equivalently $L(s)$ converges absolutely in some right half-plane
$\Re(s) > k_1 + 1$.
\item [Analytic continuation] $L(s)$ has a meromorphic continuation to the
whole complex plane with finitely many poles.
\item [Functional equation] There exist an integer $k$, a complex number
$\epsilon$ (usually of modulus~$1$), and an attached sequence $a^*$
defining both an $L$-function $L(a^*,s)$ satisfying the above two assumptions
and a completed function $\Lambda(a^*,s) = N^{s/2}\gamma_A(s) \cdot
L(a^*,s)$, such that
$$\Lambda(a,k-s) = \epsilon \Lambda(a^*,s)$$
for all regular points.
More often than not in number theory we have $a^* = \overline{a}$ (which
forces $|\epsilon| = 1$), but this needs not be the case. If $a$ is a real
sequence and $a = a^*$, we say that $L$ is \emph{self-dual}. We do not assume
that the $a_n$ are multiplicative, nor equivalently that $L(s)$ has an Euler
product.
\misctitle{Remark}
Of course, $a$ determines the $L$-function, but the (redundant) datum $a,a^*,
A, N, k, \epsilon$ describes the situation in a form more suitable for fast
computations; knowing the polar part $r$ of $\Lambda(s)$ (a rational function
such that $\Lambda-r$ is holomorphic) is also useful. A subset of these,
including only finitely many $a_n$-values will still completely determine $L$
(in suitable families), and we provide routines to try and compute missing
invariants from whatever information is available.
\misctitle{Important Caveat}
We currently assume that we can take the growth exponent $k_1 = (k-1)/2$ if
$L$ is entire and $k_1 = k-1$ otherwise, and that the implied constants in
the $O_\epsilon$ are small. This may be changed and made user-configurable
in future versions but the essential point remains that it is impossible to
return proven results in such a generic framework, without more detailed
information about the $L$ function. The intended use of the $L$-function
package is not to prove theorems, but to experiment and formulate
conjectures, so all numerical results should be taken with a grain of salt.
One can always increase \kbd{realbitprecision} and recompute: the difference
estimates the actual absolute error in the original output.
\misctitle{Note} The requested precision has a major impact on runtimes.
Because of this, most $L$-function routines, in particular \kbd{lfun} itself,
specify the requested precision in \emph{bits}, not in decimal digits.
This is transparent for the user once \tet{realprecision} or
\tet{realbitprecision} are set. We advise to manipulate precision via
\tet{realbitprecision} as it allows finer granularity: \kbd{realprecision}
increases by increments of 64 bits, i.e. 19 decimal digits at a time.
\subsec{Theta functions}
Given an $L$-function as above, we define an attached theta function
via Mellin inversion: for any positive real $t > 0$, we let
$$ \theta(a,t) := \dfrac{1}{2\pi i}\int_{\Re(s) = c} t^{-s} \Lambda(s)\, ds $$
where $c$ is any positive real number $c > k_1+1$ such that $c + \Re(a) > 0$
for all $a\in A$. In fact, we have
$$\theta(a,t) = \sum_{n\geq 1} a_n K(nt/N^{1/2})
\quad\text{where}\quad
K(t) := \dfrac{1}{2\pi i}\int_{\Re(s) = c} t^{-s} \gamma_A(s)\, ds.$$
Note that this function is analytic and actually makes sense for complex $t$,
such that $\Re(t^{2/d}) > 0$, i.e. in a cone containing the positive real
half-line. The functional equation for $\Lambda$ translates into
$$ \theta(a,1/t) - \epsilon t^k\theta(a^*,t) = P_\Lambda(t), $$
where $P_\Lambda$ is an explicit polynomial in $t$ and $\log t$ given by the
Taylor development of the polar part of $\Lambda$: there are no $\log$'s if
all poles are simple, and $P = 0$ if $\Lambda$ is entire. The values
$\theta(t)$ are generally easier to compute than the $L(s)$, and this
functional equation provides a fast way to guess possible values for
missing invariants in the $L$-function definition.
\subsec{Data structures describing $L$ and theta functions}
We have 3 levels of description:
\item an \tet{Lmath} is an arbitrary description of the underlying
mathematical situation (to which e.g., we associate the $a_p$ as traces of
Frobenius elements); this is done via constructors to be described in the
subsections below.
\item an \tet{Ldata} is a computational description of situation, containing
the complete datum ($a,a^*,A,k,N,\epsilon,r$). Where $a$ and $a^*$ describe
the coefficients (given $n,b$ we must be able to compute $[a_1,\dots,a_n]$
with bit accuracy $b$), $A$ describes the Euler factor, the (classical) weight
is $k$, $N$ is the conductor, and $r$ describes the polar part of $L(s)$.
This is obtained via the function \tet{lfuncreate}. N.B. For motivic
$L$-functions, the motivic weight $w$ is $w = k-1$; but we also support
non-motivic $L$-functions.
\misctitle{Design problem} All components of an \kbd{Ldata} should be given
exactly since the accuracy to which they must be computed is not bounded a
priori; but this is not always possible, in particular for $\epsilon$ and $r$.
\item an \tet{Linit} contains an \kbd{Ldata} and everything needed for fast
\emph{numerical} computations. It specifies the functions to be considered
(either $L^{(j)}(s)$ or $\theta^{(j)}(t)$ for derivatives of order $j \leq
m$, where $m$ is now fixed) and specifies a \emph{domain} which limits
the range of arguments ($t$ or $s$, respectively to certain cones and
rectangular regions) and the output accuracy. This is obtained via the
functions \tet{lfuninit} or \tet{lfunthetainit}.
All the functions which are specific to $L$ or theta functions share the
prefix \kbd{lfun}. They take as first argument either an \kbd{Lmath}, an
\kbd{Ldata}, or an \kbd{Linit}. If a single value is to be computed,
this makes no difference, but when many values are needed (e.g. for plots or
when searching for zeros), one should first construct an \kbd{Linit}
attached to the search range and use it in all subsequent calls.
If you attempt to use an \kbd{Linit} outside the range for which it was
initialized, a warning is issued, because the initialization is
performed again, a major inefficiency:
\bprog
? Z = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(Z, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100
? lfun(L, 1/2) \\ OK, within domain
%3 = -1.4603545088095868128894991525152980125
? lfun(L, 0) \\ not on critical strip !
*** lfun: Warning: lfuninit: insufficient initialization.
%4 = -0.50000000000000000000000000000000000000
? lfun(L, 1/2, 1) \\ attempt first derivative !
*** lfun: Warning: lfuninit: insufficient initialization.
%5 = -3.9226461392091517274715314467145995137
@eprog
For many $L$-functions, passing from \kbd{Lmath} to an \kbd{Ldata} is
inexpensive: in that case one may use \kbd{lfuninit} directly from the
\kbd{Lmath} even when evaluations in different domains are needed. The
above example could equally have skipped the \kbd{lfuncreate}:
\bprog
? L = lfuninit(1, [1/2, 0, 100]); \\ zeta(1/2+it), |t| < 100
@eprog\noindent In fact, when computing a single value, you can even skip
\kbd{lfuninit}:
\bprog
? L = lfun(1, 1/2, 1); \\ zeta'(1/2)
? L = lfun(1, 1+x+O(x^5)); \\ first 5 terms of Taylor development at 1
@eprog\noindent Both give the desired results with no warning.
\misctitle{Complexity}
The implementation requires $O(N(|t|+1))^{1/2}$ coefficients $a_n$
to evaluate $L$ of conductor $N$ at $s = \sigma + i t$.
We now describe the available high-level constructors, for built-in $L$
functions.
\subsec{Dirichlet $L$-functions} %GPHELPskip
Given a Dirichlet character $\chi:(\Z/N\Z)^*\to \C$, we let
$$L(\chi, s) = \sum_{n\geq 1} \chi(n) n^{-s}.$$
Only primitive characters are supported. Given a fundamental discriminant
$D$, the function $L((D/.), s)$, for the quadratic Kronecker symbol, is encoded
by the \typ{INT} $D$. This includes Riemann $\zeta$ function via the special
case $D = 1$.
More general characters can be represented in a variety of ways:
\item via Conrey notation (see \tet{znconreychar}): $\chi_N(m,\cdot)$
is given as the \typ{INTMOD} \kbd{Mod(m,N)}.
\item via a \var{bid} structure describing the abelian group $(\Z/N\Z)^*$,
where the character is given in terms of the \var{bid} generators:
\bprog
? bid = idealstar(,100,2); \\ (Z/100Z)^*
? bid.cyc \\ ~ Z/20 . g1 + Z/2 . g2 for some generators g1 and g2
%2 = [20, 2]
? bid.gen
%3 = [77, 51]
? chi = [a, b] \\ maps g1 to e(a/20) and g2 to e(b/2); e(x) = exp(2ipi x)
@eprog\noindent
More generally, let $(\Z/N\Z)^* = \oplus (\Z/d_i\Z) g_i$ be given via a
\var{bid} structure $G$ (\kbd{G.cyc} gives the $d_i$ and \kbd{G.gen} the
$g_i$). A \tev{character} $\chi$ on $G$ is given by a row vector
$v = [a_1,\ldots,a_n]$ such that $\chi(\prod g_i^{n_i}) = \exp(2\pi i\sum a_i
n_i / d_i)$. The pair $[\var{bid}, v]$ encodes the \emph{primitive} character
attached to $\chi$.
\item in fact, this construction $[\var{bid}, m]$ describing a character
is more general: $m$ is also allowed to be a Conrey index as seen above,
or a Conrey logarithm (see \tet{znconreylog}), and the latter format is
actually the fastest one.
\item it is also possible to view Dirichlet characters as Hecke characters
over $K = \Q$ (see below), for a modulus $[N, [1]]$ but this is both more
complicated and less efficient.
\subsec{Hecke $L$-functions} %GPHELPskip
The Dedekind zeta function of a number field $K = \Q[X]/(T)$ is encoded
either by the defining polynomial $T$, or any absolute number fields
structure (preferably at least a \var{bnf}).
Given a finite order Hecke character $\chi: Cl_f(K)\to \C$, we let
$$L(\chi, s) = \sum_{A \subset O_K} \chi(A)\, \left(N_{K/\Q}A\right)^{-s}.$$
Let $Cl_f(K) = \oplus (\Z/d_i\Z) g_i$ given by a \var{bnr} structure with
generators: the $d_i$ are given by \kbd{K.cyc} and the $g_i$ by \kbd{K.gen}.
A \tev{character} $\chi$ on the ray class group is given by a row vector
$v = [a_1,\ldots,a_n]$ such that $\chi(\prod g_i^{n_i}) = \exp(2\pi i\sum
a_i n_i / d_i)$. The pair $[\var{bnr}, v]$ encodes the \emph{primitive}
character attached to $\chi$.
\bprog
? K = bnfinit(x^2-60);
? Cf = bnrinit(K, [7, [1,1]], 1); \\ f = 7 oo_1 oo_2
? Cf.cyc
%3 = [6, 2, 2]
? Cf.gen
%4 = [[2, 1; 0, 1], [22, 9; 0, 1], [-6, 7]~]
? lfuncreate([Cf, [1,0,0]]); \\@com $\chi(g_1) = \zeta_6$, $\chi(g_2)=\chi(g_3)=1$
@eprog
\noindent Dirichlet characters on $(\Z/N\Z)^*$ are a special case,
where $K = \Q$:
\bprog
? Q = bnfinit(x);
? Cf = bnrinit(Q, [100, [1]]); \\ for odd characters on (Z/100Z)*
@eprog\noindent
For even characters, replace by \kbd{bnrinit(K, N)}. Note that the simpler
direct construction in the previous section will be more efficient.
\subsec{Artin $L$ functions} %GPHELPskip
Given a Galois number field $N/\Q$ with group $G = \kbd{galoisinit}(N)$,
a representation $\rho$ of $G$ over the cyclotomic field $\Q(\zeta_n)$
is specified by the matrices giving the images of $\kbd{G.gen}$ by $\rho$.
The corresponding Artin $L$ function is created using \tet{lfunartin}.
\bprog
P = quadhilbert(-47); \\ degree 5, Galois group D_5
N = nfinit(nfsplitting(P)); \\ Galois closure
G = galoisinit(N);
[s,t] = G.gen; \\ order 5 and 2
L = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5); \\ irr. degree 2
@eprog\noindent In the above, the polynomial variable (here \kbd{a}) represents
$\zeta_5 := \exp(2i\pi/5)$ and the two matrices give the images of
$s$ and $t$. Here, priority of \kbd{a} must be lower than the priority
of \kbd{x}.
\subsec{$L$-functions of algebraic varieties} %GPHELPskip
$L$-function of elliptic curves over number fields are supported.
\bprog
? E = ellinit([1,1]);
? L = lfuncreate(E); \\ L-function of E/Q
? E2 = ellinit([1,a], nfinit(a^2-2));
? L2 = lfuncreate(E2); \\ L-function of E/Q(sqrt(2))
@eprog
$L$-function of hyperelliptic genus-$2$ curve can be created with
\kbd{lfungenus2}. To create the $L$ function of the curve
$y^2+(x^3+x^2+1)y = x^2+x$:
\bprog
? L = lfungenus2([x^2+x, x^3+x^2+1]);
@eprog
Currently, the model needs to be minimal at $2$, and if the conductor is even,
its valuation at $2$ might be incorrect (a warning is issued).
\subsec{Eta quotients / Modular forms} %GPHELPskip
An eta quotient is created by applying \tet{lfunetaquo} to a matrix with
2 columns $[m, r_m]$ representing
$$ f(\tau) := \prod_m \eta(m\tau)^{r_m}. $$
It is currently assumed that $f$ is a self-dual cuspidal form on
$\Gamma_0(N)$ for some $N$.
For instance, the $L$-function $\sum \tau(n) n^{-s}$
attached to Ramanujan's $\Delta$ function is encoded as follows
\bprog
? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100) \\ first 100 values of tau(n)
@eprog
More general modular forms defined by modular symbols will be added later.
\subsec{Low-level Ldata format} %GPHELPskip
When no direct constructor is available, you can still input an $L$ function
directly by supplying $[a, a^*,A, k, N, \epsilon, r]$ to \kbd{lfuncreate}
(see \kbd{??lfuncreate} for details).
It is \emph{strongly} suggested to first check consistency of the created
$L$-function:
\bprog
? L = lfuncreate([a, as, A, k, N, eps, r]);
? lfuncheckfeq(L) \\ check functional equation
@eprog
\subsec{lfun$(L,s,\{D=0\})$}\kbdsidx{lfun}\label{se:lfun}
Compute the L-function value $L(s)$, or if \kbd{D} is set, the
derivative of order \kbd{D} at $s$. The parameter
\kbd{L} is either an Lmath, an Ldata (created by \kbd{lfuncreate}, or an
Linit (created by \kbd{lfuninit}), preferrably the latter if many values
are to be computed.
The argument $s$ is also allowed to be a power series; for instance, if $s =
\alpha + x + O(x^n)$, the function returns the Taylor expansion of order $n$
around $\alpha$. The result is given with absolute error less than $2^{-B}$,
where $B = \text{realbitprecision}$.
\misctitle{Caveat} The requested precision has a major impact on runtimes.
It is advised to manipulate precision via \tet{realbitprecision} as
explained above instead of \tet{realprecision} as the latter allows less
granularity: \kbd{realprecision} increases by increments of 64 bits, i.e. 19
decimal digits at a time.
\bprog
? lfun(x^2+1, 2) \\ Lmath: Dedekind zeta for Q(i) at 2
%1 = 1.5067030099229850308865650481820713960
? L = lfuncreate(ellinit("5077a1")); \\ Ldata: Hasse-Weil zeta function
? lfun(L, 1+x+O(x^4)) \\ zero of order 3 at the central point
%3 = 0.E-58 - 5.[...] E-40*x + 9.[...] E-40*x^2 + 1.7318[...]*x^3 + O(x^4)
\\ Linit: zeta(1/2+it), |t| < 100, and derivative
? L = lfuninit(1, [100], 1);
? T = lfunzeros(L, [1,25]);
%5 = [14.134725[...], 21.022039[...]]
? z = 1/2 + I*T[1];
? abs( lfun(L, z) )
%7 = 8.7066865533412207420780392991125136196 E-39
? abs( lfun(L, z, 1) )
%8 = 0.79316043335650611601389756527435211412 \\ simple zero
@eprog
The library syntax is \fun{GEN}{lfun0}{GEN L, GEN s, long D, long bitprec}.
\subsec{lfunabelianrelinit$(\var{bnfL},\var{bnfK},\var{polrel},\var{sdom},\{\var{der}=0\})$}\kbdsidx{lfunabelianrelinit}\label{se:lfunabelianrelinit}
Returns the \kbd{Linit} structure attached to the Dedekind zeta function
of the number field $L$ (see \tet{lfuninit}), given a subfield $K$ such that
$L/K$ is abelian.
Here \kbd{polrel} defines $L$ over $K$, as usual with the priority of the
variable of \kbd{bnfK} lower than that of \kbd{polrel}.
\kbd{sdom} and \kbd{der} are as in \kbd{lfuninit}.
\bprog
? D = -47; K = bnfinit(y^2-D);
? rel = quadhilbert(D); T = rnfequation(K.pol, rel); \\ degree 10
? L = lfunabelianrelinit(T,K,rel, [2,0,0]); \\ at 2
time = 84 ms.
? lfun(L, 2)
%4 = 1.0154213394402443929880666894468182650
? lfun(T, 2) \\ using parisize > 300MB
time = 652 ms.
%5 = 1.0154213394402443929880666894468182656
@eprog\noindent As the example shows, using the (abelian) relative structure
is more efficient than a direct computation. The difference becomes drastic
as the absolute degree increases while the subfield degree remains constant.
The library syntax is \fun{GEN}{lfunabelianrelinit}{GEN bnfL, GEN bnfK, GEN polrel, GEN sdom, long der, long bitprec}.
\subsec{lfunan$(L,n)$}\kbdsidx{lfunan}\label{se:lfunan}
Compute the first $n$ terms of the Dirichlet series attached to the
$L$-function given by \kbd{L} (\kbd{Lmath}, \kbd{Ldata} or \kbd{Linit}).
\bprog
? lfunan(1, 10) \\ Riemann zeta
%1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? lfunan(5, 10) \\ Dirichlet L-function for kronecker(5,.)
%2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]
@eprog
The library syntax is \fun{GEN}{lfunan}{GEN L, long n, long prec}.
\subsec{lfunartin$(\var{nf},\var{gal},M,n)$}\kbdsidx{lfunartin}\label{se:lfunartin}
Returns the \kbd{Ldata} structure attached to the
Artin $L$-function attached to the representation $\rho$ of the Galois group
of the extension $K/\Q$, defined over the cyclotomic field $\Q(\zeta_n)$,
where \var{nf} is the nfinit structure attached to $K$,
\var{gal} is the galoisinit structure attached to $K/\Q$, and $M$ is
the vector of the image of the generators \kbd{\var{gal}.gen} by $\rho$.
The elements of $M$ are matrices with polynomial entries, whose variable
is understood as the complex number $\exp(2\*i\*\pi/n)$.
In the following example we build the Artin $L$-functions attached to the two
irreducible degree $2$ representations of the dihedral group $D_{10}$ defined
over $\Q(\zeta_5)$, for the extension $H/\Q$ where $H$ is the Hilbert class
field of $\Q(\sqrt{-47})$.
We show numerically some identities involving Dedekind $\zeta$ functions and
Hecke $L$ series.
\bprog
? P = quadhilbert(-47);
? N = nfinit(nfsplitting(P));
? G = galoisinit(N);
? L1 = lfunartin(N,G, [[a,0;0,a^-1],[0,1;1,0]], 5);
? L2 = lfunartin(N,G, [[a^2,0;0,a^-2],[0,1;1,0]], 5);
? s = 1 + x + O(x^4);
? lfun(1,s)*lfun(-47,s)*lfun(L1,s)^2*lfun(L2,s)^2 - lfun(N,s)
%6 ~ 0
? lfun(1,s)*lfun(L1,s)*lfun(L2,s) - lfun(P,s)
%7 ~ 0
? bnr = bnrinit(bnfinit(x^2+47),1,1);
? lfun([bnr,[1]], s) - lfun(L1, s)
%9 ~ 0
? lfun([bnr,[1]], s) - lfun(L1, s)
%10 ~ 0
@eprog
The first identity is the factorisation of the regular representation of
$D_{10}$, the second the factorisation of the natural representation of
$D_{10}\subset S_5$, the next two are the expressions of the degree $2$
representations as induced from degree $1$ representations.
The library syntax is \fun{GEN}{lfunartin}{GEN nf, GEN gal, GEN M, long n}.
\subsec{lfuncheckfeq$(L,\{t\})$}\kbdsidx{lfuncheckfeq}\label{se:lfuncheckfeq}
Given the data attached to an $L$-function (\kbd{Lmath}, \kbd{Ldata}
or \kbd{Linit}), check whether the functional equation is satisfied.
This is most useful for an \kbd{Ldata} constructed ``by hand'', via
\kbd{lfuncreate}, to detect mistakes.
If the function has poles, the polar part must be specified. The routine
returns a bit accuracy $b$ such that $|w - \hat{w}| < 2^{b}$, where $w$ is
the root number contained in \kbd{data}, and $\hat{w}$ is a computed value
derived from $\overline{\theta}(t)$ and $\theta(1/t)$ at some $t\neq 0$ and
the assumed functional equation. Of course, a large negative value of the
order of \kbd{realbitprecision} is expected.
If $t$ is given, it should be close to the unit disc for efficiency and
such that $\overline{\theta}(t) \neq 0$. We then check the functional
equation at that $t$.
\bprog
? \pb 128 \\ 128 bits of accuracy
? default(realbitprecision)
%1 = 128
? L = lfuncreate(1); \\ Riemann zeta
? lfuncheckfeq(L)
%3 = -124
@eprog\noindent i.e. the given data is consistent to within 4 bits for the
particular check consisting of estimating the root number from all other
given quantities. Checking away from the unit disc will either fail with
a precision error, or give disappointing results (if $\theta(1/t)$ is
large it will be computed with a large absolute error)
\bprog
? lfuncheckfeq(L, 2+I)
%4 = -115
? lfuncheckfeq(L,10)
*** at top-level: lfuncheckfeq(L,10)
*** ^------------------
*** lfuncheckfeq: precision too low in lfuncheckfeq.
@eprog
The library syntax is \fun{long}{lfuncheckfeq}{GEN L, GEN t = NULL, long bitprec}.
\subsec{lfunconductor$(L,\{\var{ab}=[1,{10000}]\},\{\fl=0\})$}\kbdsidx{lfunconductor}\label{se:lfunconductor}
Compute the conductor of the given $L$-function
(if the structure contains a conductor, it is ignored);
$\kbd{ab} = [a,b]$ is the interval where we expect to find the conductor;
it may be given as a single scalar $b$, in which case we look in $[1,b]$.
Increasing \kbd{ab} slows down the program but gives better accuracy for the
result.
If \kbd{flag} is $0$ (default), give either the conductor found as an
integer, or a vector (possibly empty) of conductors found. If \kbd{flag} is
$1$, same but give the computed floating point approximations to the
conductors found, without rounding to integers. It \kbd{flag} is $2$, give
all the conductors found, even those far from integers.
\misctitle{Caveat} This is a heuristic program and the result is not
proven in any way:
\bprog
? L = lfuncreate(857); \\ Dirichlet L function for kronecker(857,.)
? \p19
realprecision = 19 significant digits
? lfunconductor(L)
%2 = [17, 857]
? lfunconductor(L,,1) \\ don't round
%3 = [16.99999999999999999, 857.0000000000000000]
? \p38
realprecision = 38 significant digits
? lfunconductor(L)
%4 = 857
@eprog
\misctitle{Note} This program should only be used if the primes dividing the
conductor are unknown, which is rare. If they are known, a direct
search through possible prime exponents using \kbd{lfuncheckfeq} will
be more efficient and rigorous:
\bprog
? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */
? E.disc \\ |disc E| = 2^12
%2 = -4096
\\ create Ldata by hand. Guess that root number is 1 and conductor N
? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, 1]);
? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d))))
1: 0
2: 0
4: -1
8: -2
16: -3
32: -127
64: -3
128: -2
256: -2
512: -1
1024: -1
2048: 0
4096: 0
? lfunconductor(L(1)) \\ lfunconductor ignores conductor = 1 in Ldata !
%5 = 32
@eprog\noindent The above code assumed that root number was $1$;
had we set it to $-1$, none of the \kbd{lfuncheckfeq} values would have been
acceptable:
\bprog
? L2(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 1, N, -1]);
? [ lfuncheckfeq(L2(d)) | d<-divisors(E.disc) ]
%7 = [0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, -1, -1]
@eprog
The library syntax is \fun{GEN}{lfunconductor}{GEN L, GEN ab = NULL, long 10000], long bitprec}.
\subsec{lfuncost$(L,\{\var{sdom}\},\{\var{der}=0\})$}\kbdsidx{lfuncost}\label{se:lfuncost}
Estimate the cost of running
\kbd{lfuninit(L,sdom,der)} at current bit precision. Returns $[t,b]$, to
indicate that $t$ coefficients $a_n$ will be computed, as well as $t$ values of
\tet{gammamellininv}, all at bit accuracy $b$.
A subsequent call to \kbd{lfun} at $s$ evaluates a polynomial of degree $t$
at $\exp(h s)$ for some real parameter $h$, at the same bit accuracy $b$.
If $L$ is already an \kbd{Linit}, then \var{sdom} and \var{der} are ignored
and are best left omitted; the bit accuracy is also inferred from $L$: in
short we get an estimate of the cost of using that particular \kbd{Linit}.
\bprog
? \pb 128
? lfuncost(1, [100]) \\ for zeta(1/2+I*t), |t| < 100
%1 = [7, 242] \\ 7 coefficients, 242 bits
? lfuncost(1, [1/2, 100]) \\ for zeta(s) in the critical strip, |Im s| < 100
%2 = [7, 246] \\ now 246 bits
? lfuncost(1, [100], 10) \\ for zeta(1/2+I*t), |t| < 100
%3 = [8, 263] \\ 10th derivative increases the cost by a small amount
? lfuncost(1, [10^5])
%3 = [158, 113438] \\ larger imaginary part: huge accuracy increase
? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ at s = 1/2+I*t), |t| < 100
%5 = [11457, 582]
? lfuncost(L, [200]) \\ twice higher
%6 = [36294, 1035]
? lfuncost(L, [10^4]) \\ much higher: very costly !
%7 = [70256473, 45452]
? \pb 256
? lfuncost(L, [100]); \\ doubling bit accuracy
%8 = [17080, 710]
@eprog\noindent In fact, some $L$ functions can be factorized algebraically
by the \kbd{lfuninit} call, e.g. the Dedekind zeta function of abelian
fields, leading to much faster evaluations than the above upper bounds.
In that case, the function returns a vector of costs as above for each
individual function in the product actually evaluated:
\bprog
? L = lfuncreate(polcyclo(5)); \\ Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \\ a priori cost
%2 = [11457, 582]
? L = lfuninit(L, [100]); \\ actually perform all initializations
? lfuncost(L)
%4 = [[16, 242], [16, 242], [7, 242]]
@eprog\noindent The Dedekind function of this abelian quartic field
is the product of four Dirichlet $L$-functions attached to the trivial
character, a non-trivial real character and two complex conjugate
characters. The non-trivial characters happen to have the same conductor
(hence same evaluation costs), and correspond to two evaluations only
since the two conjugate characters are evaluated simultaneously.
For a total of three $L$-functions evaluations, which explains the three
components above. Note that the actual cost is much lower than the a priori
cost in this case.
The library syntax is \fun{GEN}{lfuncost0}{GEN L, GEN sdom = NULL, long der, long bitprec}.
Also available is
\fun{GEN}{lfuncost}{GEN L, GEN dom, long der, long bitprec}
when $L$ is \emph{not} an \kbd{Linit}; the return value is a \typ{VECSMALL}
in this case.
\subsec{lfuncreate$(\var{obj})$}\kbdsidx{lfuncreate}\label{se:lfuncreate}
This low-level routine creates \tet{Ldata} structures, needed by
\var{lfun} functions, describing an $L$-function and its functional equation.
You are urged to use a high-level constructor when one is available,
and this function accepts them, see \kbd{??lfun}:
\bprog
? L = lfuncreate(1); \\ Riemann zeta
? L = lfuncreate(5); \\ Dirichlet L-function for quadratic character (5/.)
? L = lfuncreate(x^2+1); \\ Dedekind zeta for Q(i)
? L = lfuncreate(ellinit([0,1])); \\ L-function of E/Q: y^2=x^3+1
@eprog\noindent One can then use, e.g., \kbd{Lfun(L,s)} to directly
evaluate the respective $L$-functions at $s$, or \kbd{lfuninit(L, [c,w,h]}
to initialize computations in the rectangular box $\Re(s-c) \leq w$,
$\Im(s) \leq h$.
We now describe the low-level interface, used to input non-builtin
$L$-functions. The input is now a $6$ or $7$ component vector
$V=[a,astar,Vga,k,N,eps,poles]$, whose components are as follows:
\item \kbd{V[1]=a} encodes the Dirichlet series coefficients. The
preferred format is a closure of arity 1: \kbd{n->vector(n,i,a(i))} giving
the vector of the first $n$ coefficients. The closure is allowed to return
a vector of more than $n$ coefficients (only the first $n$ will be
considered) or even less than $n$, in which case loss of accuracy will occur
and a warning that \kbd{\#an} is less than expected is issued. This
allows to precompute and store a fixed large number of Dirichlet
coefficients in a vector $v$ and use the closure \kbd{n->v}, which
does not depend on $n$. As a shorthand for this latter case, you can input
the vector $v$ itself instead of the closure.
A second format is limited to multiplicative $L$ functions affording an
Euler product. It is a closure of arity 2 \kbd{(p,d)->L(p)} giving the local
factor $L_p$ at $p$ as a rational function, to be evaluated at $p^{-s}$ as in
\kbd{direuler}; $d$ is set to the floor of $\log_p(n)$, where $n$ is the
total number of Dirichlet coefficients $(a_1,\dots,a_n)$ that will be
computed in this way. This parameter $d$ allows to compute only part of $L_p$
when $p$ is large and $L_p$ expensive to compute, but it can of course be
ignored by the closure.
Finally one can describe separately the generic Dirichlet coefficients
and the bad local factors by setting $\kbd{dir} = [an, [p_1,L^{-1}_{p_1}],
\dots,[p_k,L^{-1}_{p_k}]]$, where \kbd{an} describes the generic coefficients
in one of the two formats above, except that coefficients $a_n$ with
$p_i \mid n$ for some $i \leq k$ will be ignored. The subsequent pairs $[p,
L_p^{-1}]$ give the bad primes and corresponding \emph{inverse} local
factors.
\item \kbd{V[2]=astar} is the Dirichlet series coefficients of the dual
function, encoded as \kbd{a} above. The sentinel values $0$ and $1$ may
be used for the special cases where $a = a^*$ and $a = \overline{a^*}$,
respectively.
\item \kbd{V[3]=Vga} is the vector of $\alpha_j$ such that the gamma
factor of the $L$-function is equal to
$$\gamma_A(s)=\prod_{1\le j\le d}\Gamma_{\R}(s+\alpha_j),$$
where $\Gamma_{\R}(s)=\pi^{-s/2}\Gamma(s/2)$.
This same syntax is used in the \kbd{gammamellininv} functions.
In particular the length $d$ of \kbd{Vga} is the degree of the $L$-function.
In the present implementation, the $\alpha_j$ are assumed to be exact
rational numbers. However when calling theta functions with \emph{complex}
(as opposed to real) arguments, determination problems occur which may
give wrong results when the $\alpha_j$ are not integral.
\item \kbd{V[4]=k} is a positive integer $k$. The functional equation relates
values at $s$ and $k-s$. For instance, for an Artin $L$-series such as a
Dedekind zeta function we have $k = 1$, for an elliptic curve $k = 2$, and
for a modular form, $k$ is its weight. For motivic $L$-functions, the
\emph{motivic} weight $w$ is $w = k-1$.
\item \kbd{V[5]=N} is the conductor, an integer $N\ge1$, such that
$\Lambda(s)=N^{s/2}\gamma_A(s)L(s)$ with $\gamma_A(s)$ as above.
\item \kbd{V[6]=eps} is the root number $\varepsilon$, i.e., the
complex number (usually of modulus $1$) such that
$\Lambda(a, k-s) = \varepsilon \Lambda(a^*, s)$.
\item The last optional component \kbd{V[7]=poles} encodes the poles of the
$L$ or $\Lambda$-functions, and is omitted if they have no poles.
A polar part is given by a list of $2$-component vectors
$[\beta,P_{\beta}(x)]$, where
$\beta$ is a pole and the power series $P_{\beta}(x)$ describes
the attached polar part, such that $L(s) - P_\beta(s-\beta)$ is holomorphic
in a neighbourhood of $\beta$. For instance $P_\beta = r/x+O(1)$ for a
simple pole at $\beta$ or $r_1/x^2+r_2/x+O(1)$ for a double pole.
The type of the list describing the polar part allows to distinguish between
$L$ and $\Lambda$: a \typ{VEC} is attached to $L$, and a \typ{COL}
is attached to $\Lambda$.
The latter is mandatory unless $a = \overline{a^*}$ (coded by \kbd{astar}
equal to $0$ or $1$): otherwise, the poles of $L^*$ cannot be infered from
the poles of $L$ ! (Whereas the functional equation allows to deduce
the polar part of $\Lambda^*$ from the polar part of $\Lambda$.)
The special coding $\kbd{poles} = r$ a complex scalar is available in this
case, to describe a $L$ function with at most a single simple pole at $s =
k$ and residue $r$. (This is the usual situation, for instance for Dedekind
zeta functions.) This value $r$ can be set to $0$ if unknown, and it will be
computed.
The library syntax is \fun{GEN}{lfuncreate}{GEN obj}.
\subsec{lfundiv$(\var{L1},\var{L2})$}\kbdsidx{lfundiv}\label{se:lfundiv}
Creates the \kbd{Ldata} structure (without initialization) corresponding
to the quotient of the Dirichlet series $L_1$ and $L_2$ given by
\kbd{L1} and \kbd{L2}. Assume that $v_z(L_1) \geq v_z(L_2)$ at all
complex numbers $z$: the construction may not create new poles, nor increase
the order of existing ones.
The library syntax is \fun{GEN}{lfundiv}{GEN L1, GEN L2, long bitprec}.
\subsec{lfunetaquo$(M)$}\kbdsidx{lfunetaquo}\label{se:lfunetaquo}
Returns the \kbd{Ldata} structure attached to the $L$ function
attached to the modular form
$z\mapsto \prod_{i=1}^n \eta(M_{i,1}\*z)^{M_{i,2}}$
It is currently assumed that $f$ is a self-dual cuspidal form on
$\Gamma_0(N)$ for some $N$.
For instance, the $L$-function $\sum \tau(n) n^{-s}$
attached to Ramanujan's $\Delta$ function is encoded as follows
\bprog
? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100) \\ first 100 values of tau(n)
@eprog
The library syntax is \fun{GEN}{lfunetaquo}{GEN M}.
\subsec{lfungenus2$(F)$}\kbdsidx{lfungenus2}\label{se:lfungenus2}
Returns the \kbd{Ldata} structure attached to the $L$ function
attached to the genus-2 curve defined by $y^2=F(x)$ or
$y^2+Q(x)\*y=P(x)$ if $F=[P,Q]$.
Currently, the model needs to be minimal at 2, and if the conductor
is even, its valuation at $2$ might be incorrect (a warning is issued).
The library syntax is \fun{GEN}{lfungenus2}{GEN F}.
\subsec{lfunhardy$(L,t)$}\kbdsidx{lfunhardy}\label{se:lfunhardy}
Variant of the Hardy $Z$-function given by \kbd{L}, used for
plotting or locating zeros of $L(k/2+it)$ on the critical line.
The precise definition is as
follows: if as usual $k/2$ is the center of the critical strip, $d$ is the
degree, $\alpha_j$ the entries of \kbd{Vga} giving the gamma factors,
and $\varepsilon$ the root number, then if we set
$s = k/2+it = \rho e^{i\theta}$ and
$E=(d(k/2-1)+\sum_{1\le j\le d}\alpha_j)/2$, the computed function at $t$ is
equal to
$$Z(t) = \varepsilon^{-1/2}\Lambda(s) \cdot |s|^{-E}e^{dt\theta/2}\;,$$
which is a real function of $t$ for self-dual $\Lambda$,
vanishing exactly when $L(k/2+it)$ does on the critical line. The
normalizing factor $|s|^{-E}e^{dt\theta/2}$ compensates the
exponential decrease of $\gamma_A(s)$ as $t\to\infty$ so that
$Z(t) \approx 1$.
\bprog
? T = 100; \\ maximal height
? L = lfuninit(1, [T]); \\ initialize for zeta(1/2+it), |t|<T
? \p19 \\ no need for large accuracy
? ploth(t = 0, T, lfunhardy(L,t))
@eprog\noindent Using \kbd{lfuninit} is critical for this particular
applications since thousands of values are computed. Make sure to initialize
up to the maximal $t$ needed: otherwise expect to see many warnings for
unsufficient initialization and suffer major slowdowns.
The library syntax is \fun{GEN}{lfunhardy}{GEN L, GEN t, long bitprec}.
\subsec{lfuninit$(L,\var{sdom},\{\var{der}=0\})$}\kbdsidx{lfuninit}\label{se:lfuninit}
Initalization function for all functions linked to the
computation of the $L$-function $L(s)$ encoded by \kbd{L}, where
$s$ belongs to the rectangular domain $\kbd{sdom} = [\var{center},w,h]$
centered on the real axis, $|\Re(s)-\var{center}| \leq w$, $|\Im(s)| \leq h$,
where all three components of \kbd{sdom} are real and $w$, $h$ are
non-negative. \kbd{der} is the maximum order of derivation that will be used.
The subdomain $[k/2, 0, h]$ on the critical line (up to height $h$)
can be encoded as $[h]$ for brevity. The subdomain $[k/2, w, h]$
centered on the critical line can be encoded as $[w, h]$ for brevity.
The argument \kbd{L} is an \kbd{Lmath}, an \kbd{Ldata} or an \kbd{Linit}. See
\kbd{??Ldata} and \kbd{??lfuncreate} for how to create it.
The height $h$ of the domain is a \emph{crucial} parameter: if you only
need $L(s)$ for real $s$, set $h$ to~0.
The running time is roughly proportional to
$$(B / d+\pi h/4)^{d/2+3}N^{1/2},$$
where $B$ is the default bit accuracy, $d$ is the degree of the
$L$-function, and $N$ is the conductor (the exponent $d/2+3$ is reduced
to $d/2+2$ when $d=1$ and $d=2$). There is also a dependency on $w$,
which is less crucial, but make sure to use the smallest rectangular
domain that you need.
\bprog
? L0 = lfuncreate(1); \\ Riemann zeta
? L = lfuninit(L0, [1/2, 0, 100]); \\ for zeta(1/2+it), |t| < 100
? lfun(L, 1/2 + I)
? L = lfuninit(L0, [100]); \\ same as above !
@eprog
The library syntax is \fun{GEN}{lfuninit0}{GEN L, GEN sdom, long der, long bitprec}.
\subsec{lfunlambda$(L,s,\{D=0\})$}\kbdsidx{lfunlambda}\label{se:lfunlambda}
Compute the completed $L$-function $\Lambda(s) = N^{s/2}\gamma(s)L(s)$,
or if \kbd{D} is set, the derivative of order \kbd{D} at $s$.
The parameter \kbd{L} is either an \kbd{Lmath}, an \kbd{Ldata} (created by
\kbd{lfuncreate}, or an \kbd{Linit} (created by \kbd{lfuninit}), preferrably the
latter if many values are to be computed.
The result is given with absolute error less than $2^{-B}|\gamma(s)N^{s/2}|$,
where $B = \text{realbitprecision}$.
The library syntax is \fun{GEN}{lfunlambda0}{GEN L, GEN s, long D, long bitprec}.
\subsec{lfunmfspec$(L)$}\kbdsidx{lfunmfspec}\label{se:lfunmfspec}
Returns \kbd{[valeven,valodd,omminus,omplus]},
where \kbd{valeven} (resp., \kbd{valodd}) is the vector of even (resp., odd)
periods of the modular form given by \kbd{L}, and \kbd{omminus} and
\kbd{omplus} the corresponding real numbers $\omega^-$ and $\omega^+$
normalized in a noncanonical way. For the moment, only for modular forms of even weight.
The library syntax is \fun{GEN}{lfunmfspec}{GEN L, long bitprec}.
\subsec{lfunmul$(\var{L1},\var{L2})$}\kbdsidx{lfunmul}\label{se:lfunmul}
Creates the \kbd{Ldata} structure (without initialization) corresponding
to the product of the Dirichlet series given by \kbd{L1} and
\kbd{L2}.
The library syntax is \fun{GEN}{lfunmul}{GEN L1, GEN L2, long bitprec}.
\subsec{lfunorderzero$(L, \{m = -1\})$}\kbdsidx{lfunorderzero}\label{se:lfunorderzero}
Computes the order of the possible zero of the $L$-function at the
center $k/2$ of the critical strip; return $0$ if $L(k/2)$ does not vanish.
If $m$ is given and has a non-negative value, assumes the order is at most $m$.
Otherwise, the algorithm chooses a sensible default:
\item if the $L$ argument is an \kbd{Linit}, assume that a multiple zero at
$s = k / 2$ has order less than or equal to the maximal allowed derivation
order.
\item else assume the order is less than $4$.
You may explicitly increase this value using optional argument~$m$; this
overrides the default value above. (Possibly forcing a recomputation
of the \kbd{Linit}.)
The library syntax is \fun{long}{lfunorderzero}{GEN L, long m, long bitprec}.
\subsec{lfunqf$(Q)$}\kbdsidx{lfunqf}\label{se:lfunqf}
Returns the \kbd{Ldata} structure attached to the $\Theta$ function
of the lattice attached to the definite positive quadratic form $Q$.
\bprog
? L = lfunqf(matid(2));
? lfunqf(L,2)
%2 = 6.0268120396919401235462601927282855839
? lfun(x^2+1,2)*4
%3 = 6.0268120396919401235462601927282855839
@eprog
The library syntax is \fun{GEN}{lfunqf}{GEN Q, long prec}.
\subsec{lfunrootres$(\var{data})$}\kbdsidx{lfunrootres}\label{se:lfunrootres}
Given the \kbd{Ldata} attached to an $L$-function (or the output of
\kbd{lfunthetainit}), compute the root number and the residues.
The output is a 3-component vector $[r,R,w]$, where $r$ is the
residue of $L(s)$ at the unique pole, $R$ is the residue of $\Lambda(s)$,
and $w$ is the root number. In the present implementation,
\item either the polar part must be completely known (and is then arbitrary):
the function determines the root number,
\bprog
? L = lfunmul(1,1); \\ zeta^2
? [r,R,w] = lfunrootres(L);
? r \\ single pole at 1, double
%3 = [[1, 1.[...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]
? w
%4 = 1
? R \\ double pole at 0 and 1
%5 = [[1,[...]], [0,[...]]
@eprog
\item or at most a single pole is allowed: the function computes both
the root number and the residue ($0$ if no pole).
The library syntax is \fun{GEN}{lfunrootres}{GEN data, long bitprec}.
\subsec{lfuntheta$(\var{data},t,\{m=0\})$}\kbdsidx{lfuntheta}\label{se:lfuntheta}
Compute the value of the $m$-th derivative
at $t$ of the theta function attached to the $L$-function given by \kbd{data}.
\kbd{data} can be either the standard $L$-function data, or the output of
\kbd{lfunthetainit}.
The theta function is defined by the formula
$\Theta(t)=\sum_{n\ge1}a(n)K(nt/\sqrt(N))$, where $a(n)$ are the coefficients
of the Dirichlet series, $N$ is the conductor, and $K$ is the inverse Mellin
transform of the gamma product defined by the \kbd{Vga} component.
Its Mellin transform is equal to $\Lambda(s)-P(s)$, where $\Lambda(s)$
is the completed $L$-function and the rational function $P(s)$ its polar part.
In particular, if the $L$-function is the $L$-function of a modular form
$f(\tau)=\sum_{n\ge0}a(n)q^n$ with $q=\exp(2\pi i\tau)$, we have
$\Theta(t)=2(f(it/\sqrt{N})-a(0))$. Note that an easy theorem on modular
forms implies that $a(0)$ can be recovered by the formula $a(0)=-L(f,0)$.
The library syntax is \fun{GEN}{lfuntheta}{GEN data, GEN t, long m, long bitprec}.
\subsec{lfunthetacost$(L,\{\var{tdom}\},\{m=0\})$}\kbdsidx{lfunthetacost}\label{se:lfunthetacost}
This function estimates the cost of running
\kbd{lfunthetainit(L,tdom,m)} at current bit precision. Returns the number of
coefficients $a_n$ that would be computed. This also estimates the
cost of a subsequent evaluation \kbd{lfuntheta}, which must compute
that many values of \kbd{gammamellininv} at the current bit precision.
If $L$ is already an \kbd{Linit}, then \var{tdom} and $m$ are ignored
and are best left omitted: we get an estimate of the cost of using that
particular \kbd{Linit}.
\bprog
? \pb 1000
? L = lfuncreate(1); \\ Riemann zeta
? lfunthetacost(L); \\ cost for theta(t), t real >= 1
%1 = 15
? lfunthetacost(L, 1 + I); \\ cost for theta(1+I). Domain error !
*** at top-level: lfunthetacost(1,1+I)
*** ^--------------------
*** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785
? lfunthetacost(L, 1 + I/2) \\ for theta(1+I/2).
%2 = 23
? lfunthetacost(L, 1 + I/2, 10) \\ for theta^((10))(1+I/2).
%3 = 24
? lfunthetacost(L, [2, 1/10]) \\ cost for theta(t), |t| >= 2, |arg(t)| < 1/10
%4 = 8
? L = lfuncreate( ellinit([1,1]) );
? lfunthetacost(L) \\ for t >= 1
%6 = 2471
@eprog
The library syntax is \fun{long}{lfunthetacost0}{GEN L, GEN tdom = NULL, long m, long bitprec}.
\subsec{lfunthetainit$(L,\{\var{tdom}\},\{m=0\})$}\kbdsidx{lfunthetainit}\label{se:lfunthetainit}
Initalization function for evaluating the $m$-th derivative of theta
functions with argument $t$ in domain \var{tdom}. By default (\var{tdom}
omitted), $t$ is real, $t \geq 1$. Otherwise, \var{tdom} may be
\item a positive real scalar $\rho$: $t$ is real, $t \geq \rho$.
\item a non-real complex number: compute at this particular $t$; this
allows to compute $\theta(z)$ for any complex $z$ satisfying $|z|\geq |t|$
and $|\arg z| \leq |\arg t|$; we must have $|2 \arg z / d| < \pi/2$, where
$d$ is the degree of the $\Gamma$ factor.
\item a pair $[\rho,\alpha]$: assume that $|t| \geq \rho$ and $|\arg t| \leq
\alpha$; we must have $|2\alpha / d| < \pi/2$, where $d$ is the degree of
the $\Gamma$ factor.
\bprog
? \p500
? L = lfuncreate(1); \\ Riemann zeta
? t = 1+I/2;
? lfuntheta(L, t); \\ direct computation
time = 30 ms.
? T = lfunthetainit(L, 1+I/2);
time = 30 ms.
? lfuntheta(T, t); \\ instantaneous
@eprog\noindent The $T$ structure would allow to quickly compute $\theta(z)$
for any $z$ in the cone delimited by $t$ as explained above. On the other hand
\bprog
? lfuntheta(T,I)
*** at top-level: lfuntheta(T,I)
*** ^--------------
*** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448
@eprog
The initialization is equivalent to
\bprog
? lfunthetainit(L, [abs(t), arg(t)])
@eprog
The library syntax is \fun{GEN}{lfunthetainit}{GEN L, GEN tdom = NULL, long m, long bitprec}.
\subsec{lfunzeros$(L,\var{lim},\{\var{divz}=8\})$}\kbdsidx{lfunzeros}\label{se:lfunzeros}
\kbd{lim} being either a positive upper limit or a non-empty real
interval inside $[0,+\infty[$, computes an
ordered list of zeros of $L(s)$ on the critical line up to the given
upper limit or in the given interval. Use a naive algorithm which may miss
some zeros: it assumes that two consecutive zeros at height $T \geq 1$
differ at least by $2\pi/\omega$, where
$$\omega := \kbd{divz} \cdot \big(d\log(T/2\pi) +d+ 2\log(N/(\pi/2)^d)\big).$$
To use a finer search mesh, set divz to some integral value
larger than the default (= 8).
\bprog
? lfunzeros(1, 30) \\ zeros of Rieman zeta up to height 30
%1 = [14.134[...], 21.022[...], 25.010[...]]
? #lfunzeros(1, [100,110]) \\ count zeros with 100 <= Im(s) <= 110
%2 = 4
@eprog\noindent The algorithm also assumes that all zeros are simple except
possibly on the real axis at $s = k/2$ and that there are no poles in the
search interval. (The possible zero at $s = k/2$ is repeated according to
its multiplicity.)
Should you pass an \kbd{Linit} argument to the function, beware that the
algorithm needs at least
\bprog
L = lfuninit(Ldata, T+1)
@eprog\noindent where $T$ is the upper bound of the interval defined by
\kbd{lim}: this allows to detect zeros near $T$. Make sure that your
\kbd{Linit} domain contains this one. The algorithm assumes
that a multiple zero at $s = k / 2$ has order less than or equal to
the maximal derivation order allowed by the \kbd{Linit}. You may increase
that value in the \kbd{Linit} but this is costly: only do it for zeros
of low height or in \kbd{lfunorderzero} instead.
The library syntax is \fun{GEN}{lfunzeros}{GEN L, GEN lim, long divz, long bitprec}.
%SECTION: l_functions
%\section{Modular forms}
%
%This section is currently empty but with be populated during the 2.8 cycle
%with functions from the \kbd{kb-mftrace} branch.
%
%%SECTION: modular_forms
\section{Modular symbols}
Let $\Delta := \text{Div}^0(\P^1(\Q))$ be the abelian group of divisors of
degree $0$ on the rational projective line. The standard $\text{GL}(2,\Q)$
action on $\P^1(\Q)$ via homographies naturally extends to $\Delta$. Given
\item $G$ a finite index subgroup of $\text{SL}(2,\Z)$,
\item a field $F$ and a finite dimensional representation $V/F$ of
$\text{GL}(2,\Q)$,
\noindent we consider the space of \emph{modular symbols} $M :=
\Hom_G(\Delta, V)$. This finite dimensional $F$-vector
space is a $G$-module, canonically isomorphic to $H^1_c(X(G), V)$,
and allows to compute modular forms for $G$.
Currently, we only support the groups $\Gamma_0(N)$ ($N > 1$ an integer)
and the representations $V_k = \Q[X,Y]_{k-2}$ ($k \geq 2$ an integer) over
$\Q$. We represent a space of modular symbols by an \var{ms} structure,
created by the function \tet{msinit}. It encodes basic data attached to the
space: chosen $\Z[G]$-generators $(g_i)$ for $\Delta$ (and relations among
those) and an $F$-basis of $M$. A modular symbol $s$ is thus given either in
terms of this fixed basis, or as a collection of values $s(g_i)$
satisfying certain relations.
A subspace of $M$ (e.g. the cuspidal or Eisenstein subspaces, the new or
old modular symbols, etc.) is given by a structure allowing quick projection
and restriction of linear operators; its first component is a matrix whose
columns form an $F$-basis of the subspace.
\subsec{msatkinlehner$(M,Q,\{H\})$}\kbdsidx{msatkinlehner}\label{se:msatkinlehner}
Let $M$ be a full modular symbol space of level $N$,
as given by \kbd{msinit}, let $Q \mid N$, $(Q,N/Q) = 1$,
and let $H$ be a subspace stable under the Atkin-Lehner involution $w_Q$.
Return the matrix of $w_Q$ acting on $H$ ($M$ if omitted).
\bprog
? M = msinit(36,2); \\ M_2(Gamma_0(36))
? w = msatkinlehner(M,4); w^2 == 1
%2 = 1
? #w \\ involution acts on a 13-dimensional space
%3 = 13
? M = msinit(36,2, -1); \\ M_2(Gamma_0(36))^-
? w = msatkinlehner(M,4); w^2 == 1
%5 = 1
? #w
%6 = 4
@eprog
The library syntax is \fun{GEN}{msatkinlehner}{GEN M, long Q, GEN H = NULL}.
\subsec{mscuspidal$(M, \{\fl=0\})$}\kbdsidx{mscuspidal}\label{se:mscuspidal}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return its cuspidal part $S$. If $\fl = 1$, return
$[S,E]$ its decomposition into cuspidal and Eisenstein parts.
A subspace is given by a structure allowing quick projection and
restriction of linear operators; its first component is
a matrix with integer coefficients whose columns form a $\Q$-basis of
the subspace.
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? [S,E] = mscuspidal(M, 1);
? E[1] \\ 2-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]
? S[1] \\ 1-dimensional
%4 =
[ 3]
[30]
[ 6]
[-8]
@eprog
The library syntax is \fun{GEN}{mscuspidal}{GEN M, long flag}.
\subsec{mseisenstein$(M)$}\kbdsidx{mseisenstein}\label{se:mseisenstein}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return its Eisenstein subspace.
A subspace is given by a structure allowing quick projection and
restriction of linear operators; its first component is
a matrix with integer coefficients whose columns form a $\Q$-basis of
the subspace.
This is the same basis as given by the second component of
\kbd{mscuspidal}$(M, 1)$.
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ 2-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]
? E == mscuspidal(M,1)[2]
%4 = 1
@eprog
The library syntax is \fun{GEN}{mseisenstein}{GEN M}.
\subsec{mseval$(M,s,\{p\})$}\kbdsidx{mseval}\label{se:mseval}
Let $\Delta:=\text{Div}^0(\P^1 (\Q))$.
Let $M$ be a full modular symbol space, as given by \kbd{msinit},
let $s$ be a modular symbol from $M$, i.e. an element
of $\Hom_G(\Delta, V)$, and let $p=[a,b] \in \Delta$ be a path between
two elements in $\P^1(\Q)$, return $s(p)\in V$. The path extremities $a$ and
$b$ may be given as \typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$.
The symbol $s$ is either
\item a \typ{COL} coding an element of a modular symbol subspace in terms of
the fixed basis of $\Hom_G(\Delta,V)$ chosen in $M$; if $M$ was
initialized with a non-zero \emph{sign} ($+$ or $-$), then either the
basis for the full symbol space or the $\pm$-part can be used (the dimension
being used to distinguish the two).
\item a \typ{VEC} $(v_i)$ of elements of $V$, where the $v_i = s(g_i)$ give
the image of the generators $g_i$ of $\Delta$, see \tet{mspathgens}.
We assume that $s$ is a proper symbol, i.e.~that the $v_i$ satisfy
the \kbd{mspathgens} relations.
If $p$ is omitted, convert the symbol $s$ to the second form: a vector of
the $s(g_i)$.
\bprog
? M = msinit(2,8,1); \\ M_8(Gamma_0(2))^+
? g = mspathgens(M)[1]
%2 = [[+oo, 0], [0, 1]]
? N = msnew(M)[1]; #N \\ Q-basis of new subspace, dimension 1
%3 = 1
? s = N[,1] \\ t_COL representation
%4 = [-3, 6, -8]~
? S = mseval(M, s) \\ t_VEC representation
%5 = [64*x^6-272*x^4+136*x^2-8, 384*x^5+960*x^4+192*x^3-672*x^2-432*x-72]
? mseval(M,s, g[1])
%6 = 64*x^6 - 272*x^4 + 136*x^2 - 8
? mseval(M,S, g[1])
%7 = 64*x^6 - 272*x^4 + 136*x^2 - 8
@eprog\noindent Note that the symbol should have values in
$V = \Q[x,y]_{k-2}$, we return the de-homogenized values corresponding to $y
= 1$ instead.
The library syntax is \fun{GEN}{mseval}{GEN M, GEN s, GEN p = NULL}.
\subsec{msfromcusp$(M, c)$}\kbdsidx{msfromcusp}\label{se:msfromcusp}
Returns the modular symbol attached to the cusp
$c$, where $M$ is a modular symbol space of level $N$, attached to
$G = \Gamma_0(N)$. The cusp $c$ in $\P^1(\Q)/G$
can be given either as \kbd{oo} ($=(1:0)$), as a rational number $a/b$
($=(a:b)$). The attached symbol maps the path $[b] - [a] \in
\text{Div}^0 (\P^1(\Q))$ to $E_c(b) - E_c(a)$, where $E_c(r)$ is
$0$ when $r \neq c$ and $X^{k-2} \mid \gamma_r$ otherwise, where
$\gamma_r \cdot r = (1:0)$. These symbol span the Eisenstein subspace
of $M$.
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? E = mseisenstein(M);
? E[1] \\ two-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]
? s = msfromcusp(M,oo)
%4 = [0, 0, 0, 1]~
? mseval(M, s)
%5 = [1, 0]
? s = msfromcusp(M,1)
%6 = [-5/16, -15/32, -3/32, 0]~
? mseval(M,s)
%7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]
@eprog
In case $M$ was initialized with a non-zero \emph{sign}, the symbol is given
in terms of the fixed basis of the whole symbol space, not the $+$ or $-$
part (to which it need not belong).
\bprog
? M = msinit(2,8, 1); \\ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \\ still two-dimensional, in a smaller space
%3 =
[ 0 -10]
[ 0 3]
[-1 0]
? s = msfromcusp(M,oo) \\ in terms of the basis for M_8(Gamma_0(2)) !
%4 = [0, 0, 0, 1]~
? mseval(M, s) \\ same symbol as before
%5 = [1, 0]
@eprog
The library syntax is \fun{GEN}{msfromcusp}{GEN M, GEN c}.
\subsec{msfromell$(E, \{\var{sign}=0\})$}\kbdsidx{msfromell}\label{se:msfromell}
Let $E/\Q$ be an elliptic curve of conductor $N$. For $\varepsilon =
\pm1$, we define the (cuspidal, new) modular symbol $x^\varepsilon$ in
$H^1_c(X_0(N),\Q)^\varepsilon$ attached to
$E$. For all primes $p$ not dividing $N$ we have
$T_p(x^\varepsilon) = a_p x^\varepsilon$, where $a_p = p+1-\#E(\F_p)$.
Let $\Omega^+ = \kbd{E.omega[1]}$ be the real period of $E$
(integration of the N\'eron differential $dx/(2y+a_1x+a3)$ on the connected
component of $E(\R)$, i.e.~the generator of $H_1(E,\Z)^+$) normalized by
$\Omega^+>0$. Let $i\Omega^-$ the integral on a generator of $H_1(E,\Z)^-$ with
$\Omega^- \in \R_{>0}$. If $c_\infty$ is the number of connected
components of $E(\R)$, $\Omega^-$ is equal to
$(-2/c_\infty) \times \kbd{imag(E.omega[2])}$.
The complex modular symbol is defined by
$$F: \delta \to 2i\pi \int_{\delta} f(z) dz$$
The modular symbols $x^\varepsilon$ are normalized so that
$ F = x^+ \Omega^+ + x^- i\Omega^-$.
In particular, we have
$$ x^+([0]-[\infty]) = L(E,1) / \Omega^+,$$
which defines $x^{\pm}$ unless $L(E,1)=0$.
Furthermore, for all fundamental discriminants $D$ such
that $\varepsilon \cdot D > 0$, we also have
$$\sum_{0\leq a<|D|} (D|a) x^\varepsilon([a/|D|]-[\infty])
= L(E,(D|.),1) / \Omega^{\varepsilon},$$
where $(D|.)$ is the Kronecker symbol.
The period $\Omega^-$ is also $2/c_\infty \times$ the real period
of the twist $E^{(-4)} = \kbd{elltwist(E,-4)}$.
This function returns the pair $[M, x]$, where $M$ is
\kbd{msinit}$(N,2)$ and $x$ is $x^{\var{sign}}$ as above when $\var{sign}=
\pm1$, and $x = [x^+,x^-]$ when \var{sign} is $0$.
The modular symbols $x^\pm$ are given as a \typ{COL} (in terms
of the fixed basis of $\Hom_G(\Delta,\Q)$ chosen in $M$).
\bprog
? E=ellinit([0,-1,1,-10,-20]); \\ X_0(11)
? [M,xp]= msfromell(E,1);
? xp
%3 = [1/5, -1/2, -1/2]~
? [M,x]= msfromell(E);
? x \\ both x^+ and x^-
%5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~]
? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]
%6 = [0, 0, 0]~ \\ true at all primes, including p = 11; same for x[2]
@eprog
The library syntax is \fun{GEN}{msfromell}{GEN E, long sign}.
\subsec{msfromhecke$(M, v, \{H\})$}\kbdsidx{msfromhecke}\label{se:msfromhecke}
Given a msinit $M$ and a vector $v$ of pairs $[p, P]$ (where $p$ is prime
and $P$ is a polynomial with integer coefficients), return a basis of all
modular symbols such that $P(T_p)(s) = 0$. If $H$ is present, it must
be a Hecke-stable subspace and we restrict to $s \in H$. When $T_p$ has
a rational eigenvalue and $P(x) = x-a_p$ has degree $1$, we also accept the
integer $a_p$ instead of $P$.
\bprog
? E = ellinit([0,-1,1,-10,-20]) \\11a1
? ellap(E,2)
%2 = -2
? ellap(E,3)
%3 = -1
? M = msinit(11,2);
? S = msfromhecke(M, [[2,-2],[3,-1]])
%5 =
[ 1 1]
[-5 0]
[ 0 -5]
? mshecke(M, 2, S)
%6 =
[-2 0]
[ 0 -2]
? M = msinit(23,4);
? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);
? factor( charpoly(mshecke(M,5,S)) )
%9 =
[x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]
@eprog
The library syntax is \fun{GEN}{msfromhecke}{GEN M, GEN v, GEN H = NULL}.
\subsec{msgetlevel$(M)$}\kbdsidx{msgetlevel}\label{se:msgetlevel}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its level $N$.
The library syntax is \fun{long}{msgetlevel}{GEN M}.
\subsec{msgetsign$(M)$}\kbdsidx{msgetsign}\label{se:msgetsign}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its sign: $\pm1$ or 0 (unset).
\bprog
? M = msinit(11,4, 1);
? msgetsign(M)
%2 = 1
? M = msinit(11,4);
? msgetsign(M)
%4 = 0
@eprog
The library syntax is \fun{long}{msgetsign}{GEN M}.
\subsec{msgetweight$(M)$}\kbdsidx{msgetweight}\label{se:msgetweight}
$M$ being a full modular symbol space, as given by \kbd{msinit}, return
its weight $k$.
\bprog
? M = msinit(11,4);
? msgetweight(M)
%2 = 4
@eprog
The library syntax is \fun{long}{msgetweight}{GEN M}.
\subsec{mshecke$(M,p,\{H\})$}\kbdsidx{mshecke}\label{se:mshecke}
$M$ being a full modular symbol space, as given by \kbd{msinit},
$p$ being a prime number, and $H$ being a Hecke-stable subspace ($M$ if
omitted) return the matrix of $T_p$ acting on $H$
($U_p$ if $p$ divides $N$). Result is undefined if $H$ is not stable
by $T_p$ (resp.~$U_p$).
\bprog
? M = msinit(11,2); \\ M_2(Gamma_0(11))
? T2 = mshecke(M,2)
%2 =
[3 0 0]
[1 -2 0]
[1 0 -2]
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? T2 = mshecke(M,2)
%4 =
[ 3 0]
[-1 -2]
? N = msnew(M)[1] \\ Q-basis of new cuspidal subspace
%5 =
[-2]
[-5]
? p = 1009; mshecke(M, p, N) \\ action of T_1009 on N
%6 =
[-10]
? ellap(ellinit("11a1"), p)
%7 = -10
@eprog
The library syntax is \fun{GEN}{mshecke}{GEN M, long p, GEN H = NULL}.
\subsec{msinit$(G, V, \{\var{sign}=0\})$}\kbdsidx{msinit}\label{se:msinit}
Given $G$ a finite index subgroup of $\text{SL}(2,\Z)$
and a finite dimensional representation $V$ of $\text{GL}(2,\Q)$, creates a
space of modular symbols, the $G$-module $\Hom_G(\text{Div}^0(\P^1
(\Q)), V)$. This is canonically isomorphic to $H^1_c(X(G), V)$, and allows to
compute modular forms for $G$. If \emph{sign} is present and non-zero, it
must be $\pm1$ and we consider the subspace defined by $\text{Ker} (\sigma -
\var{sign})$, where $\sigma$ is induced by \kbd{[-1,0;0,1]}. Currently the
only supported groups are the $\Gamma_0(N)$, coded by the integer $N > 1$.
The only supported representation is $V_k = \Q[X,Y]_{k-2}$, coded by the
integer $k \geq 2$.
The library syntax is \fun{GEN}{msinit}{GEN G, GEN V, long sign}.
\subsec{msissymbol$(M,s)$}\kbdsidx{msissymbol}\label{se:msissymbol}
$M$ being a full modular symbol space, as given by \kbd{msinit},
check whether $s$ is a modular symbol attached to $M$.
\bprog
? M = msinit(7,8, 1); \\ M_8(Gamma_0(7))^+
? N = msnew(M)[1];
? s = N[,1];
? msissymbol(M, s)
%4 = 1
? S = mseval(M,s);
? msissymbol(M, S)
%6 = 1
? [g,R] = mspathgens(M); g
%7 = [[+oo, 0], [0, 1/2], [1/2, 1]]
? #R \\ 3 relations among the generators g_i
%8 = 3
? T = S; T[3]++; \\ randomly perturb S(g_3)
? msissymbol(M, T)
%10 = 0 \\ no longer satisfies the relations
@eprog
The library syntax is \fun{long}{msissymbol}{GEN M, GEN s}.
\subsec{msnew$(M)$}\kbdsidx{msnew}\label{se:msnew}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return the \emph{new} part of its cuspidal subspace. A subspace is given by
a structure allowing quick projection and restriction of linear operators;
its first component is a matrix with integer coefficients whose columns form
a $\Q$-basis of the subspace.
\bprog
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? N = msnew(M);
? #N[1] \\ 6-dimensional
%3 = 6
@eprog
The library syntax is \fun{GEN}{msnew}{GEN M}.
\subsec{msomseval$(\var{Mp}, \var{PHI}, \var{path})$}\kbdsidx{msomseval}\label{se:msomseval}
Return the vectors of moments of the $p$-adic distribution attached
to the path \kbd{path} by the overconvergent modular symbol \kbd{PHI}.
\bprog
? M = msinit(3,6,1);
? Mp= mspadicinit(M,5,10);
? phi = [5,-3,-1]~;
? msissymbol(M,phi)
%4 = 1
? PHI = mstooms(Mp,phi);
? ME = msomseval(Mp,PHI,[oo, 0]);
@eprog
The library syntax is \fun{GEN}{msomseval}{GEN Mp, GEN PHI, GEN path}.
\subsec{mspadicL$(\var{mu}, \{s = 0\}, \{r = 0\})$}\kbdsidx{mspadicL}\label{se:mspadicL}
Returns the value (or $r$-th derivative)
on a character $\chi^s$ of $\Z_p^*$ of the $p$-adic $L$-function
attached to \kbd{mu}.
Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for
$T_N(p)$ for the eigenvalue $a_p$). Then $L_p(\Phi,\chi^s)=L_p(\mu,s)$ is the
$p$-adic $L$ function defined by
$$L_p(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) d\mu(z)$$
where $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of
$\Phi([\infty]-[0])$ to $\Z_p^*$. The $r$-th derivative is taken in
direction $\langle \chi\rangle$:
$$L_p^{(r)}(\Phi,\chi^s)= \int_{\Z_p^*} \chi^s(z) (\log z)^r d\mu(z).$$
In the argument list,
\item \kbd{mu} is as returned by \tet{mspadicmoments} (distributions
attached to $\Phi$ by restriction to discs $a + p^\nu\Z_p$, $(a,p)=1$).
\item $s=[s_1,s_2]$ with $s_1 \in \Z \subset \Z_p$ and $s_2 \bmod p-1$ or
$s_2 \bmod 2$ for $p=2$, encoding the $p$-adic character $\chi^s := \langle
\chi \rangle^{s_1} \tau^{s_2}$; here $\chi$ is the cyclotomic character from
$\text{Gal}(\Q_p(\mu_{p^\infty})/\Q_p)$ to $\Z_p^*$, and $\tau$ is the
Teichm\"uller character (for $p>2$ and the character of order 2 on
$(\Z/4\Z)^*$ if $p=2$); for convenience, the character $[s,s]$ can also be
represented by the integer $s$.
When $a_p$ is a $p$-adic unit, $L_p$ takes its values in $\Q_p$.
When $a_p$ is not a unit, it takes its values in the
two-dimensional $\Q_p$-vector space $D_{cris}(M(\phi))$ where $M(\phi)$ is
the ``motive'' attached to $\phi$, and we return the two $p$-adic components
with respect to some fixed $\Q_p$-basis.
\bprog
? M = msinit(3,6,1); phi=[5, -3, -1]~;
? msissymbol(M,phi)
%2 = 1
? Mp = mspadicinit(M, 5, 4);
? mu = mspadicmoments(Mp, phi); \\ no twist
\\ End of initializations
? mspadicL(mu,0) \\ L_p(chi^0)
%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...
? mspadicL(mu,1) \\ L_p(chi), zero for parity reasons
%6 = [O(5^13)]~
? mspadicL(mu,2) \\ L_p(chi^2)
%7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...
? mspadicL(mu,[0,2]) \\ L_p(tau^2)
%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...
? mspadicL(mu, [1,0]) \\ L_p(<chi>)
%9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)
? mspadicL(mu,0,1) \\ L_p'(chi^0)
%10 = 2*5 + 4*5^2 + 3*5^3 + ...
? mspadicL(mu, 2, 1) \\ L_p'(chi^2)
%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...
@eprog
Now several quadratic twists: \tet{mstooms} is indicated.
\bprog
? PHI = mstooms(Mp,phi);
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%14 = 5 + 5^2 + 5^3 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, 8); \\ twist by 8
? mspadicL(mu)
%16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...
? mu = mspadicmoments(Mp, PHI, -3); \\ twist by -3 < 0
? mspadicL(mu)
%18 = O(5^13) \\ always 0, phi is in the + part and D < 0
@eprog
One can locate interesting symbols of level $N$ and weight $k$ with
\kbd{msnew} and \kbd{mssplit}. Note that instead of a symbol, one can
input a 1-dimensional Hecke-subspace from \kbd{mssplit}: the function will
automatically use the underlying basis vector.
\bprog
? M=msinit(5,4,1); \\ M_4(Gamma_0(5))^+
? L = mssplit(M, msnew(M)); \\ list of irreducible Hecke-subspaces
? phi = L[1]; \\ one Galois orbit of newforms
? #phi[1] \\... this one is rational
%4 = 1
? Mp = mspadicinit(M, 3, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? Mp = mspadicinit(M, 3, 4);
? L = mssplit(M, msnew(M));
? phi = L[1]; #phi[1] \\ ... this one is two-dimensional
%11 = 2
? mu = mspadicmoments(Mp, phi);
*** at top-level: mu=mspadicmoments(Mp,ph
*** ^--------------------
*** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]
@eprog
The library syntax is \fun{GEN}{mspadicL}{GEN mu, GEN s = NULL, long r}.
\subsec{mspadicinit$(M, p, n, \{\fl\})$}\kbdsidx{mspadicinit}\label{se:mspadicinit}
$M$ being a full modular symbol space, as given by \kbd{msinit}, and $p$
a prime, initialize technical data needed to compute with overconvergent
modular symbols, modulo $p^n$. If $\fl$ is unset, allow
all symbols; else initialize only for a restricted range of symbols
depending on $\fl$: if $\fl = 0$ restrict to ordinary symbols, else
restrict to symbols $\phi$ such that $T_p(\phi) = a_p \phi$,
with $v_p(a_p) \geq \fl$, which is faster as $\fl$ increases.
(The fastest initialization is obtained for $\fl = 0$ where we only allow
ordinary symbols.) For supersingular eigensymbols, such that $p\mid a_p$, we
must further assume that $p$ does not divide the level.
\bprog
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? ellap(E,3)
%3 = -1
? Mp = mspadicinit(M, 3, 10, 0); \\ commit to ordinary symbols
? PHI = mstooms(Mp,phi);
@eprog
If we restrict the range of allowed symbols with \fl (for faster
initialization), exceptions will occur if $v_p(a_p)$ violates this bound:
\bprog
? E = ellinit("15a1");
? [M,phi] = msfromell(E,1);
? ellap(E,7)
%3 = 0
? Mp = mspadicinit(M,7,5,0); \\ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,7,5); \\ no restriction
? PHI = mstooms(Mp,phi);
@eprog\noindent This function uses $O(N^2(n+k)^2p)$ memory, where $N$ is the
level of $M$.
The library syntax is \fun{GEN}{mspadicinit}{GEN M, long p, long n, long flag}.
\subsec{mspadicmoments$(\var{Mp}, \var{PHI}, \{D = 1\})$}\kbdsidx{mspadicmoments}\label{se:mspadicmoments}
Given \kbd{Mp} from \kbd{mspadicinit}, an overconvergent
eigensymbol \kbd{PHI} from \kbd{mstooms} and a fundamental discriminant
$D$ coprime to $p$,
let $\kbd{PHI}^D$ denote the twisted symbol. This function computes
the distribution $\mu = \kbd{PHI}^D([0] - \infty]) \mid \Z_p^*$ restricted
to $\Z_p^*$. More precisely, it returns
the moments of the $p-1$ distributions $\kbd{PHI}^D([0]-[\infty])
\mid (a + p\Z_p)$, $0 < a < p$.
We also allow \kbd{PHI} to be given as a classical
symbol, which is then lifted to an overconvergent symbol by \kbd{mstooms};
but this is wasteful if more than one twist is later needed.
The returned data $\mu$ ($p$-adic distributions attached to \kbd{PHI})
can then be used in \tet{mspadicL} or \tet{mspadicseries}.
This precomputation allows to quickly compute derivatives of different
orders or values at different characters.
\bprog
? M = msinit(3,6, 1);
? phi = [5,-3,-1]~;
? msissymbol(M, phi)
%3 = 1
? p = 5; mshecke(M,p) * phi \\ eigenvector of T_5, a_5 = 6
%4 = [30, -18, -6]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%8 = 5 + 2*5^2 + 2*5^3 + ...
? mu = mspadicmoments(Mp, PHI, 12); \\ twist by 12
? mspadicL(mu)
%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...
@eprog
The library syntax is \fun{GEN}{mspadicmoments}{GEN Mp, GEN PHI, long D}.
\subsec{mspadicseries$(\var{mu}, \{i=0\})$}\kbdsidx{mspadicseries}\label{se:mspadicseries}
Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol
attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for
$T_N(p)$ for the eigenvalue $a_p$).
If $\mu$ is the distribution on $\Z_p^*$ defined by the restriction of
$\Phi([\infty]-[0])$ to $\Z_p^*$, let
$$\hat{L}_p(\mu,\tau^{i})(x)
= \int_{\Z_p^*} \tau^i(t) (1+x)^{\log_p(t)/\log_p(u)}d\mu(t)$$
Here, $\tau$ is the Teichm\"uller character and $u$ is a specific
multiplicative generator of $1+2p\Z_p$. (Namely $1+p$ if $p>2$ or $5$
if $p=2$.) To explain
the formula, let $G_\infty := \text{Gal}(\Q(\mu_{p^{\infty}})/ \Q)$,
let $\chi:G_\infty\to \Z_p^*$ be the cyclotomic character (isomorphism)
and $\gamma$ the element of $G_\infty$ such that $\chi(\gamma)=u$;
then
$\chi(\gamma)^{\log_p(t)/\log_p(u)}= \langle t \rangle$.
The $p$-padic precision of individual terms is maximal given the precision of
the overconvergent symbol $\mu$.
\bprog
? [M,phi] = msfromell(ellinit("17a1"),1);
? Mp = mspadicinit(M, 5,7);
? mu = mspadicmoments(Mp, phi,1); \\ overconvergent symbol
? mspadicseries(mu)
%4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + 4*5^6 + 3*5^7 + O(5^9)) \
+ (3 + 3*5 + 5^2 + 5^3 + 2*5^4 + 5^6 + O(5^7))*x \
+ (2 + 3*5 + 5^2 + 4*5^3 + 2*5^4 + O(5^5))*x^2 \
+ (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \
+ (3 + O(5))*x^4 + O(x^5)
@eprog\noindent
An example with non-zero Teichm\"uller:
\bprog
? [M,phi] = msfromell(ellinit("11a1"),1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu, 2)
%4 = (2 + 3 + 3^2 + 2*3^3 + 2*3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \
+ (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \
+ (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \
+ (3 + O(3^2))*x^3 + O(x^4)
@eprog\noindent
Supersingular example (not checked)
\bprog
? E = ellinit("17a1"); ellap(E,3)
%1 = 0
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,7);
? mu = mspadicmoments(Mp, phi,1);
? mspadicseries(mu)
%5 = [(2*3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (2 + 3^3 + O(3^5))*x \
+ (1 + 2*3 + O(3^2))*x^2 + O(x^3),\
(3^-1 + 1 + 3 + 3^2 + 3^3 + 3^4 + 3^5 + 3^6 + O(3^7)) \
+ (1 + 2*3 + 2*3^2 + 3^3 + 2*3^4 + O(3^5))*x \
+ (3^-2 + 3^-1 + O(3^2))*x^2 + O(3^-2)*x^3 + O(x^4)]
@eprog\noindent
Example with a twist:
\bprog
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,5); \\ twist by 5
? L = mspadicseries(mu)
%5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
+ (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \
+ (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)
? mspadicL(mu)
%6 = [2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)]~
? ellpadicL(E,3,10,,5)
%7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)
? mspadicseries(mu,1) \\ must be 0
%8 = O(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)
@eprog
The library syntax is \fun{GEN}{mspadicseries}{GEN mu, long i}.
\subsec{mspathgens$(M)$}\kbdsidx{mspathgens}\label{se:mspathgens}
Let $\Delta:=\text{Div}^0(\P^1(\Q))$.
Let $M$ being a full modular symbol space, as given by \kbd{msinit},
return a set of $\Z[G]$-generators for $\Delta$. The output
is $[g,R]$, where $g$ is a minimal system of generators and $R$
the vector of $\Z[G]$-relations between the given generators. A
relation is coded by a vector of pairs $[a_i,i]$ with $a_i\in \Z[G]$
and $i$ the index of a generator, so that $\sum_i a_i g[i] = 0$.
An element $[v]-[u]$ in $\Delta$ is coded by the ``path'' $[u,v]$,
where \kbd{oo} denotes the point at infinity $(1:0)$ on the projective
line.
An element of $\Z[G]$ is coded by a ``factorization matrix'': the first
column contains distinct elements of $G$, and the second integers:
\bprog
? M = msinit(11,8); \\ M_8(Gamma_0(11))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \\ 3 paths
? #R \\ a single relation
%4 = 1
? r = R[1]; #r \\ ...involving all 3 generators
%5 = 3
? r[1]
%6 = [[1, 1; [1, 1; 0, 1], -1], 1]
? r[2]
%7 = [[1, 1; [7, -2; 11, -3], -1], 2]
? r[3]
%8 = [[1, 1; [8, -3; 11, -4], -1], 3]
@eprog\noindent
The given relation is of the form $\sum_i (1-\gamma_i) g_i = 0$, with
$\gamma_i\in \Gamma_0(11)$. There will always be a single relation involving
all generators (corresponding to a round trip along all cusps), then
relations involving a single generator (corresponding to $2$ and $3$-torsion
elements in the group:
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
@eprog\noindent
Note that the output depends only on the group $G$, not on the
representation $V$.
The library syntax is \fun{GEN}{mspathgens}{GEN M}.
\subsec{mspathlog$(M,p)$}\kbdsidx{mspathlog}\label{se:mspathlog}
Let $\Delta:=\text{Div}^0(\P^1(\Q))$.
Let $M$ being a full modular symbol space, as given by \kbd{msinit},
encoding fixed $\Z[G]$-generators $(g_i)$ of $\Delta$ (see \tet{mspathgens}).
A path $p=[a,b]$ between two elements in $\P^1(\Q)$ corresponds to
$[b]-[a]\in \Delta$. The path extremities $a$ and $b$ may be given as
\typ{INT}, \typ{FRAC} or $\kbd{oo} = (1:0)$.
Returns $(p_i)$ in $\Z[G]$ such that $p = \sum_i p_i g_i$.
\bprog
? M = msinit(2,8); \\ M_8(Gamma_0(2))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1]]
? p = mspathlog(M, [1/2,2/3]);
? p[1]
%5 =
[[1, 0; 2, 1] 1]
? p[2]
%6 =
[[1, 0; 0, 1] 1]
[[3, -1; 4, -1] 1]
@eprog\noindent
Note that the output depends only on the group $G$, not on the
representation $V$.
The library syntax is \fun{GEN}{mspathlog}{GEN M, GEN p}.
\subsec{msqexpansion$(M,\var{projH},\{B = \var{seriesprecision}\})$}\kbdsidx{msqexpansion}\label{se:msqexpansion}
$M$ being a full modular symbol space, as given by \kbd{msinit},
and \var{projH} being a projector on a Hecke-simple subspace (as given
by \tet{mssplit}), return the Fourier coefficients $a_n$, $n\leq B$ of the
corresponding normalized newform. If $B$ is omitted, use
\kbd{seriesprecision}.
This function uses a naive $O(B^2 d^3)$
algorithm, where $d = O(kN)$ is the dimension of $M_k(\Gamma_0(N))$.
\bprog
? M = msinit(11,2, 1); \\ M_2(Gamma_0(11))^+
? L = mssplit(M, msnew(M));
? msqexpansion(M,L[1], 20)
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
? ellan(ellinit("11a1"), 20)
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
@eprog\noindent The shortcut \kbd{msqexpansion(M, s, B)} is available for
a symbol $s$, provided it is a Hecke eigenvector:
\bprog
? E = ellinit("11a1");
? [M,s]=msfromell(E);
? msqexpansion(M,s,10)
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? ellan(E, 10)
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
@eprog
The library syntax is \fun{GEN}{msqexpansion}{GEN M, GEN projH, long precdl}.
\subsec{mssplit$(M,H,\{\var{dimlim}\})$}\kbdsidx{mssplit}\label{se:mssplit}
Let $M$ denote a full modular symbol space, as given by \kbd{msinit}$(N,k,1)$
or $\kbd{msinit}(N,k,-1)$ and let $H$ be a Hecke-stable subspace of
\kbd{msnew}$(M)$. This function split $H$ into Hecke-simple subspaces. If
\kbd{dimlim} is present and positive, restrict to subspaces of dimension
$\leq \kbd{dimlim}$. A subspace is given by a structure allowing quick
projection and restriction of linear operators; its first component is a
matrix with integer coefficients whose columns form a $\Q$-basis of the
subspace.
\bprog
? M = msinit(11,8, 1); \\ M_8(Gamma_0(11))^+
? L = mssplit(M, msnew(M));
? #L
%3 = 2
? f = msqexpansion(M,L[1],5); f[1].mod
%4 = x^2 + 8*x - 44
? lift(f)
%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
? g = msqexpansion(M,L[2],5); g[1].mod
%6 = x^4 - 558*x^2 + 140*x + 51744
@eprog\noindent To a Hecke-simple subspace corresponds an orbit of
(normalized) newforms, defined over a number field. In the above example,
we printed the polynomials defining the said fields, as well as the first
5 Fourier coefficients (at the infinite cusp) of one such form.
The library syntax is \fun{GEN}{mssplit}{GEN M, GEN H, long dimlim}.
\subsec{msstar$(M,\{H\})$}\kbdsidx{msstar}\label{se:msstar}
$M$ being a full modular symbol space, as given by \kbd{msinit},
return the matrix of the \kbd{*} involution, induced by complex conjugation,
acting on the (stable) subspace $H$ ($M$ if omitted).
\bprog
? M = msinit(11,2); \\ M_2(Gamma_0(11))
? w = msstar(M);
? w^2 == 1
%3 = 1
@eprog
The library syntax is \fun{GEN}{msstar}{GEN M, GEN H = NULL}.
\subsec{mstooms$(\var{Mp}, \var{phi})$}\kbdsidx{mstooms}\label{se:mstooms}
Given \kbd{Mp} from \kbd{mspadicinit}, lift the (classical) eigen symbol
\kbd{phi} to a $p$-adic distribution-valued overconvergent symbol in the
sense of Pollack and Stevens. More precisely, let $\phi$ belong to the space
$W$ of modular symbols of level $N$, $v_p(N) \leq 1$, and weight $k$ which is
an eigenvector for the Hecke operator $T_N(p)$ for a non-zero eigenvalue
$a_p$ and let $N_0 = \text{lcm}(N,p)$.
Under the action of $T_{N_0}(p)$, $\phi$ generates a subspace $W_\phi$ of
dimension $1$ (if $p\mid N$) or $2$ (if $p$ does not divide $N$) in the
space of modular symbols of level $N_0$.
Let $V_p=[p,0;0,1]$ and $C_p=[a_p,p^{k-1};-1,0]$.
When $p$ does not divide $N$ and $a_p$ is divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $(\phi,\phi|_k V_p)$ such that
$$T_{N_0}(p) \Phi = C_p \Phi$$
When $p$ does not divide $N$ and $a_p$ is not divisible by $p$, \kbd{mstooms}
returns the lift $\Phi$ of $\phi - \alpha^{-1} \phi|_k V_p$
which is an eigenvector of $T_{N_0}(p)$ for the unit eigenvalue
where $\alpha^2 - a_p \alpha + p^{k-1}=0$.
The resulting overconvergent eigensymbol can then be used in
\tet{mspadicmoments}, then \tet{mspadicL} or \tet{mspadicseries}.
\bprog
? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 3126 2]
[ x - 6 1]
? phi = matker(Tp - 6)[,1] \\ generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \\ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...
@eprog
A non ordinary symbol.
\bprog
? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 =
[x - 244 3]
[ x + 12 1]
? phi = matker(Tp + 12)[,1] \\ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);
@eprog
The library syntax is \fun{GEN}{mstooms}{GEN Mp, GEN phi}.
%SECTION: modular_symbols
\section{General number fields}
In this section, we describe functions related to general number fields.
Functions related to quadratic number fields are found in
\secref{se:arithmetic} (Arithmetic functions).
\subsec{Number field structures} %GPHELPskip
Let $K = \Q[X] / (T)$ a number field, $\Z_K$ its ring of integers, $T\in\Z[X]$
is monic. Three basic number field structures can be attached to $K$ in
GP:
\item $\tev{nf}$ denotes a number field, i.e.~a data structure output by
\tet{nfinit}. This contains the basic arithmetic data attached to the
number field: signature, maximal order (given by a basis \kbd{nf.zk}),
discriminant, defining polynomial $T$, etc.
\item $\tev{bnf}$ denotes a ``Buchmann's number field'', i.e.~a
data structure output by \tet{bnfinit}. This contains
$\var{nf}$ and the deeper invariants of the field: units $U(K)$, class group
$\Cl(K)$, as well as technical data required to solve the two attached
discrete logarithm problems.
\item $\tev{bnr}$ denotes a ``ray number field'', i.e.~a data structure
output by \kbd{bnrinit}, corresponding to the ray class group structure of
the field, for some modulus $f$. It contains a \var{bnf}, the modulus
$f$, the ray class group $\Cl_f(K)$ and data attached to
the discrete logarithm problem therein.
\subsec{Algebraic numbers and ideals} %GPHELPskip
\noindent An \tev{algebraic number} belonging to $K = \Q[X]/(T)$ is given as
\item a \typ{INT}, \typ{FRAC} or \typ{POL} (implicitly modulo $T$), or
\item a \typ{POLMOD} (modulo $T$), or
\item a \typ{COL}~\kbd{v} of dimension $N = [K:\Q]$, representing
the element in terms of the computed integral basis, as
\kbd{sum(i = 1, N,~v[i] * nf.zk[i])}. Note that a \typ{VEC}
will not be recognized.
\medskip
\noindent An \tev{ideal} is given in any of the following ways:
\item an algebraic number in one of the above forms, defining a principal ideal.
\item a prime ideal, i.e.~a 5-component vector in the format output by
\kbd{idealprimedec} or \kbd{idealfactor}.
\item a \typ{MAT}, square and in Hermite Normal Form (or at least
upper triangular with non-negative coefficients), whose columns represent a
$\Z$-basis of the ideal.
One may use \kbd{idealhnf} to convert any ideal to the last (preferred) format.
\item an \emph{extended ideal} \sidx{ideal (extended)} is a 2-component
vector $[I, t]$, where $I$ is an ideal as above and $t$ is an algebraic
number, representing the ideal $(t)I$. This is useful whenever \tet{idealred}
is involved, implicitly working in the ideal class group, while keeping track
of principal ideals. Ideal operations suitably update the principal part
when it makes sense (in a multiplicative context), e.g.~using \kbd{idealmul}
on $[I,t]$, $[J,u]$, we obtain $[IJ, tu]$. When it does not make sense, the
extended part is silently discarded, e.g.~using \kbd{idealadd} with the above
input produces $I+J$.
The ``principal part'' $t$ in an extended ideal may be
represented in any of the above forms, and \emph{also} as a factorization
matrix (in terms of number field elements, not ideals!), possibly the empty
matrix \kbd{[;]} representing $1$. In the latter case, elements stay in
factored form, or \tev{famat} for \emph{fa}ctorization \emph{mat}rix, which
is a convenient way to avoid coefficient explosion. To recover the
conventional expanded form, try \tet{nffactorback}; but many functions
already accept \var{famat}s as input, for instance \tet{ideallog}, so
expanding huge elements should never be necessary.
\subsec{Finite abelian groups} %GPHELPskip
A finite abelian group $G$ in user-readable format is given by its Smith
Normal Form as a pair $[h,d]$ or triple $[h,d,g]$.
Here $h$ is the cardinality of $G$, $(d_i)$ is the vector of elementary
divisors, and $(g_i)$ is a vector of generators. In short,
$G = \oplus_{i\leq n} (\Z/d_i\Z) g_i$, with $d_n \mid \dots \mid d_2 \mid d_1$
and $\prod d_i = h$. This information can also be retrieved as
$G.\kbd{no}$, $G.\kbd{cyc}$ and $G.\kbd{gen}$.
\item a \tev{character} on the abelian group
$\oplus (\Z/d_j\Z) g_j$
is given by a row vector $\chi = [a_1,\ldots,a_n]$ such that
$\chi(\prod g_j^{n_j}) = \exp(2\pi i\sum a_j n_j / d_j)$.
\item given such a structure, a \tev{subgroup} $H$ is input as a square
matrix in HNF, whose columns express generators of $H$ on the given generators
$g_i$. Note that the determinant of that matrix is equal to the index $(G:H)$.
\subsec{Relative extensions} %GPHELPskip
We now have a look at data structures attached to relative extensions
of number fields $L/K$, and to projective $\Z_K$-modules. When defining a
relative extension $L/K$, the $\var{nf}$ attached to the base field $K$
must be defined by a variable having a lower priority (see
\secref{se:priority}) than the variable defining the extension. For example,
you may use the variable name $y$ to define the base field $K$, and $x$ to
define the relative extension $L/K$.
\subsubsec{Basic definitions}\label{se:ZKmodules} %GPHELPskip
\item $\tev{rnf}$ denotes a relative number field, i.e.~a data structure
output by \kbd{rnfinit}, attached to the extension $L/K$. The \var{nf}
attached to be base field $K$ is \kbd{rnf.nf}.
\item A \emph{relative matrix} is an $m\times n$ matrix whose entries are
elements of $K$, in any form. Its $m$ columns $A_j$ represent elements
in $K^n$.
\item An \tev{ideal list} is a row vector of fractional ideals of the number
field $\var{nf}$.
\item A \tev{pseudo-matrix} is a 2-component row vector $(A,I)$ where $A$
is a relative $m\times n$ matrix and $I$ an ideal list of length $n$. If $I =
\{\goth{a}_1,\dots, \goth{a}_n\}$ and the columns of $A$ are $(A_1,\dots,
A_n)$, this data defines the torsion-free (projective) $\Z_K$-module
$\goth{a}_1 A_1\oplus \goth{a}_n A_n$.
\item An \tev{integral pseudo-matrix} is a 3-component row vector w$(A,I,J)$
where $A = (a_{i,j})$ is an $m\times n$ relative matrix and $I =
(\goth{b}_1,\dots, \goth{b}_m)$, $J = (\goth{a}_1,\dots, \goth{a}_n)$ are ideal
lists, such that $a_{i,j} \in \goth{b}_i \goth{a}_j^{-1}$ for all $i,j$. This
data defines two abstract projective $\Z_K$-modules
$N = \goth{a}_1\omega_1\oplus \cdots\oplus \goth{a}_n\omega_n $ in $K^n$,
$P = \goth{b}_1\eta_1\oplus \cdots\oplus \goth{b}_m\eta_m$ in $K^m$, and a
$\Z_K$-linear map $f:N\to P$ given by
$$ f(\sum \alpha_j\omega_j) = \sum_i \Big(a_{i,j}\alpha_j\Big) \eta_i.$$
This data defines the $\Z_K$-module $M = P/f(N)$.
\item Any \emph{projective} $\Z_K$-module\varsidx{projective module} $M$
of finite type in $K^m$ can be given by a pseudo matrix $(A,I)$.
\item An arbitrary $\Z_K$ modules of finite type in $K^m$, with non-trivial
torsion, is given by an integral pseudo-matrix $(A,I,J)$
\subsubsec{Pseudo-bases, determinant} %GPHELPskip
\item The pair $(A,I)$ is a \tev{pseudo-basis} of the module it
generates if the $\goth{a}_j$ are non-zero, and the $A_j$ are $K$-linearly
independent. We call $n$ the \emph{size} of the pseudo-basis. If $A$ is a
relative matrix, the latter condition means it is square with non-zero
determinant; we say that it is in Hermite Normal
Form\sidx{Hermite normal form} (HNF) if it is upper triangular and all the
elements of the diagonal are equal to 1.
\item For instance, the relative integer basis \kbd{rnf.zk} is a pseudo-basis
$(A,I)$ of $\Z_L$, where $A = \kbd{rnf.zk[1]}$ is a vector of elements of $L$,
which are $K$-linearly independent. Most \var{rnf} routines return and handle
$\Z_K$-modules contained in $L$ (e.g.~$\Z_L$-ideals) via a pseudo-basis
$(A',I')$, where $A'$ is a relative matrix representing a vector of elements of
$L$ in terms of the fixed basis \kbd{rnf.zk[1]}
\item The \emph{determinant} of a pseudo-basis $(A,I)$ is the ideal
equal to the product of the determinant of $A$ by all the ideals of $I$. The
determinant of a pseudo-matrix is the determinant of any pseudo-basis of the
module it generates.
\subsec{Class field theory}\label{se:CFT}
A $\tev{modulus}$, in the sense of class field theory, is a divisor supported
on the non-complex places of $K$. In PARI terms, this means either an
ordinary ideal $I$ as above (no Archimedean component), or a pair $[I,a]$,
where $a$ is a vector with $r_1$ $\{0,1\}$-components, corresponding to the
infinite part of the divisor. More precisely, the $i$-th component of $a$
corresponds to the real embedding attached to the $i$-th real root of
\kbd{K.roots}. (That ordering is not canonical, but well defined once a
defining polynomial for $K$ is chosen.) For instance, \kbd{[1, [1,1]]} is a
modulus for a real quadratic field, allowing ramification at any of the two
places at infinity, and nowhere else.
A \tev{bid} or ``big ideal'' is a structure output by \kbd{idealstar}
needed to compute in $(\Z_K/I)^*$, where $I$ is a modulus in the above sense.
It is a finite abelian group as described above, supplemented by
technical data needed to solve discrete log problems.
Finally we explain how to input ray number fields (or \var{bnr}), using class
field theory. These are defined by a triple $A$, $B$, $C$, where the
defining set $[A,B,C]$ can have any of the following forms:
$[\var{bnr}]$,
$[\var{bnr},\var{subgroup}]$,
$[\var{bnr},\var{character}]$,
$[\var{bnf},\var{mod}]$,
$[\var{bnf},\var{mod},\var{subgroup}]$. The last two forms are kept for
backward compatibility, but no longer serve any real purpose (see example
below); no newly written function will accept them.
\item $\var{bnf}$ is as output by \kbd{bnfinit}, where units are mandatory
unless the modulus is trivial; \var{bnr} is as output by \kbd{bnrinit}. This
is the ground field $K$.
\item \emph{mod} is a modulus $\goth{f}$, as described above.
\item \emph{subgroup} a subgroup of the ray class group modulo $\goth{f}$ of
$K$. As described above, this is input as a square matrix expressing
generators of a subgroup of the ray class group \kbd{\var{bnr}.clgp} on the
given generators.
The corresponding \var{bnr} is the subfield of the ray class field of $K$
modulo $\goth{f}$, fixed by the given subgroup.
\bprog
? K = bnfinit(y^2+1);
? bnr = bnrinit(K, 13)
? %.clgp
%3 = [36, [12, 3]]
? bnrdisc(bnr); \\ discriminant of the full ray class field
? bnrdisc(bnr, [3,1;0,1]); \\ discriminant of cyclic cubic extension of K
? bnrconductor(bnr, [3,1]); \\ conductor of chi: g1->zeta_12^3, g2->zeta_3
@eprog\noindent
We could have written directly
\bprog
? bnrdisc(K, 13);
? bnrdisc(K, 13, [3,1;0,1]);
@eprog\noindent
avoiding one \tet{bnrinit}, but this would actually be slower since the
\kbd{bnrinit} is called internally anyway. And now twice!
\subsec{General use}
All the functions which are specific to relative extensions, number fields,
Buchmann's number fields, Buchmann's number rays, share the prefix \kbd{rnf},
\kbd{nf}, \kbd{bnf}, \kbd{bnr} respectively. They take as first argument a
number field of that precise type, respectively output by \kbd{rnfinit},
\kbd{nfinit}, \kbd{bnfinit}, and \kbd{bnrinit}.
However, and even though it may not be specified in the descriptions of the
functions below, it is permissible, if the function expects a $\var{nf}$, to
use a $\var{bnf}$ instead, which contains much more information. On the other
hand, if the function requires a \kbd{bnf}, it will \emph{not} launch
\kbd{bnfinit} for you, which is a costly operation. Instead, it will give you
a specific error message. In short, the types
$$ \kbd{nf} \leq \kbd{bnf} \leq \kbd{bnr}$$
are ordered, each function requires a minimal type to work properly, but you
may always substitute a larger type.
The data types corresponding to the structures described above are rather
complicated. Thus, as we already have seen it with elliptic curves, GP
provides ``member functions'' to retrieve data from these structures (once
they have been initialized of course). The relevant types of number fields
are indicated between parentheses: \smallskip
\sidx{member functions}
\settabs\+xxxxxxx&(\var{bnr},x&\var{bnf},x&nf\hskip2pt&)x&: &\cr
\+\tet{bid} &(\var{bnr}&&&)&: & bid ideal structure.\cr
\+\tet{bnf} &(\var{bnr},& \var{bnf}&&)&: & Buchmann's number field.\cr
\+\tet{clgp} &(\var{bnr},& \var{bnf}&&)&: & classgroup. This one admits the
following three subclasses:\cr
\+ \quad \tet{cyc} &&&&&: & \quad cyclic decomposition
(SNF)\sidx{Smith normal form}.\cr
\+ \quad \kbd{gen}\sidx{gen (member function)} &&&&&: &
\quad generators.\cr
\+ \quad \tet{no} &&&&&: & \quad number of elements.\cr
\+\tet{diff} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the different ideal.\cr
\+\tet{codiff}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & the codifferent
(inverse of the different in the ideal group).\cr
\+\tet{disc} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & discriminant.\cr
\+\tet{fu} &(\var{bnr},& \var{bnf}&&)&: & \idx{fundamental units}.\cr
\+\tet{index} &(\var{bnr},& \var{bnf},& \var{nf}&)&: &
\idx{index} of the power order in the ring of integers.\cr
\+\tet{mod} &(\var{bnr}&&&)&: & modulus.\cr
\+\tet{nf} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & number field.\cr
\+\tet{pol} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & defining polynomial.\cr
\+\tet{r1} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the number
of real embeddings.\cr
\+\tet{r2} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the number
of pairs of complex embeddings.\cr
\+\tet{reg} &(\var{bnr},& \var{bnf}&&)&: & regulator.\cr
\+\tet{roots}&(\var{bnr},& \var{bnf},& \var{nf}&)&: & roots of the
polynomial generating the field.\cr
\+\tet{sign} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & signature $[r1,r2]$.\cr
\+\tet{t2} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & the $T_2$ matrix (see
\kbd{nfinit}).\cr
\+\tet{tu} &(\var{bnr},& \var{bnf}&&)&: & a generator for the torsion
units.\cr
\+\tet{zk} &(\var{bnr},& \var{bnf},& \var{nf}&)&: & integral basis, i.e.~a
$\Z$-basis of the maximal order.\cr
\+\tet{zkst} &(\var{bnr}&&&)&: & structure of $(\Z_K/m)^*$.\cr
\misctitle{Deprecated} The following member functions are still available, but deprecated and should not be used in new scripts :
\+\tet{futu} &(\var{bnr},& \var{bnf},&&)&: &
$[u_1,...,u_r,w]$, $(u_i)$ is a vector of fundamental units,\cr
\+&&&&&& $w$ generates the torsion units.\cr
\+\tet{tufu} &(\var{bnr},& \var{bnf},&&)&: &
$[w,u_1,...,u_r]$, $(u_i)$ is a vector of fundamental units,\cr
\+&&&&&& $w$ generates the torsion units.\cr
For instance, assume that $\var{bnf} = \kbd{bnfinit}(\var{pol})$, for some
polynomial. Then \kbd{\var{bnf}.clgp} retrieves the class group, and
\kbd{\var{bnf}.clgp.no} the class number. If we had set $\var{bnf} =
\kbd{nfinit}(\var{pol})$, both would have output an error message. All these
functions are completely recursive, thus for instance
\kbd{\var{bnr}.bnf.nf.zk} will yield the maximal order of \var{bnr}, which
you could get directly with a simple \kbd{\var{bnr}.zk}.
\subsec{Class group, units, and the GRH}\label{se:GRHbnf}
Some of the functions starting with \kbd{bnf} are implementations of the
sub-exponential algorithms for finding class and unit groups under \idx{GRH},
due to Hafner-McCurley, \idx{Buchmann} and Cohen-Diaz-Olivier. The general
call to the functions concerning class groups of general number fields
(i.e.~excluding \kbd{quadclassunit}) involves a polynomial $P$ and a
technical vector
$$\var{tech} = [c_1, c_2, \var{nrpid} ],$$
where the parameters are to be understood as follows:
$P$ is the defining polynomial for the number field, which must be in
$\Z[X]$, irreducible and monic. In fact, if you supply a non-monic polynomial
at this point, \kbd{gp} issues a warning, then \emph{transforms your
polynomial} so that it becomes monic. The \kbd{nfinit} routine
will return a different result in this case: instead of \kbd{res}, you get a
vector \kbd{[res,Mod(a,Q)]}, where \kbd{Mod(a,Q) = Mod(X,P)} gives the change
of variables. In all other routines, the variable change is simply lost.
The \var{tech} interface is obsolete and you should not tamper with
these parameters. Indeed, from version 2.4.0 on,
\item the results are always rigorous under \idx{GRH} (before that version,
they relied on a heuristic strengthening, hence the need for overrides).
\item the influence of these parameters on execution time and stack size is
marginal. They \emph{can} be useful to fine-tune and experiment with the
\kbd{bnfinit} code, but you will be better off modifying all tuning
parameters in the C code (there are many more than just those three).
We nevertheless describe it for completeness.
The numbers $c_1 \leq c_2$ are non-negative real numbers. By default they are
chosen so that the result is correct under GRH. For $i = 1,2$, let
$B_i = c_i(\log |d_K|)^2$, and denote by $S(B)$ the set of maximal ideals of
$K$ whose norm is less than $B$. We want $S(B_1)$ to generate $\Cl(K)$ and hope
that $S(B_2)$ can be \emph{proven} to generate $\Cl(K)$.
More precisely, $S(B_1)$ is a factorbase used to compute a tentative
$\Cl(K)$ by generators and relations. We then check explicitly, using
essentially \kbd{bnfisprincipal}, that the elements of $S(B_2)$ belong to the
span of $S(B_1)$. Under the assumption that $S(B_2)$ generates $\Cl(K)$, we
are done. User-supplied $c_i$ are only used to compute initial guesses for
the bounds $B_i$, and the algorithm increases them until one can \emph{prove}
under GRH that $S(B_2)$ generates $\Cl(K)$. A uniform result of Bach says
that $c_2 = 12$ is always suitable, but this bound is very pessimistic and a
direct algorithm due to Belabas-Diaz-Friedman is used to check the condition,
assuming GRH. The default values are $c_1 = c_2 = 0$. When $c_1$ is equal to
$0$ the algorithm takes it equal to $c_2$.
$\var{nrpid}$ is the maximal number of small norm relations attached to each
ideal in the factor base. Set it to $0$ to disable the search for small norm
relations. Otherwise, reasonable values are between 4 and 20. The default is
4.
\misctitle{Warning} Make sure you understand the above! By default, most of
the \kbd{bnf} routines depend on the correctness of the GRH. In particular,
any of the class number, class group structure, class group generators,
regulator and fundamental units may be wrong, independently of each other.
Any result computed from such a \kbd{bnf} may be wrong. The only guarantee is
that the units given generate a subgroup of finite index in the full unit
group. You must use \kbd{bnfcertify} to certify the computations
unconditionally.
\misctitle{Remarks}
You do not need to supply the technical parameters (under the library you
still need to send at least an empty vector, coded as \kbd{NULL}). However,
should you choose to set some of them, they \emph{must} be given in the
requested order. For example, if you want to specify a given value of
\var{nrpid}, you must give some values as well for $c_1$ and $c_2$, and provide
a vector $[c_1,c_2,\var{nrpid}]$.
Note also that you can use an $\var{nf}$ instead of $P$, which avoids
recomputing the integral basis and analogous quantities.
\smallskip
\subsec{bnfcertify$(\var{bnf},\{\fl = 0\})$}\kbdsidx{bnfcertify}\label{se:bnfcertify}
$\var{bnf}$ being as output by
\kbd{bnfinit}, checks whether the result is correct, i.e.~whether it is
possible to remove the assumption of the Generalized Riemann
Hypothesis\sidx{GRH}. It is correct if and only if the answer is 1. If it is
incorrect, the program may output some error message, or loop indefinitely.
You can check its progress by increasing the debug level. The \var{bnf}
structure must contain the fundamental units:
\bprog
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
*** at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
*** ^-------------
*** bnfcertify: missing units in bnf.
? K = bnfinit(x^3+2^2^3+1, 1); \\ include units
? bnfcertify(K)
%3 = 1
@eprog
If flag is present, only certify that the class group is a quotient of the
one computed in bnf (much simpler in general); likewise, the computed units
may form a subgroup of the full unit group. In this variant, the units are
no longer needed:
\bprog
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)
%4 = 1
@eprog
The library syntax is \fun{long}{bnfcertify0}{GEN bnf, long flag}.
Also available is \fun{GEN}{bnfcertify}{GEN bnf} ($\fl=0$).
\subsec{bnfcompress$(\var{bnf})$}\kbdsidx{bnfcompress}\label{se:bnfcompress}
Computes a compressed version of \var{bnf} (from \tet{bnfinit}), a
``small Buchmann's number field'' (or \var{sbnf} for short) which contains
enough information to recover a full $\var{bnf}$ vector very rapidly, but
which is much smaller and hence easy to store and print. Calling
\kbd{bnfinit} on the result recovers a true \kbd{bnf}, in general different
from the original. Note that an \tev{snbf} is useless for almost all
purposes besides storage, and must be converted back to \tev{bnf} form
before use; for instance, no \kbd{nf*}, \kbd{bnf*} or member function
accepts them.
An \var{sbnf} is a 12 component vector $v$, as follows. Let \kbd{bnf} be
the result of a full \kbd{bnfinit}, complete with units. Then $v[1]$ is
\kbd{bnf.pol}, $v[2]$ is the number of real embeddings \kbd{bnf.sign[1]},
$v[3]$ is \kbd{bnf.disc}, $v[4]$ is \kbd{bnf.zk}, $v[5]$ is the list of roots
\kbd{bnf.roots}, $v[7]$ is the matrix $\kbd{W} = \kbd{bnf[1]}$,
$v[8]$ is the matrix $\kbd{matalpha}=\kbd{bnf[2]}$,
$v[9]$ is the prime ideal factor base \kbd{bnf[5]} coded in a compact way,
and ordered according to the permutation \kbd{bnf[6]}, $v[10]$ is the
2-component vector giving the number of roots of unity and a generator,
expressed on the integral basis, $v[11]$ is the list of fundamental units,
expressed on the integral basis, $v[12]$ is a vector containing the algebraic
numbers alpha corresponding to the columns of the matrix \kbd{matalpha},
expressed on the integral basis.
All the components are exact (integral or rational), except for the roots in
$v[5]$.
The library syntax is \fun{GEN}{bnfcompress}{GEN bnf}.
\subsec{bnfdecodemodule$(\var{nf},m)$}\kbdsidx{bnfdecodemodule}\label{se:bnfdecodemodule}
If $m$ is a module as output in the
first component of an extension given by \kbd{bnrdisclist}, outputs the
true module.
\bprog
? K = bnfinit(x^2+23); L = bnrdisclist(K, 10); s = L[1][2]
%1 = [[Mat([8, 1]), [[0, 0, 0]]], [Mat([9, 1]), [[0, 0, 0]]]]
? bnfdecodemodule(K, s[1][1])
%2 =
[2 0]
[0 1]
@eprog
The library syntax is \fun{GEN}{decodemodule}{GEN nf, GEN m}.
\subsec{bnfinit$(P,\{\fl=0\},\{\var{tech}=[\,]\})$}\kbdsidx{bnfinit}\label{se:bnfinit}
Initializes a
\kbd{bnf} structure. Used in programs such as \kbd{bnfisprincipal},
\kbd{bnfisunit} or \kbd{bnfnarrow}. By default, the results are conditional
on the GRH, see \ref{se:GRHbnf}. The result is a
10-component vector \var{bnf}.
This implements \idx{Buchmann}'s sub-exponential algorithm for computing the
class group, the regulator and a system of \idx{fundamental units} of the
general algebraic number field $K$ defined by the irreducible polynomial $P$
with integer coefficients.
If the precision becomes insufficient, \kbd{gp} does not strive to compute
the units by default ($\fl=0$).
When $\fl=1$, we insist on finding the fundamental units exactly. Be
warned that this can take a very long time when the coefficients of the
fundamental units on the integral basis are very large. If the fundamental
units are simply too large to be represented in this form, an error message
is issued. They could be obtained using the so-called compact representation
of algebraic numbers as a formal product of algebraic integers. The latter is
implemented internally but not publicly accessible yet.
$\var{tech}$ is a technical vector (empty by default, see \ref{se:GRHbnf}).
Careful use of this parameter may speed up your computations,
but it is mostly obsolete and you should leave it alone.
\smallskip
The components of a \var{bnf} or \var{sbnf} are technical and never used by
the casual user. In fact: \emph{never access a component directly, always use
a proper member function.} However, for the sake of completeness and internal
documentation, their description is as follows. We use the notations
explained in the book by H. Cohen, \emph{A Course in Computational Algebraic
Number Theory}, Graduate Texts in Maths \key{138}, Springer-Verlag, 1993,
Section 6.5, and subsection 6.5.5 in particular.
$\var{bnf}[1]$ contains the matrix $W$, i.e.~the matrix in Hermite normal
form giving relations for the class group on prime ideal generators
$(\goth{p}_i)_{1\le i\le r}$.
$\var{bnf}[2]$ contains the matrix $B$, i.e.~the matrix containing the
expressions of the prime ideal factorbase in terms of the $\goth{p}_i$.
It is an $r\times c$ matrix.
$\var{bnf}[3]$ contains the complex logarithmic embeddings of the system of
fundamental units which has been found. It is an $(r_1+r_2)\times(r_1+r_2-1)$
matrix.
$\var{bnf}[4]$ contains the matrix $M''_C$ of Archimedean components of the
relations of the matrix $(W|B)$.
$\var{bnf}[5]$ contains the prime factor base, i.e.~the list of prime
ideals used in finding the relations.
$\var{bnf}[6]$ used to contain a permutation of the prime factor base, but
has been obsoleted. It contains a dummy $0$.
$\var{bnf}[7]$ or \kbd{\var{bnf}.nf} is equal to the number field data
$\var{nf}$ as would be given by \kbd{nfinit}.
$\var{bnf}[8]$ is a vector containing the classgroup \kbd{\var{bnf}.clgp}
as a finite abelian group, the regulator \kbd{\var{bnf}.reg}, a $1$ (used to
contain an obsolete ``check number''), the number of roots of unity and a
generator \kbd{\var{bnf}.tu}, the fundamental units \kbd{\var{bnf}.fu}.
$\var{bnf}[9]$ is a 3-element row vector used in \tet{bnfisprincipal} only
and obtained as follows. Let $D = U W V$ obtained by applying the
\idx{Smith normal form} algorithm to the matrix $W$ (= $\var{bnf}[1]$) and
let $U_r$ be the reduction of $U$ modulo $D$. The first elements of the
factorbase are given (in terms of \kbd{bnf.gen}) by the columns of $U_r$,
with Archimedean component $g_a$; let also $GD_a$ be the Archimedean
components of the generators of the (principal) ideals defined by the
\kbd{bnf.gen[i]\pow bnf.cyc[i]}. Then $\var{bnf}[9]=[U_r, g_a, GD_a]$.
$\var{bnf}[10]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available, which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{bnfinit} call. For instance, the generators of the principal ideals
\kbd{bnf.gen[i]\pow bnf.cyc[i]} (during a call to \tet{bnrisprincipal}), or
those corresponding to the relations in $W$ and $B$ (when the \kbd{bnf}
internal precision needs to be increased).
The library syntax is \fun{GEN}{bnfinit0}{GEN P, long flag, GEN tech = NULL, long prec}.
Also available is \fun{GEN}{Buchall}{GEN P, long flag, long prec},
corresponding to \kbd{tech = NULL}, where
\kbd{flag} is either $0$ (default) or \tet{nf_FORCE} (insist on finding
fundamental units). The function
\fun{GEN}{Buchall_param}{GEN P, double c1, double c2, long nrpid, long flag, long prec} gives direct access to the technical parameters.
\subsec{bnfisintnorm$(\var{bnf},x)$}\kbdsidx{bnfisintnorm}\label{se:bnfisintnorm}
Computes a complete system of
solutions (modulo units of positive norm) of the absolute norm equation
$\Norm(a)=x$,
where $a$ is an integer in $\var{bnf}$. If $\var{bnf}$ has not been certified,
the correctness of the result depends on the validity of \idx{GRH}.
See also \tet{bnfisnorm}.
The library syntax is \fun{GEN}{bnfisintnorm}{GEN bnf, GEN x}.
The function \fun{GEN}{bnfisintnormabs}{GEN bnf, GEN a}
returns a complete system of solutions modulo units of the absolute norm
equation $|\Norm(x)| = |a|$. As fast as \kbd{bnfisintnorm}, but solves
the two equations $\Norm(x) = \pm a$ simultaneously.
\subsec{bnfisnorm$(\var{bnf},x,\{\fl=1\})$}\kbdsidx{bnfisnorm}\label{se:bnfisnorm}
Tries to tell whether the
rational number $x$ is the norm of some element y in $\var{bnf}$. Returns a
vector $[a,b]$ where $x=Norm(a)*b$. Looks for a solution which is an $S$-unit,
with $S$ a certain set of prime ideals containing (among others) all primes
dividing $x$. If $\var{bnf}$ is known to be \idx{Galois}, set $\fl=0$ (in
this case, $x$ is a norm iff $b=1$). If $\fl$ is non zero the program adds to
$S$ the following prime ideals, depending on the sign of $\fl$. If $\fl>0$,
the ideals of norm less than $\fl$. And if $\fl<0$ the ideals dividing $\fl$.
Assuming \idx{GRH}, the answer is guaranteed (i.e.~$x$ is a norm iff $b=1$),
if $S$ contains all primes less than $12\log(\disc(\var{Bnf}))^2$, where
$\var{Bnf}$ is the Galois closure of $\var{bnf}$.
See also \tet{bnfisintnorm}.
The library syntax is \fun{GEN}{bnfisnorm}{GEN bnf, GEN x, long flag}.
\subsec{bnfisprincipal$(\var{bnf},x,\{\fl=1\})$}\kbdsidx{bnfisprincipal}\label{se:bnfisprincipal}
$\var{bnf}$ being the \sidx{principal ideal}
number field data output by \kbd{bnfinit}, and $x$ being an ideal, this
function tests whether the ideal is principal or not. The result is more
complete than a simple true/false answer and solves general discrete
logarithm problem. Assume the class group is $\oplus (\Z/d_i\Z)g_i$
(where the generators $g_i$ and their orders $d_i$ are respectively given by
\kbd{bnf.gen} and \kbd{bnf.cyc}). The routine returns a row vector $[e,t]$,
where $e$ is a vector of exponents $0 \leq e_i < d_i$, and $t$ is a number
field element such that
$$ x = (t) \prod_i g_i^{e_i}.$$
For \emph{given} $g_i$ (i.e. for a given \kbd{bnf}), the $e_i$ are unique,
and $t$ is unique modulo units.
In particular, $x$ is principal if and only if $e$ is the zero vector. Note
that the empty vector, which is returned when the class number is $1$, is
considered to be a zero vector (of dimension $0$).
\bprog
? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \\ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \\ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~]
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]
[0 1]
? % == idealhnf(K, P)
%7 = 1
@eprog
\noindent The binary digits of \fl mean:
\item $1$: If set, outputs $[e,t]$ as explained above, otherwise returns
only $e$, which is much easier to compute. The following idiom only tests
whether an ideal is principal:
\bprog
is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
@eprog
\item $2$: It may not be possible to recover $t$, given the initial accuracy
to which the \kbd{bnf} structure was computed. In that case, a warning is
printed and $t$ is set equal to the empty vector \kbd{[]\til}. If this bit is
set, increase the precision and recompute needed quantities until $t$ can be
computed. Warning: setting this may induce \emph{lengthy} computations.
The library syntax is \fun{GEN}{bnfisprincipal0}{GEN bnf, GEN x, long flag}.
Instead of the above hardcoded numerical flags, one should
rather use an or-ed combination of the symbolic flags \tet{nf_GEN} (include
generators, possibly a place holder if too difficult) and \tet{nf_FORCE}
(insist on finding the generators).
\subsec{bnfissunit$(\var{bnf},\var{sfu},x)$}\kbdsidx{bnfissunit}\label{se:bnfissunit}
$\var{bnf}$ being output by
\kbd{bnfinit}, \var{sfu} by \kbd{bnfsunit}, gives the column vector of
exponents of $x$ on the fundamental $S$-units and the roots of unity.
If $x$ is not a unit, outputs an empty vector.
The library syntax is \fun{GEN}{bnfissunit}{GEN bnf, GEN sfu, GEN x}.
\subsec{bnfisunit$(\var{bnf},x)$}\kbdsidx{bnfisunit}\label{se:bnfisunit}
\var{bnf} being the number field data
output by \kbd{bnfinit} and $x$ being an algebraic number (type integer,
rational or polmod), this outputs the decomposition of $x$ on the fundamental
units and the roots of unity if $x$ is a unit, the empty vector otherwise.
More precisely, if $u_1$,\dots,$u_r$ are the fundamental units, and $\zeta$
is the generator of the group of roots of unity (\kbd{bnf.tu}), the output is
a vector $[x_1,\dots,x_r,x_{r+1}]$ such that $x=u_1^{x_1}\cdots
u_r^{x_r}\cdot\zeta^{x_{r+1}}$. The $x_i$ are integers for $i\le r$ and is an
integer modulo the order of $\zeta$ for $i=r+1$.
Note that \var{bnf} need not contain the fundamental unit explicitly:
\bprog
? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
*** at top-level: bnf.fu
*** ^--
*** _.fu: missing units in .fu.
? u = [119836165644250789990462835950022871665178127611316131167, \
379554884019013781006303254896369154068336082609238336]~;
? bnfisunit(bnf, u)
%3 = [-1, Mod(0, 2)]~
@eprog\noindent The given $u$ is the inverse of the fundamental unit
implicitly stored in \var{bnf}. In this case, the fundamental unit was not
computed and stored in algebraic form since the default accuracy was too
low. (Re-run the command at \bs g1 or higher to see such diagnostics.)
The library syntax is \fun{GEN}{bnfisunit}{GEN bnf, GEN x}.
\subsec{bnflog$(\var{bnf}, l)$}\kbdsidx{bnflog}\label{se:bnflog}
Let \var{bnf} be attached to a number field $F$ and let $l$ be
a prime number (hereafter denoted $\ell$ for typographical reasons). Return
the logarithmic $\ell$-class group $\widetilde{Cl}_F$
of $F$. This is an abelian group, conjecturally finite (known to be finite
if $F/\Q$ is abelian). The function returns if and only if
the group is indeed finite (otherwise it would run into an infinite loop).
Let $S = \{ \goth{p}_1,\dots, \goth{p}_k\}$ be the set of $\ell$-adic places
(maximal ideals containing $\ell$).
The function returns $[D, G(\ell), G']$, where
\item $D$ is the vector of elementary divisors for $\widetilde{Cl}_F$;
\item $G(\ell)$ is the vector of elementary divisors for
the (conjecturally finite) abelian group
$$\widetilde{\Cl}(\ell) =
\{ \goth{a} = \sum_{i \leq k} a_i \goth{p}_i :~\deg_F \goth{a} = 0\},$$
where the $\goth{p}_i$ are the $\ell$-adic places of $F$; this is a
subgroup of $\widetilde{\Cl}$.
\item $G'$ is the vector of elementary divisors for the $\ell$-Sylow $Cl'$
of the $S$-class group of $F$; the group $\widetilde{\Cl}$ maps to $Cl'$
with a simple co-kernel.
The library syntax is \fun{GEN}{bnflog}{GEN bnf, GEN l}.
\subsec{bnflogdegree$(\var{nf}, A, l)$}\kbdsidx{bnflogdegree}\label{se:bnflogdegree}
Let \var{nf} be the number field data output by \kbd{nfinit},
attached to the field $F$, and let $l$ be a prime number (hereafter
denoted $\ell$). The
$\ell$-adified group of id\`{e}les of $F$ quotiented by
the group of logarithmic units is identified to the $\ell$-group
of logarithmic divisors $\oplus \Z_\ell [\goth{p}]$, generated by the
maximal ideals of $F$.
The \emph{degree} map $\deg_F$ is additive with values in $\Z_\ell$,
defined by $\deg_F \goth{p} = \tilde{f}_{\goth{p}} \deg_\ell p$,
where the integer $\tilde{f}$ is as in \tet{bnflogef} and $\deg_\ell p$
is $\log_\ell p$ for $p\neq \ell$, $\log_\ell (1 + \ell)$ for
$p = \ell\neq 2$ and $\log_\ell (1 + 2^2)$ for $p = \ell = 2$.
Let $A = \prod \goth{p}^{n_{\goth{p}}}$ be an ideal and let $\tilde{A} =
\sum n_\goth{p} [\goth{p}]$ be the attached logarithmic divisor. Return the
exponential of the $\ell$-adic logarithmic degree $\deg_F A$, which is a
natural number.
The library syntax is \fun{GEN}{bnflogdegree}{GEN nf, GEN A, GEN l}.
\subsec{bnflogef$(\var{nf},\var{pr})$}\kbdsidx{bnflogef}\label{se:bnflogef}
Let $F$ be a number field represented by the \var{nf} structure,
and let \var{pr} be a \kbd{prid} structure attached to the
maximal ideal $\goth{p} / p$. Return
$[\tilde{e}(F_\goth{p} / \Q_p), \tilde{f}(F_\goth{p} / \Q_p)]$
the logarithmic ramification and residue degrees. Let $\Q_p^c/\Q_p$ be the
cyclotomic $\Z_p$-extension, then
$\tilde{e} = [F_\goth{p} \colon F_\goth{p} \cap \Q_p^c]$
$\tilde{f} = [F_\goth{p} \cap \Q_p^c \colon \Q_p]$. Note that
$\tilde{e}\tilde{f} = e(\goth{p}/p) f(\goth{p}/p)$, where $e,f$ denote the
usual ramification and residue degrees.
\bprog
? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
? bnflogef(F, idealprimedec(F,2)[1])
%2 = [6, 1]
? bnflogef(F, idealprimedec(F,5)[1])
%3 = [1, 2]
@eprog
The library syntax is \fun{GEN}{bnflogef}{GEN nf, GEN pr}.
\subsec{bnfnarrow$(\var{bnf})$}\kbdsidx{bnfnarrow}\label{se:bnfnarrow}
\var{bnf} being as output by
\kbd{bnfinit}, computes the narrow class group of \var{bnf}. The output is
a 3-component row vector $v$ analogous to the corresponding class group
component \kbd{\var{bnf}.clgp}: the first component
is the narrow class number \kbd{$v$.no}, the second component is a vector
containing the SNF\sidx{Smith normal form} cyclic components \kbd{$v$.cyc} of
the narrow class group, and the third is a vector giving the generators of
the corresponding \kbd{$v$.gen} cyclic groups. Note that this function is a
special case of \kbd{bnrinit}; the \var{bnf} need not contain fundamental
units.
The library syntax is \fun{GEN}{buchnarrow}{GEN bnf}.
\subsec{bnfsignunit$(\var{bnf})$}\kbdsidx{bnfsignunit}\label{se:bnfsignunit}
$\var{bnf}$ being as output by
\kbd{bnfinit}, this computes an $r_1\times(r_1+r_2-1)$ matrix having $\pm1$
components, giving the signs of the real embeddings of the fundamental units.
The following functions compute generators for the totally positive units:
\bprog
/* exponents of totally positive units generators on bnf.tufu */
tpuexpo(bnf)=
{ my(K, S = bnfsignunit(bnf), [m,n] = matsize(S));
\\ m = bnf.r1, n = r1+r2-1
S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
S = concat(vectorv(m,i,1), S); \\ add sign(-1)
K = matker(S * Mod(1,2));
if (K, mathnfmodid(lift(K), 2), 2*matid(n+1))
}
/* totally positive fundamental units */
tpu(bnf)=
{ my(ex = tpuexpo(bnf)[,2..-1]); \\ remove ex[,1], corresponds to 1 or -1
vector(#ex, i, nffactorback(bnf, bnf.tufu, ex[,i]));
}
@eprog
The library syntax is \fun{GEN}{signunits}{GEN bnf}.
\subsec{bnfsunit$(\var{bnf},S)$}\kbdsidx{bnfsunit}\label{se:bnfsunit}
Computes the fundamental $S$-units of the
number field $\var{bnf}$ (output by \kbd{bnfinit}), where $S$ is a list of
prime ideals (output by \kbd{idealprimedec}). The output is a vector $v$ with
6 components.
$v[1]$ gives a minimal system of (integral) generators of the $S$-unit group
modulo the unit group.
$v[2]$ contains technical data needed by \kbd{bnfissunit}.
$v[3]$ is an empty vector (used to give the logarithmic embeddings of the
generators in $v[1]$ in version 2.0.16).
$v[4]$ is the $S$-regulator (this is the product of the regulator, the
determinant of $v[2]$ and the natural logarithms of the norms of the ideals
in $S$).
$v[5]$ gives the $S$-class group structure, in the usual format
(a row vector whose three components give in order the $S$-class number,
the cyclic components and the generators).
$v[6]$ is a copy of $S$.
The library syntax is \fun{GEN}{bnfsunit}{GEN bnf, GEN S, long prec}.
\subsec{bnrL1$(\var{bnr}, \{H\}, \{\fl=0\})$}\kbdsidx{bnrL1}\label{se:bnrL1}
Let \var{bnr} be the number field data output by \kbd{bnrinit(,,1)} and
\var{H} be a square matrix defining a congruence subgroup of the
ray class group corresponding to \var{bnr} (the trivial congruence subgroup
if omitted). This function returns, for each \idx{character} $\chi$ of the ray
class group which is trivial on $H$, the value at $s = 1$ (or $s = 0$) of the
abelian $L$-function attached to $\chi$. For the value at $s = 0$, the
function returns in fact for each $\chi$ a vector $[r_\chi, c_\chi]$ where
$$L(s, \chi) = c \cdot s^r + O(s^{r + 1})$$
\noindent near $0$.
The argument \fl\ is optional, its binary digits
mean 1: compute at $s = 0$ if unset or $s = 1$ if set, 2: compute the
primitive $L$-function attached to $\chi$ if unset or the $L$-function
with Euler factors at prime ideals dividing the modulus of \var{bnr} removed
if set (that is $L_S(s, \chi)$, where $S$ is the
set of infinite places of the number field together with the finite prime
ideals dividing the modulus of \var{bnr}), 3: return also the character if
set.
\bprog
K = bnfinit(x^2-229);
bnr = bnrinit(K,1,1);
bnrL1(bnr)
@eprog\noindent
returns the order and the first non-zero term of $L(s, \chi)$ at $s = 0$
where $\chi$ runs through the characters of the class group of
$K = \Q(\sqrt{229})$. Then
\bprog
bnr2 = bnrinit(K,2,1);
bnrL1(bnr2,,2)
@eprog\noindent
returns the order and the first non-zero terms of $L_S(s, \chi)$ at $s = 0$
where $\chi$ runs through the characters of the class group of $K$ and $S$ is
the set of infinite places of $K$ together with the finite prime $2$. Note
that the ray class group modulo $2$ is in fact the class group, so
\kbd{bnrL1(bnr2,0)} returns the same answer as \kbd{bnrL1(bnr,0)}.
This function will fail with the message
\bprog
*** bnrL1: overflow in zeta_get_N0 [need too many primes].
@eprog\noindent if the approximate functional equation requires us to sum
too many terms (if the discriminant of $K$ is too large).
The library syntax is \fun{GEN}{bnrL1}{GEN bnr, GEN H = NULL, long flag, long prec}.
\subsec{bnrchar$(\var{bnr},g,\{v\})$}\kbdsidx{bnrchar}\label{se:bnrchar}
Returns all characters $\chi$ on \kbd{bnr.clgp} such that
$\chi(g_i) = e(v_i)$, where $e(x) = \exp(2i\pi x)$. If $v$ is omitted,
returns all characters that are trivial on the $g_i$. Else the vectors $g$
and $v$ must have the same length, the $g_i$ must be ideals in any form, and
each $v_i$ is a rational number whose denominator must divide the order of
$g_i$ in the ray class group. For convenience, the vector of the $g_i$
can be replaced by a matrix whose columns give their discrete logarithm,
as given by \kbd{bnrisprincipal}; this allows to specify abstractly a
subgroup of the ray class group.
\bprog
? bnr = bnrinit(bnfinit(x), [160,[1]], 1); /* (Z/160Z)^* */
? bnr.cyc
%2 = [8, 4, 2]
? g = bnr.gen;
? bnrchar(bnr, g, [1/2,0,0])
%4 = [[4, 0, 0]] \\ a unique character
? bnrchar(bnr, [g[1],g[3]]) \\ all characters trivial on g[1] and g[3]
%5 = [[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]
? bnrchar(bnr, [1,0,0;0,1,0;0,0,2])
%6 = [[0, 0, 1], [0, 0, 0]] \\ characters trivial on given subgroup
@eprog
The library syntax is \fun{GEN}{bnrchar}{GEN bnr, GEN g, GEN v = NULL}.
\subsec{bnrclassno$(A,\{B\},\{C\})$}\kbdsidx{bnrclassno}\label{se:bnrclassno}
Let $A$, $B$, $C$ define a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
or \kbd{[\var{bnf}, \var{modulus}]},
or \kbd{[\var{bnf}, \var{modulus},\var{subgroup}]},
\secref{se:CFT}); this function returns the relative degree $[L:K]$.
In particular if $A$ is a \var{bnf} (with units), and $B$ a modulus,
this function returns the corresponding ray class number modulo $B$.
One can input the attached \var{bid} (with generators if the subgroup
$C$ is non trivial) for $B$ instead of the module itself, saving some time.
This function is faster than \kbd{bnrinit} and should be used if only the
ray class number is desired. See \tet{bnrclassnolist} if you need ray class
numbers for all moduli less than some bound.
The library syntax is \fun{GEN}{bnrclassno0}{GEN A, GEN B = NULL, GEN C = NULL}.
Also available is
\fun{GEN}{bnrclassno}{GEN bnf,GEN f} to compute the ray class number
modulo~$f$.
\subsec{bnrclassnolist$(\var{bnf},\var{list})$}\kbdsidx{bnrclassnolist}\label{se:bnrclassnolist}
$\var{bnf}$ being as
output by \kbd{bnfinit}, and \var{list} being a list of moduli (with units) as
output by \kbd{ideallist} or \kbd{ideallistarch}, outputs the list of the
class numbers of the corresponding ray class groups. To compute a single
class number, \tet{bnrclassno} is more efficient.
\bprog
? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
@eprog
The weird \kbd{l[i].mod[1]}, is the first component of \kbd{l[i].mod}, i.e.
the finite part of the conductor. (This is cosmetic: since by construction
the Archimedean part is trivial, I do not want to see it). This tells us that
the ray class groups modulo the ideals of norm 98 (printed as \kbd{\%5}) have
respectively order $1$, $3$ and $1$. Indeed, we may check directly:
\bprog
? bnrclassno(bnf, ids[2])
%6 = 3
@eprog
The library syntax is \fun{GEN}{bnrclassnolist}{GEN bnf, GEN list}.
\subsec{bnrconductor$(A,\{B\},\{C\},\{\fl=0\})$}\kbdsidx{bnrconductor}\label{se:bnrconductor}
Conductor $f$ of the subfield of a ray class field as defined by $[A,B,C]$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT})
If $\fl = 0$, returns $f$.
If $\fl = 1$, returns $[f, Cl_f, H]$, where $Cl_f$ is the ray class group
modulo $f$, as a finite abelian group; finally $H$ is the subgroup of $Cl_f$
defining the extension.
If $\fl = 2$, returns $[f, \var{bnr}(f), H]$, as above except $Cl_f$ is
replaced by a \kbd{bnr} structure, as output by $\tet{bnrinit}(,f,1)$.
In place of a subgroup $H$, this function also accepts a character
\kbd{chi} $=(a_j)$, expressed as usual in terms of the generators
\kbd{bnr.gen}: $\chi(g_j) = \exp(2i\pi a_j / d_j)$, where $g_j$ has
order $d_j = \kbd{bnr.cyc[j]}$. In which case, the function returns
respectively
If $\fl = 0$, the conductor $f$ of $\text{Ker} \chi$.
If $\fl = 1$, $[f, Cl_f, \chi_f]$, where $\chi_f$ is $\chi$ expressed
on the minimal ray class group, whose modulus is the conductor.
If $\fl = 2$, $[f, \var{bnr}(f), \chi_f]$.
The library syntax is \fun{GEN}{bnrconductor0}{GEN A, GEN B = NULL, GEN C = NULL, long flag}.
Also available is \fun{GEN}{bnrconductor}{GEN bnr, GEN H, long flag}
\subsec{bnrconductorofchar$(\var{bnr},\var{chi})$}\kbdsidx{bnrconductorofchar}\label{se:bnrconductorofchar}
This function is obsolete, use \tev{bnrconductor}.
The library syntax is \fun{GEN}{bnrconductorofchar}{GEN bnr, GEN chi}.
\subsec{bnrdisc$(A,\{B\},\{C\},\{\fl=0\})$}\kbdsidx{bnrdisc}\label{se:bnrdisc}
$A$, $B$, $C$ defining a class field $L$ over a ground field $K$
(of type \kbd{[\var{bnr}]},
\kbd{[\var{bnr}, \var{subgroup}]},
\kbd{[\var{bnr}, \var{character}]},
\kbd{[\var{bnf}, \var{modulus}]} or
\kbd{[\var{bnf}, \var{modulus}, \var{subgroup}]},
\secref{se:CFT}), outputs data $[N,r_1,D]$ giving the discriminant and
signature of $L$, depending on the binary digits of \fl:
\item 1: if this bit is unset, output absolute data related to $L/\Q$:
$N$ is the absolute degree $[L:\Q]$, $r_1$ the number of real places of $L$,
and $D$ the discriminant of $L/\Q$. Otherwise, output relative data for $L/K$:
$N$ is the relative degree $[L:K]$, $r_1$ is the number of real places of $K$
unramified in $L$ (so that the number of real places of $L$ is equal to $r_1$
times $N$), and $D$ is the relative discriminant ideal of $L/K$.
\item 2: if this bit is set and if the modulus is not the conductor of $L$,
only return 0.
The library syntax is \fun{GEN}{bnrdisc0}{GEN A, GEN B = NULL, GEN C = NULL, long flag}.
\subsec{bnrdisclist$(\var{bnf},\var{bound},\{\var{arch}\})$}\kbdsidx{bnrdisclist}\label{se:bnrdisclist}
$\var{bnf}$ being as output by \kbd{bnfinit} (with units), computes a
list of discriminants of Abelian extensions of the number field by increasing
modulus norm up to bound \var{bound}. The ramified Archimedean places are
given by \var{arch}; all possible values are taken if \var{arch} is omitted.
The alternative syntax $\kbd{bnrdisclist}(\var{bnf},\var{list})$ is
supported, where \var{list} is as output by \kbd{ideallist} or
\kbd{ideallistarch} (with units), in which case \var{arch} is disregarded.
The output $v$ is a vector of vectors, where $v[i][j]$ is understood to be in
fact $V[2^{15}(i-1)+j]$ of a unique big vector $V$. (This awkward scheme
allows for larger vectors than could be otherwise represented.)
$V[k]$ is itself a vector $W$, whose length is the number of ideals of norm
$k$. We consider first the case where \var{arch} was specified. Each
component of $W$ corresponds to an ideal $m$ of norm $k$, and
gives invariants attached to the ray class field $L$ of $\var{bnf}$ of
conductor $[m, \var{arch}]$. Namely, each contains a vector $[m,d,r,D]$ with
the following meaning: $m$ is the prime ideal factorization of the modulus,
$d = [L:\Q]$ is the absolute degree of $L$, $r$ is the number of real places
of $L$, and $D$ is the factorization of its absolute discriminant. We set $d
= r = D = 0$ if $m$ is not the finite part of a conductor.
If \var{arch} was omitted, all $t = 2^{r_1}$ possible values are taken and a
component of $W$ has the form $[m, [[d_1,r_1,D_1], \dots, [d_t,r_t,D_t]]]$,
where $m$ is the finite part of the conductor as above, and
$[d_i,r_i,D_i]$ are the invariants of the ray class field of conductor
$[m,v_i]$, where $v_i$ is the $i$-th Archimedean component, ordered by
inverse lexicographic order; so $v_1 = [0,\dots,0]$, $v_2 = [1,0\dots,0]$,
etc. Again, we set $d_i = r_i = D_i = 0$ if $[m,v_i]$ is not a conductor.
Finally, each prime ideal $pr = [p,\alpha,e,f,\beta]$ in the prime
factorization $m$ is coded as the integer $p\cdot n^2+(f-1)\cdot n+(j-1)$,
where $n$ is the degree of the base field and $j$ is such that
\kbd{pr = idealprimedec(\var{nf},p)[j]}.
\noindent $m$ can be decoded using \tet{bnfdecodemodule}.
Note that to compute such data for a single field, either \tet{bnrclassno}
or \tet{bnrdisc} is more efficient.
The library syntax is \fun{GEN}{bnrdisclist0}{GEN bnf, GEN bound, GEN arch = NULL}.
\subsec{bnrgaloisapply$(\var{bnr}, \var{mat}, H)$}\kbdsidx{bnrgaloisapply}\label{se:bnrgaloisapply}
Apply the automorphism given by its matrix \var{mat} to the congruence
subgroup $H$ given as a HNF matrix.
The matrix \var{mat} can be computed with \tet{bnrgaloismatrix}.
The library syntax is \fun{GEN}{bnrgaloisapply}{GEN bnr, GEN mat, GEN H}.
\subsec{bnrgaloismatrix$(\var{bnr},\var{aut})$}\kbdsidx{bnrgaloismatrix}\label{se:bnrgaloismatrix}
Return the matrix of the action of the automorphism \var{aut} of the base
field \kbd{bnf.nf} on the generators of the ray class field \kbd{bnr.gen}.
\var{aut} can be given as a polynomial, an algebraic number, or a vector of
automorphisms or a Galois group as output by \kbd{galoisinit}, in which case a
vector of matrices is returned (in the later case, only for the generators
\kbd{aut.gen}).
See \kbd{bnrisgalois} for an example.
The library syntax is \fun{GEN}{bnrgaloismatrix}{GEN bnr, GEN aut}.
When $aut$ is a polynomial or an algebraic number,
\fun{GEN}{bnrautmatrix}{GEN bnr, GEN aut} is available.
\subsec{bnrinit$(\var{bnf},f,\{\fl=0\})$}\kbdsidx{bnrinit}\label{se:bnrinit}
$\var{bnf}$ is as
output by \kbd{bnfinit} (including fundamental units), $f$ is a modulus,
initializes data linked to the ray class group structure corresponding to
this module, a so-called \kbd{bnr} structure. One can input the attached
\var{bid} with generators for $f$ instead of the module itself, saving some
time. (As in \tet{idealstar}, the finite part of the conductor may be given
by a factorization into prime ideals, as produced by \tet{idealfactor}.)
The following member functions are available
on the result: \kbd{.bnf} is the underlying \var{bnf},
\kbd{.mod} the modulus, \kbd{.bid} the \kbd{bid} structure attached to the
modulus; finally, \kbd{.clgp}, \kbd{.no}, \kbd{.cyc}, \kbd{.gen} refer to the
ray class group (as a finite abelian group), its cardinality, its elementary
divisors, its generators (only computed if $\fl = 1$).
The last group of functions are different from the members of the underlying
\var{bnf}, which refer to the class group; use \kbd{\var{bnr}.bnf.\var{xxx}}
to access these, e.g.~\kbd{\var{bnr}.bnf.cyc} to get the cyclic decomposition
of the class group.
They are also different from the members of the underlying \var{bid}, which
refer to $(\Z_K/f)^*$; use \kbd{\var{bnr}.bid.\var{xxx}} to access these,
e.g.~\kbd{\var{bnr}.bid.no} to get $\phi(f)$.
If $\fl=0$ (default), the generators of the ray class group are not computed,
which saves time. Hence \kbd{\var{bnr}.gen} would produce an error.
If $\fl=1$, as the default, except that generators are computed.
The library syntax is \fun{GEN}{bnrinit0}{GEN bnf, GEN f, long flag}.
Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Buchray}{GEN bnf, GEN module, long flag}
where flag is an or-ed combination of \kbd{nf\_GEN} (include generators)
and \kbd{nf\_INIT} (if omitted, return just the cardinality of the ray class
group and its structure), possibly 0.
\subsec{bnrisconductor$(A,\{B\},\{C\})$}\kbdsidx{bnrisconductor}\label{se:bnrisconductor}
Fast variant of \kbd{bnrconductor}$(A,B,C)$; $A$, $B$, $C$ represent
an extension of the base field, given by class field theory
(see~\secref{se:CFT}). Outputs 1 if this modulus is the conductor, and 0
otherwise. This is slightly faster than \kbd{bnrconductor} when the
character or subgroup is not primitive.
The library syntax is \fun{long}{bnrisconductor0}{GEN A, GEN B = NULL, GEN C = NULL}.
\subsec{bnrisgalois$(\var{bnr}, \var{gal}, H)$}\kbdsidx{bnrisgalois}\label{se:bnrisgalois}
Check whether the class field attached to the subgroup $H$ is Galois
over the subfield of \kbd{bnr.nf} fixed by the group \var{gal}, which can be
given as output by \tet{galoisinit}, or as a matrix or a vector of matrices as
output by \kbd{bnrgaloismatrix}, the second option being preferable, since it
saves the recomputation of the matrices. Note: The function assumes that the
ray class field attached to bnr is Galois, which is not checked.
In the following example, we lists the congruence subgroups of subextension of
degree at most $3$ of the ray class field of conductor $9$ which are Galois
over the rationals.
\bprog
K=bnfinit(a^4-3*a^2+253009);
G=galoisinit(K);
B=bnrinit(K,9,1);
L1=[H|H<-subgrouplist(B,3), bnrisgalois(B,G,H)]
##
M=bnrgaloismatrix(B,G)
L2=[H|H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
##
@eprog
The second computation is much faster since \kbd{bnrgaloismatrix(B,G)} is
computed only once.
The library syntax is \fun{long}{bnrisgalois}{GEN bnr, GEN gal, GEN H}.
\subsec{bnrisprincipal$(\var{bnr},x,\{\fl=1\})$}\kbdsidx{bnrisprincipal}\label{se:bnrisprincipal}
\var{bnr} being the
number field data which is output by \kbd{bnrinit}$(,,1)$ and $x$ being an
ideal in any form, outputs the components of $x$ on the ray class group
generators in a way similar to \kbd{bnfisprincipal}. That is a 2-component
vector $v$ where $v[1]$ is the vector of components of $x$ on the ray class
group generators, $v[2]$ gives on the integral basis an element $\alpha$ such
that $x=\alpha\prod_ig_i^{x_i}$.
If $\fl=0$, outputs only $v_1$. In that case, \var{bnr} need not contain the
ray class group generators, i.e.~it may be created with \kbd{bnrinit}$(,,0)$
If $x$ is not coprime to the modulus of \var{bnr} the result is undefined.
The library syntax is \fun{GEN}{bnrisprincipal}{GEN bnr, GEN x, long flag}.
Instead of hardcoded numerical flags, one should rather
use
\fun{GEN}{isprincipalray}{GEN bnr, GEN x} for $\kbd{flag} = 0$, and if you
want generators:
\bprog
bnrisprincipal(bnr, x, nf_GEN)
@eprog
\subsec{bnrrootnumber$(\var{bnr},\var{chi},\{\fl=0\})$}\kbdsidx{bnrrootnumber}\label{se:bnrrootnumber}
If $\chi=\var{chi}$ is a
\idx{character} over \var{bnr}, not necessarily primitive, let
$L(s,\chi) = \sum_{id} \chi(id) N(id)^{-s}$ be the attached
\idx{Artin L-function}. Returns the so-called \idx{Artin root number}, i.e.~the
complex number $W(\chi)$ of modulus 1 such that
%
$$\Lambda(1-s,\chi) = W(\chi) \Lambda(s,\overline{\chi})$$
%
\noindent where $\Lambda(s,\chi) = A(\chi)^{s/2}\gamma_\chi(s) L(s,\chi)$ is
the enlarged L-function attached to $L$.
The generators of the ray class group are needed, and you can set $\fl=1$ if
the character is known to be primitive. Example:
\bprog
bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]], 1);
bnrrootnumber(bnr, [2,1])
@eprog\noindent
returns the root number of the character $\chi$ of
$\Cl_{7\infty_1\infty_2}(\Q(\sqrt{229}))$ defined by $\chi(g_1^ag_2^b)
= \zeta_1^{2a}\zeta_2^b$. Here $g_1, g_2$ are the generators of the
ray-class group given by \kbd{bnr.gen} and $\zeta_1 = e^{2i\pi/N_1},
\zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and
$g_2$ respectively ($N_1=6$ and $N_2=3$ as \kbd{bnr.cyc} readily tells us).
The library syntax is \fun{GEN}{bnrrootnumber}{GEN bnr, GEN chi, long flag, long prec}.
\subsec{bnrstark$(\var{bnr},\{\var{subgroup}\})$}\kbdsidx{bnrstark}\label{se:bnrstark}
\var{bnr} being as output by \kbd{bnrinit(,,1)}, finds a relative equation
for the class field corresponding to the modulus in \var{bnr} and the given
congruence subgroup (as usual, omit $\var{subgroup}$ if you want the whole ray
class group).
The main variable of \var{bnr} must not be $x$, and the ground field and the
class field must be totally real. When the base field is $\Q$, the vastly
simpler \tet{galoissubcyclo} is used instead. Here is an example:
\bprog
bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5, 1);
bnrstark(bnr)
@eprog\noindent
returns the ray class field of $\Q(\sqrt{3})$ modulo $5$. Usually, one wants
to apply to the result one of
\bprog
rnfpolredabs(bnf, pol, 16) \\@com compute a reduced relative polynomial
rnfpolredabs(bnf, pol, 16 + 2) \\@com compute a reduced absolute polynomial
@eprog
The routine uses \idx{Stark units} and needs to find a suitable auxiliary
conductor, which may not exist when the class field is not cyclic over the
base. In this case \kbd{bnrstark} is allowed to return a vector of
polynomials defining \emph{independent} relative extensions, whose compositum
is the requested class field. It was decided that it was more useful
to keep the extra information thus made available, hence the user has to take
the compositum herself.
Even if it exists, the auxiliary conductor may be so large that later
computations become unfeasible. (And of course, Stark's conjecture may simply
be wrong.) In case of difficulties, try \tet{rnfkummer}:
\bprog
? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2, 1);
? bnrstark(bnr)
*** at top-level: bnrstark(bnr)
*** ^-------------
*** bnrstark: need 3919350809720744 coefficients in initzeta.
*** Computation impossible.
? lift( rnfkummer(bnr) )
time = 24 ms.
%2 = x^2 + (1/3*y^6 - 11/3*y^4 + 8*y^2 - 5)
@eprog
The library syntax is \fun{GEN}{bnrstark}{GEN bnr, GEN subgroup = NULL, long prec}.
\subsec{dirzetak$(\var{nf},b)$}\kbdsidx{dirzetak}\label{se:dirzetak}
Gives as a vector the first $b$
coefficients of the \idx{Dedekind} zeta function of the number field $\var{nf}$
considered as a \idx{Dirichlet series}.
The library syntax is \fun{GEN}{dirzetak}{GEN nf, GEN b}.
\subsec{factornf$(x,t)$}\kbdsidx{factornf}\label{se:factornf}
This function is obsolete, use \kbd{nffactor}.
factorization of the univariate polynomial $x$
over the number field defined by the (univariate) polynomial $t$. $x$ may
have coefficients in $\Q$ or in the number field. The algorithm reduces to
factorization over $\Q$ (\idx{Trager}'s trick). The direct approach of
\tet{nffactor}, which uses \idx{van Hoeij}'s method in a relative setting, is
in general faster.
The main variable of $t$ must be of \emph{lower} priority than that of $x$
(see \secref{se:priority}). However if non-rational number field elements
occur (as polmods or polynomials) as coefficients of $x$, the variable of
these polmods \emph{must} be the same as the main variable of $t$. For
example
\bprog
? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \\@com these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** at top-level: factornf(x^2+Mod(z,z
*** ^--------------------
*** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
*** at top-level: factornf(x^2+z,y^2+1
*** ^--------------------
*** factornf: incorrect variable in rnf function.
@eprog
The library syntax is \fun{GEN}{polfnf}{GEN x, GEN t}.
\subsec{galoisexport$(\var{gal},\{\fl\})$}\kbdsidx{galoisexport}\label{se:galoisexport}
\var{gal} being be a Galois group as output by \tet{galoisinit},
export the underlying permutation group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
compute the index of the underlying abstract group in the GAP library:
\bprog
? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo \"IdGroup("s");\" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]
@eprog\noindent
This command also accepts subgroups returned by \kbd{galoissubgroups}.
To \emph{import} a GAP permutation into gp (for \tet{galoissubfields} for
instance), the following GAP function may be useful:
\bprog
PermToGP := function(p, n)
return Permuted([1..n],p);
end;
gap> p:= (1,26)(2,5)(3,17)(4,32)(6,9)(7,11)(8,24)(10,13)(12,15)(14,27)
(16,22)(18,28)(19,20)(21,29)(23,31)(25,30)
gap> PermToGP(p,32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
@eprog
The library syntax is \fun{GEN}{galoisexport}{GEN gal, long flag}.
\subsec{galoisfixedfield$(\var{gal},\var{perm},\{\fl\},\{v=y\})$}\kbdsidx{galoisfixedfield}\label{se:galoisfixedfield}
\var{gal} being be a Galois group as output by \tet{galoisinit} and
\var{perm} an element of $\var{gal}.group$, a vector of such elements
or a subgroup of \var{gal} as returned by galoissubgroups,
computes the fixed field of \var{gal} by the automorphism defined by the
permutations \var{perm} of the roots $\var{gal}.roots$. $P$ is guaranteed to
be squarefree modulo $\var{gal}.p$.
If no flags or $\fl=0$, output format is the same as for \tet{nfsubfield},
returning $[P,x]$ such that $P$ is a polynomial defining the fixed field, and
$x$ is a root of $P$ expressed as a polmod in $\var{gal}.pol$.
If $\fl=1$ return only the polynomial $P$.
If $\fl=2$ return $[P,x,F]$ where $P$ and $x$ are as above and $F$ is the
factorization of $\var{gal}.pol$ over the field defined by $P$, where
variable $v$ ($y$ by default) stands for a root of $P$. The priority of $v$
must be less than the priority of the variable of $\var{gal}.pol$ (see
\secref{se:priority}). Example:
\bprog
? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [x^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - y*x - 1, x^2 + y*x - 1]]
@eprog\noindent
computes the factorization $x^4+1=(x^2-\sqrt{-2}x-1)(x^2+\sqrt{-2}x-1)$
The library syntax is \fun{GEN}{galoisfixedfield}{GEN gal, GEN perm, long flag, long v = -1} where \kbd{v} is a variable number.
\subsec{galoisgetpol$(a,\{b\},\{s\})$}\kbdsidx{galoisgetpol}\label{se:galoisgetpol}
Query the galpol package for a polynomial with Galois group isomorphic to
GAP4(a,b), totally real if $s=1$ (default) and totally complex if $s=2$. The
output is a vector [\kbd{pol}, \kbd{den}] where
\item \kbd{pol} is the polynomial of degree $a$
\item \kbd{den} is the denominator of \kbd{nfgaloisconj(pol)}.
Pass it as an optional argument to \tet{galoisinit} or \tet{nfgaloisconj} to
speed them up:
\bprog
? [pol,den] = galoisgetpol(64,4,1);
? G = galoisinit(pol);
time = 352ms
? galoisinit(pol, den); \\ passing 'den' speeds up the computation
time = 264ms
? % == %`
%4 = 1 \\ same answer
@eprog
If $b$ and $s$ are omitted, return the number of isomorphism classes of
groups of order $a$.
The library syntax is \fun{GEN}{galoisgetpol}{long a, long b, long s}.
Also available is \fun{GEN}{galoisnbpol}{long a} when $b$ and $s$
are omitted.
\subsec{galoisidentify$(\var{gal})$}\kbdsidx{galoisidentify}\label{se:galoisidentify}
\var{gal} being be a Galois group as output by \tet{galoisinit},
output the isomorphism class of the underlying abstract group as a
two-components vector $[o,i]$, where $o$ is the group order, and $i$ is the
group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina
Eick and Eamonn O'Brien.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The current implementation is limited to degree less or equal to $127$.
Some larger ``easy'' orders are also supported.
The output is similar to the output of the function \kbd{IdGroup} in GAP4.
Note that GAP4 \kbd{IdGroup} handles all groups of order less than $2000$
except $1024$, so you can use \tet{galoisexport} and GAP4 to identify large
Galois groups.
The library syntax is \fun{GEN}{galoisidentify}{GEN gal}.
\subsec{galoisinit$(\var{pol},\{\var{den}\})$}\kbdsidx{galoisinit}\label{se:galoisinit}
Computes the Galois group
and all necessary information for computing the fixed fields of the
Galois extension $K/\Q$ where $K$ is the number field defined by
$\var{pol}$ (monic irreducible polynomial in $\Z[X]$ or
a number field as output by \tet{nfinit}). The extension $K/\Q$ must be
Galois with Galois group ``weakly'' super-solvable, see below;
returns 0 otherwise. Hence this permits to quickly check whether a polynomial
of order strictly less than $36$ is Galois or not.
The algorithm used is an improved version of the paper
``An efficient algorithm for the computation of Galois automorphisms'',
Bill Allombert, Math.~Comp, vol.~73, 245, 2001, pp.~359--375.
A group $G$ is said to be ``weakly'' super-solvable if there exists a
normal series
$\{1\} = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1}
\triangleleft H_n$
such that each $H_i$ is normal in $G$ and for $i<n$, each quotient group
$H_{i+1}/H_i$ is cyclic, and either $H_n=G$ (then $G$ is super-solvable) or
$G/H_n$ is isomorphic to either $A_4$ or $S_4$.
In practice, almost all small groups are WKSS, the exceptions having order
36(1 exception), 48(2), 56(1), 60(1), 72(5), 75(1), 80(1), 96(10) and $\geq
108$.
This function is a prerequisite for most of the \kbd{galois}$xxx$ routines.
For instance:
\bprog
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))
@eprog
The output is an 8-component vector \var{gal}.
$\var{gal}[1]$ contains the polynomial \var{pol}
(\kbd{\var{gal}.pol}).
$\var{gal}[2]$ is a three-components vector $[p,e,q]$ where $p$ is a
prime number (\kbd{\var{gal}.p}) such that \var{pol} totally split
modulo $p$ , $e$ is an integer and $q=p^e$ (\kbd{\var{gal}.mod}) is the
modulus of the roots in \kbd{\var{gal}.roots}.
$\var{gal}[3]$ is a vector $L$ containing the $p$-adic roots of
\var{pol} as integers implicitly modulo \kbd{\var{gal}.mod}.
(\kbd{\var{gal}.roots}).
$\var{gal}[4]$ is the inverse of the Vandermonde matrix of the
$p$-adic roots of \var{pol}, multiplied by $\var{gal}[5]$.
$\var{gal}[5]$ is a multiple of the least common denominator of the
automorphisms expressed as polynomial in a root of \var{pol}.
$\var{gal}[6]$ is the Galois group $G$ expressed as a vector of
permutations of $L$ (\kbd{\var{gal}.group}).
$\var{gal}[7]$ is a generating subset $S=[s_1,\ldots,s_g]$ of $G$
expressed as a vector of permutations of $L$ (\kbd{\var{gal}.gen}).
$\var{gal}[8]$ contains the relative orders $[o_1,\ldots,o_g]$ of
the generators of $S$ (\kbd{\var{gal}.orders}).
Let $H_n$ be as above, we have the following properties:
\quad\item if $G/H_n\simeq A_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3]$.
\quad\item if $G/H_n\simeq S_4$ then $[o_1,\ldots,o_g]$ ends by
$[2,2,3,2]$.
\quad\item for $1\leq i \leq g$ the subgroup of $G$ generated by
$[s_1,\ldots,s_g]$ is normal, with the exception of $i=g-2$ in the
$A_4$ case and of $i=g-3$ in the $S_A$ case.
\quad\item the relative order $o_i$ of $s_i$ is its order in the
quotient group $G/\langle s_1,\ldots,s_{i-1}\rangle$, with the same
exceptions.
\quad\item for any $x\in G$ there exists a unique family
$[e_1,\ldots,e_g]$ such that (no exceptions):
-- for $1\leq i \leq g$ we have $0\leq e_i<o_i$
-- $x=g_1^{e_1}g_2^{e_2}\ldots g_n^{e_n}$
If present $den$ must be a suitable value for $\var{gal}[5]$.
The library syntax is \fun{GEN}{galoisinit}{GEN pol, GEN den = NULL}.
\subsec{galoisisabelian$(\var{gal},\{\fl=0\})$}\kbdsidx{galoisisabelian}\label{se:galoisisabelian}
\var{gal} being as output by \kbd{galoisinit}, return $0$ if
\var{gal} is not an abelian group, and the HNF matrix of \var{gal} over
\kbd{gal.gen} if $fl=0$, $1$ if $fl=1$.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The library syntax is \fun{GEN}{galoisisabelian}{GEN gal, long flag}.
\subsec{galoisisnormal$(\var{gal},\var{subgrp})$}\kbdsidx{galoisisnormal}\label{se:galoisisnormal}
\var{gal} being as output by \kbd{galoisinit}, and \var{subgrp} a subgroup
of \var{gal} as output by \kbd{galoissubgroups},return $1$ if \var{subgrp} is a
normal subgroup of \var{gal}, else return 0.
This command also accepts subgroups returned by \kbd{galoissubgroups}.
The library syntax is \fun{long}{galoisisnormal}{GEN gal, GEN subgrp}.
\subsec{galoispermtopol$(\var{gal},\var{perm})$}\kbdsidx{galoispermtopol}\label{se:galoispermtopol}
\var{gal} being a
Galois group as output by \kbd{galoisinit} and \var{perm} a element of
$\var{gal}.group$, return the polynomial defining the Galois
automorphism, as output by \kbd{nfgaloisconj}, attached to the
permutation \var{perm} of the roots $\var{gal}.roots$. \var{perm} can
also be a vector or matrix, in this case, \kbd{galoispermtopol} is
applied to all components recursively.
\noindent Note that
\bprog
G = galoisinit(pol);
galoispermtopol(G, G[6])~
@eprog\noindent
is equivalent to \kbd{nfgaloisconj(pol)}, if degree of \var{pol} is greater
or equal to $2$.
The library syntax is \fun{GEN}{galoispermtopol}{GEN gal, GEN perm}.
\subsec{galoissubcyclo$(N,H,\{\var{fl}=0\},\{v\})$}\kbdsidx{galoissubcyclo}\label{se:galoissubcyclo}
Computes the subextension
of $\Q(\zeta_n)$ fixed by the subgroup $H \subset (\Z/n\Z)^*$. By the
Kronecker-Weber theorem, all abelian number fields can be generated in this
way (uniquely if $n$ is taken to be minimal).
\noindent The pair $(n, H)$ is deduced from the parameters $(N, H)$ as follows
\item $N$ an integer: then $n = N$; $H$ is a generator, i.e. an
integer or an integer modulo $n$; or a vector of generators.
\item $N$ the output of \kbd{znstar($n$)}. $H$ as in the first case
above, or a matrix, taken to be a HNF left divisor of the SNF for $(\Z/n\Z)^*$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
\item $N$ the output of \kbd{bnrinit(bnfinit(y), $m$, 1)} where $m$ is a
module. $H$ as in the first case, or a matrix taken to be a HNF left
divisor of the SNF for the ray class group modulo $m$
(of type \kbd{$N$.cyc}), giving the generators of $H$ in terms of \kbd{$N$.gen}.
In this last case, beware that $H$ is understood relatively to $N$; in
particular, if the infinite place does not divide the module, e.g if $m$ is
an integer, then it is not a subgroup of $(\Z/n\Z)^*$, but of its quotient by
$\{\pm 1\}$.
If $fl=0$, compute a polynomial (in the variable \var{v}) defining
the subfield of $\Q(\zeta_n)$ fixed by the subgroup \var{H} of $(\Z/n\Z)^*$.
If $fl=1$, compute only the conductor of the abelian extension, as a module.
If $fl=2$, output $[pol, N]$, where $pol$ is the polynomial as output when
$fl=0$ and $N$ the conductor as output when $fl=1$.
The following function can be used to compute all subfields of
$\Q(\zeta_n)$ (of exact degree \kbd{d}, if \kbd{d} is set):
\bprog
polsubcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
IndexBound = if (d < 0, n, [d]);
bnr = bnrinit(bnfinit(y), [n,[1]], 1);
L = subgrouplist(bnr, IndexBound, 1);
vector(#L,i, galoissubcyclo(bnr,L[i]));
}
@eprog\noindent
Setting \kbd{L = subgrouplist(bnr, IndexBound)} would produce subfields of exact
conductor $n\infty$.
The library syntax is \fun{GEN}{galoissubcyclo}{GEN N, GEN H = NULL, long fl, long v = -1} where \kbd{v} is a variable number.
\subsec{galoissubfields$(G,\{\fl=0\},\{v\})$}\kbdsidx{galoissubfields}\label{se:galoissubfields}
Outputs all the subfields of the Galois group \var{G}, as a vector.
This works by applying \kbd{galoisfixedfield} to all subgroups. The meaning of
\var{flag} is the same as for \kbd{galoisfixedfield}.
The library syntax is \fun{GEN}{galoissubfields}{GEN G, long flag, long v = -1} where \kbd{v} is a variable number.
\subsec{galoissubgroups$(G)$}\kbdsidx{galoissubgroups}\label{se:galoissubgroups}
Outputs all the subgroups of the Galois group \kbd{gal}. A subgroup is a
vector [\var{gen}, \var{orders}], with the same meaning
as for $\var{gal}.gen$ and $\var{gal}.orders$. Hence \var{gen} is a vector of
permutations generating the subgroup, and \var{orders} is the relatives
orders of the generators. The cardinality of a subgroup is the product of the
relative orders. Such subgroup can be used instead of a Galois group in the
following command: \kbd{galoisisabelian}, \kbd{galoissubgroups},
\kbd{galoisexport} and \kbd{galoisidentify}.
To get the subfield fixed by a subgroup \var{sub} of \var{gal}, use
\bprog
galoisfixedfield(gal,sub[1])
@eprog
The library syntax is \fun{GEN}{galoissubgroups}{GEN G}.
\subsec{idealadd$(\var{nf},x,y)$}\kbdsidx{idealadd}\label{se:idealadd}
Sum of the two ideals $x$ and $y$ in the number field $\var{nf}$. The
result is given in HNF.
\bprog
? K = nfinit(x^2 + 1);
? a = idealadd(K, 2, x + 1) \\ ideal generated by 2 and 1+I
%2 =
[2 1]
[0 1]
? pr = idealprimedec(K, 5)[1]; \\ a prime ideal above 5
? idealadd(K, a, pr) \\ coprime, as expected
%4 =
[1 0]
[0 1]
@eprog\noindent
This function cannot be used to add arbitrary $\Z$-modules, since it assumes
that its arguments are ideals:
\bprog
? b = Mat([1,0]~);
? idealadd(K, b, b) \\ only square t_MATs represent ideals
*** idealadd: non-square t_MAT in idealtyp.
? c = [2, 0; 2, 0]; idealadd(K, c, c) \\ non-sense
%6 =
[2 0]
[0 2]
? d = [1, 0; 0, 2]; idealadd(K, d, d) \\ non-sense
%7 =
[1 0]
[0 1]
@eprog\noindent In the last two examples, we get wrong results since the
matrices $c$ and $d$ do not correspond to an ideal: the $\Z$-span of their
columns (as usual interpreted as coordinates with respect to the integer basis
\kbd{K.zk}) is not an $O_K$-module. To add arbitrary $\Z$-modules generated
by the columns of matrices $A$ and $B$, use \kbd{mathnf(concat(A,B))}.
The library syntax is \fun{GEN}{idealadd}{GEN nf, GEN x, GEN y}.
\subsec{idealaddtoone$(\var{nf},x,\{y\})$}\kbdsidx{idealaddtoone}\label{se:idealaddtoone}
$x$ and $y$ being two co-prime
integral ideals (given in any form), this gives a two-component row vector
$[a,b]$ such that $a\in x$, $b\in y$ and $a+b=1$.
The alternative syntax $\kbd{idealaddtoone}(\var{nf},v)$, is supported, where
$v$ is a $k$-component vector of ideals (given in any form) which sum to
$\Z_K$. This outputs a $k$-component vector $e$ such that $e[i]\in x[i]$ for
$1\le i\le k$ and $\sum_{1\le i\le k}e[i]=1$.
The library syntax is \fun{GEN}{idealaddtoone0}{GEN nf, GEN x, GEN y = NULL}.
\subsec{idealappr$(\var{nf},x,\{\fl\})$}\kbdsidx{idealappr}\label{se:idealappr}
If $x$ is a fractional ideal
(given in any form), gives an element $\alpha$ in $\var{nf}$ such that for
all prime ideals $\goth{p}$ such that the valuation of $x$ at $\goth{p}$ is
non-zero, we have $v_{\goth{p}}(\alpha)=v_{\goth{p}}(x)$, and
$v_{\goth{p}}(\alpha)\ge0$ for all other $\goth{p}$.
The argument $x$ may also be given as a prime ideal factorization, as
output by \kbd{idealfactor}, but allowing zero exponents.
This yields an element $\alpha$ such that for all prime ideals $\goth{p}$
occurring in $x$, $v_{\goth{p}}(\alpha) = v_{\goth{p}}(x)$;
for all other prime ideals, $v_{\goth{p}}(\alpha)\ge0$.
flag is deprecated (ignored), kept for backward compatibility
The library syntax is \fun{GEN}{idealappr0}{GEN nf, GEN x, long flag}.
Use directly \fun{GEN}{idealappr}{GEN nf, GEN x} since \fl is ignored.
\subsec{idealchinese$(\var{nf},x,\{y\})$}\kbdsidx{idealchinese}\label{se:idealchinese}
$x$ being a prime ideal factorization
(i.e.~a 2 by 2 matrix whose first column contains prime ideals, and the second
column integral exponents), $y$ a vector of elements in $\var{nf}$ indexed by
the ideals in $x$, computes an element $b$ such that
$v_{\goth{p}}(b - y_{\goth{p}}) \geq v_{\goth{p}}(x)$ for all prime ideals
in $x$ and $v_{\goth{p}}(b)\geq 0$ for all other $\goth{p}$.
\bprog
? K = nfinit(t^2-2);
? x = idealfactor(K, 2^2*3)
%2 =
[[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4]
[ [3, [3, 0]~, 1, 2, 1] 1]
? y = [t,1];
? idealchinese(K, x, y)
%4 = [4, -3]~
@eprog
The argument $x$ may also be of the form $[x, s]$ where the first component
is as above and $s$ is a vector of signs, with $r_1$ components
$s_i$ in $\{-1,0,1\}$:
if $\sigma_i$ denotes the $i$-th real embedding of the number field,
the element $b$ returned satisfies further
$s_i \kbd{sign}(\sigma_i(b)) \geq 0$ for all $i$. In other words, the sign is
fixed to $s_i$ at the $i$-th embedding whenever $s_i$ is non-zero.
\bprog
? idealchinese(K, [x, [1,1]], y)
%5 = [16, -3]~
? idealchinese(K, [x, [-1,-1]], y)
%6 = [-20, -3]~
? idealchinese(K, [x, [1,-1]], y)
%7 = [4, -3]~
@eprog
If $y$ is omitted, return a data structure which can be used in
place of $x$ in later calls and allows to solve many chinese remainder
problems for a given $x$ more efficiently.
\bprog
? C = idealchinese(K, [x, [1,1]]);
? idealchinese(K, C, y) \\ as above
%9 = [16, -3]~
? for(i=1,10^4, idealchinese(K,C,y)) \\ ... but faster !
time = 80 ms.
? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))
time = 224 ms.
@eprog
Finally, this structure is itself allowed in place of $x$, the
new $s$ overriding the one already present in the structure. This allows to
initialize for different sign conditions more efficiently when the underlying
ideal factorization remains the same.
\bprog
? D = idealchinese(K, [C, [1,-1]]); \\ replaces [1,1]
? idealchinese(K, D, y)
%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))
time = 40 ms. \\ faster than starting from scratch
? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))
time = 128 ms.
@eprog
The library syntax is \fun{GEN}{idealchinese}{GEN nf, GEN x, GEN y = NULL}.
Also available is
\fun{GEN}{idealchineseinit}{GEN nf, GEN x} when $y = \kbd{NULL}$.
\subsec{idealcoprime$(\var{nf},x,y)$}\kbdsidx{idealcoprime}\label{se:idealcoprime}
Given two integral ideals $x$ and $y$
in the number field $\var{nf}$, returns a $\beta$ in the field,
such that $\beta\cdot x$ is an integral ideal coprime to $y$.
The library syntax is \fun{GEN}{idealcoprime}{GEN nf, GEN x, GEN y}.
\subsec{idealdiv$(\var{nf},x,y,\{\fl=0\})$}\kbdsidx{idealdiv}\label{se:idealdiv}
Quotient $x\cdot y^{-1}$ of the two ideals $x$ and $y$ in the number
field $\var{nf}$. The result is given in HNF.
If $\fl$ is non-zero, the quotient $x \cdot y^{-1}$ is assumed to be an
integral ideal. This can be much faster when the norm of the quotient is
small even though the norms of $x$ and $y$ are large.
The library syntax is \fun{GEN}{idealdiv0}{GEN nf, GEN x, GEN y, long flag}.
Also available are \fun{GEN}{idealdiv}{GEN nf, GEN x, GEN y}
($\fl=0$) and \fun{GEN}{idealdivexact}{GEN nf, GEN x, GEN y} ($\fl=1$).
\subsec{idealfactor$(\var{nf},x)$}\kbdsidx{idealfactor}\label{se:idealfactor}
Factors into prime ideal powers the
ideal $x$ in the number field $\var{nf}$. The output format is similar to the
\kbd{factor} function, and the prime ideals are represented in the form
output by the \kbd{idealprimedec} function.
The library syntax is \fun{GEN}{idealfactor}{GEN nf, GEN x}.
\subsec{idealfactorback$(\var{nf},f,\{e\},\{\fl = 0\})$}\kbdsidx{idealfactorback}\label{se:idealfactorback}
Gives back the ideal corresponding to a factorization. The integer $1$
corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization, as produced by \kbd{idealfactor}.
\bprog
? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]
[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]
? idealfactorback(nf, %)
%2 =
[10 4]
[0 2]
? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]
[0 2]
? % == idealhnf(nf, 4 + 2*y)
%4 = 1
@eprog
If \kbd{flag} is non-zero, perform ideal reductions (\tet{idealred}) along the
way. This is most useful if the ideals involved are all \emph{extended}
ideals (for instance with trivial principal part), so that the principal parts
extracted by \kbd{idealred} are not lost. Here is an example:
\bprog
? f = vector(#f, i, [f[i], [;]]); \\ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~
@eprog
The extended ideal returned in \kbd{\%6} is the trivial ideal $1$, extended
with a principal generator given in factored form. We use \tet{nffactorback}
to recover it in standard form.
The library syntax is \fun{GEN}{idealfactorback}{GEN nf, GEN f, GEN e = NULL, long flag}.
\subsec{idealfrobenius$(\var{nf},\var{gal},\var{pr})$}\kbdsidx{idealfrobenius}\label{se:idealfrobenius}
Let $K$ be the number field defined by $nf$ and assume $K/\Q$ be a
Galois extension with Galois group given \kbd{gal=galoisinit(nf)},
and that \var{pr} is an unramified prime ideal $\goth{p}$ in \kbd{prid}
format.
This function returns a permutation of \kbd{gal.group} which defines
the Frobenius element $\Frob_{\goth{p}}$ attached to $\goth{p}$.
If $p$ is the unique prime number in $\goth{p}$, then
$\Frob(x)\equiv x^p\mod\goth{p}$ for all $x\in\Z_K$.
\bprog
? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8
@eprog\noindent This is correct since $101\equiv 8\mod{31}$.
The library syntax is \fun{GEN}{idealfrobenius}{GEN nf, GEN gal, GEN pr}.
\subsec{idealhnf$(\var{nf},u,\{v\})$}\kbdsidx{idealhnf}\label{se:idealhnf}
Gives the \idx{Hermite normal form} of the ideal $u\Z_K+v\Z_K$, where $u$
and $v$ are elements of the number field $K$ defined by \var{nf}.
\bprog
? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]
[0 1/6 0]
[0 0 1/6]
@eprog
If $b$ is omitted, returns the HNF of the ideal defined by $u$: $u$ may be an
algebraic number (defining a principal ideal), a maximal ideal (as given by
\kbd{idealprimedec} or \kbd{idealfactor}), or a matrix whose columns give
generators for the ideal. This last format is a little complicated, but
useful to reduce general modules to the canonical form once in a while:
\item if strictly less than $N = [K:\Q]$ generators are given, $u$
is the $\Z_K$-module they generate,
\item if $N$ or more are given, it is \emph{assumed} that they form a
$\Z$-basis of the ideal, in particular that the matrix has maximal rank $N$.
This acts as \kbd{mathnf} since the $\Z_K$-module structure is (taken for
granted hence) not taken into account in this case.
\bprog
? idealhnf(nf, idealprimedec(nf,2)[1])
%4 =
[2 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, [1,2;2,3;3,4])
%5 =
[1 0 0]
[0 1 0]
[0 0 1]
@eprog\noindent Finally, when $K$ is quadratic with discriminant $D_K$, we
allow $u =$ \kbd{Qfb(a,b,c)}, provided $b^2 - 4ac = D_K$. As usual,
this represents the ideal $a \Z + (1/2)(-b + \sqrt{D_K}) \Z$.
\bprog
? K = nfinit(x^2 - 60); K.disc
%1 = 60
? idealhnf(K, qfbprimeform(60,2))
%2 =
[2 1]
[0 1]
? idealhnf(K, Qfb(1,2,3))
*** at top-level: idealhnf(K,Qfb(1,2,3
*** ^--------------------
*** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.
@eprog
The library syntax is \fun{GEN}{idealhnf0}{GEN nf, GEN u, GEN v = NULL}.
Also available is \fun{GEN}{idealhnf}{GEN nf, GEN a}.
\subsec{idealintersect$(\var{nf},A,B)$}\kbdsidx{idealintersect}\label{se:idealintersect}
Intersection of the two ideals
$A$ and $B$ in the number field $\var{nf}$. The result is given in HNF.
\bprog
? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]
[0 2]
@eprog
This function does not apply to general $\Z$-modules, e.g.~orders, since its
arguments are replaced by the ideals they generate. The following script
intersects $\Z$-modules $A$ and $B$ given by matrices of compatible
dimensions with integer coefficients:
\bprog
ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B)));
mathnf( A * Ker[1..#A,] )
}
@eprog
The library syntax is \fun{GEN}{idealintersect}{GEN nf, GEN A, GEN B}.
\subsec{idealinv$(\var{nf},x)$}\kbdsidx{idealinv}\label{se:idealinv}
Inverse of the ideal $x$ in the
number field $\var{nf}$, given in HNF. If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. inverting $[I,t]$, yields $[I^{-1}, 1/t]$.
The library syntax is \fun{GEN}{idealinv}{GEN nf, GEN x}.
\subsec{ideallist$(\var{nf},\var{bound},\{\fl=4\})$}\kbdsidx{ideallist}\label{se:ideallist}
Computes the list
of all ideals of norm less or equal to \var{bound} in the number field
\var{nf}. The result is a row vector with exactly \var{bound} components.
Each component is itself a row vector containing the information about
ideals of a given norm, in no specific order, depending on the value of
$\fl$:
The possible values of $\fl$ are:
\quad 0: give the \var{bid} attached to the ideals, without generators.
\quad 1: as 0, but include the generators in the \var{bid}.
\quad 2: in this case, \var{nf} must be a \var{bnf} with units. Each
component is of the form $[\var{bid},U]$, where \var{bid} is as case 0
and $U$ is a vector of discrete logarithms of the units. More precisely, it
gives the \kbd{ideallog}s with respect to \var{bid} of \kbd{bnf.tufu}.
This structure is technical, and only meant to be used in conjunction with
\tet{bnrclassnolist} or \tet{bnrdisclist}.
\quad 3: as 2, but include the generators in the \var{bid}.
\quad 4: give only the HNF of the ideal.
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \\@com A single ideal of norm 1
? #L[65]
%4 = 4 \\@com There are 4 ideals of norm 4 in $\Z[i]$
@eprog
If one wants more information, one could do instead:
\bprog
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%4 = [[25, 18; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]
@eprog\noindent where we ask for the structures of the $(\Z[i]/I)^*$ for all
three ideals of norm $25$. In fact, for all moduli with finite part of norm
$25$ and trivial Archimedean part, as the last 3 commands show. See
\tet{ideallistarch} to treat general moduli.
The library syntax is \fun{GEN}{ideallist0}{GEN nf, long bound, long flag}.
\subsec{ideallistarch$(\var{nf},\var{list},\var{arch})$}\kbdsidx{ideallistarch}\label{se:ideallistarch}
\var{list} is a vector of vectors of bid's, as output by \tet{ideallist} with
flag $0$ to $3$. Return a vector of vectors with the same number of
components as the original \var{list}. The leaves give information about
moduli whose finite part is as in original list, in the same order, and
Archimedean part is now \var{arch} (it was originally trivial). The
information contained is of the same kind as was present in the input; see
\tet{ideallist}, in particular the meaning of \fl.
\bprog
? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \\@com two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \\@com add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
@eprog
Of course, the results above are obvious: adding $t$ places at infinity will
add $t$ copies of $\Z/2\Z$ to $(\Z_K/f)^*$. The following application
is more typical:
\bprog
? L = ideallist(bnf, 100, 2); \\@com units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
? H[98];
%4 = [2, 12, 2]
@eprog
The library syntax is \fun{GEN}{ideallistarch}{GEN nf, GEN list, GEN arch}.
\subsec{ideallog$(\{\var{nf}\},x,\var{bid})$}\kbdsidx{ideallog}\label{se:ideallog}
$\var{nf}$ is a number field,
\var{bid} is as output by \kbd{idealstar(nf, D, \dots)} and $x$ a
non-necessarily integral element of \var{nf} which must have valuation
equal to 0 at all prime ideals in the support of $\kbd{D}$. This function
computes the discrete logarithm of $x$ on the generators given in
\kbd{\var{bid}.gen}. In other words, if $g_i$ are these generators, of orders
$d_i$ respectively, the result is a column vector of integers $(x_i)$ such
that $0\le x_i<d_i$ and
$$x \equiv \prod_i g_i^{x_i} \pmod{\ ^*D}\enspace.$$
Note that when the support of \kbd{D} contains places at infinity, this
congruence implies also sign conditions on the attached real embeddings.
See \tet{znlog} for the limitations of the underlying discrete log algorithms.
When \var{nf} is omitted, take it to be the rational number field. In that
case, $x$ must be a \typ{INT} and \var{bid} must have been initialized by
\kbd{idealstar(,N)}.
The library syntax is \fun{GEN}{ideallog}{GEN nf = NULL, GEN x, GEN bid}.
Also available is
\fun{GEN}{Zideallog}{GEN bid, GEN x} when \kbd{nf} is \kbd{NULL}.
\subsec{idealmin$(\var{nf},\var{ix},\{\var{vdir}\})$}\kbdsidx{idealmin}\label{se:idealmin}
\emph{This function is useless and kept for backward compatibility only,
use \kbd{idealred}}. Computes a pseudo-minimum of the ideal $x$ in the
direction \var{vdir} in the number field \var{nf}.
The library syntax is \fun{GEN}{idealmin}{GEN nf, GEN ix, GEN vdir = NULL}.
\subsec{idealmul$(\var{nf},x,y,\{\fl=0\})$}\kbdsidx{idealmul}\label{se:idealmul}
Ideal multiplication of the ideals $x$ and $y$ in the number field
\var{nf}; the result is the ideal product in HNF. If either $x$ or $y$
are extended ideals\sidx{ideal (extended)}, their principal part is suitably
updated: i.e. multiplying $[I,t]$, $[J,u]$ yields $[IJ, tu]$; multiplying
$I$ and $[J, u]$ yields $[IJ, u]$.
\bprog
? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 =
[4 2]
[0 2]
? idealmul(nf, [2, x], x+1) \\ extended ideal * ideal
%3 = [[4, 2; 0, 2], x]
? idealmul(nf, [2, x], [x+1, x]) \\ two extended ideals
%4 = [[4, 2; 0, 2], [-1, 0]~]
@eprog\noindent
If $\fl$ is non-zero, reduce the result using \kbd{idealred}.
The library syntax is \fun{GEN}{idealmul0}{GEN nf, GEN x, GEN y, long flag}.
\noindent See also
\fun{GEN}{idealmul}{GEN nf, GEN x, GEN y} ($\fl=0$) and
\fun{GEN}{idealmulred}{GEN nf, GEN x, GEN y} ($\fl\neq0$).
\subsec{idealnorm$(\var{nf},x)$}\kbdsidx{idealnorm}\label{se:idealnorm}
Computes the norm of the ideal~$x$ in the number field~$\var{nf}$.
The library syntax is \fun{GEN}{idealnorm}{GEN nf, GEN x}.
\subsec{idealnumden$(\var{nf},x)$}\kbdsidx{idealnumden}\label{se:idealnumden}
Returns $[A,B]$, where $A,B$ are coprime integer ideals
such that $x = A/B$, in the number field $\var{nf}$.
\bprog
? nf = nfinit(x^2+1);
? idealnumden(nf, (x+1)/2)
%2 = [[1, 0; 0, 1], [2, 1; 0, 1]]
@eprog
The library syntax is \fun{GEN}{idealnumden}{GEN nf, GEN x}.
\subsec{idealpow$(\var{nf},x,k,\{\fl=0\})$}\kbdsidx{idealpow}\label{se:idealpow}
Computes the $k$-th power of
the ideal $x$ in the number field $\var{nf}$; $k\in\Z$.
If $x$ is an extended
ideal\sidx{ideal (extended)}, its principal part is suitably
updated: i.e. raising $[I,t]$ to the $k$-th power, yields $[I^k, t^k]$.
If $\fl$ is non-zero, reduce the result using \kbd{idealred}, \emph{throughout
the (binary) powering process}; in particular, this is \emph{not} the same
as $\kbd{idealpow}(\var{nf},x,k)$ followed by reduction.
The library syntax is \fun{GEN}{idealpow0}{GEN nf, GEN x, GEN k, long flag}.
\noindent See also
\fun{GEN}{idealpow}{GEN nf, GEN x, GEN k} and
\fun{GEN}{idealpows}{GEN nf, GEN x, long k} ($\fl = 0$).
Corresponding to $\fl=1$ is \fun{GEN}{idealpowred}{GEN nf, GEN vp, GEN k}.
\subsec{idealprimedec$(\var{nf},p,\{f=0\})$}\kbdsidx{idealprimedec}\label{se:idealprimedec}
Computes the prime ideal
decomposition of the (positive) prime number $p$ in the number field $K$
represented by \var{nf}. If a non-prime $p$ is given the result is undefined.
If $f$ is present and non-zero, restrict the result to primes of residue
degree $\leq f$.
The result is a vector of \tev{prid} structures, each representing one of the
prime ideals above $p$ in the number field $\var{nf}$. The representation
$\kbd{pr}=[p,a,e,f,\var{mb}]$ of a prime ideal means the following: $a$
is an algebraic integer in the maximal order $\Z_K$ and the prime ideal is
equal to $\goth{p} = p\Z_K + a\Z_K$;
$e$ is the ramification index; $f$ is the residual index;
finally, \var{mb} is the multiplication table attached to the algebraic
integer $b$ is such that $\goth{p}^{-1}=\Z_K+ b/ p\Z_K$, which is used
internally to compute valuations. In other words if $p$ is inert,
then \var{mb} is the integer $1$, and otherwise it is a square \typ{MAT}
whose $j$-th column is $b \cdot \kbd{nf.zk[j]}$.
The algebraic number $a$ is guaranteed to have a
valuation equal to 1 at the prime ideal (this is automatic if $e>1$).
The components of \kbd{pr} should be accessed by member functions: \kbd{pr.p},
\kbd{pr.e}, \kbd{pr.f}, and \kbd{pr.gen} (returns the vector $[p,a]$):
\bprog
? K = nfinit(x^3-2);
? P = idealprimedec(K, 5);
? #P \\ 2 primes above 5 in Q(2^(1/3))
%3 = 2
? [p1,p2] = P;
? [p1.e, p1.f] \\ the first is unramified of degree 1
%5 = [1, 1]
? [p2.e, p2.f] \\ the second is unramified of degree 2
%6 = [1, 2]
? p1.gen
%7 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %[2]) \\ a uniformizer for p1
%8 = Mod(x + 2, x^3 - 2)
? #idealprimedec(K, 5, 1) \\ restrict to f = 1
%9 = 1 \\ now only p1
@eprog
The library syntax is \fun{GEN}{idealprimedec_limit_f}{GEN nf, GEN p, long f}.
\subsec{idealprincipalunits$(\var{nf},\var{pr},k)$}\kbdsidx{idealprincipalunits}\label{se:idealprincipalunits}
Given a prime ideal in \tet{idealprimedec} format,
returns the multiplicative group $(1 + \var{pr}) / (1 + \var{pr}^k)$ as an
abelian group. This function is much faster than \tet{idealstar} when the
norm of \var{pr} is large, since it avoids (useless) work in the
multiplicative group of the residue field.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1];
? G = idealprincipalunits(K, P, 20);
? G.cyc
%4 = [512, 256, 4] \\ Z/512 x Z/256 x Z/4
? G.gen
%5 = [[-1, -2]~, 1021, [0, -1]~] \\ minimal generators of given order
@eprog
The library syntax is \fun{GEN}{idealprincipalunits}{GEN nf, GEN pr, long k}.
\subsec{idealramgroups$(\var{nf},\var{gal},\var{pr})$}\kbdsidx{idealramgroups}\label{se:idealramgroups}
Let $K$ be the number field defined by \var{nf} and assume that $K/\Q$ is
Galois with Galois group $G$ given by \kbd{gal=galoisinit(nf)}.
Let \var{pr} be the prime ideal $\goth{P}$ in prid format.
This function returns a vector $g$ of subgroups of \kbd{gal}
as follow:
\item \kbd{g[1]} is the decomposition group of $\goth{P}$,
\item \kbd{g[2]} is $G_0(\goth{P})$, the inertia group of $\goth{P}$,
and for $i\geq 2$,
\item \kbd{g[i]} is $G_{i-2}(\goth{P})$, the $i-2$-th
\idx{ramification group} of $\goth{P}$.
\noindent The length of $g$ is the number of non-trivial groups in the
sequence, thus is $0$ if $e=1$ and $f=1$, and $1$ if $f>1$ and $e=1$.
The following function computes the cardinality of a subgroup of $G$,
as given by the components of $g$:
\bprog
card(H) =my(o=H[2]); prod(i=1,#o,o[i]);
@eprog
\bprog
? nf=nfinit(x^6+3); gal=galoisinit(nf); pr=idealprimedec(nf,3)[1];
? g = idealramgroups(nf, gal, pr);
? apply(card,g)
%3 = [6, 6, 3, 3, 3] \\ cardinalities of the G_i
@eprog
\bprog
? nf=nfinit(x^6+108); gal=galoisinit(nf); pr=idealprimedec(nf,2)[1];
? iso=idealramgroups(nf,gal,pr)[2]
%5 = [[Vecsmall([2, 3, 1, 5, 6, 4])], Vecsmall([3])]
? nfdisc(galoisfixedfield(gal,iso,1))
%6 = -3
@eprog\noindent The field fixed by the inertia group of $2$ is not ramified at
$2$.
The library syntax is \fun{GEN}{idealramgroups}{GEN nf, GEN gal, GEN pr}.
\subsec{idealred$(\var{nf},I,\{v=0\})$}\kbdsidx{idealred}\label{se:idealred}
\idx{LLL} reduction of
the ideal $I$ in the number field $K$ attached to \var{nf}, along the
direction $v$. The $v$ parameter is best left omitted, but if it is present,
it must be an $\kbd{nf.r1} + \kbd{nf.r2}$-component vector of
\emph{non-negative} integers. (What counts is the relative magnitude of the
entries: if all entries are equal, the effect is the same as if the vector
had been omitted.)
This function finds an $a\in K^*$ such that $J = (a)I$ is
``small'' and integral (see the end for technical details).
The result is the Hermite normal form of
the ``reduced'' ideal $J$.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,5)[1];
? idealred(K, P)
%3 =
[1 0]
[0 1]
@eprog\noindent More often than not, a \idx{principal ideal} yields the unit
ideal as above. This is a quick and dirty way to check if ideals are principal,
but it is not a necessary condition: a non-trivial result does not prove that
the ideal is non-principal. For guaranteed results, see \kbd{bnfisprincipal},
which requires the computation of a full \kbd{bnf} structure.
If the input is an extended ideal $[I,s]$, the output is $[J, sa]$; in
this way, one keeps track of the principal ideal part:
\bprog
? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [2, -1]~]
@eprog\noindent
meaning that $P$ is generated by $[2, -1]~$. The number field element in the
extended part is an algebraic number in any form \emph{or} a factorization
matrix (in terms of number field elements, not ideals!). In the latter case,
elements stay in factored form, which is a convenient way to avoid
coefficient explosion; see also \tet{idealpow}.
\misctitle{Technical note} The routine computes an LLL-reduced
basis for the lattice $I^(-1)$ equipped with the quadratic
form
$$|| x ||_v^2 = \sum_{i=1}^{r_1+r_2} 2^{v_i}\varepsilon_i|\sigma_i(x)|^2,$$
where as usual the $\sigma_i$ are the (real and) complex embeddings and
$\varepsilon_i = 1$, resp.~$2$, for a real, resp.~complex place. The element
$a$ is simply the first vector in the LLL basis. The only reason you may want
to try to change some directions and set some $v_i\neq 0$ is to randomize
the elements found for a fixed ideal, which is heuristically useful in index
calculus algorithms like \tet{bnfinit} and \tet{bnfisprincipal}.
\misctitle{Even more technical note} In fact, the above is a white lie.
We do not use $||\cdot||_v$ exactly but a rescaled rounded variant which
gets us faster and simpler LLLs. There's no harm since we are not using any
theoretical property of $a$ after all, except that it belongs to $I^(-1)$
and that $a I$ is ``expected to be small''.
The library syntax is \fun{GEN}{idealred0}{GEN nf, GEN I, GEN v = NULL}.
\subsec{idealstar$(\{\var{nf}\},N,\{\fl=1\})$}\kbdsidx{idealstar}\label{se:idealstar}
Outputs a \kbd{bid} structure,
necessary for computing in the finite abelian group $G = (\Z_K/N)^*$. Here,
\var{nf} is a number field and $N$ is a \var{modulus}: either an ideal in any
form, or a row vector whose first component is an ideal and whose second
component is a row vector of $r_1$ 0 or 1. Ideals can also be given
by a factorization into prime ideals, as produced by \tet{idealfactor}.
This \var{bid} is used in \tet{ideallog} to compute discrete logarithms. It
also contains useful information which can be conveniently retrieved as
\kbd{\var{bid}.mod} (the modulus),
\kbd{\var{bid}.clgp} ($G$ as a finite abelian group),
\kbd{\var{bid}.no} (the cardinality of $G$),
\kbd{\var{bid}.cyc} (elementary divisors) and
\kbd{\var{bid}.gen} (generators).
If $\fl=1$ (default), the result is a \kbd{bid} structure without
generators: they are well defined but not explicitly computed, which saves
time.
If $\fl=2$, as $\fl=1$, but including generators.
If $\fl=0$, only outputs $(\Z_K/N)^*$ as an abelian group,
i.e as a 3-component vector $[h,d,g]$: $h$ is the order, $d$ is the vector of
SNF\sidx{Smith normal form} cyclic components and $g$ the corresponding
generators.
If \var{nf} is omitted, we take it to be the rational number fields, $N$ must
be an integer and we return the structure of $(\Z/N\Z)^*$. In other words
\kbd{idealstar(, N, flag)} is short for
\bprog
idealstar(nfinit(x), N, flag)
@eprog\noindent but much faster. The alternative syntax \kbd{znstar(N, flag)}
is also available for the same effect, but due to an unfortunate historical
oversight, the default value of \kbd{flag} is different in the two
functions (\kbd{znstar} does not initialize by default).
The library syntax is \fun{GEN}{idealstar0}{GEN nf = NULL, GEN N, long flag}.
Instead the above hardcoded numerical flags, one should rather use
\fun{GEN}{Idealstar}{GEN nf, GEN ideal, long flag}, where \kbd{flag} is
an or-ed combination of \tet{nf_GEN} (include generators) and \tet{nf_INIT}
(return a full \kbd{bid}, not a group), possibly $0$. This offers
one more combination: gen, but no init.
\subsec{idealtwoelt$(\var{nf},x,\{a\})$}\kbdsidx{idealtwoelt}\label{se:idealtwoelt}
Computes a two-element
representation of the ideal $x$ in the number field $\var{nf}$, combining a
random search and an approximation theorem; $x$ is an ideal
in any form (possibly an extended ideal, whose principal part is ignored)
\item When called as \kbd{idealtwoelt(nf,x)}, the result is a row vector
$[a,\alpha]$ with two components such that $x=a\Z_K+\alpha\Z_K$ and $a$ is
chosen to be the positive generator of $x\cap\Z$, unless $x$ was given as a
principal ideal (in which case we may choose $a = 0$). The algorithm
uses a fast lazy factorization of $x\cap \Z$ and runs in randomized
polynomial time.
\item When called as \kbd{idealtwoelt(nf,x,a)} with an explicit non-zero $a$
supplied as third argument, the function assumes that $a \in x$ and returns
$\alpha\in x$ such that $x = a\Z_K + \alpha\Z_K$. Note that we must factor
$a$ in this case, and the algorithm is generally much slower than the
default variant.
The library syntax is \fun{GEN}{idealtwoelt0}{GEN nf, GEN x, GEN a = NULL}.
Also available are
\fun{GEN}{idealtwoelt}{GEN nf, GEN x} and
\fun{GEN}{idealtwoelt2}{GEN nf, GEN x, GEN a}.
\subsec{idealval$(\var{nf},x,\var{pr})$}\kbdsidx{idealval}\label{se:idealval}
Gives the valuation of the ideal $x$ at the prime ideal \var{pr} in the
number field $\var{nf}$, where \var{pr} is in \kbd{idealprimedec} format.
The valuation of the $0$ ideal is \kbd{+oo}.
The library syntax is \fun{GEN}{gpidealval}{GEN nf, GEN x, GEN pr}.
Also available is
\fun{long}{idealval}{GEN nf, GEN x, GEN pr}, which returns
\tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer.
\subsec{matalgtobasis$(\var{nf},x)$}\kbdsidx{matalgtobasis}\label{se:matalgtobasis}
This function is deprecated, use \kbd{apply}.
$\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfalgtobasis} to each entry
of $x$.
The library syntax is \fun{GEN}{matalgtobasis}{GEN nf, GEN x}.
\subsec{matbasistoalg$(\var{nf},x)$}\kbdsidx{matbasistoalg}\label{se:matbasistoalg}
This function is deprecated, use \kbd{apply}.
$\var{nf}$ being a number field in \kbd{nfinit} format, and $x$ a
(row or column) vector or matrix, apply \tet{nfbasistoalg} to each entry
of $x$.
The library syntax is \fun{GEN}{matbasistoalg}{GEN nf, GEN x}.
\subsec{modreverse$(z)$}\kbdsidx{modreverse}\label{se:modreverse}
Let $z = \kbd{Mod(A, T)}$ be a polmod, and $Q$ be its minimal
polynomial, which must satisfy $\text{deg}(Q) = \text{deg}(T)$.
Returns a ``reverse polmod'' \kbd{Mod(B, Q)}, which is a root of $T$.
This is quite useful when one changes the generating element in algebraic
extensions:
\bprog
? u = Mod(x, x^3 - x -1); v = u^5;
? w = modreverse(v)
%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1)
@eprog\noindent
which means that $x^3 - 5x^2 + 4x -1$ is another defining polynomial for the
cubic field
$$\Q(u) = \Q[x]/(x^3 - x - 1) = \Q[x]/(x^3 - 5x^2 + 4x - 1) = \Q(v),$$
and that $u \to v^2 - 4v + 1$ gives an explicit isomorphism. From this, it is
easy to convert elements between the $A(u)\in \Q(u)$ and $B(v)\in \Q(v)$
representations:
\bprog
? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1)
? B = v^2 + v + 1; subst(lift(B), 'x, v)
%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1)
@eprog
If the minimal polynomial of $z$ has lower degree than expected, the routine
fails
\bprog
? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)
*** modreverse: domain error in modreverse: deg(minpoly(z)) < 4
*** Break loop: type 'break' to go back to GP prompt
break> Vec( dbg_err() ) \\ ask for more info
["e_DOMAIN", "modreverse", "deg(minpoly(z))", "<", 4,
Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]
break> minpoly(u)
x^2 - 8
@eprog
The library syntax is \fun{GEN}{modreverse}{GEN z}.
\subsec{newtonpoly$(x,p)$}\kbdsidx{newtonpoly}\label{se:newtonpoly}
Gives the vector of the slopes of the Newton
polygon of the polynomial $x$ with respect to the prime number $p$. The $n$
components of the vector are in decreasing order, where $n$ is equal to the
degree of $x$. Vertical slopes occur iff the constant coefficient of $x$ is
zero and are denoted by \kbd{+oo}.
The library syntax is \fun{GEN}{newtonpoly}{GEN x, GEN p}.
\subsec{nfalgtobasis$(\var{nf},x)$}\kbdsidx{nfalgtobasis}\label{se:nfalgtobasis}
Given an algebraic number $x$ in the number field $\var{nf}$,
transforms it to a column vector on the integral basis \kbd{\var{nf}.zk}.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%5 = [0, 2]~
@eprog
This is the inverse function of \kbd{nfbasistoalg}.
The library syntax is \fun{GEN}{algtobasis}{GEN nf, GEN x}.
\subsec{nfbasis$(T)$}\kbdsidx{nfbasis}\label{se:nfbasis}
Let $T(X)$ be an irreducible polynomial with integral coefficients. This
function returns an \idx{integral basis} of the number field defined by $T$,
that is a $\Z$-basis of its maximal order. The basis elements are given as
elements in $\Q[X]/(T)$:
\bprog
? nfbasis(x^2 + 1)
%1 = [1, x]
@eprog
This function uses a modified version of the \idx{round 4} algorithm,
due to David \idx{Ford}, Sebastian \idx{Pauli} and Xavier \idx{Roblot}.
\misctitle{Local basis, orders maximal at certain primes}
Obtaining the maximal order is hard: it requires factoring the discriminant
$D$ of $T$. Obtaining an order which is maximal at a finite explicit set of
primes is easy, but it may then be a strict suborder of the maximal order. To
specify that we are interested in a given set of places only, we can replace
the argument $T$ by an argument $[T,\var{listP}]$, where \var{listP} encodes
the primes we are interested in: it must be a factorization matrix, a vector
of integers or a single integer.
\item Vector: we assume that it contains distinct \emph{prime} numbers.
\item Matrix: we assume that it is a two-column matrix of a
(partial) factorization of $D$; namely the first column contains
distinct \emph{primes} and the second one the valuation of $D$ at each of
these primes.
\item Integer $B$: this is replaced by the vector of primes up to $B$. Note
that the function will use at least $O(B)$ time: a small value, about
$10^5$, should be enough for most applications. Values larger than $2^{32}$
are not supported.
In all these cases, the primes may or may not divide the discriminant $D$
of $T$. The function then returns a $\Z$-basis of an order whose index is
not divisible by any of these prime numbers. The result is actually a global
integral basis if all prime divisors of the \emph{field} discriminant are
included! Note that \kbd{nfinit} has built-in support for such
a check:
\bprog
? K = nfinit([T, listP]);
? nfcertify(K) \\ we computed an actual maximal order
%2 = [];
@eprog\noindent The first line initializes a number field structure
incorporating \kbd{nfbasis([T, listP]} in place of a proven integral basis.
The second line certifies that the resulting structure is correct. This
allows to create an \kbd{nf} structure attached to the number field $K =
\Q[X]/(T)$, when the discriminant of $T$ cannot be factored completely,
whereas the prime divisors of $\disc K$ are known.
Of course, if \var{listP} contains a single prime number $p$,
the function returns a local integral basis for $\Z_p[X]/(T)$:
\bprog
? nfbasis(x^2+x-1001)
%1 = [1, 1/3*x - 1/3]
? nfbasis( [x^2+x-1001, [2]] )
%2 = [1, x]
@eprog
\misctitle{The Buchmann-Lenstra algorithm}
We now complicate the picture: it is in fact allowed to include
\emph{composite} numbers instead of primes
in \kbd{listP} (Vector or Matrix case), provided they are pairwise coprime.
The result will still be a correct integral basis \emph{if}
the field discriminant factors completely over the actual primes in the list.
Adding a composite $C$ such that $C^2$ \emph{divides} $D$ may help because
when we consider $C$ as a prime and run the algorithm, two good things can
happen: either we
succeed in proving that no prime dividing $C$ can divide the index
(without actually needing to find those primes), or the computation
exhibits a non-trivial zero divisor, thereby factoring $C$ and
we go on with the refined factorization. (Note that including a $C$
such that $C^2$ does not divide $D$ is useless.) If neither happen, then the
computed basis need not generate the maximal order. Here is an example:
\bprog
? B = 10^5;
? P = factor(poldisc(T), B)[,1]; \\ primes <= B dividing D + cofactor
? basis = nfbasis([T, listP])
? disc = nfdisc([T, listP])
@eprog\noindent We obtain the maximal order and its discriminant if the
field discriminant factors
completely over the primes less than $B$ (together with the primes
contained in the \tet{addprimes} table). This can be tested as follows:
\bprog
check = factor(disc, B);
lastp = check[-1..-1,1];
if (lastp > B && !setsearch(addprimes(), lastp),
warning("nf may be incorrect!"))
@eprog\noindent
This is a sufficient but not a necessary condition, hence the warning,
instead of an error. N.B. \kbd{lastp} is the last entry
in the first column of the \kbd{check} matrix, i.e. the largest prime
dividing \kbd{nf.disc} if $\leq B$ or if it belongs to the prime table.
The function \tet{nfcertify} speeds up and automates the above process:
\bprog
? B = 10^5;
? nf = nfinit([T, B]);
? nfcertify(nf)
%3 = [] \\ nf is unconditionally correct
? basis = nf.zk;
? disc = nf.disc;
@eprog
\synt{nfbasis}{GEN T, GEN *d, GEN listP = NULL}, which returns the order
basis, and where \kbd{*d} receives the order discriminant.
\subsec{nfbasistoalg$(\var{nf},x)$}\kbdsidx{nfbasistoalg}\label{se:nfbasistoalg}
Given an algebraic number $x$ in the number field \var{nf}, transforms it
into \typ{POLMOD} form.
\bprog
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%5 = Mod(y, y^2 + 4)
@eprog
This is the inverse function of \kbd{nfalgtobasis}.
The library syntax is \fun{GEN}{basistoalg}{GEN nf, GEN x}.
\subsec{nfcertify$(\var{nf})$}\kbdsidx{nfcertify}\label{se:nfcertify}
$\var{nf}$ being as output by
\kbd{nfinit}, checks whether the integer basis is known unconditionally.
This is in particular useful when the argument to \kbd{nfinit} was of the
form $[T, \kbd{listP}]$, specifying a finite list of primes when
$p$-maximality had to be proven, or a list of coprime integers to which
Buchmann-Lenstra algorithm was to be applied.
The function returns a vector of coprime composite integers. If this vector
is empty, then \kbd{nf.zk} and \kbd{nf.disc} are correct. Otherwise, the
result is dubious. In order to obtain a certified result, one must completely
factor each of the given integers, then \kbd{addprime} each of their prime
factors, then check whether \kbd{nfdisc(nf.pol)} is equal to \kbd{nf.disc}.
The library syntax is \fun{GEN}{nfcertify}{GEN nf}.
\subsec{nfcompositum$(\var{nf},P,Q,\{\fl=0\})$}\kbdsidx{nfcompositum}\label{se:nfcompositum}
Let \var{nf} be a number field structure attached to the field $K$
and let \sidx{compositum} $P$ and $Q$
be squarefree polynomials in $K[X]$ in the same variable. Outputs
the simple factors of the \'etale $K$-algebra $A = K[X, Y] / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $K[X]$, attached to
the number field $K[X]/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.
Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway. In
this case, there will be a single factor $R$ if and only if the number
fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
$K$).
The binary digits of $\fl$ mean
1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$K[X]/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.
2: assume that $P$ and $Q$ define number fields that are linearly disjoint:
both polynomials are irreducible and the corresponding number fields
have no common subfield besides $K$. This allows to save a costly
factorization over $K$. In this case return the single simple factor
instead of a vector with one element.
A compositum is often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is an example involving
the field $K(\zeta_5, 5^{1/10})$, $K=\Q(\sqrt{5})$:
\bprog
? K = nfinit(y^2-5);
? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
? [R, a] = L[1]; \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
? lift(R) \\@com defines the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \
(-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 + \
(-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
? a^5 - y \\@com a fifth root of $y$
%5 = 0
? [T, X] = rnfpolredbest(K, R, 1);
? lift(T) \\@com simpler defining polynomial for $K[x]/(R)$
%7 = x^10 + (-11/2*y + 25/2)
? liftall(X) \\ @com root of $R$ in $K[x]/(T(x))$
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
? a = subst(a.pol, 'x, X); \\@com \kbd{a} in the new coordinates
? liftall(a)
%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
? a^5 - y
%11 = 0
@eprog
The main variables of $P$ and $Q$ must be the same and have higher priority
than that of \var{nf} (see~\kbd{varhigher} and~\kbd{varlower}).
The library syntax is \fun{GEN}{nfcompositum}{GEN nf, GEN P, GEN Q, long flag}.
\subsec{nfdetint$(\var{nf},x)$}\kbdsidx{nfdetint}\label{se:nfdetint}
Given a pseudo-matrix $x$, computes a
non-zero ideal contained in (i.e.~multiple of) the determinant of $x$. This
is particularly useful in conjunction with \kbd{nfhnfmod}.
The library syntax is \fun{GEN}{nfdetint}{GEN nf, GEN x}.
\subsec{nfdisc$(T)$}\kbdsidx{nfdisc}\label{se:nfdisc}
\idx{field discriminant} of the number field defined by the integral,
preferably monic, irreducible polynomial $T(X)$. Returns the discriminant of
the number field $\Q[X]/(T)$, using the Round $4$ algorithm.
\misctitle{Local discriminants, valuations at certain primes}
As in \kbd{nfbasis}, the argument $T$ can be replaced by $[T,\var{listP}]$,
where \kbd{listP} is as in \kbd{nfbasis}: a vector of
pairwise coprime integers (usually distinct primes), a factorization matrix,
or a single integer. In that case, the function returns the discriminant of
an order whose basis is given by \kbd{nfbasis(T,listP)}, which need not be
the maximal order, and whose valuation at a prime entry in \kbd{listP} is the
same as the valuation of the field discriminant.
In particular, if \kbd{listP} is $[p]$ for a prime $p$, we can
return the $p$-adic discriminant of the maximal order of $\Z_p[X]/(T)$,
as a power of $p$, as follows:
\bprog
? padicdisc(T,p) = p^valuation(nfdisc(T,[p]), p);
? nfdisc(x^2 + 6)
%2 = -24
? padicdisc(x^2 + 6, 2)
%3 = 8
? padicdisc(x^2 + 6, 3)
%4 = 3
@eprog
\synt{nfdisc}{GEN T} (\kbd{listP = NULL}). Also available is
\fun{GEN}{nfbasis}{GEN T, GEN *d, GEN listP = NULL}, which returns the order
basis, and where \kbd{*d} receives the order discriminant.
\subsec{nfeltadd$(\var{nf},x,y)$}\kbdsidx{nfeltadd}\label{se:nfeltadd}
Given two elements $x$ and $y$ in
\var{nf}, computes their sum $x+y$ in the number field $\var{nf}$.
The library syntax is \fun{GEN}{nfadd}{GEN nf, GEN x, GEN y}.
\subsec{nfeltdiv$(\var{nf},x,y)$}\kbdsidx{nfeltdiv}\label{se:nfeltdiv}
Given two elements $x$ and $y$ in
\var{nf}, computes their quotient $x/y$ in the number field $\var{nf}$.
The library syntax is \fun{GEN}{nfdiv}{GEN nf, GEN x, GEN y}.
\subsec{nfeltdiveuc$(\var{nf},x,y)$}\kbdsidx{nfeltdiveuc}\label{se:nfeltdiveuc}
Given two elements $x$ and $y$ in
\var{nf}, computes an algebraic integer $q$ in the number field $\var{nf}$
such that the components of $x-qy$ are reasonably small. In fact, this is
functionally identical to \kbd{round(nfdiv(\var{nf},x,y))}.
The library syntax is \fun{GEN}{nfdiveuc}{GEN nf, GEN x, GEN y}.
\subsec{nfeltdivmodpr$(\var{nf},x,y,\var{pr})$}\kbdsidx{nfeltdivmodpr}\label{se:nfeltdivmodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given two elements $x$
and $y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their quotient $x / y$ modulo the prime ideal
\var{pr}.
The library syntax is \fun{GEN}{nfdivmodpr}{GEN nf, GEN x, GEN y, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfeltdivrem$(\var{nf},x,y)$}\kbdsidx{nfeltdivrem}\label{se:nfeltdivrem}
Given two elements $x$ and $y$ in
\var{nf}, gives a two-element row vector $[q,r]$ such that $x=qy+r$, $q$ is
an algebraic integer in $\var{nf}$, and the components of $r$ are
reasonably small.
The library syntax is \fun{GEN}{nfdivrem}{GEN nf, GEN x, GEN y}.
\subsec{nfeltmod$(\var{nf},x,y)$}\kbdsidx{nfeltmod}\label{se:nfeltmod}
Given two elements $x$ and $y$ in
\var{nf}, computes an element $r$ of $\var{nf}$ of the form $r=x-qy$ with
$q$ and algebraic integer, and such that $r$ is small. This is functionally
identical to
$$\kbd{x - nfmul(\var{nf},round(nfdiv(\var{nf},x,y)),y)}.$$
The library syntax is \fun{GEN}{nfmod}{GEN nf, GEN x, GEN y}.
\subsec{nfeltmul$(\var{nf},x,y)$}\kbdsidx{nfeltmul}\label{se:nfeltmul}
Given two elements $x$ and $y$ in
\var{nf}, computes their product $x*y$ in the number field $\var{nf}$.
The library syntax is \fun{GEN}{nfmul}{GEN nf, GEN x, GEN y}.
\subsec{nfeltmulmodpr$(\var{nf},x,y,\var{pr})$}\kbdsidx{nfeltmulmodpr}\label{se:nfeltmulmodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given two elements $x$ and
$y$ in \var{nf} and \var{pr} a prime ideal in \kbd{modpr} format (see
\tet{nfmodprinit}), computes their product $x*y$ modulo the prime ideal
\var{pr}.
The library syntax is \fun{GEN}{nfmulmodpr}{GEN nf, GEN x, GEN y, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfeltnorm$(\var{nf},x)$}\kbdsidx{nfeltnorm}\label{se:nfeltnorm}
Returns the absolute norm of $x$.
The library syntax is \fun{GEN}{nfnorm}{GEN nf, GEN x}.
\subsec{nfeltpow$(\var{nf},x,k)$}\kbdsidx{nfeltpow}\label{se:nfeltpow}
Given an element $x$ in \var{nf}, and a positive or negative integer $k$,
computes $x^k$ in the number field $\var{nf}$.
The library syntax is \fun{GEN}{nfpow}{GEN nf, GEN x, GEN k}.
\fun{GEN}{nfinv}{GEN nf, GEN x} correspond to $k = -1$, and
\fun{GEN}{nfsqr}{GEN nf,GEN x} to $k = 2$.
\subsec{nfeltpowmodpr$(\var{nf},x,k,\var{pr})$}\kbdsidx{nfeltpowmodpr}\label{se:nfeltpowmodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given an element $x$ in \var{nf}, an integer $k$ and a prime ideal
\var{pr} in \kbd{modpr} format
(see \tet{nfmodprinit}), computes $x^k$ modulo the prime ideal \var{pr}.
The library syntax is \fun{GEN}{nfpowmodpr}{GEN nf, GEN x, GEN k, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfeltreduce$(\var{nf},a,\var{id})$}\kbdsidx{nfeltreduce}\label{se:nfeltreduce}
Given an ideal \var{id} in
Hermite normal form and an element $a$ of the number field $\var{nf}$,
finds an element $r$ in $\var{nf}$ such that $a-r$ belongs to the ideal
and $r$ is small.
The library syntax is \fun{GEN}{nfreduce}{GEN nf, GEN a, GEN id}.
\subsec{nfeltreducemodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfeltreducemodpr}\label{se:nfeltreducemodpr}
This function is obsolete, use \kbd{nfmodpr}.
Given an element $x$ of the number field $\var{nf}$ and a prime ideal
\var{pr} in \kbd{modpr} format compute a canonical representative for the
class of $x$ modulo \var{pr}.
The library syntax is \fun{GEN}{nfreducemodpr}{GEN nf, GEN x, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nf\_to\_Fq}, then work there.
\subsec{nfelttrace$(\var{nf},x)$}\kbdsidx{nfelttrace}\label{se:nfelttrace}
Returns the absolute trace of $x$.
The library syntax is \fun{GEN}{nftrace}{GEN nf, GEN x}.
\subsec{nfeltval$(\var{nf},x,\var{pr},\{\&y\})$}\kbdsidx{nfeltval}\label{se:nfeltval}
Given an element $x$ in
\var{nf} and a prime ideal \var{pr} in the format output by
\kbd{idealprimedec}, computes the valuation $v$ at \var{pr} of the
element $x$. The valuation of $0$ is \kbd{+oo}.
\bprog
? nf = nfinit(x^2 + 1);
? P = idealprimedec(nf, 2)[1];
? nfeltval(nf, x+1, P)
%3 = 1
@eprog\noindent
This particular valuation can also be obtained using
\kbd{idealval(\var{nf},x,\var{pr})}, since $x$ is then converted to a
principal ideal.
If the $y$ argument is present, sets $y = x \tau^v$, where $\tau$ is a
fixed ``anti-uniformizer'' for \var{pr}: its valuation at \var{pr} is $-1$;
its valuation is $0$ at other prime ideals dividing \kbd{\var{pr}.p} and
nonnegative at all other primes. In other words $y$ is the part of $x$
coprime to \var{pr}. If $x$ is an algebraic integer, so is $y$.
\bprog
? nfeltval(nf, x+1, P, &y); y
%4 = [0, 1]~
@eprog
For instance if $x = \prod_i x_i^{e_i}$ is known to be coprime to \var{pr},
where the $x_i$ are algebraic integers and $e_i\in\Z$ then,
if $v_i = \kbd{nfeltval}(\var{nf}, x_i, \var{pr}, \&y_i)$, we still
have $x = \prod_i y_i^{e_i}$, where the $y_i$ are still algebraic integers
but now all of them are coprime to \var{pr}. They can then be mapped to
the residue field of \var{pr} more efficiently than if the product had
been expanded beforehand: we can reduce mod \var{pr} after each ring
operation.
The library syntax is \fun{GEN}{gpnfvalrem}{GEN nf, GEN x, GEN pr, GEN *y = NULL}.
Also available is
\fun{long}{nfvalrem}{GEN nf, GEN x, GEN pr, GEN *y = NULL}, which returns
\tet{LONG_MAX} if $x = 0$ and the valuation as a \kbd{long} integer.
\subsec{nffactor$(\var{nf},T)$}\kbdsidx{nffactor}\label{se:nffactor}
Factorization of the univariate
polynomial $T$ over the number field $\var{nf}$ given by \kbd{nfinit}; $T$
has coefficients in $\var{nf}$ (i.e.~either scalar, polmod, polynomial or
column vector). The factors are sorted by increasing degree.
The main variable of $\var{nf}$ must be of \emph{lower}
priority than that of $T$, see \secref{se:priority}. However if
the polynomial defining the number field occurs explicitly in the
coefficients of $T$ as modulus of a \typ{POLMOD} or as a \typ{POL}
coefficient, its main variable must be \emph{the same} as the main variable
of $T$. For example,
\bprog
? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \\@com OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \\ @com OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \\ @com WRONG
@eprog
It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will then be computed internally. This is useful in two
situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
initialize an \kbd{nf} due to integer factorization difficulties when
attempting to compute the field discriminant and maximal order. In all
cases, the function runs in polynomial time using Belabas's variant
of \idx{van Hoeij}'s algorithm, which copes with hundreds of modular factors.
\misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
which is not guaranteed to be maximal at all primes. Always either use
\kbd{nfcertify} first (which may not run in polynomial time) or make sure
to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nffactor} is
able to recover in polynomial time in this case, instead of potentially
missing a factor.
The library syntax is \fun{GEN}{nffactor}{GEN nf, GEN T}.
\subsec{nffactorback$(\var{nf},f,\{e\})$}\kbdsidx{nffactorback}\label{se:nffactorback}
Gives back the \var{nf} element corresponding to a factorization.
The integer $1$ corresponds to the empty factorization.
If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being
integral), and the corresponding factorization is the product of the
$f[i]^{e[i]}$.
If not, and $f$ is vector, it is understood as in the preceding case with $e$
a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a
regular factorization matrix.
\bprog
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
@eprog
The library syntax is \fun{GEN}{nffactorback}{GEN nf, GEN f, GEN e = NULL}.
\subsec{nffactormod$(\var{nf},Q,\var{pr})$}\kbdsidx{nffactormod}\label{se:nffactormod}
This routine is obsolete, use \kbd{nfmodpr} and \kbd{factorff}.
Factors the univariate polynomial $Q$ modulo the prime ideal \var{pr} in
the number field $\var{nf}$. The coefficients of $Q$ belong to the number
field (scalar, polmod, polynomial, even column vector) and the main variable
of $\var{nf}$ must be of lower priority than that of $Q$ (see
\secref{se:priority}). The prime ideal \var{pr} is either in
\tet{idealprimedec} or (preferred) \tet{modprinit} format. The coefficients
of the polynomial factors are lifted to elements of \var{nf}:
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? nffactormod(K, x^2 + y*x + 18*y+1, P)
%3 =
[x + (2*y + 1) 1]
[x + (2*y + 2) 1]
? P = nfmodprinit(K, P); \\ convert to nfmodprinit format
? nffactormod(K, x^2 + y*x + 18*y+1)
%5 =
[x + (2*y + 1) 1]
[x + (2*y + 2) 1]
@eprog\noindent Same result, of course, here about 10\% faster due to the
precomputation.
The library syntax is \fun{GEN}{nffactormod}{GEN nf, GEN Q, GEN pr}.
\subsec{nfgaloisapply$(\var{nf},\var{aut},x)$}\kbdsidx{nfgaloisapply}\label{se:nfgaloisapply}
Let $\var{nf}$ be a
number field as output by \kbd{nfinit}, and let \var{aut} be a \idx{Galois}
automorphism of $\var{nf}$ expressed by its image on the field generator
(such automorphisms can be found using \kbd{nfgaloisconj}). The function
computes the action of the automorphism \var{aut} on the object $x$ in the
number field; $x$ can be a number field element, or an ideal (possibly
extended). Because of possible confusion with elements and ideals, other
vector or matrix arguments are forbidden.
\bprog
? nf = nfinit(x^2+1);
? L = nfgaloisconj(nf)
%2 = [-x, x]~
? aut = L[1]; /* the non-trivial automorphism */
? nfgaloisapply(nf, aut, x)
%4 = Mod(-x, x^2 + 1)
? P = idealprimedec(nf,5); /* prime ideals above 5 */
? nfgaloisapply(nf, aut, P[2]) == P[1]
%6 = 0 \\ !!!!
? idealval(nf, nfgaloisapply(nf, aut, P[2]), P[1])
%7 = 1
@eprog\noindent The surprising failure of the equality test (\kbd{\%7}) is
due to the fact that although the corresponding prime ideals are equal, their
representations are not. (A prime ideal is specified by a uniformizer, and
there is no guarantee that applying automorphisms yields the same elements
as a direct \kbd{idealprimedec} call.)
The automorphism can also be given as a column vector, representing the
image of \kbd{Mod(x, nf.pol)} as an algebraic number. This last
representation is more efficient and should be preferred if a given
automorphism must be used in many such calls.
\bprog
? nf = nfinit(x^3 - 37*x^2 + 74*x - 37);
? aut = nfgaloisconj(nf)[2]; \\ @com an automorphism in basistoalg form
%2 = -31/11*x^2 + 1109/11*x - 925/11
? AUT = nfalgtobasis(nf, aut); \\ @com same in algtobasis form
%3 = [16, -6, 5]~
? v = [1, 2, 3]~; nfgaloisapply(nf, aut, v) == nfgaloisapply(nf, AUT, v)
%4 = 1 \\ @com same result...
? for (i=1,10^5, nfgaloisapply(nf, aut, v))
time = 463 ms.
? for (i=1,10^5, nfgaloisapply(nf, AUT, v))
time = 343 ms. \\ @com but the latter is faster
@eprog
The library syntax is \fun{GEN}{galoisapply}{GEN nf, GEN aut, GEN x}.
\subsec{nfgaloisconj$(\var{nf},\{\fl=0\},\{d\})$}\kbdsidx{nfgaloisconj}\label{se:nfgaloisconj}
$\var{nf}$ being a number field as output by \kbd{nfinit}, computes the
conjugates of a root $r$ of the non-constant polynomial $x=\var{nf}[1]$
expressed as polynomials in $r$. This also makes sense when the number field
is not \idx{Galois} since some conjugates may lie in the field.
$\var{nf}$ can simply be a polynomial.
If no flags or $\fl=0$, use a combination of flag $4$ and $1$ and the result
is always complete. There is no point whatsoever in using the other flags.
If $\fl=1$, use \kbd{nfroots}: a little slow, but guaranteed to work in
polynomial time.
If $\fl=4$, use \kbd{galoisinit}: very fast, but only applies to (most)
Galois fields. If the field is Galois with weakly super-solvable Galois
group (see \tet{galoisinit}), return the complete list of automorphisms, else
only the identity element. If present, $d$ is assumed to be a multiple of the
least common denominator of the conjugates expressed as polynomial in a root
of \var{pol}.
This routine can only compute $\Q$-automorphisms, but it may be used to get
$K$-automorphism for any base field $K$ as follows:
\bprog
rnfgaloisconj(nfK, R) = \\ K-automorphisms of L = K[X] / (R)
{
my(polabs, N,al,S, ala,k, vR);
R *= Mod(1, nfK.pol); \\ convert coeffs to polmod elts of K
vR = variable(R);
al = Mod(variable(nfK.pol),nfK.pol);
[polabs,ala,k] = rnfequation(nfK, R, 1);
Rt = if(k==0,R,subst(R,vR,vR-al*k));
N = nfgaloisconj(polabs) % Rt; \\ Q-automorphisms of L
S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);
if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));
}
K = nfinit(y^2 + 7);
rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \\ K-automorphisms of L
@eprog
The library syntax is \fun{GEN}{galoisconj0}{GEN nf, long flag, GEN d = NULL, long prec}.
Use directly
\fun{GEN}{galoisconj}{GEN nf, GEN d}, corresponding to $\fl = 0$, the others
only have historical interest.
\subsec{nfgrunwaldwang$(\var{nf},\var{Lpr},\var{Ld},\var{pl},\{v='x\})$}\kbdsidx{nfgrunwaldwang}\label{se:nfgrunwaldwang}
Given \var{nf} a number field in \var{nf} or \var{bnf} format,
a \typ{VEC} \var{Lpr} of primes of \var{nf} and a \typ{VEC} \var{Ld} of
positive integers of the same length, a \typ{VECSMALL} \var{pl} of length
$r_1$ the number of real places of \var{nf}, computes a polynomial with
coefficients in \var{nf} defining a cyclic extension of \var{nf} of
minimal degree satisfying certain local conditions:
\item at the prime \kbd{Lpr[i]}, the extension has local degree a multiple of
\kbd{Ld[i]};
\item at the $i$-th real place of \var{nf}, it is complex if $pl[i]=-1$
(no condition if $pl[i]=0$).
The extension has degree the LCM of the local degrees. Currently, the degree
is restricted to be a prime power for the search, and to be prime for the
construction because of the \kbd{rnfkummer} restrictions.
When \var{nf} is $\Q$, prime integers are accepted instead of \kbd{prid}
structures. However, their primality is not checked and the behaviour is
undefined if you provide a composite number.
\misctitle{Warning} If the number field \var{nf} does not contain the $n$-th
roots of unity where $n$ is the degree of the extension to be computed,
triggers the computation of the \var{bnf} of $nf(\zeta_n)$, which may be
costly.
\bprog
? nf = nfinit(y^2-5);
? pr = idealprimedec(nf,13)[1];
? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)
%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)
@eprog
The library syntax is \fun{GEN}{nfgrunwaldwang}{GEN nf, GEN Lpr, GEN Ld, GEN pl, long v = -1} where \kbd{v} is a variable number.
\subsec{nfhilbert$(\var{nf},a,b,\{\var{pr}\})$}\kbdsidx{nfhilbert}\label{se:nfhilbert}
If \var{pr} is omitted,
compute the global quadratic \idx{Hilbert symbol} $(a,b)$ in $\var{nf}$, that
is $1$ if $x^2 - a y^2 - b z^2$ has a non trivial solution $(x,y,z)$ in
$\var{nf}$, and $-1$ otherwise. Otherwise compute the local symbol modulo
the prime ideal \var{pr}, as output by \kbd{idealprimedec}.
The library syntax is \fun{long}{nfhilbert0}{GEN nf, GEN a, GEN b, GEN pr = NULL}.
Also available is \fun{long}{nfhilbert}{GEN bnf,GEN a,GEN b} (global
quadratic Hilbert symbol).
\subsec{nfhnf$(\var{nf},x,\{\fl=0\})$}\kbdsidx{nfhnf}\label{se:nfhnf}
Given a pseudo-matrix $(A,I)$, finds a
pseudo-basis $(B,J)$ in \idx{Hermite normal form} of the module it generates.
If $\fl$ is non-zero, also return the transformation matrix $U$ such that
$AU = [0|B]$.
The library syntax is \fun{GEN}{nfhnf0}{GEN nf, GEN x, long flag}.
Also available:
\fun{GEN}{nfhnf}{GEN nf, GEN x} ($\fl = 0$).
\fun{GEN}{rnfsimplifybasis}{GEN bnf, GEN x} simplifies the pseudo-basis
given by $x = (A,I)$. The ideals in the list $I$ are integral, primitive and
either trivial (equal to the full ring of integer) or non-principal.
\subsec{nfhnfmod$(\var{nf},x,\var{detx})$}\kbdsidx{nfhnfmod}\label{se:nfhnfmod}
Given a pseudo-matrix $(A,I)$
and an ideal \var{detx} which is contained in (read integral multiple of) the
determinant of $(A,I)$, finds a pseudo-basis in \idx{Hermite normal form}
of the module generated by $(A,I)$. This avoids coefficient explosion.
\var{detx} can be computed using the function \kbd{nfdetint}.
The library syntax is \fun{GEN}{nfhnfmod}{GEN nf, GEN x, GEN detx}.
\subsec{nfinit$(\var{pol},\{\fl=0\})$}\kbdsidx{nfinit}\label{se:nfinit}
\var{pol} being a non-constant,
preferably monic, irreducible polynomial in $\Z[X]$, initializes a
\emph{number field} structure (\kbd{nf}) attached to the field $K$ defined
by \var{pol}. As such, it's a technical object passed as the first argument
to most \kbd{nf}\var{xxx} functions, but it contains some information which
may be directly useful. Access to this information via \emph{member
functions} is preferred since the specific data organization given below
may change in the future. Currently, \kbd{nf} is a row vector with 9
components:
$\var{nf}[1]$ contains the polynomial \var{pol} (\kbd{\var{nf}.pol}).
$\var{nf}[2]$ contains $[r1,r2]$ (\kbd{\var{nf}.sign}, \kbd{\var{nf}.r1},
\kbd{\var{nf}.r2}), the number of real and complex places of $K$.
$\var{nf}[3]$ contains the discriminant $d(K)$ (\kbd{\var{nf}.disc}) of $K$.
$\var{nf}[4]$ contains the index of $\var{nf}[1]$ (\kbd{\var{nf}.index}),
i.e.~$[\Z_K : \Z[\theta]]$, where $\theta$ is any root of $\var{nf}[1]$.
$\var{nf}[5]$ is a vector containing 7 matrices $M$, $G$, \var{roundG}, $T$,
$MD$, $TI$, $MDI$ useful for certain computations in the number field $K$.
\quad\item $M$ is the $(r1+r2)\times n$ matrix whose columns represent
the numerical values of the conjugates of the elements of the integral
basis.
\quad\item $G$ is an $n\times n$ matrix such that $T2 = {}^t G G$,
where $T2$ is the quadratic form $T_2(x) = \sum |\sigma(x)|^2$, $\sigma$
running over the embeddings of $K$ into $\C$.
\quad\item \var{roundG} is a rescaled copy of $G$, rounded to nearest
integers.
\quad\item $T$ is the $n\times n$ matrix whose coefficients are
$\text{Tr}(\omega_i\omega_j)$ where the $\omega_i$ are the elements of the
integral basis. Note also that $\det(T)$ is equal to the discriminant of the
field $K$. Also, when understood as an ideal, the matrix $T^{-1}$
generates the codifferent ideal.
\quad\item The columns of $MD$ (\kbd{\var{nf}.diff}) express a $\Z$-basis
of the different of $K$ on the integral basis.
\quad\item $TI$ is equal to the primitive part of $T^{-1}$, which has integral
coefficients.
\quad\item Finally, $MDI$ is a two-element representation (for faster
ideal product) of $d(K)$ times the codifferent ideal
(\kbd{\var{nf}.disc$*$\var{nf}.codiff}, which is an integral ideal). $MDI$
is only used in \tet{idealinv}.
$\var{nf}[6]$ is the vector containing the $r1+r2$ roots
(\kbd{\var{nf}.roots}) of $\var{nf}[1]$ corresponding to the $r1+r2$
embeddings of the number field into $\C$ (the first $r1$ components are real,
the next $r2$ have positive imaginary part).
$\var{nf}[7]$ is an integral basis for $\Z_K$ (\kbd{\var{nf}.zk}) expressed
on the powers of~$\theta$. Its first element is guaranteed to be $1$. This
basis is LLL-reduced with respect to $T_2$ (strictly speaking, it is a
permutation of such a basis, due to the condition that the first element be
$1$).
$\var{nf}[8]$ is the $n\times n$ integral matrix expressing the power
basis in terms of the integral basis, and finally
$\var{nf}[9]$ is the $n\times n^2$ matrix giving the multiplication table
of the integral basis.
If a non monic polynomial is input, \kbd{nfinit} will transform it into a
monic one, then reduce it (see $\fl=3$). It is allowed, though not very
useful given the existence of \tet{nfnewprec}, to input a \var{nf} or a
\var{bnf} instead of a polynomial. It is also allowed to
input a \var{rnf}, in which case an \kbd{nf} structure attached to the
absolute defining polynomial \kbd{polabs} is returned (\fl is then ignored).
\bprog
? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol \\ defining polynomial
%2 = x^3 - 12
? nf.disc \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \\ signature
%6 = [1, 1]
? factor(abs(nf.disc )) \\ determines ramified primes
%7 =
[2 2]
[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]~, 3, 1, [0, 1, 0]~] 3] \\ @com $\goth{p}_2^3$
@eprog
\misctitle{Huge discriminants, helping nfdisc}
In case \var{pol} has a huge discriminant which is difficult to factor,
it is hard to compute from scratch the maximal order. The special input
format $[\var{pol}, B]$ is also accepted where \var{pol} is a polynomial as
above and $B$ has one of the following forms
\item an integer basis, as would be computed by \tet{nfbasis}: a vector of
polynomials with first element $1$. This is useful if the maximal order is
known in advance.
\item an argument \kbd{listP} which specifies a list of primes (see
\tet{nfbasis}). Instead of the maximal order, \kbd{nfinit} then computes an
order which is maximal at these particular primes as well as the primes
contained in the private prime table (see \tet{addprimes}). The result is
unconditionaly correct when the discriminant \kbd{nf.disc} factors
completely over this set of primes. The function \tet{nfcertify} automates
this:
\bprog
? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? nf = nfinit( [pol, 10^3] );
? nfcertify(nf)
%3 = []
@eprog\noindent A priori, \kbd{nf.zk} defines an order which is only known
to be maximal at all primes $\leq 10^3$ (no prime $\leq 10^3$ divides
\kbd{nf.index}). The certification step proves the correctness of the
computation. Had it failed, that particular \kbd{nf} structure could
not have been trusted and may have caused routines using it to fail randomly.
One particular functions that remains trustworthy in all cases is
\kbd{idealprimedec} when applied to a prime included in the above list
of primes.
\medskip
If $\fl=2$: \var{pol} is changed into another polynomial $P$ defining the same
number field, which is as simple as can easily be found using the
\tet{polredbest} algorithm, and all the subsequent computations are done
using this new polynomial. In particular, the first component of the result
is the modified polynomial.
If $\fl=3$, apply \kbd{polredbest} as in case 2, but outputs
$[\var{nf},\kbd{Mod}(a,P)]$, where $\var{nf}$ is as before and
$\kbd{Mod}(a,P)=\kbd{Mod}(x,\var{pol})$ gives the change of
variables. This is implicit when \var{pol} is not monic: first a linear change
of variables is performed, to get a monic polynomial, then \kbd{polredbest}.
The library syntax is \fun{GEN}{nfinit0}{GEN pol, long flag, long prec}.
Also available are
\fun{GEN}{nfinit}{GEN x, long prec} ($\fl = 0$),
\fun{GEN}{nfinitred}{GEN x, long prec} ($\fl = 2$),
\fun{GEN}{nfinitred2}{GEN x, long prec} ($\fl = 3$).
Instead of the above hardcoded numerical flags in \kbd{nfinit0}, one should
rather use
\fun{GEN}{nfinitall}{GEN x, long flag, long prec}, where \fl\ is an
or-ed combination of
\item \tet{nf_RED}: find a simpler defining polynomial,
\item \tet{nf_ORIG}: if \tet{nf_RED} set, also return the change of variable,
\item \tet{nf_ROUND2}: \emph{Deprecated}. Slow down the routine by using an
obsolete normalization algorithm (do not use this one!),
\item \tet{nf_PARTIALFACT}: \emph{Deprecated}. Lazy factorization of the
polynomial discriminant. Result is conditional unless \kbd{nfcertify}
can certify it.
\subsec{nfisideal$(\var{nf},x)$}\kbdsidx{nfisideal}\label{se:nfisideal}
Returns 1 if $x$ is an ideal in the number field $\var{nf}$, 0 otherwise.
The library syntax is \fun{long}{isideal}{GEN nf, GEN x}.
\subsec{nfisincl$(x,y)$}\kbdsidx{nfisincl}\label{se:nfisincl}
Tests whether the number field $K$ defined
by the polynomial $x$ is conjugate to a subfield of the field $L$ defined
by $y$ (where $x$ and $y$ must be in $\Q[X]$). If they are not, the output
is the number 0. If they are, the output is a vector of polynomials, each
polynomial $a$ representing an embedding of $K$ into $L$, i.e.~being such
that $y\mid x\circ a$.
If $y$ is a number field (\var{nf}), a much faster algorithm is used
(factoring $x$ over $y$ using \tet{nffactor}). Before version 2.0.14, this
wasn't guaranteed to return all the embeddings, hence was triggered by a
special flag. This is no longer the case.
The library syntax is \fun{GEN}{nfisincl}{GEN x, GEN y}.
\subsec{nfisisom$(x,y)$}\kbdsidx{nfisisom}\label{se:nfisisom}
As \tet{nfisincl}, but tests for isomorphism. If either $x$ or $y$ is a
number field, a much faster algorithm will be used.
The library syntax is \fun{GEN}{nfisisom}{GEN x, GEN y}.
\subsec{nfislocalpower$(\var{nf},\var{pr},a,n)$}\kbdsidx{nfislocalpower}\label{se:nfislocalpower}
Let \var{nf} be a number field structure attached to $K$,
let $a \in K$ and let \var{pr} be a \var{prid} attched to the
maximal ideal $v$. Return $1$ if $a$ is an $n$-th power in the completed
local field $K_v$, and $0$ otherwise.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1]; \\ the ramified prime above 2
? nfislocalpower(K,P,-1, 2) \\ -1 is a square
%3 = 1
? nfislocalpower(K,P,-1, 4) \\ ... but not a 4-th power
%4 = 0
? nfislocalpower(K,P,2, 2) \\ 2 is not a square
%5 = 0
? Q = idealprimedec(K,5)[1]; \\ a prime above 5
? nfislocalpower(K,Q, [0, 32]~, 30) \\ 32*I is locally a 30-th power
%7 = 1
@eprog
The library syntax is \fun{long}{nfislocalpower}{GEN nf, GEN pr, GEN a, GEN n}.
\subsec{nfkermodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfkermodpr}\label{se:nfkermodpr}
This function is obsolete, use \kbd{nfmodpr}.
Kernel of the matrix $a$ in $\Z_K/\var{pr}$, where \var{pr} is in
\key{modpr} format (see \kbd{nfmodprinit}).
The library syntax is \fun{GEN}{nfkermodpr}{GEN nf, GEN x, GEN pr}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
\subsec{nfmodpr$(\var{nf},x,\var{pr})$}\kbdsidx{nfmodpr}\label{se:nfmodpr}
Map $x$ to the residue field modulo \var{pr}, to a \typ{FFELT}.
The argument \var{pr} is either a maximal ideal in \kbd{idealprimedec}
format or, preferably, a \kbd{modpr} structure from \tet{nfmodprinit}. The
function \tet{nfmodprlift} allows to lift back to $\Z_K$.
Note that the function applies to number field elements and not to
vector / matrices / polynomials of such. Use \kbd{apply} to convert
recursive structures.
\bprog
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2]
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
@eprog
The library syntax is \fun{GEN}{nfmodpr}{GEN nf, GEN x, GEN pr}.
\subsec{nfmodprinit$(\var{nf},\var{pr})$}\kbdsidx{nfmodprinit}\label{se:nfmodprinit}
Transforms the prime ideal \var{pr} into \tet{modpr} format necessary
for all operations modulo \var{pr} in the number field \var{nf}.
The functions \tet{nfmodpr} and \tet{nfmodprlift} allow to project
to and lift from the residue field.
The library syntax is \fun{GEN}{nfmodprinit}{GEN nf, GEN pr}.
\subsec{nfmodprlift$(\var{nf},x,\var{pr})$}\kbdsidx{nfmodprlift}\label{se:nfmodprlift}
Lift the \typ{FFELT} $x$ (from \tet{nfmodpr}) to the residue field
modulo \var{pr}. Vectors and matrices are also supported. For polynomials,
use \kbd{apply} and the present function.
The argument \kbd{pr} is either a maximal ideal in \kbd{idealprimedec}
format or, preferably, a \kbd{modpr} structure from \tet{nfmodprinit}.
There are no compatibility checks to try and decide whether $x$ is attached
the same residue field as defined by \kbd{pr}: the result is undefined
if not.
The function \tet{nfmodpr} allows to reduce to the residue field.
\bprog
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2]
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
? nfmodprlift(K, %, modP)
%6 = [1, 1/5*y, 2/5*y + 1]
? nfeltval(K, %[3] - K.zk[3], P)
%7 = 1
@eprog
The library syntax is \fun{GEN}{nfmodprlift}{GEN nf, GEN x, GEN pr}.
\subsec{nfnewprec$(\var{nf})$}\kbdsidx{nfnewprec}\label{se:nfnewprec}
Transforms the number field $\var{nf}$
into the corresponding data using current (usually larger) precision. This
function works as expected if \var{nf} is in fact a \var{bnf} or a \var{bnr}
(update structure to current precision) but may be quite slow: many
generators of principal ideals have to be computed; note that in this latter
case, the \var{bnf} must contain fundamental units.
The library syntax is \fun{GEN}{nfnewprec}{GEN nf, long prec}.
See also \fun{GEN}{bnfnewprec}{GEN bnf, long prec} and
\fun{GEN}{bnrnewprec}{GEN bnr, long prec}.
\subsec{nfroots$(\{\var{nf}\},x)$}\kbdsidx{nfroots}\label{se:nfroots}
Roots of the polynomial $x$ in the
number field $\var{nf}$ given by \kbd{nfinit} without multiplicity (in $\Q$
if $\var{nf}$ is omitted). $x$ has coefficients in the number field (scalar,
polmod, polynomial, column vector). The main variable of $\var{nf}$ must be
of lower priority than that of $x$ (see \secref{se:priority}). However if the
coefficients of the number field occur explicitly (as polmods) as
coefficients of $x$, the variable of these polmods \emph{must} be the same as
the main variable of $t$ (see \kbd{nffactor}).
It is possible to input a defining polynomial for \var{nf}
instead, but this is in general less efficient since parts of an \kbd{nf}
structure will then be computed internally. This is useful in two
situations: when you do not need the \kbd{nf} elsewhere, or when you cannot
initialize an \kbd{nf} due to integer factorization difficulties when
attempting to compute the field discriminant and maximal order.
\misctitle{Caveat} \kbd{nfinit([T, listP])} allows to compute in polynomial
time a conditional \var{nf} structure, which sets \kbd{nf.zk} to an order
which is not guaranteed to be maximal at all primes. Always either use
\kbd{nfcertify} first (which may not run in polynomial time) or make sure
to input \kbd{nf.pol} instead of the conditional \var{nf}: \kbd{nfroots} is
able to recover in polynomial time in this case, instead of potentially
missing a factor.
The library syntax is \fun{GEN}{nfroots}{GEN nf = NULL, GEN x}.
See also \fun{GEN}{nfrootsQ}{GEN x},
corresponding to $\kbd{nf} = \kbd{NULL}$.
\subsec{nfrootsof1$(\var{nf})$}\kbdsidx{nfrootsof1}\label{se:nfrootsof1}
Returns a two-component vector $[w,z]$ where $w$ is the number of roots of
unity in the number field \var{nf}, and $z$ is a primitive $w$-th root
of unity.
\bprog
? K = nfinit(polcyclo(11));
? nfrootsof1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
? z = nfbasistoalg(K, %[2]) \\ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)] \\ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
@eprog
This function guesses the number $w$ as the gcd of the $\#k(v)^*$ for
unramified $v$ above odd primes, then computes the roots in \var{nf}
of the $w$-th cyclotomic polynomial: the algorithm is polynomial time with
respect to the field degree and the bitsize of the multiplication table in
\var{nf} (both of them polynomially bounded in terms of the size of the
discriminant). Fields of degree up to $100$ or so should require less than
one minute.
The library syntax is \fun{GEN}{rootsof1}{GEN nf}.
Also available is \fun{GEN}{rootsof1_kannan}{GEN nf}, that computes
all algebraic integers of $T_2$ norm equal to the field degree
(all roots of $1$, by Kronecker's theorem). This is in general a little
faster than the default when there \emph{are} roots of $1$ in the field
(say twice faster), but can be much slower (say, \emph{days} slower), since
the algorithm is a priori exponential in the field degree.
\subsec{nfsnf$(\var{nf},x,\{\fl=0\})$}\kbdsidx{nfsnf}\label{se:nfsnf}
Given a torsion $\Z_K$-module $x$ attached to the square integral
invertible pseudo-matrix $(A,I,J)$, returns an ideal list
$D=[d_1,\dots,d_n]$ which is the \idx{Smith normal form} of $x$. In other
words, $x$ is isomorphic to $\Z_K/d_1\oplus\cdots\oplus\Z_K/d_n$ and $d_i$
divides $d_{i-1}$ for $i\ge2$. If $\fl$ is non-zero return $[D,U,V]$, where
$UAV$ is the identity.
See \secref{se:ZKmodules} for the definition of integral pseudo-matrix;
briefly, it is input as a 3-component row vector $[A,I,J]$ where
$I = [b_1,\dots,b_n]$ and $J = [a_1,\dots,a_n]$ are two ideal lists,
and $A$ is a square $n\times n$ matrix with columns $(A_1,\dots,A_n)$,
seen as elements in $K^n$ (with canonical basis $(e_1,\dots,e_n)$).
This data defines the $\Z_K$ module $x$ given by
$$ (b_1e_1\oplus\cdots\oplus b_ne_n) / (a_1A_1\oplus\cdots\oplus a_nA_n)
\enspace, $$
The integrality condition is $a_{i,j} \in b_i a_j^{-1}$ for all $i,j$. If it
is not satisfied, then the $d_i$ will not be integral. Note that every
finitely generated torsion module is isomorphic to a module of this form and
even with $b_i=Z_K$ for all $i$.
The library syntax is \fun{GEN}{nfsnf0}{GEN nf, GEN x, long flag}.
Also available:
\fun{GEN}{nfsnf}{GEN nf, GEN x} ($\fl = 0$).
\subsec{nfsolvemodpr$(\var{nf},a,b,P)$}\kbdsidx{nfsolvemodpr}\label{se:nfsolvemodpr}
This function is obsolete, use \kbd{nfmodpr}.
Let $P$ be a prime ideal in \key{modpr} format (see \kbd{nfmodprinit}),
let $a$ be a matrix, invertible over the residue field, and let $b$ be
a column vector or matrix. This function returns a solution of $a\cdot x =
b$; the coefficients of $x$ are lifted to \var{nf} elements.
\bprog
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? P = nfmodprinit(K, P);
? a = [y+1, y; y, 0]; b = [1, y]~
? nfsolvemodpr(K, a,b, P)
%5 = [1, 2]~
@eprog
The library syntax is \fun{GEN}{nfsolvemodpr}{GEN nf, GEN a, GEN b, GEN P}.
This function is normally useless in library mode. Project your
inputs to the residue field using \kbd{nfM\_to\_FqM}, then work there.
\subsec{nfsplitting$(\var{nf},\{d\})$}\kbdsidx{nfsplitting}\label{se:nfsplitting}
Defining polynomial over~$\Q$ for the splitting field of \var{nf};
if $d$ is given, it must be a multiple of the splitting field degree.
Instead of~\kbd{nf}, it is possible to input a defining (irreducible)
polynomial $T$ for~\kbd{nf}, but in general this is less efficient.
\bprog
? K = nfinit(x^3-2);
? nfsplitting(K)
%2 = x^6 + 108
? nfsplitting(x^8-2)
%3 = x^16 + 272*x^8 + 64
@eprog
\noindent
Specifying the degree of the splitting field can make the computation faster.
\bprog
? nfsplitting(x^17-123);
time = 3,607 ms.
? poldegree(%)
%2 = 272
? nfsplitting(x^17-123,272);
time = 150 ms.
? nfsplitting(x^17-123,273);
*** nfsplitting: Warning: ignoring incorrect degree bound 273
time = 3,611 ms.
@eprog
\noindent
The complexity of the algorithm is polynomial in the degree $d$ of the
splitting field and the bitsize of $T$; if $d$ is large the result will
likely be unusable, e.g. \kbd{nfinit} will not be an option:
\bprog
? nfsplitting(x^6-x-1)
[... degree 720 polynomial deleted ...]
time = 11,020 ms.
@eprog
The library syntax is \fun{GEN}{nfsplitting}{GEN nf, GEN d = NULL}.
\subsec{nfsubfields$(\var{pol},\{d=0\})$}\kbdsidx{nfsubfields}\label{se:nfsubfields}
Finds all subfields of degree
$d$ of the number field defined by the (monic, integral) polynomial
\var{pol} (all subfields if $d$ is null or omitted). The result is a vector
of subfields, each being given by $[g,h]$, where $g$ is an absolute equation
and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the
polynomial defining $\var{nf}$. This routine uses J.~Kl\"uners's algorithm
in the general case, and B.~Allombert's \tet{galoissubfields} when \var{nf}
is Galois (with weakly supersolvable Galois group).\sidx{Galois}\sidx{subfield}
The library syntax is \fun{GEN}{nfsubfields}{GEN pol, long d}.
\subsec{polcompositum$(P,Q,\{\fl=0\})$}\kbdsidx{polcompositum}\label{se:polcompositum}
\sidx{compositum} $P$ and $Q$
being squarefree polynomials in $\Z[X]$ in the same variable, outputs
the simple factors of the \'etale $\Q$-algebra $A = \Q(X, Y) / (P(X), Q(Y))$.
The factors are given by a list of polynomials $R$ in $\Z[X]$, attached to
the number field $\Q(X)/ (R)$, and sorted by increasing degree (with respect
to lexicographic ordering for factors of equal degrees). Returns an error if
one of the polynomials is not squarefree.
Note that it is more efficient to reduce to the case where $P$ and $Q$ are
irreducible first. The routine will not perform this for you, since it may be
expensive, and the inputs are irreducible in most applications anyway. In
this case, there will be a single factor $R$ if and only if the number
fields defined by $P$ and $Q$ are linearly disjoint (their intersection is
$\Q$).
Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it
is in general much faster to proceed as follows
\bprog
nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
@eprog\noindent
to obtain the same result. If you are only interested in the degrees of the
simple factors, the \kbd{rnfequation} instruction can be replaced by a
trivial \kbd{poldegree(P) * poldegree(L[i])}.
The binary digits of $\fl$ mean
1: outputs a vector of 4-component vectors $[R,a,b,k]$, where $R$
ranges through the list of all possible compositums as above, and $a$
(resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of
$\Q(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo
$R$.
2: assume that $P$ and $Q$ define number fields which are linearly disjoint:
both polynomials are irreducible and the corresponding number fields
have no common subfield besides $\Q$. This allows to save a costly
factorization over $\Q$. In this case return the single simple factor
instead of a vector with one element.
A compositum is often defined by a complicated polynomial, which it is
advisable to reduce before further work. Here is an example involving
the field $\Q(\zeta_5, 5^{1/5})$:
\bprog
? L = polcompositum(x^5 - 5, polcyclo(5), 1); \\@com list of $[R,a,b,k]$
? [R, a] = L[1]; \\@com pick the single factor, extract $R,a$ (ignore $b,k$)
? R \\@com defines the compositum
%3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14\
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \
+ 705*x^7 + 9210*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \
- 320*x + 256
? a^5 - 5 \\@com a fifth root of $5$
%4 = 0
? [T, X] = polredbest(R, 1);
? T \\@com simpler defining polynomial for $\Q[x]/(R)$
%6 = x^20 + 25*x^10 + 5
? X \\ @com root of $R$ in $\Q[y]/(T(y))$
%7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,\
x^20 + 25*x^10 + 5)
? a = subst(a.pol, 'x, X) \\@com \kbd{a} in the new coordinates
%8 = Mod(1/11*x^14 + 29/11*x^4, x^20 + 25*x^10 + 5)
? a^5 - 5
%9 = 0
@eprog\noindent In the above example, $x^5-5$ and the $5$-th cyclotomic
polynomial are irreducible over $\Q$; they have coprime degrees so
define linearly disjoint extensions and we could have started by
\bprog
? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \\@com $[R,a,b,k]$
@eprog
The library syntax is \fun{GEN}{polcompositum0}{GEN P, GEN Q, long flag}.
Also available are
\fun{GEN}{compositum}{GEN P, GEN Q} ($\fl = 0$) and
\fun{GEN}{compositum2}{GEN P, GEN Q} ($\fl = 1$).
\subsec{polgalois$(T)$}\kbdsidx{polgalois}\label{se:polgalois}
\idx{Galois} group of the non-constant
polynomial $T\in\Q[X]$. In the present version \vers, $T$ must be irreducible
and the degree $d$ of $T$ must be less than or equal to 7. If the
\tet{galdata} package has been installed, degrees 8, 9, 10 and 11 are also
implemented. By definition, if $K = \Q[x]/(T)$, this computes the action of
the Galois group of the Galois closure of $K$ on the $d$ distinct roots of
$T$, up to conjugacy (corresponding to different root orderings).
The output is a 4-component vector $[n,s,k,name]$ with the
following meaning: $n$ is the cardinality of the group, $s$ is its signature
($s=1$ if the group is a subgroup of the alternating group $A_d$, $s=-1$
otherwise) and name is a character string containing name of the transitive
group according to the GAP 4 transitive groups library by Alexander Hulpke.
$k$ is more arbitrary and the choice made up to version~2.2.3 of PARI is rather
unfortunate: for $d > 7$, $k$ is the numbering of the group among all
transitive subgroups of $S_d$, as given in ``The transitive groups of degree up
to eleven'', G.~Butler and J.~McKay, \emph{Communications in Algebra}, vol.~11,
1983,
pp.~863--911 (group $k$ is denoted $T_k$ there). And for $d \leq 7$, it was ad
hoc, so as to ensure that a given triple would denote a unique group.
Specifically, for polynomials of degree $d\leq 7$, the groups are coded as
follows, using standard notations
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,1]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,1]$, $D_4=[8,-1,1]$, $A_4=[12,1,1]$,
$S_4=[24,-1,1]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,1]$, $M_{20}=[20,-1,1]$,
$A_5=[60,1,1]$, $S_5=[120,-1,1]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,1]$, $A_4=[12,1,1]$,
$G_{18}=[18,-1,1]$, $S_4^-=[24,-1,1]$, $A_4\times C_2=[24,-1,2]$,
$S_4^+=[24,1,1]$, $G_{36}^-=[36,-1,1]$, $G_{36}^+=[36,1,1]$,
$S_4\times C_2=[48,-1,1]$, $A_5=PSL_2(5)=[60,1,1]$, $G_{72}=[72,-1,1]$,
$S_5=PGL_2(5)=[120,-1,1]$, $A_6=[360,1,1]$, $S_6=[720,-1,1]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,1]$, $M_{21}=[21,1,1]$,
$M_{42}=[42,-1,1]$, $PSL_2(7)=PSL_3(2)=[168,1,1]$, $A_7=[2520,1,1]$,
$S_7=[5040,-1,1]$.
\smallskip
This is deprecated and obsolete, but for reasons of backward compatibility,
we cannot change this behavior yet. So you can use the default
\tet{new_galois_format} to switch to a consistent naming scheme, namely $k$ is
always the standard numbering of the group among all transitive subgroups of
$S_n$. If this default is in effect, the above groups will be coded as:
\smallskip
In degree 1: $S_1=[1,1,1]$.
\smallskip
In degree 2: $S_2=[2,-1,1]$.
\smallskip
In degree 3: $A_3=C_3=[3,1,1]$, $S_3=[6,-1,2]$.
\smallskip
In degree 4: $C_4=[4,-1,1]$, $V_4=[4,1,2]$, $D_4=[8,-1,3]$, $A_4=[12,1,4]$,
$S_4=[24,-1,5]$.
\smallskip
In degree 5: $C_5=[5,1,1]$, $D_5=[10,1,2]$, $M_{20}=[20,-1,3]$,
$A_5=[60,1,4]$, $S_5=[120,-1,5]$.
\smallskip
In degree 6: $C_6=[6,-1,1]$, $S_3=[6,-1,2]$, $D_6=[12,-1,3]$, $A_4=[12,1,4]$,
$G_{18}=[18,-1,5]$, $A_4\times C_2=[24,-1,6]$, $S_4^+=[24,1,7]$,
$S_4^-=[24,-1,8]$, $G_{36}^-=[36,-1,9]$, $G_{36}^+=[36,1,10]$,
$S_4\times C_2=[48,-1,11]$, $A_5=PSL_2(5)=[60,1,12]$, $G_{72}=[72,-1,13]$,
$S_5=PGL_2(5)=[120,-1,14]$, $A_6=[360,1,15]$, $S_6=[720,-1,16]$.
\smallskip
In degree 7: $C_7=[7,1,1]$, $D_7=[14,-1,2]$, $M_{21}=[21,1,3]$,
$M_{42}=[42,-1,4]$, $PSL_2(7)=PSL_3(2)=[168,1,5]$, $A_7=[2520,1,6]$,
$S_7=[5040,-1,7]$.
\smallskip
\misctitle{Warning} The method used is that of resolvent polynomials and is
sensitive to the current precision. The precision is updated internally but,
in very rare cases, a wrong result may be returned if the initial precision
was not sufficient.
The library syntax is \fun{GEN}{polgalois}{GEN T, long prec}.
To enable the new format in library mode,
set the global variable \tet{new_galois_format} to $1$.
\subsec{polred$(T,\{\fl=0\})$}\kbdsidx{polred}\label{se:polred}
This function is \emph{deprecated}, use \tet{polredbest} instead.
Finds polynomials with reasonably small coefficients defining subfields of
the number field defined by $T$. One of the polynomials always defines $\Q$
(hence is equal to $x-1$), and another always defines the same number field
as $T$ if $T$ is irreducible.
All $T$ accepted by \tet{nfinit} are also allowed here;
in particular, the format \kbd{[T, listP]} is recommended, e.g. with
$\kbd{listP} = 10^5$ or a vector containing all ramified primes. Otherwise,
the maximal order of $\Q[x]/(T)$ must be computed.
The following binary digits of $\fl$ are significant:
1: Possibly use a suborder of the maximal order. The
primes dividing the index of the order chosen are larger than
\tet{primelimit} or divide integers stored in the \tet{addprimes} table.
This flag is \emph{deprecated}, the \kbd{[T, listP]} format is more
flexible.
2: gives also elements. The result is a two-column matrix, the first column
giving primitive elements defining these subfields, the second giving the
corresponding minimal polynomials.
\bprog
? M = polred(x^4 + 8, 2)
%1 =
[1 x - 1]
[1/2*x^2 x^2 + 2]
[1/4*x^3 x^4 + 2]
[x x^4 + 8]
? minpoly(Mod(M[2,1], x^4+8))
%2 = x^2 + 2
@eprog
\synt{polred}{GEN T} ($\fl = 0$). Also available is
\fun{GEN}{polred2}{GEN T} ($\fl = 2$). The function \kbd{polred0} is
deprecated, provided for backward compatibility.
\subsec{polredabs$(T,\{\fl=0\})$}\kbdsidx{polredabs}\label{se:polredabs}
Returns a canonical defining polynomial $P$ for the number field
$\Q[X]/(T)$ defined by $T$, such that the sum of the squares of the modulus
of the roots (i.e.~the $T_2$-norm) is minimal. Different $T$ defining
isomorphic number fields will yield the same $P$. All $T$ accepted by
\tet{nfinit} are also allowed here, e.g. non-monic polynomials, or pairs
\kbd{[T, listP]} specifying that a non-maximal order may be used. For
convenience, any number field structure (\var{nf}, \var{bnf},\dots) can also
be used instead of $T$.
\bprog
? polredabs(x^2 + 16)
%1 = x^2 + 1
? K = bnfinit(x^2 + 16); polredabs(K)
%2 = x^2 + 1
@eprog
\misctitle{Warning 1} Using a \typ{POL} $T$ requires computing
and fully factoring the discriminant $d_K$ of the maximal order which may be
very hard. You can use the format \kbd{[T, listP]}, where \kbd{listP}
encodes a list of known coprime divisors of $\disc(T)$ (see \kbd{??nfbasis}),
to help the routine, thereby replacing this part of the algorithm by a
polynomial time computation But this may only compute a suborder of the
maximal order, when the divisors are not squarefree or do not include all
primes dividing $d_K$. The routine attempts to certify the result
independently of this order computation as per \tet{nfcertify}: we try to
prove that the computed order is maximal. If the certification fails,
the routine then fully factors the integers returned by \kbd{nfcertify}.
You can use \tet{polredbest} or \kbd{polredabs(,16)} to avoid this
factorization step; in both cases, the result is no longer canonical.
\misctitle{Warning 2} Apart from the factorization of the discriminant of
$T$, this routine runs in polynomial time for a \emph{fixed} degree.
But the complexity is exponential in the degree: this routine
may be exceedingly slow when the number field has many subfields, hence a
lot of elements of small $T_2$-norm. If you do not need a canonical
polynomial, the function \tet{polredbest} is in general much faster (it runs
in polynomial time), and tends to return polynomials with smaller
discriminants.
The binary digits of $\fl$ mean
1: outputs a two-component row vector $[P,a]$, where $P$ is the default
output and \kbd{Mod(a, P)} is a root of the original $T$.
4: gives \emph{all} polynomials of minimal $T_2$ norm; of the two polynomials
$P(x)$ and $\pm P(-x)$, only one is given.
16: Possibly use a suborder of the maximal order, \emph{without} attempting to
certify the result as in Warning 1: we always return a polynomial and never
$0$. The result is a priori not canonical.
\bprog
? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \
- 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
? T1 = polredabs(T); T2 = polredbest(T);
? [ norml2(polroots(T1)), norml2(polroots(T2)) ]
%3 = [88.0000000, 120.000000]
? [ sizedigit(poldisc(T1)), sizedigit(poldisc(T2)) ]
%4 = [75, 67]
@eprog
The library syntax is \fun{GEN}{polredabs0}{GEN T, long flag}.
Instead of the above hardcoded numerical flags, one should use an
or-ed combination of
\item \tet{nf_PARTIALFACT}: possibly use a suborder of the maximal order,
\emph{without} attempting to certify the result.
\item \tet{nf_ORIG}: return $[P, a]$, where \kbd{Mod(a, P)} is a root of $T$.
\item \tet{nf_RAW}: return $[P, b]$, where \kbd{Mod(b, T)} is a root of $P$.
The algebraic integer $b$ is the raw result produced by the small vectors
enumeration in the maximal order; $P$ was computed as the characteristic
polynomial of \kbd{Mod(b, T)}. \kbd{Mod(a, P)} as in \tet{nf_ORIG}
is obtained with \tet{modreverse}.
\item \tet{nf_ADDZK}: if $r$ is the result produced with some of the above
flags (of the form $P$ or $[P,c]$), return \kbd{[r,zk]}, where \kbd{zk} is a
$\Z$-basis for the maximal order of $\Q[X]/(P)$.
\item \tet{nf_ALL}: return a vector of results of the above form, for all
polynomials of minimal $T_2$-norm.
\subsec{polredbest$(T,\{\fl=0\})$}\kbdsidx{polredbest}\label{se:polredbest}
Finds a polynomial with reasonably
small coefficients defining the same number field as $T$.
All $T$ accepted by \tet{nfinit} are also allowed here (e.g. non-monic
polynomials, \kbd{nf}, \kbd{bnf}, \kbd{[T,Z\_K\_basis]}). Contrary to
\tet{polredabs}, this routine runs in polynomial time, but it offers no
guarantee as to the minimality of its result.
This routine computes an LLL-reduced basis for the ring of integers of
$\Q[X]/(T)$, then examines small linear combinations of the basis vectors,
computing their characteristic polynomials. It returns the \emph{separable}
$P$ polynomial of smallest discriminant (the one with lexicographically
smallest \kbd{abs(Vec(P))} in case of ties). This is a good candidate
for subsequent number field computations, since it guarantees that
the denominators of algebraic integers, when expressed in the power basis,
are reasonably small. With no claim of minimality, though.
It can happen that iterating this functions yields better and better
polynomials, until it stabilizes:
\bprog
? \p5
? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
? poldisc(P)*1.
%2 = 1.2622 E55
? P = polredbest(P);
? poldisc(P)*1.
%4 = 2.9012 E51
? P = polredbest(P);
? poldisc(P)*1.
%6 = 8.8704 E44
@eprog\noindent In this example, the initial polynomial $P$ is the one
returned by \tet{polredabs}, and the last one is stable.
If $\fl = 1$: outputs a two-component row vector $[P,a]$, where $P$ is the
default output and \kbd{Mod(a, P)} is a root of the original $T$.
\bprog
? [P,a] = polredbest(x^4 + 8, 1)
%1 = [x^4 + 2, Mod(x^3, x^4 + 2)]
? charpoly(a)
%2 = x^4 + 8
@eprog\noindent In particular, the map $\Q[x]/(T) \to \Q[x]/(P)$,
$x\mapsto \kbd{Mod(a,P)}$ defines an isomorphism of number fields, which can
be computed as
\bprog
subst(lift(Q), 'x, a)
@eprog\noindent if $Q$ is a \typ{POLMOD} modulo $T$; \kbd{b = modreverse(a)}
returns a \typ{POLMOD} giving the inverse of the above map (which should be
useless since $\Q[x]/(P)$ is a priori a better representation for the number
field and its elements).
The library syntax is \fun{GEN}{polredbest}{GEN T, long flag}.
\subsec{polredord$(x)$}\kbdsidx{polredord}\label{se:polredord}
This function is obsolete, use polredbest.
The library syntax is \fun{GEN}{polredord}{GEN x}.
\subsec{poltschirnhaus$(x)$}\kbdsidx{poltschirnhaus}\label{se:poltschirnhaus}
Applies a random Tschirnhausen
transformation to the polynomial $x$, which is assumed to be non-constant
and separable, so as to obtain a new equation for the \'etale algebra
defined by $x$. This is for instance useful when computing resolvents,
hence is used by the \kbd{polgalois} function.
The library syntax is \fun{GEN}{tschirnhaus}{GEN x}.
\subsec{rnfalgtobasis$(\var{rnf},x)$}\kbdsidx{rnfalgtobasis}\label{se:rnfalgtobasis}
Expresses $x$ on the relative
integral basis. Here, $\var{rnf}$ is a relative number field extension $L/K$
as output by \kbd{rnfinit}, and $x$ an element of $L$ in absolute form, i.e.
expressed as a polynomial or polmod with polmod coefficients, \emph{not} on
the relative integral basis.
The library syntax is \fun{GEN}{rnfalgtobasis}{GEN rnf, GEN x}.
\subsec{rnfbasis$(\var{bnf},M)$}\kbdsidx{rnfbasis}\label{se:rnfbasis}
Let $K$ the field represented by
\var{bnf}, as output by \kbd{bnfinit}. $M$ is a projective $\Z_K$-module
of rank $n$ ($M\otimes K$ is an $n$-dimensional $K$-vector space), given by a
pseudo-basis of size $n$. The routine returns either a true $\Z_K$-basis of
$M$ (of size $n$) if it exists, or an $n+1$-element generating set of $M$ if
not.
It is allowed to use an irreducible polynomial $P$ in $K[X]$ instead of $M$,
in which case, $M$ is defined as the ring of integers of $K[X]/(P)$, viewed
as a $\Z_K$-module.
The library syntax is \fun{GEN}{rnfbasis}{GEN bnf, GEN M}.
\subsec{rnfbasistoalg$(\var{rnf},x)$}\kbdsidx{rnfbasistoalg}\label{se:rnfbasistoalg}
Computes the representation of $x$
as a polmod with polmods coefficients. Here, $\var{rnf}$ is a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an element of
$L$ expressed on the relative integral basis.
The library syntax is \fun{GEN}{rnfbasistoalg}{GEN rnf, GEN x}.
\subsec{rnfcharpoly$(\var{nf},T,a,\{\var{var}='x\})$}\kbdsidx{rnfcharpoly}\label{se:rnfcharpoly}
Characteristic polynomial of
$a$ over $\var{nf}$, where $a$ belongs to the algebra defined by $T$ over
$\var{nf}$, i.e.~$\var{nf}[X]/(T)$. Returns a polynomial in variable $v$
($x$ by default).
\bprog
? nf = nfinit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1
@eprog
The library syntax is \fun{GEN}{rnfcharpoly}{GEN nf, GEN T, GEN a, long var = -1} where \kbd{var} is a variable number.
\subsec{rnfconductor$(\var{bnf},\var{pol})$}\kbdsidx{rnfconductor}\label{se:rnfconductor}
Given $\var{bnf}$
as output by \kbd{bnfinit}, and \var{pol} a relative polynomial defining an
\idx{Abelian extension}, computes the class field theory conductor of this
Abelian extension. The result is a 3-component vector
$[\var{conductor},\var{bnr},\var{subgroup}]$, where \var{conductor} is
the conductor of the extension given as a 2-component row vector
$[f_0,f_\infty]$, \var{bnr} is the attached \kbd{bnr} structure
and \var{subgroup} is a matrix in HNF defining the subgroup of the ray class
group on \kbd{bnr.gen}.
The library syntax is \fun{GEN}{rnfconductor}{GEN bnf, GEN pol}.
\subsec{rnfdedekind$(\var{nf},\var{pol},\{\var{pr}\},\{\fl=0\})$}\kbdsidx{rnfdedekind}\label{se:rnfdedekind}
Given a number field $K$ coded by $\var{nf}$ and a monic
polynomial $P\in \Z_K[X]$, irreducible over $K$ and thus defining a relative
extension $L$ of $K$, applies \idx{Dedekind}'s criterion to the order
$\Z_K[X]/(P)$, at the prime ideal \var{pr}. It is possible to set \var{pr}
to a vector of prime ideals (test maximality at all primes in the vector),
or to omit altogether, in which case maximality at \emph{all} primes is tested;
in this situation \fl\ is automatically set to $1$.
The default historic behavior (\fl\ is 0 or omitted and \var{pr} is a
single prime ideal) is not so useful since
\kbd{rnfpseudobasis} gives more information and is generally not that
much slower. It returns a 3-component vector $[\var{max}, \var{basis}, v]$:
\item \var{basis} is a pseudo-basis of an enlarged order $O$ produced by
Dedekind's criterion, containing the original order $\Z_K[X]/(P)$
with index a power of \var{pr}. Possibly equal to the original order.
\item \var{max} is a flag equal to 1 if the enlarged order $O$
could be proven to be \var{pr}-maximal and to 0 otherwise; it may still be
maximal in the latter case if \var{pr} is ramified in $L$,
\item $v$ is the valuation at \var{pr} of the order discriminant.
If \fl\ is non-zero, on the other hand, we just return $1$ if the order
$\Z_K[X]/(P)$ is \var{pr}-maximal (resp.~maximal at all relevant primes, as
described above), and $0$ if not. This is much faster than the default,
since the enlarged order is not computed.
\bprog
? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%4 = 1
@eprog\noindent In this example, \kbd{pr3} is the ramified ideal above $3$,
and the order generated by the cube roots of $y$ is already
\kbd{pr3}-maximal. The order-discriminant has valuation $8$. On the other
hand, the order is not maximal at the prime above 2:
\bprog
? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%6 = 0
? rnfdedekind(nf, P, pr2)
%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]]], 2]
@eprog
The enlarged order is not proven to be \kbd{pr2}-maximal yet. In fact, it
is; it is in fact the maximal order:
\bprog
? B = rnfpseudobasis(nf, P)
%8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%9 = 2
@eprog\noindent
It is possible to use this routine with non-monic
$P = \sum_{i\leq n} a_i X^i \in \Z_K[X]$ if $\fl = 1$;
in this case, we test maximality of Dedekind's order generated by
$$1, a_n \alpha, a_n\alpha^2 + a_{n-1}\alpha, \dots,
a_n\alpha^{n-1} + a_{n-1}\alpha^{n-2} + \cdots + a_1\alpha.$$
The routine will fail if $P$ is $0$ on the projective line over the residue
field $\Z_K/\kbd{pr}$ (FIXME).
The library syntax is \fun{GEN}{rnfdedekind}{GEN nf, GEN pol, GEN pr = NULL, long flag}.
\subsec{rnfdet$(\var{nf},M)$}\kbdsidx{rnfdet}\label{se:rnfdet}
Given a pseudo-matrix $M$ over the maximal
order of $\var{nf}$, computes its determinant.
The library syntax is \fun{GEN}{rnfdet}{GEN nf, GEN M}.
\subsec{rnfdisc$(\var{nf},\var{pol})$}\kbdsidx{rnfdisc}\label{se:rnfdisc}
Given a number field $\var{nf}$ as
output by \kbd{nfinit} and a polynomial \var{pol} with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, computes the
relative discriminant of $L$. This is a two-element row vector $[D,d]$, where
$D$ is the relative ideal discriminant and $d$ is the relative discriminant
considered as an element of $\var{nf}^*/{\var{nf}^*}^2$. The main variable of
$\var{nf}$ \emph{must} be of lower priority than that of \var{pol}, see
\secref{se:priority}.
The library syntax is \fun{GEN}{rnfdiscf}{GEN nf, GEN pol}.
\subsec{rnfeltabstorel$(\var{rnf},x)$}\kbdsidx{rnfeltabstorel}\label{se:rnfeltabstorel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an
element of $L$ expressed as a polynomial modulo the absolute equation
\kbd{\var{rnf}.pol}, or in terms of the absolute $\Z$-basis for $\Z_L$
if \var{rnf} contains one (as in \kbd{rnfinit(nf,pol,1)}, or after
a call to \kbd{nfinit(rnf)}).
Computes $x$ as an element of the relative extension
$L/K$ as a polmod with polmod coefficients.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.polabs
%2 = x^4 + 1
? rnfeltabstorel(L, Mod(x, L.polabs))
%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, 1/3)
%4 = 1/3
? rnfeltabstorel(L, Mod(x, x^2-y))
%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, [0,0,0,1]~) \\ Z_L not initialized yet
*** at top-level: rnfeltabstorel(L,[0,
*** ^--------------------
*** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
? nfinit(L); \\ initialize now
? rnfeltabstorel(L, [0,0,0,1]~)
%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))
@eprog
The library syntax is \fun{GEN}{rnfeltabstorel}{GEN rnf, GEN x}.
\subsec{rnfeltdown$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfeltdown}\label{se:rnfeltdown}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an element of
$L$ expressed as a polynomial or polmod with polmod coefficients (or as a
\typ{COL} on \kbd{nfinit(rnf).zk}), computes
$x$ as an element of $K$ as a \typ{POLMOD} if $\fl = 0$ and as a \typ{COL}
otherwise. If $x$ is not in $K$, a domain error occurs.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltdown(L, Mod(x^2, L.pol))
%3 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x^2, L.pol), 1)
%4 = [0, 1]~
? rnfeltdown(L, Mod(y, x^2-y))
%5 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(y,K.pol))
%6 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x, L.pol))
*** at top-level: rnfeltdown(L,Mod(x,x
*** ^--------------------
*** rnfeltdown: domain error in rnfeltdown: element not in the base field
? rnfeltdown(L, Mod(y, x^2-y), 1) \\ as a t_COL
%7 = [0, 1]~
? rnfeltdown(L, [0,1,0,0]~) \\ not allowed without absolute nf struct
*** rnfeltdown: incorrect type in rnfeltdown (t_COL).
? nfinit(L); \\ add absolute nf structure to L
? rnfeltdown(L, [0,1,0,0]~) \\ now OK
%8 = Mod(y, y^2 + 1)
@eprog\noindent If we had started with
\kbd{L = rnfinit(K, x\pow2-y, 1)}, then the final would have worked directly.
The library syntax is \fun{GEN}{rnfeltdown0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfeltdown}{GEN rnf, GEN x} ($\fl = 0$).
\subsec{rnfeltnorm$(\var{rnf},x)$}\kbdsidx{rnfeltnorm}\label{se:rnfeltnorm}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $L$, returns the relative norm
$N_{L/K}(x)$ as an element of $K$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfeltnorm(L, Mod(x, L.pol))
%2 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltnorm(L, 2)
%3 = 4
? rnfeltnorm(L, Mod(x, x^2-y))
@eprog
The library syntax is \fun{GEN}{rnfeltnorm}{GEN rnf, GEN x}.
\subsec{rnfeltreltoabs$(\var{rnf},x)$}\kbdsidx{rnfeltreltoabs}\label{se:rnfeltreltoabs}
$\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
element of $L$ expressed as a polynomial or polmod with polmod
coefficients, computes $x$ as an element of the absolute extension $L/\Q$ as
a polynomial modulo the absolute equation \kbd{\var{rnf}.pol}.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltreltoabs(L, Mod(x, L.pol))
%3 = Mod(x, x^4 + 1)
? rnfeltreltoabs(L, Mod(y, x^2-y))
%4 = Mod(x^2, x^4 + 1)
? rnfeltreltoabs(L, Mod(y,K.pol))
%5 = Mod(x^2, x^4 + 1)
@eprog
The library syntax is \fun{GEN}{rnfeltreltoabs}{GEN rnf, GEN x}.
\subsec{rnfelttrace$(\var{rnf},x)$}\kbdsidx{rnfelttrace}\label{se:rnfelttrace}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $L$, returns the relative trace
$Tr_{L/K}(x)$ as an element of $K$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfelttrace(L, Mod(x, L.pol))
%2 = 0
? rnfelttrace(L, 2)
%3 = 4
? rnfelttrace(L, Mod(x, x^2-y))
@eprog
The library syntax is \fun{GEN}{rnfelttrace}{GEN rnf, GEN x}.
\subsec{rnfeltup$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfeltup}\label{se:rnfeltup}
$\var{rnf}$ being a relative number field extension $L/K$ as output by
\kbd{rnfinit} and $x$ being an element of $K$, computes $x$ as an element of
the absolute extension $L/\Q$. As a \typ{POLMOD} modulo \kbd{\var{rnf}.pol}
if $\fl = 0$ and as a \typ{COL} on the absolute field integer basis if
$\fl = 1$.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltup(L, Mod(y, K.pol))
%3 = Mod(x^2, x^4 + 1)
? rnfeltup(L, y)
%4 = Mod(x^2, x^4 + 1)
? rnfeltup(L, [1,2]~) \\ in terms of K.zk
%5 = Mod(2*x^2 + 1, x^4 + 1)
? rnfeltup(L, y, 1) \\ in terms of nfinit(L).zk
%6 = [0, 1, 0, 0]~
? rnfeltup(L, [1,2]~, 1)
%7 = [1, 2, 0, 0]~
@eprog
The library syntax is \fun{GEN}{rnfeltup0}{GEN rnf, GEN x, long flag}.
\subsec{rnfequation$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfequation}\label{se:rnfequation}
Given a number field
$\var{nf}$ as output by \kbd{nfinit} (or simply a polynomial) and a
polynomial \var{pol} with coefficients in $\var{nf}$ defining a relative
extension $L$ of $\var{nf}$, computes an absolute equation of $L$ over
$\Q$.
The main variable of $\var{nf}$ \emph{must} be of lower priority than that
of \var{pol} (see \secref{se:priority}). Note that for efficiency, this does
not check whether the relative equation is irreducible over $\var{nf}$, but
only if it is squarefree. If it is reducible but squarefree, the result will
be the absolute equation of the \'etale algebra defined by \var{pol}. If
\var{pol} is not squarefree, raise an \kbd{e\_DOMAIN} exception.
\bprog
? rnfequation(y^2+1, x^2 - y)
%1 = x^4 + 1
? T = y^3-2; rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))
%2 = x^6 + 108 \\ Galois closure of Q(2^(1/3))
@eprog
If $\fl$ is non-zero, outputs a 3-component row vector $[z,a,k]$, where
\item $z$ is the absolute equation of $L$ over $\Q$, as in the default
behavior,
\item $a$ expresses as a \typ{POLMOD} modulo $z$ a root $\alpha$ of the
polynomial defining the base field $\var{nf}$,
\item $k$ is a small integer such that $\theta = \beta+k\alpha$
is a root of $z$, where $\beta$ is a root of $\var{pol}$.
\bprog
? T = y^3-2; pol = x^2 +x*y + y^2;
? [z,a,k] = rnfequation(T, pol, 1);
? z
%3 = x^6 + 108
? subst(T, y, a)
%4 = 0
? alpha= Mod(y, T);
? beta = Mod(x*Mod(1,T), pol);
? subst(z, x, beta + k*alpha)
%7 = 0
@eprog
The library syntax is \fun{GEN}{rnfequation0}{GEN nf, GEN pol, long flag}.
Also available are
\fun{GEN}{rnfequation}{GEN nf, GEN pol} ($\fl = 0$) and
\fun{GEN}{rnfequation2}{GEN nf, GEN pol} ($\fl = 1$).
\subsec{rnfhnfbasis$(\var{bnf},x)$}\kbdsidx{rnfhnfbasis}\label{se:rnfhnfbasis}
Given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, gives either a true $\var{bnf}$-basis of $L$ in upper
triangular Hermite normal form, if it exists, and returns $0$ otherwise.
The library syntax is \fun{GEN}{rnfhnfbasis}{GEN bnf, GEN x}.
\subsec{rnfidealabstorel$(\var{rnf},x)$}\kbdsidx{rnfidealabstorel}\label{se:rnfidealabstorel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ be an ideal of
the absolute extension $L/\Q$ given by a $\Z$-basis of elements of $L$.
Returns the relative pseudo-matrix in HNF giving the ideal $x$ considered as
an ideal of the relative extension $L/K$, i.e.~as a $\Z_K$-module.
The reason why the input does not use the customary HNF in terms of a fixed
$\Z$-basis for $\Z_L$ is precisely that no such basis has been explicitly
specified. On the other hand, if you already computed an (absolute) \kbd{nf}
structure \kbd{Labs} attached to $L$, and $m$ is in HNF, defining
an (absolute) ideal with respect to the $\Z$-basis \kbd{Labs.zk}, then
\kbd{Labs.zk * m} is a suitable $\Z$-basis for the ideal, and
\bprog
rnfidealabstorel(rnf, Labs.zk * m)
@eprog\noindent converts $m$ to a relative ideal.
\bprog
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y); Labs = nfinit(L);
? m = idealhnf(Labs, 17, x^3+2);
? B = rnfidealabstorel(L, Labs.zk * m)
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]] \\ pseudo-basis for m as Z_K-module
? A = rnfidealreltoabs(L, B)
%4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2] \\ Z-basis for m in Q[x]/(L.pol)
? mathnf(matalgtobasis(Labs, A))
%5 =
[17 8 4 2]
[ 0 1 0 0]
[ 0 0 1 0]
[ 0 0 0 1]
? % == m
%6 = 1
@eprog
The library syntax is \fun{GEN}{rnfidealabstorel}{GEN rnf, GEN x}.
\subsec{rnfidealdown$(\var{rnf},x)$}\kbdsidx{rnfidealdown}\label{se:rnfidealdown}
Let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and $x$ an ideal of
$L$, given either in relative form or by a $\Z$-basis of elements of $L$
(see \secref{se:rnfidealabstorel}). This function returns the ideal of $K$
below $x$, i.e.~the intersection of $x$ with $K$.
The library syntax is \fun{GEN}{rnfidealdown}{GEN rnf, GEN x}.
\subsec{rnfidealfactor$(\var{rnf},x)$}\kbdsidx{rnfidealfactor}\label{se:rnfidealfactor}
Factors into prime ideal powers the
ideal $x$ in the attached absolute number field $L = \kbd{nfinit}(\var{rnf})$.
The output format is similar to the \kbd{factor} function, and the prime
ideals are represented in the form output by the \kbd{idealprimedec}
function for $L$.
\bprog
? rnf = rnfinit(nfinit(y^2+1), x^2-y+1);
? rnfidealfactor(rnf, y+1) \\ P_2^2
%2 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 2]
? rnfidealfactor(rnf, x) \\ P_2
%3 =
[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0,0;1,-1,0,0]] 1]
? L = nfinit(rnf);
? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealfactor(rnf, id)
%6 = 1
@eprog\noindent Note that ideals of the base field $K$ must be explicitly
lifted to $L$ via \kbd{rnfidealup} before they can be factored.
The library syntax is \fun{GEN}{rnfidealfactor}{GEN rnf, GEN x}.
\subsec{rnfidealhnf$(\var{rnf},x)$}\kbdsidx{rnfidealhnf}\label{se:rnfidealhnf}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ being a relative
ideal (which can be, as in the absolute case, of many different types,
including of course elements), computes the HNF pseudo-matrix attached to
$x$, viewed as a $\Z_K$-module.
The library syntax is \fun{GEN}{rnfidealhnf}{GEN rnf, GEN x}.
\subsec{rnfidealmul$(\var{rnf},x,y)$}\kbdsidx{rnfidealmul}\label{se:rnfidealmul}
$\var{rnf}$ being a relative number
field extension $L/K$ as output by \kbd{rnfinit} and $x$ and $y$ being ideals
of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal
product, again as a relative ideal.
The library syntax is \fun{GEN}{rnfidealmul}{GEN rnf, GEN x, GEN y}.
\subsec{rnfidealnormabs$(\var{rnf},x)$}\kbdsidx{rnfidealnormabs}\label{se:rnfidealnormabs}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements). This function computes the norm of the
$x$ considered as an ideal of the absolute extension $L/\Q$. This is
identical to
\bprog
idealnorm(rnf, rnfidealnormrel(rnf,x))
@eprog\noindent but faster.
The library syntax is \fun{GEN}{rnfidealnormabs}{GEN rnf, GEN x}.
\subsec{rnfidealnormrel$(\var{rnf},x)$}\kbdsidx{rnfidealnormrel}\label{se:rnfidealnormrel}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal (which can be, as in the absolute case, of many different
types, including of course elements). This function computes the relative
norm of $x$ as an ideal of $K$ in HNF.
The library syntax is \fun{GEN}{rnfidealnormrel}{GEN rnf, GEN x}.
\subsec{rnfidealprimedec$(\var{rnf},\var{pr})$}\kbdsidx{rnfidealprimedec}\label{se:rnfidealprimedec}
Let \var{rnf} be a relative number
field extension $L/K$ as output by \kbd{rnfinit}, and \kbd{pr} a maximal
ideal of $K$ (\kbd{prid}), this function completes the \var{rnf}
with a \var{nf} structure attached to $L$ (see \secref{se:rnfinit})
and returns the prime ideal decomposition of \kbd{pr} in $L/K$.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^3+y+1);
? P = idealprimedec(K, 2)[1];
? S = rnfidealprimedec(rnf, P);
? #S
%4 = 1
@eprog
The argument \kbd{pr} is also allowed to be a prime number $p$, in which
case we return a pair of vectors \kbd{[SK,SL]}, where \kbd{SK} contains
the primes of $K$ above $p$ and \kbd{SL}$[i]$ is the vector of primes of $L$
above \kbd{SK}$[i]$.
\bprog
? [SK,SL] = rnfidealprimedec(rnf, 5);
? [#SK, vector(#SL,i,#SL[i])]
%6 = [2, [2, 2]]
@eprog
The library syntax is \fun{GEN}{rnfidealprimedec}{GEN rnf, GEN pr}.
\subsec{rnfidealreltoabs$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfidealreltoabs}\label{se:rnfidealreltoabs}
Let $\var{rnf}$ be a relative
number field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be a
relative ideal, given as a $\Z_K$-module by a pseudo matrix $[A,I]$.
This function returns the ideal $x$ as an absolute ideal of $L/\Q$.
If $\fl = 0$, the result is given by a vector of \typ{POLMOD}s modulo
\kbd{rnf.pol} forming a $\Z$-basis; if $\fl = 1$, it is given in HNF in terms
of the fixed $\Z$-basis for $\Z_L$, see \secref{se:rnfinit}.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? P = rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? Prel = rnfidealhnf(rnf, P)
%4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]
? rnfidealreltoabs(rnf,Prel)
%5 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealreltoabs(rnf,Prel,1)
%6 =
[2 1 0 0]
[0 1 0 0]
[0 0 2 1]
[0 0 0 1]
@eprog
The reason why we do not return by default ($\fl = 0$) the customary HNF in
terms of a fixed $\Z$-basis for $\Z_L$ is precisely because
a \var{rnf} does not contain such a basis by default. Completing the
structure so that it contains a \var{nf} structure for $L$ is polynomial
time but costly when the absolute degree is large, thus it is not done by
default. Note that setting $\fl = 1$ will complete the \var{rnf}.
The library syntax is \fun{GEN}{rnfidealreltoabs0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfidealreltoabs}{GEN rnf, GEN x} ($\fl = 0$).
\subsec{rnfidealtwoelt$(\var{rnf},x)$}\kbdsidx{rnfidealtwoelt}\label{se:rnfidealtwoelt}
$\var{rnf}$ being a relative
number field extension $L/K$ as output by \kbd{rnfinit} and $x$ being an
ideal of the relative extension $L/K$ given by a pseudo-matrix, gives a
vector of two generators of $x$ over $\Z_L$ expressed as polmods with polmod
coefficients.
The library syntax is \fun{GEN}{rnfidealtwoelement}{GEN rnf, GEN x}.
\subsec{rnfidealup$(\var{rnf},x,\{\fl=0\})$}\kbdsidx{rnfidealup}\label{se:rnfidealup}
Let $\var{rnf}$ be a relative number
field extension $L/K$ as output by \kbd{rnfinit} and let $x$ be an ideal of
$K$. This function returns the ideal $x\Z_L$ as an absolute ideal of $L/\Q$,
in the form of a $\Z$-basis. If $\fl = 0$, the result is given by a vector of
polynomials (modulo \kbd{rnf.pol}); if $\fl = 1$, it is given in HNF in terms
of the fixed $\Z$-basis for $\Z_L$, see \secref{se:rnfinit}.
\bprog
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealup(rnf, P,1)
%4 =
[2 1 0 0]
[0 1 0 0]
[0 0 2 1]
[0 0 0 1]
@eprog
The reason why we do not return by default ($\fl = 0$) the customary HNF in
terms of a fixed $\Z$-basis for $\Z_L$ is precisely because
a \var{rnf} does not contain such a basis by default. Completing the
structure so that it contains a \var{nf} structure for $L$ is polynomial
time but costly when the absolute degree is large, thus it is not done by
default. Note that setting $\fl = 1$ will complete the \var{rnf}.
The library syntax is \fun{GEN}{rnfidealup0}{GEN rnf, GEN x, long flag}.
Also available is
\fun{GEN}{rnfidealup}{GEN rnf, GEN x} ($\fl = 0$).
\subsec{rnfinit$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfinit}\label{se:rnfinit}
$\var{nf}$ being a number field in \kbd{nfinit}
format considered as base field, and \var{pol} a polynomial defining a relative
extension over $\var{nf}$, this computes data to work in the
relative extension. The main variable of \var{pol} must be of higher priority
(see \secref{se:priority}) than that of $\var{nf}$, and the coefficients of
\var{pol} must be in $\var{nf}$.
The result is a row vector, whose components are technical. In the following
description, we let $K$ be the base field defined by $\var{nf}$ and $L/K$
the extension attached to the \var{rnf}. Furthermore, we let
$m = [K:\Q]$ the degree of the base field, $n = [L:K]$ the relative degree,
$r_1$ and $r_2$ the number of real and complex places of $K$. Access to this
information via \emph{member functions} is preferred since the specific
data organization specified below will change in the future.
If $\fl = 1$, add an \var{nf} structure attached to $L$ to \var{rnf}.
This is likely to be very expensive if the absolute degree $mn$ is large,
but fixes an integer basis for $\Z_L$ as a $\Z$-module and allows to input
and output elements of $L$ in absolute form: as \typ{COL} for elements,
as \typ{MAT} in HNF for ideals, as \kbd{prid} for prime ideals. Without such
a call, elements of $L$ are represented as \typ{POLMOD}, etc.
Note that a subsequent \kbd{nfinit}$(\var{rnf})$ will also explicitly
add such a component, and so will the following functions \kbd{rnfidealmul},
\kbd{rnfidealtwoelt}, \kbd{rnfidealprimedec}, \kbd{rnfidealup} (with flag 1)
and \kbd{rnfidealreltoabs} (with flag 1). The absolute \var{nf} structure
attached to $L$ can be recovered using \kbd{nfinit(rnf)}.
$\var{rnf}[1]$(\kbd{rnf.pol}) contains the relative polynomial \var{pol}.
$\var{rnf}[2]$ contains the integer basis $[A,d]$ of $K$, as
(integral) elements of $L/\Q$. More precisely, $A$ is a vector of
polynomial with integer coefficients, $d$ is a denominator, and the integer
basis is given by $A/d$.
$\var{rnf}[3]$ (\kbd{rnf.disc}) is a two-component row vector
$[\goth{d}(L/K),s]$ where $\goth{d}(L/K)$ is the relative ideal discriminant
of $L/K$ and $s$ is the discriminant of $L/K$ viewed as an element of
$K^*/(K^*)^2$, in other words it is the output of \kbd{rnfdisc}.
$\var{rnf}[4]$(\kbd{rnf.index}) is the ideal index $\goth{f}$, i.e.~such
that $d(pol)\Z_K=\goth{f}^2\goth{d}(L/K)$.
$\var{rnf}[5]$ is currently unused.
$\var{rnf}[6]$ is currently unused.
$\var{rnf}[7]$ (\kbd{rnf.zk}) is the pseudo-basis $(A,I)$ for the maximal
order $\Z_L$ as a $\Z_K$-module: $A$ is the relative integral pseudo basis
expressed as polynomials (in the variable of $pol$) with polmod coefficients
in $\var{nf}$, and the second component $I$ is the ideal list of the
pseudobasis in HNF.
$\var{rnf}[8]$ is the inverse matrix of the integral basis matrix, with
coefficients polmods in $\var{nf}$.
$\var{rnf}[9]$ is currently unused.
$\var{rnf}[10]$ (\kbd{rnf.nf}) is $\var{nf}$.
$\var{rnf}[11]$ is an extension of \kbd{rnfequation(K, pol, 1)}. Namely, a
vector $[P, a, k, \kbd{K.pol}, \kbd{pol}]$ describing the \emph{absolute}
extension
$L/\Q$: $P$ is an absolute equation, more conveniently obtained
as \kbd{rnf.polabs}; $a$ expresses the generator $\alpha = y \mod \kbd{K.pol}$
of the number field $K$ as an element of $L$, i.e.~a polynomial modulo the
absolute equation $P$;
$k$ is a small integer such that, if $\beta$ is an abstract root of \var{pol}
and $\alpha$ the generator of $K$ given above, then $P(\beta + k\alpha) = 0$.
\misctitle{Caveat} Be careful if $k\neq0$ when dealing simultaneously with
absolute and relative quantities since $L = \Q(\beta + k\alpha) =
K(\alpha)$, and the generator chosen for the absolute extension is not the
same as for the relative one. If this happens, one can of course go on
working, but we advise to change the relative polynomial so that its root
becomes $\beta + k \alpha$. Typical GP instructions would be
\bprog
[P,a,k] = rnfequation(K, pol, 1);
if (k, pol = subst(pol, x, x - k*Mod(y, K.pol)));
L = rnfinit(K, pol);
@eprog
$\var{rnf}[12]$ is by default unused and set equal to 0. This field is used
to store further information about the field as it becomes available (which
is rarely needed, hence would be too expensive to compute during the initial
\kbd{rnfinit} call).
The library syntax is \fun{GEN}{rnfinit0}{GEN nf, GEN pol, long flag}.
Also available is
\fun{GEN}{rnfinit}{GEN nf,GEN pol} ($\fl = 0$).
\subsec{rnfisabelian$(\var{nf},T)$}\kbdsidx{rnfisabelian}\label{se:rnfisabelian}
$T$ being a relative polynomial with coefficients
in \var{nf}, return 1 if it defines an abelian extension, and 0 otherwise.
\bprog
? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1
@eprog
The library syntax is \fun{long}{rnfisabelian}{GEN nf, GEN T}.
\subsec{rnfisfree$(\var{bnf},x)$}\kbdsidx{rnfisfree}\label{se:rnfisfree}
Given $\var{bnf}$ as output by
\kbd{bnfinit}, and either a polynomial $x$ with coefficients in $\var{bnf}$
defining a relative extension $L$ of $\var{bnf}$, or a pseudo-basis $x$ of
such an extension, returns true (1) if $L/\var{bnf}$ is free, false (0) if
not.
The library syntax is \fun{long}{rnfisfree}{GEN bnf, GEN x}.
\subsec{rnfislocalcyclo$(\var{rnf})$}\kbdsidx{rnfislocalcyclo}\label{se:rnfislocalcyclo}
Let \var{rnf} a a relative number field extension $L/K$ as output
by \kbd{rnfinit} whole degree $[L:K]$ is a power of a prime $\ell$.
Return $1$ if the $\ell$-extension is locally cyclotomic (locally contained in
the cyclotomic $\Z_\ell$-extension of $K_v$ at all places $v | \ell$), and
$0$ if not.
\bprog
? K = nfinit(y^2 + y + 1);
? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
? rnfislocalcyclo(L)
%3 = 1
\\ we expect 3-adic continuity by Krasner's lemma
? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
%5 = [0, 1, 1, 1, 1]
@eprog
The library syntax is \fun{long}{rnfislocalcyclo}{GEN rnf}.
\subsec{rnfisnorm$(T,a,\{\fl=0\})$}\kbdsidx{rnfisnorm}\label{se:rnfisnorm}
Similar to
\kbd{bnfisnorm} but in the relative case. $T$ is as output by
\tet{rnfisnorminit} applied to the extension $L/K$. This tries to decide
whether the element $a$ in $K$ is the norm of some $x$ in the extension
$L/K$.
The output is a vector $[x,q]$, where $a = \Norm(x)*q$. The
algorithm looks for a solution $x$ which is an $S$-integer, with $S$ a list
of places of $K$ containing at least the ramified primes, the generators of
the class group of $L$, as well as those primes dividing $a$. If $L/K$ is
Galois, then this is enough; otherwise, $\fl$ is used to add more primes to
$S$: all the places above the primes $p \leq \fl$ (resp.~$p|\fl$) if $\fl>0$
(resp.~$\fl<0$).
The answer is guaranteed (i.e.~$a$ is a norm iff $q = 1$) if the field is
Galois, or, under \idx{GRH}, if $S$ contains all primes less than
$12\log^2\left|\disc(M)\right|$, where $M$ is the normal
closure of $L/K$.
If \tet{rnfisnorminit} has determined (or was told) that $L/K$ is
\idx{Galois}, and $\fl \neq 0$, a Warning is issued (so that you can set
$\fl = 1$ to check whether $L/K$ is known to be Galois, according to $T$).
Example:
\bprog
bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
rnfisnorm(T, 17)
@eprog\noindent
checks whether $17$ is a norm in the Galois extension $\Q(\beta) /
\Q(\alpha)$, where $\alpha^3 + \alpha^2 - 2\alpha - 1 = 0$ and $\beta^2 +
\alpha^2 + 2\alpha + 1 = 0$ (it is).
The library syntax is \fun{GEN}{rnfisnorm}{GEN T, GEN a, long flag}.
\subsec{rnfisnorminit$(\var{pol},\var{polrel},\{\fl=2\})$}\kbdsidx{rnfisnorminit}\label{se:rnfisnorminit}
Let $K$ be defined by a root of \var{pol}, and $L/K$ the extension defined
by the polynomial \var{polrel}. As usual, \var{pol} can in fact be an \var{nf},
or \var{bnf}, etc; if \var{pol} has degree $1$ (the base field is $\Q$),
polrel is also allowed to be an \var{nf}, etc. Computes technical data needed
by \tet{rnfisnorm} to solve norm equations $Nx = a$, for $x$ in $L$, and $a$
in $K$.
If $\fl = 0$, do not care whether $L/K$ is Galois or not.
If $\fl = 1$, $L/K$ is assumed to be Galois (unchecked), which speeds up
\tet{rnfisnorm}.
If $\fl = 2$, let the routine determine whether $L/K$ is Galois.
The library syntax is \fun{GEN}{rnfisnorminit}{GEN pol, GEN polrel, long flag}.
\subsec{rnfkummer$(\var{bnr},\{\var{subgp}\},\{d=0\})$}\kbdsidx{rnfkummer}\label{se:rnfkummer}
\var{bnr}
being as output by \kbd{bnrinit}, finds a relative equation for the
class field corresponding to the module in \var{bnr} and the given
congruence subgroup (the full ray class field if \var{subgp} is omitted).
If $d$ is positive, outputs the list of all relative equations of
degree $d$ contained in the ray class field defined by \var{bnr}, with
the \emph{same} conductor as $(\var{bnr}, \var{subgp})$.
\misctitle{Warning} This routine only works for subgroups of prime index. It
uses Kummer theory, adjoining necessary roots of unity (it needs to compute a
tough \kbd{bnfinit} here), and finds a generator via Hecke's characterization
of ramification in Kummer extensions of prime degree. If your extension does
not have prime degree, for the time being, you have to split it by hand as a
tower / compositum of such extensions.
The library syntax is \fun{GEN}{rnfkummer}{GEN bnr, GEN subgp = NULL, long d, long prec}.
\subsec{rnflllgram$(\var{nf},\var{pol},\var{order})$}\kbdsidx{rnflllgram}\label{se:rnflllgram}
Given a polynomial
\var{pol} with coefficients in \var{nf} defining a relative extension $L$ and
a suborder \var{order} of $L$ (of maximal rank), as output by
\kbd{rnfpseudobasis}$(\var{nf},\var{pol})$ or similar, gives
$[[\var{neworder}],U]$, where \var{neworder} is a reduced order and $U$ is
the unimodular transformation matrix.
The library syntax is \fun{GEN}{rnflllgram}{GEN nf, GEN pol, GEN order, long prec}.
\subsec{rnfnormgroup$(\var{bnr},\var{pol})$}\kbdsidx{rnfnormgroup}\label{se:rnfnormgroup}
\var{bnr} being a big ray
class field as output by \kbd{bnrinit} and \var{pol} a relative polynomial
defining an \idx{Abelian extension}, computes the norm group (alias Artin
or Takagi group) corresponding to the Abelian extension of
$\var{bnf}=$\kbd{bnr.bnf}
defined by \var{pol}, where the module corresponding to \var{bnr} is assumed
to be a multiple of the conductor (i.e.~\var{pol} defines a subextension of
bnr). The result is the HNF defining the norm group on the given generators
of \kbd{bnr.gen}. Note that neither the fact that \var{pol} defines an
Abelian extension nor the fact that the module is a multiple of the conductor
is checked. The result is undefined if the assumption is not correct,
but the function will return the empty matrix \kbd{[;]} if it detects a
problem; it may also not detect the problem and return a wrong result.
The library syntax is \fun{GEN}{rnfnormgroup}{GEN bnr, GEN pol}.
\subsec{rnfpolred$(\var{nf},\var{pol})$}\kbdsidx{rnfpolred}\label{se:rnfpolred}
This function is obsolete: use \tet{rnfpolredbest} instead.
Relative version of \kbd{polred}. Given a monic polynomial \var{pol} with
coefficients in $\var{nf}$, finds a list of relative polynomials defining some
subfields, hopefully simpler and containing the original field. In the present
version \vers, this is slower and less efficient than \kbd{rnfpolredbest}.
\misctitle{Remark} this function is based on an incomplete reduction
theory of lattices over number fields, implemented by \kbd{rnflllgram}, which
deserves to be improved.
The library syntax is \fun{GEN}{rnfpolred}{GEN nf, GEN pol, long prec}.
\subsec{rnfpolredabs$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfpolredabs}\label{se:rnfpolredabs}
This function is obsolete: use \tet{rnfpolredbest} instead.
Relative version of \kbd{polredabs}. Given a monic polynomial \var{pol}
with coefficients in $\var{nf}$, finds a simpler relative polynomial defining
the same field. The binary digits of $\fl$ mean
The binary digits of $\fl$ correspond to $1$: add information to convert
elements to the new representation, $2$: absolute polynomial, instead of
relative, $16$: possibly use a suborder of the maximal order. More precisely:
0: default, return $P$
1: returns $[P,a]$ where $P$ is the default output and $a$,
a \typ{POLMOD} modulo $P$, is a root of \var{pol}.
2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
Same as but faster than
\bprog
rnfequation(nf, rnfpolredabs(nf,pol))
@eprog
3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
and \var{pol} respectively.
16: possibly use a suborder of the maximal order. This is slower than the
default when the relative discriminant is smooth, and much faster otherwise.
See \secref{se:polredabs}.
\misctitle{Warning} In the present implementation, \kbd{rnfpolredabs}
produces smaller polynomials than \kbd{rnfpolred} and is usually
faster, but its complexity is still exponential in the absolute degree.
The function \tet{rnfpolredbest} runs in polynomial time, and tends to
return polynomials with smaller discriminants.
The library syntax is \fun{GEN}{rnfpolredabs}{GEN nf, GEN pol, long flag}.
\subsec{rnfpolredbest$(\var{nf},\var{pol},\{\fl=0\})$}\kbdsidx{rnfpolredbest}\label{se:rnfpolredbest}
Relative version of \kbd{polredbest}. Given a monic polynomial \var{pol}
with coefficients in $\var{nf}$, finds a simpler relative polynomial $P$
defining the same field. As opposed to \tet{rnfpolredabs} this function does
not return a \emph{smallest} (canonical) polynomial with respect to some
measure, but it does run in polynomial time.
The binary digits of $\fl$ correspond to $1$: add information to convert
elements to the new representation, $2$: absolute polynomial, instead of
relative. More precisely:
0: default, return $P$
1: returns $[P,a]$ where $P$ is the default output and $a$,
a \typ{POLMOD} modulo $P$, is a root of \var{pol}.
2: returns \var{Pabs}, an absolute, instead of a relative, polynomial.
Same as but faster than
\bprog
rnfequation(nf, rnfpolredbest(nf,pol))
@eprog
3: returns $[\var{Pabs},a,b]$, where \var{Pabs} is an absolute polynomial
as above, $a$, $b$ are \typ{POLMOD} modulo \var{Pabs}, roots of \kbd{nf.pol}
and \var{pol} respectively.
\bprog
? K = nfinit(y^3-2); pol = x^2 +x*y + y^2;
? [P, a] = rnfpolredbest(K,pol,1);
? P
%3 = x^2 - x + Mod(y - 1, y^3 - 2)
? a
%4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),
x^2 - x + Mod(y-1,y^3-2))
? subst(K.pol,y,a)
%5 = 0
? [Pabs, a, b] = rnfpolredbest(K,pol,3);
? Pabs
%7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1
? a
%8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)
? b
%9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)
? subst(K.pol,y,a)
%10 = 0
? substvec(pol,[x,y],[a,b])
%11 = 0
@eprog
The library syntax is \fun{GEN}{rnfpolredbest}{GEN nf, GEN pol, long flag}.
\subsec{rnfpseudobasis$(\var{nf},\var{pol})$}\kbdsidx{rnfpseudobasis}\label{se:rnfpseudobasis}
Given a number field
$\var{nf}$ as output by \kbd{nfinit} and a polynomial \var{pol} with
coefficients in $\var{nf}$ defining a relative extension $L$ of $\var{nf}$,
computes a pseudo-basis $(A,I)$ for the maximal order $\Z_L$ viewed as a
$\Z_K$-module, and the relative discriminant of $L$. This is output as a
four-element row vector $[A,I,D,d]$, where $D$ is the relative ideal
discriminant and $d$ is the relative discriminant considered as an element of
$\var{nf}^*/{\var{nf}^*}^2$.
The library syntax is \fun{GEN}{rnfpseudobasis}{GEN nf, GEN pol}.
\subsec{rnfsteinitz$(\var{nf},x)$}\kbdsidx{rnfsteinitz}\label{se:rnfsteinitz}
Given a number field $\var{nf}$ as
output by \kbd{nfinit} and either a polynomial $x$ with coefficients in
$\var{nf}$ defining a relative extension $L$ of $\var{nf}$, or a pseudo-basis
$x$ of such an extension as output for example by \kbd{rnfpseudobasis},
computes another pseudo-basis $(A,I)$ (not in HNF in general) such that all
the ideals of $I$ except perhaps the last one are equal to the ring of
integers of $\var{nf}$, and outputs the four-component row vector $[A,I,D,d]$
as in \kbd{rnfpseudobasis}. The name of this function comes from the fact
that the ideal class of the last ideal of $I$, which is well defined, is the
\idx{Steinitz class} of the $\Z_K$-module $\Z_L$ (its image in $SK_0(\Z_K)$).
The library syntax is \fun{GEN}{rnfsteinitz}{GEN nf, GEN x}.
\subsec{subgrouplist$(\var{bnr},\{\var{bound}\},\{\fl=0\})$}\kbdsidx{subgrouplist}\label{se:subgrouplist}
\var{bnr} being as output by \kbd{bnrinit} or a list of cyclic components
of a finite Abelian group $G$, outputs the list of subgroups of $G$. Subgroups
are given as HNF left divisors of the SNF matrix corresponding to $G$.
If $\fl=0$ (default) and \var{bnr} is as output by \kbd{bnrinit}, gives
only the subgroups whose modulus is the conductor. Otherwise, the modulus is
not taken into account.
If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed. For instance
\bprog
? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3) \\@com index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3]) \\@com index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);
@eprog\noindent
In the last example, $L$ corresponds to the 24 subfields of
$\Q(\zeta_{120})$, of degree $8$ and conductor $120\infty$ (by setting \fl,
we see there are a total of $43$ subgroups of degree $8$).
\bprog
? vector(#L, i, galoissubcyclo(bnr, L[i]))
@eprog\noindent
will produce their equations. (For a general base field, you would
have to rely on \tet{bnrstark}, or \tet{rnfkummer}.)
The library syntax is \fun{GEN}{subgrouplist0}{GEN bnr, GEN bound = NULL, long flag}.
%SECTION: number_fields
\section{Associative and central simple algebras}
This section collects functions related to associative algebras and central
simple algebras over number fields. Let $A$ be a finite-dimensional unitary
associative algebra over a field $K$. We say that $A$ is \emph{central} if
the center of $A$ is $K$, and that $A$ is \emph{simple} if it has no
nontrivial two-sided ideals.
We provide functions to manipulate associative algebras of finite
dimension over~$\Q$ or~$\F_p$. We represent them by the left multiplication
table on a basis over the prime subfield. The function \kbd{algtableinit}
creates the object representing an associative algebra. We also provide
functions to manipulate central simple algebras over number fields. We
represent them either by the left multiplication table on a basis over the
center, or by a cyclic algebra (see below). The function~\kbd{alginit} creates
the object representing a central simple algebra.
The set of elements of an algebra~$A$ that annihilate every simple left
$A$-module is a two-sided ideal, called the \emph{Jacobson radical} of~$A$.
An algebra is \emph{semisimple} if its Jacobson radical is trivial. A
semisimple algebra is isomorphic to a direct sum of simple algebras. The
dimension of a central simple algebra~$A$ over $K$ is always a square $d^2$,
and the integer $d$ is called the \emph{degree} of the algebra~$A$ over~$K$.
A central simple algebra~$A$ over a field~$K$ is always isomorphic to~$M_d(D)$
for some integer~$d$ and some central division algebra~$D$ of degree~$e$ : the
integer~$e$ is called the \emph{index} of~$A$.
Let $L/K$ be a cyclic extension of degree $d$, let $\sigma$ be a
generator of $\text{Gal}(L/K)$ and let $b\in K^*$. Then the
\emph{cyclic algebra} $(L/K,\sigma,b)$ is the algebra
$\bigoplus_{i=0}^{d-1}x^iL$ with $x^d=b$ and $\ell x=x\sigma(\ell)$ for
all~$\ell\in L$. The algebra $(L/K,\sigma,b)$ is a central simple $K$-algebra
of degree~$d$, and it is an $L$-vector space. Left multiplication is
$L$-linear and induces a $K$-algebra homomorphism $(L/K,\sigma,b)\to M_d(L)$.
Let $K$ be a nonarchimedean local field with uniformizer $\pi$, and let
$L/K$ be the unique unramified extension of degree $d$. Then every central
simple algebra $A$ of degree $d$ over $K$ is isomorphic to
$(L/K, \Frob, \pi^h)$ for some integer $h$. The element $h/d\in
(1/d)\Z/\Z\subset\Q/\Z$ is called the \emph{Hasse invariant} of $A$.
Let~$A$ be an algebra of finite dimension over~$\Q$. An \emph{order}
in~$A$ is a finitely generated $\Z$-submodule~${\cal O}$ such
that~$\Q{\cal O} = A$, that is also a subring with unit. We define natural
orders in central simple algebras defined by a cyclic algebra or by a
multiplication table over the center. Let~$A = (L/K,\sigma,b) =
\bigoplus_{i=0}^{d-1}x^iL$ be a cyclic algebra over a number field~$K$ of
degree~$n$ with ring of integers~$\Z_K$. Let~$\Z_L$ be the ring of integers
of~$L$, and assume that~$b$ is integral. Then the submodule~${\cal O} =
\bigoplus_{i=0}^{d-1}x^i\Z_L$ is an order in~$A$, called the
\emph{natural order}. Let~$\omega_0,\dots,\omega_{nd-1}$ be a~$\Z$-basis
of~$\Z_L$. The \emph{natural basis} of~${\cal O}$ is~$b_0,\dots,b_{nd^2-1}$
where~$b_i = x^{i/(nd)}\omega_{(i \mod nd)}$. Now let~$A$ be a central simple
algebra of degree~$d$ over a number field~$K$ of degree~$n$ with ring of
integers~$\Z_K$. Let~$e_0,\dots,e_{d^2-1}$ be a basis of~$A$ over~$K$ and
assume that the left multiplication table of~$A$ on~$(e_i)$ is integral. Then
the submodule~${\cal O} = \bigoplus_{i=0}^{d^2-1}\Z_K e_i$ is an order
in~$A$, called the \emph{natural order}. Let~$\omega_0,\dots,\omega_{n-1}$ be
a~$\Z$-basis of~$\Z_K$. The \emph{natural basis} of~${\cal O}$
is~$b_0,\dots,b_{nd^2-1}$ where~$b_i = \omega_{(i \mod n)}e_{i/n}$.
As with number fields, we represent elements of central simple algebras
in two ways, called the \emph{algebraic representation} and the \emph{basis
representation}, and you can convert betweeen the two with the functions
\kbd{algalgtobasis} and \kbd{algbasistoalg}. In every central simple algebra
object, we store a~$\Z$-basis of an order~${\cal O}_0$, and the basis
representation is simply a \typ{COL} with coefficients in~$\Q$ expressing the
element in that basis. If no maximal order was computed, then~${\cal O}_0$ is
the natural order. If a maximal order was computed, then~${\cal O}_0$ is a
maximal order containing the natural order. For a cyclic algebra~$A =
(L/K,\sigma,b)$, the algebraic representation is a \typ{COL} with coefficients
in~$L$ representing the element in the decomposition~$A =
\bigoplus_{i=0}^{d-1}x^iL$. For a central simple algebra defined by a
multiplication table over its center~$K$ on a basis~$(e_i)$, the algebraic
representation is a \typ{COL} with coefficients in~$K$ representing the element
on the basis~$(e_i)$.
\misctitle{Warning} The coefficients in the decomposition~$A =
\bigoplus_{i=0}^{d-1}x^iL$ are not the same as those in the decomposition~$A
= \bigoplus_{i=0}^{d-1}Lx^i$! The $i$-th coefficients are related by
conjugating by~$x^i$, which on~$L$ amounts to acting by~$\sigma^i$.
\misctitle{Warning} For a central simple algebra over $\Q$ defined by a
multiplication table, we cannot distinguish between the basis and the algebraic
representations from the size of the vectors. The behaviour is then to always
interpret the column vector as a basis representation if the coefficients are
\typ{INT} or \typ{FRAC}, and as an algebraic representation if the coefficients
are \typ{POL} or \typ{POLMOD}.
\subsec{algabsdim$(\var{al})$}\kbdsidx{algabsdim}\label{se:algabsdim}
Given an algebra \var{al} output by \tet{alginit} or by
\tet{algtableinit}, returns the dimension of \var{al} over its prime subfield
($\Q$ or $\F_p$).
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algabsdim(A)
%3 = 12
@eprog
The library syntax is \fun{long}{algabsdim}{GEN al}.
\subsec{algadd$(\var{al},x,y)$}\kbdsidx{algadd}\label{se:algadd}
Given two elements $x$ and $y$ in \var{al}, computes their sum $x+y$ in
the algebra~\var{al}.
\bprog
? A = alginit(nfinit(y),[-1,1]);
? algadd(A,[1,0]~,[1,2]~)
%2 = [2, 2]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algadd}{GEN al, GEN x, GEN y}.
\subsec{algalgtobasis$(\var{al},x)$}\kbdsidx{algalgtobasis}\label{se:algalgtobasis}
Given an element \var{x} in the central simple algebra \var{al} output
by \tet{alginit}, transforms it to a column vector on the integral basis of
\var{al}. This is the inverse function of \tet{algbasistoalg}.
\bprog
? A = alginit(nfinit(y^2-5),[2,y]);
? algalgtobasis(A,[y,1]~)
%2 = [0, 2, 0, -1, 2, 0, 0, 0]~
? algbasistoalg(A,algalgtobasis(A,[y,1]~))
%3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~
@eprog
The library syntax is \fun{GEN}{algalgtobasis}{GEN al, GEN x}.
\subsec{algaut$(\var{al})$}\kbdsidx{algaut}\label{se:algaut}
Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
\tet{alginit}, returns the automorphism $\sigma$.
\bprog
? nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algaut(A)
%5 = -1/3*x^2 + 1/3*x + 26/3
@eprog
The library syntax is \fun{GEN}{algaut}{GEN al}.
\subsec{algb$(\var{al})$}\kbdsidx{algb}\label{se:algb}
Given a cyclic algebra $\var{al} = (L/K,\sigma,b)$ output by
\tet{alginit}, returns the element $b\in K$.
\bprog
nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf,[3,[[p,p2],[1/3,2/3]],[0]]);
? algb(A)
%5 = Mod(-77, y)
@eprog
The library syntax is \fun{GEN}{algb}{GEN al}.
\subsec{algbasis$(\var{al})$}\kbdsidx{algbasis}\label{se:algbasis}
Given an central simple algebra \var{al} output by \tet{alginit}, returns
a $\Z$-basis of the order~${\cal O}_0$ stored in \var{al} with respect to the
natural order in \var{al}. It is a maximal order if one has been computed.
\bprog
A = alginit(nfinit(y), [-1,-1]);
? algbasis(A)
%2 =
[1 0 0 1/2]
[0 1 0 1/2]
[0 0 1 1/2]
[0 0 0 1/2]
@eprog
The library syntax is \fun{GEN}{algbasis}{GEN al}.
\subsec{algbasistoalg$(\var{al},x)$}\kbdsidx{algbasistoalg}\label{se:algbasistoalg}
Given an element \var{x} in the central simple algebra \var{al} output
by \tet{alginit}, transforms it to its algebraic representation in \var{al}.
This is the inverse function of \tet{algalgtobasis}.
\bprog
? A = alginit(nfinit(y^2-5),[2,y]);
? z = algbasistoalg(A,[0,1,0,0,2,-3,0,0]~);
? liftall(z)
%3 = [(-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4]~
? algalgtobasis(A,z)
%4 = [0, 1, 0, 0, 2, -3, 0, 0]~
@eprog
The library syntax is \fun{GEN}{algbasistoalg}{GEN al, GEN x}.
\subsec{algcenter$(\var{al})$}\kbdsidx{algcenter}\label{se:algcenter}
If \var{al} is a table algebra output by \tet{algtableinit}, returns a
basis of the center of the algebra~\var{al} over its prime field ($\Q$ or
$\F_p$). If \var{al} is a central simple algebra output by \tet{alginit},
returns the center of~\var{al}, which is stored in \var{al}.
A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
generated by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$: the diagonal matrices
form the center.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algcenter(A) \\ = (I_2)
%3 =
[1]
[0]
[0]
@eprog
An example in the central simple case:
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algcenter(A).pol
%3 = y^3 - y + 1
@eprog
The library syntax is \fun{GEN}{algcenter}{GEN al}.
\subsec{algcentralproj$(\var{al},z,\{\var{maps}=0\})$}\kbdsidx{algcentralproj}\label{se:algcentralproj}
Given a table algebra \var{al} output by \tet{algtableinit} and a
\typ{VEC} $\var{z}=[z_1,\dots,z_n]$ of orthogonal central idempotents,
returns a \typ{VEC} $[al_1,\dots,al_n]$ of algebras such that
$al_i = z_i\, al$. If $\var{maps}=1$, each $al_i$ is a \typ{VEC}
$[quo,proj,lift]$ where \var{quo} is the quotient algebra, \var{proj} is a
\typ{MAT} representing the projection onto this quotient and \var{lift} is a
\typ{MAT} representing a lift.
A simple example: $\F_2\oplus \F_4$, generated by~$1=(1,1)$, $e=(1,0)$
and~$x$ such that~$x^2+x+1=0$. We have~$e^2=e$, $x^2=x+1$ and~$ex=0$.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? e = [0,1,0]~;
? e2 = algsub(A,[1,0,0]~,e);
? [a,a2] = algcentralproj(A,[e,e2]);
? algdim(a)
%6 = 1
? algdim(a2)
%7 = 2
@eprog
The library syntax is \fun{GEN}{alg_centralproj}{GEN al, GEN z, long maps}.
\subsec{algchar$(\var{al})$}\kbdsidx{algchar}\label{se:algchar}
Given an algebra \var{al} output by \tet{alginit} or \tet{algtableinit},
returns the characteristic of \var{al}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,13);
? algchar(A)
%3 = 13
@eprog
The library syntax is \fun{GEN}{algchar}{GEN al}.
\subsec{algcharpoly$(\var{al},b,\{v='x\})$}\kbdsidx{algcharpoly}\label{se:algcharpoly}
Given an element $b$ in \var{al}, returns its characteristic polynomial
as a polynomial in the variable $v$. If \var{al} is a table algebra output
by \tet{algtableinit}, returns the absolute characteristic polynomial of
\var{b}, which is an element of $\F_p[v]$ or~$\Q[v]$; if \var{al} is a
central simple algebra output by \tet{alginit}, returns the reduced
characteristic polynomial of \var{b}, which is an element of $K[v]$ where~$K$
is the center of \var{al}.
\bprog
? al = alginit(nfinit(y), [-1,-1]); \\ (-1,-1)_Q
? algcharpoly(al, [0,1]~)
%2 = x^2 + 1
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algcharpoly}{GEN al, GEN b, long v = -1} where \kbd{v} is a variable number.
\subsec{algdecomposition$(\var{al})$}\kbdsidx{algdecomposition}\label{se:algdecomposition}
\var{al} being a table algebra output by \tet{algtableinit}, returns
$[J,[al_1,\dots,al_n]]$ where $J$ is a basis of the Jacobson radical of
\var{al} and $al_1,\dots,al_n$ are the simple factors of the semisimple
algebra $al/J$.
The library syntax is \fun{GEN}{alg_decomposition}{GEN al}.
\subsec{algdegree$(\var{al})$}\kbdsidx{algdegree}\label{se:algdegree}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
the degree of \var{al}.
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdegree(A)
%3 = 2
@eprog
The library syntax is \fun{long}{algdegree}{GEN al}.
\subsec{algdim$(\var{al})$}\kbdsidx{algdim}\label{se:algdim}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
the dimension of \var{al} over its center. Given a table algebra \var{al}
output by \tet{algtableinit}, returns the dimension of \var{al} over its prime
subfield ($\Q$ or $\F_p$).
\bprog
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdim(A)
%3 = 4
@eprog
The library syntax is \fun{long}{algdim}{GEN al}.
\subsec{algdisc$(\var{al})$}\kbdsidx{algdisc}\label{se:algdisc}
Given a central simple algebra \var{al} output by \tet{alginit}, computes
the discriminant of the order ${\cal O}_0$ stored in \var{al}, that is the
determinant of the trace form $\rm{Tr} : {\cal O}_0\times {\cal O}_0 \to \Z$.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-3,1-y]);
? [PR,h] = alghassef(A);
%3 = [[[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])]
? n = algdegree(A);
? D = algabsdim(A);
? h = vector(#h, i, n - gcd(n,h[i]));
? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
%4 = 12960000
? algdisc(A)
%5 = 12960000
@eprog
The library syntax is \fun{GEN}{algdisc}{GEN al}.
\subsec{algdivl$(\var{al},x,y)$}\kbdsidx{algdivl}\label{se:algdivl}
Given two elements $x$ and $y$ in \var{al}, computes their left quotient
$x\backslash y$ in the algebra \var{al}: an element $z$ such that $xz=y$ (such
an element is not unique when $x$ is a zerodivisor). If~$x$ is invertible, this
is the same as $x^{-1}y$. Assumes that $y$ is left divisible by $x$ (i.e. that
$z$ exists). Also accepts matrices with coefficients in~\var{al}.
The library syntax is \fun{GEN}{algdivl}{GEN al, GEN x, GEN y}.
\subsec{algdivr$(\var{al},x,y)$}\kbdsidx{algdivr}\label{se:algdivr}
Given two elements $x$ and $y$ in \var{al}, return $xy^{-1}$. Also accepts
matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algdivr}{GEN al, GEN x, GEN y}.
\subsec{alggroup$(\var{gal}, \{p=0\})$}\kbdsidx{alggroup}\label{se:alggroup}
Initialize the group algebra~$K[G]$ over~$K=\Q$ ($p$ omitted) or~$\F_p$
where~$G$ is the underlying group of the \kbd{galoisinit} structure~\var{gal}.
The input~\var{gal} is also allowed to be a \typ{VEC} of permutations that is
closed under products.
Example:
\bprog
? K = nfsplitting(x^3-x+1);
? gal = galoisinit(K);
? al = alggroup(gal);
? algissemisimple(al)
%4 = 1
? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);
? algissemisimple(al2)
%8 = 0
@eprog
The library syntax is \fun{GEN}{alggroup}{GEN gal, GEN p = NULL}.
\subsec{alghasse$(\var{al},\var{pl})$}\kbdsidx{alghasse}\label{se:alghasse}
Given a central simple algebra \var{al} output by \tet{alginit} and a prime
ideal or an integer between $1$ and $r_1+r_2$, returns a \typ{FRAC} $h$ : the
local Hasse invariant of \var{al} at the place specified by \var{pl}.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 = 0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
%6 = 0
@eprog
The library syntax is \fun{GEN}{alghasse}{GEN al, GEN pl}.
\subsec{alghassef$(\var{al})$}\kbdsidx{alghassef}\label{se:alghassef}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
a \typ{VEC} $[\kbd{PR}, h_f]$ describing the local Hasse invariants at the
finite places of the center: \kbd{PR} is a \typ{VEC} of primes and $h_f$ is a
\typ{VECSMALL} of integers modulo the degree $d$ of \var{al}.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,2*y-1]);
? [PR,hf] = alghassef(A);
? PR
%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
? hf
%5 = Vecsmall([1, 0])
@eprog
The library syntax is \fun{GEN}{alghassef}{GEN al}.
\subsec{alghassei$(\var{al})$}\kbdsidx{alghassei}\label{se:alghassei}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
a \typ{VECSMALL} $h_i$ of $r_1$ integers modulo the degree $d$ of \var{al},
where $r_1$ is the number of real places of the center: the local Hasse
invariants of \var{al} at infinite places.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghassei(A)
%3 = Vecsmall([1, 0])
@eprog
The library syntax is \fun{GEN}{alghassei}{GEN al}.
\subsec{algindex$(\var{al},\{\var{pl}\})$}\kbdsidx{algindex}\label{se:algindex}
Return the index of the central simple algebra~$A$ over~$K$ (as output by
alginit), that is the degree~$e$ of the unique central division algebra~$D$
over $K$ such that~$A$ is isomorphic to some matrix algebra~$M_d(D)$. If
\var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
and~$r_1+r_2$, and in that case return the local index at the place \var{pl}
instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algindex(A, 1)
%3 = 2
? algindex(A, 2)
%4 = 1
? algindex(A, idealprimedec(nf,2)[1])
%5 = 2
? algindex(A, idealprimedec(nf,5)[1])
%6 = 1
? algindex(A)
%7 = 2
@eprog
The library syntax is \fun{long}{algindex}{GEN al, GEN pl = NULL}.
\subsec{alginit$(B, C, \{v\}, \{\fl = 1\})$}\kbdsidx{alginit}\label{se:alginit}
Initialize the central simple algebra defined by data $B$, $C$ and
variable $v$, as follows.
\item (multiplication table) $B$ is the base number field $K$ in \tet{nfinit}
form, $C$ is a ``multiplication table'' over $K$.
As a $K$-vector space, the algebra is generated by a basis
$(e_1 = 1,\dots, e_n)$; the table is given as a \typ{VEC} of $n$ matrices in
$M_n(K)$, giving the left multiplication by the basis elements $e_i$, in the
given basis.
Assumes that $e_1= 1$, that the multiplication table is integral, and that
$K[e_1,\dots,e_n]$ describes a central simple algebra over $K$.
\bprog
{ m_i = [0,-1,0, 0;
1, 0,0, 0;
0, 0,0,-1;
0, 0,1, 0];
m_j = [0, 0,-1,0;
0, 0, 0,1;
1, 0, 0,0;
0,-1, 0,0];
m_k = [0, 0, 0, 0;
0, 0,-1, 0;
0, 1, 0, 0;
1, 0, 0,-1];
A = alginit(nfinit(y), [matid(4), m_i,m_j,m_k], 0); }
@eprog represents (in a complicated way) the quaternion algebra $(-1,-1)_\Q$.
See below for a simpler solution.
\item (cyclic algebra) $B$ is an \kbd{rnf} structure attached to a cyclic
number field extension $L/K$ of degree $d$, $C$ is a \typ{VEC}
\kbd{[sigma,b]} with 2 components: \kbd{sigma} is a \typ{POLMOD} representing
an automorphism generating $\text{Gal}(L/K)$, $b$ is an element in $K^*$. This
represents the cyclic algebra~$(L/K,\sigma,b)$. Currently the element $b$ has
to be integral.
\bprog
? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfinit(Q, T);
? A = alginit(F, [Mod(x^2,T), 3]);
@eprog defines the cyclic algebra $(L/\Q, \sigma, 3)$, where
$L = \Q(\zeta_5)$ and $\sigma:\zeta\mapsto\zeta^2$ generates
$\text{Gal}(L/\Q)$.
\item (quaternion algebra, special case of the above) $B$ is an \kbd{nf}
structure attached to a number field $K$, $C = [a,b]$ is a vector
containing two elements of $K^*$ with $a$ not a square in $K$, returns the quaternion algebra $(a,b)_K$.
The variable $v$ (\kbd{'x} by default) must have higher priority than the
variable of $K$\kbd{.pol} and is used to represent elements in the splitting
field $L = K[x]/(x^2-a)$.
\bprog
? Q = nfinit(y); A = alginit(Q, [-1,-1]); \\@com $(-1,-1)_\Q$
@eprog
\item (algebra/$K$ defined by local Hasse invariants)
$B$ is an \kbd{nf} structure attached to a number field $K$,
$C = [d, [\kbd{PR},h_f], h_i]$ is a triple
containing an integer $d > 1$, a pair $[\kbd{PR}, h_f]$ describing the
Hasse invariants at finite places, and $h_i$ the Hasse invariants
at archimedean (real) places. A local Hasse invariant belongs to $(1/d)\Z/\Z
\subset \Q/\Z$, and is given either as a \typ{FRAC} (lift to $(1/d)\Z$),
a \typ{INT} or \typ{INTMOD} modulo $d$ (lift to $\Z/d\Z$); a whole vector
of local invariants can also be given as a \typ{VECSMALL}, whose
entries are handled as \typ{INT}s. \kbd{PR} is a list of prime ideals
(\kbd{prid} structures), and $h_f$ is a vector of the same length giving the
local invariants at those maximal ideals. The invariants at infinite real
places are indexed by the real roots $K$\kbd{.roots}: if the Archimedean
place $v$ is attached to the $j$-th root, the value of
$h_v$ is given by $h_i[j]$, must be $0$ or $1/2$ (or~$d/2$ modulo~$d$), and
can be nonzero only if~$d$ is even.
By class field theory, provided the local invariants $h_v$ sum to $0$, up
to Brauer equivalence, there is a unique central simple algebra over $K$
with given local invariants and trivial invariant elsewhere. In particular,
up to isomorphism, there is a unique such algebra $A$ of degree $d$.
We realize $A$ as a cyclic algebra through class field theory. The variable $v$
(\kbd{'x} by default) must have higher priority than the variable of
$K$\kbd{.pol} and is used to represent elements in the (cyclic) splitting
field extension $L/K$ for $A$.
\bprog
? nf = nfinit(y^2+1);
? PR = idealprimedec(nf,5); #PR
%2 = 2
? hi = [];
? hf = [PR, [1/3,-1/3]];
? A = alginit(nf, [3,hf,hi]);
? algsplittingfield(A).pol
%6 = x^3 - 21*x + 7
@eprog
\item (matrix algebra, toy example) $B$ is an \kbd{nf} structure attached
to a number field $K$, $C = d$ is a positive integer. Returns a cyclic
algebra isomorphic to the matrix algebra $M_d(K)$.
In all cases, this function computes a maximal order for the algebra by default,
which may require a lot of time. Setting $\fl = 0$ prevents this computation.
The pari object representing such an algebra $A$ is a \typ{VEC} with the
following data:
\item A splitting field $L$ of $A$ of the same degree over $K$ as $A$, in
\kbd{rnfinit} format, accessed with \kbd{algsplittingfield}.
\item The same splitting field $L$ in \kbd{nfinit} format.
\item The Hasse invariants at the real places of $K$, accessed with
\kbd{alghassei}.
\item The Hasse invariants of $A$ at the finite primes of $K$ that ramify in
the natural order of $A$, accessed with \kbd{alghassef}.
\item A basis of an order ${\cal O}_0$ expressed on the basis of the natural
order, accessed with \kbd{algbasis}.
\item A basis of the natural order expressed on the basis of ${\cal O}_0$,
accessed with \kbd{alginvbasis}.
\item The left multiplication table of ${\cal O}_0$ on the previous basis,
accessed with \kbd{algmultable}.
\item The characteristic of $A$ (always $0$), accessed with \kbd{algchar}.
\item The absolute traces of the elements of the basis of ${\cal O}_0$.
\item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$ of degree
$d$, a \typ{VEC} $[\sigma,\sigma^2,\dots,\sigma^{d-1}]$. The function
\kbd{algaut} returns $\sigma$.
\item If $A$ was constructed as a cyclic algebra~$(L/K,\sigma,b)$, the
element $b$, accessed with \kbd{algb}.
\item If $A$ was constructed with its multiplication table $mt$ over $K$,
the \typ{VEC} of \typ{MAT} $mt$, accessed with \kbd{algrelmultable}.
\item If $A$ was constructed with its multiplication table $mt$ over $K$,
a \typ{VEC} with three components: a \typ{COL} representing an element of $A$
generating the splitting field $L$ as a maximal subfield of $A$, a \typ{MAT}
representing an $L$-basis ${\cal B}$ of $A$ expressed on the $\Z$-basis of
${\cal O}_0$, and a \typ{MAT} representing the $\Z$-basis of ${\cal O}_0$
expressed on ${\cal B}$. This data is accessed with \kbd{algsplittingdata}.
The library syntax is \fun{GEN}{alginit}{GEN B, GEN C, long v = -1, long flag} where \kbd{v} is a variable number.
\subsec{alginv$(\var{al},x)$}\kbdsidx{alginv}\label{se:alginv}
Given an element $x$ in \var{al}, computes its inverse $x^{-1}$ in the
algebra \var{al}. Assumes that $x$ is invertible.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, 0]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{alginv}{GEN al, GEN x}.
\subsec{alginvbasis$(\var{al})$}\kbdsidx{alginvbasis}\label{se:alginvbasis}
Given an central simple algebra \var{al} output by \tet{alginit}, returns
a $\Z$-basis of the natural order in \var{al} with respect to the
order~${\cal O}_0$ stored in \var{al}.
\bprog
A = alginit(nfinit(y), [-1,-1]);
? alginvbasis(A)
%2 =
[1 0 0 -1]
[0 1 0 -1]
[0 0 1 -1]
[0 0 0 2]
@eprog
The library syntax is \fun{GEN}{alginvbasis}{GEN al}.
\subsec{algisassociative$(\var{mt},p=0)$}\kbdsidx{algisassociative}\label{se:algisassociative}
Returns 1 if the multiplication table \kbd{mt} is suitable for
\kbd{algtableinit(mt,p)}, 0 otherwise. More precisely, \kbd{mt} should be
a \typ{VEC} of $n$ matrices in $M_n(K)$, giving the left multiplications
by the basis elements $e_1, \dots, e_n$ (structure constants).
We check whether the first basis element $e_1$ is $1$ and $e_i(e_je_k) =
(e_ie_j)e_k$ for all $i,j,k$.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? algisassociative(mt)
%2 = 1
@eprog
May be used to check a posteriori an algebra: we also allow \kbd{mt} as
output by \tet{algtableinit} ($p$ is ignored in this case).
The library syntax is \fun{GEN}{algisassociative}{GEN mt, GEN p}.
\subsec{algiscommutative$(\var{al})$}\kbdsidx{algiscommutative}\label{se:algiscommutative}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
commutative.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algiscommutative(A)
%3 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algiscommutative(A)
%6 = 1
@eprog
The library syntax is \fun{GEN}{algiscommutative}{GEN al}.
\subsec{algisdivision$(\var{al},\{\var{pl}\})$}\kbdsidx{algisdivision}\label{se:algisdivision}
Given a central simple algebra \var{al} output by \tet{alginit}, test
whether \var{al} is a division algebra. If \var{pl} is set, it should be a
prime ideal of~$K$ or an integer between~$1$ and~$r_1+r_2$, and in that case
test whether \var{al} is locally a division algebra at the place \var{pl}
instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisdivision(A, 1)
%3 = 1
? algisdivision(A, 2)
%4 = 0
? algisdivision(A, idealprimedec(nf,2)[1])
%5 = 1
? algisdivision(A, idealprimedec(nf,5)[1])
%6 = 0
? algisdivision(A)
%7 = 1
@eprog
The library syntax is \fun{GEN}{algisdivision}{GEN al, GEN pl = NULL}.
\subsec{algisdivl$(\var{al},x,y,\{\&z\})$}\kbdsidx{algisdivl}\label{se:algisdivl}
Given two elements $x$ and $y$ in \var{al}, tests whether $y$ is left
divisible by $x$, that is whether there exists~$z$ in \var{al} such
that~$xz=y$, and sets $z$ to this element if it exists.
\bprog
? A = alginit(nfinit(y), [-1,1]);
? algisdivl(A,[x+2,-x-2]~,[x,1]~)
%2 = 0
? algisdivl(A,[x+2,-x-2]~,[-x,x]~,&z)
%3 = 1
? z
%4 = [Mod(-2/5*x - 1/5, x^2 + 1), 0]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algisdivl}{GEN al, GEN x, GEN y, GEN *z = NULL}.
\subsec{algisinv$(\var{al},x,\{\&\var{ix}\})$}\kbdsidx{algisinv}\label{se:algisinv}
Given an element $x$ in \var{al}, tests whether $x$ is invertible, and sets
$ix$ to the inverse of $x$.
\bprog
? A = alginit(nfinit(y), [-1,1]);
? algisinv(A,[-1,1]~)
%2 = 0
? algisinv(A,[1,2]~,&ix)
%3 = 1
? ix
%4 = [Mod(Mod(-1/3, y), x^2 + 1), Mod(Mod(2/3, y), x^2 + 1)]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algisinv}{GEN al, GEN x, GEN *ix = NULL}.
\subsec{algisramified$(\var{al},\{\var{pl}\})$}\kbdsidx{algisramified}\label{se:algisramified}
Given a central simple algebra \var{al} output by \tet{alginit}, test
whether \var{al} is ramified, i.e. not isomorphic to a matrix algebra over its
center. If \var{pl} is set, it should be a prime ideal of~$K$ or an integer
between~$1$ and~$r_1+r_2$, and in that case test whether \var{al} is locally
ramified at the place \var{pl} instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algisramified(A, 1)
%3 = 1
? algisramified(A, 2)
%4 = 0
? algisramified(A, idealprimedec(nf,2)[1])
%5 = 1
? algisramified(A, idealprimedec(nf,5)[1])
%6 = 0
? algisramified(A)
%7 = 1
@eprog
The library syntax is \fun{GEN}{algisramified}{GEN al, GEN pl = NULL}.
\subsec{algissemisimple$(\var{al})$}\kbdsidx{algissemisimple}\label{se:algissemisimple}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
semisimple.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algissemisimple(A)
%3 = 0
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \\ quaternion algebra (-1,-1)
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt);
? algissemisimple(A)
%9 = 1
@eprog
The library syntax is \fun{GEN}{algissemisimple}{GEN al}.
\subsec{algissimple$(\var{al}, \{\var{ss} = 0\})$}\kbdsidx{algissimple}\label{se:algissimple}
\var{al} being a table algebra output by \tet{algtableinit} or a central
simple algebra output by \tet{alginit}, tests whether the algebra \var{al} is
simple. If $\var{ss}=1$, assumes that the algebra~\var{al} is semisimple
without testing it.
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt); \\ matrices [*,*; 0,*]
? algissimple(A)
%3 = 0
? algissimple(A,1) \\ incorrectly assume that A is semisimple
%4 = 1
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];
? m_k=[0,0,0,-1;0,0,b,0;0,1,0,0;1,0,0,0];
? mt = [matid(4), m_i, m_j, m_k];
? A = algtableinit(mt); \\ quaternion algebra (-1,-1)
? algissimple(A)
%10 = 1
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2); \\ direct sum F_4+F_2
? algissimple(A)
%13 = 0
@eprog
The library syntax is \fun{GEN}{algissimple}{GEN al, long ss}.
\subsec{algissplit$(\var{al},\{\var{pl}\})$}\kbdsidx{algissplit}\label{se:algissplit}
Given a central simple algebra \var{al} output by \tet{alginit}, test
whether \var{al} is split, i.e. isomorphic to a matrix algebra over its center.
If \var{pl} is set, it should be a prime ideal of~$K$ or an integer between~$1$
and~$r_1+r_2$, and in that case test whether \var{al} is locally split at the
place \var{pl} instead.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algissplit(A, 1)
%3 = 0
? algissplit(A, 2)
%4 = 1
? algissplit(A, idealprimedec(nf,2)[1])
%5 = 0
? algissplit(A, idealprimedec(nf,5)[1])
%6 = 1
? algissplit(A)
%7 = 0
@eprog
The library syntax is \fun{GEN}{algissplit}{GEN al, GEN pl = NULL}.
\subsec{alglathnf$(\var{al},m)$}\kbdsidx{alglathnf}\label{se:alglathnf}
Given an algebra \var{al} and a square invertible matrix \var{m} with size
the dimension of \var{al}, returns the lattice generated by the columns of
\var{m}.
\bprog
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a = [1,1,-1/2,1,1/3,-1,1,1]~;
? mt = algleftmultable(al,a);
? lat = alglathnf(al,mt);
? lat[2]
%5 = 1/6
@eprog
The library syntax is \fun{GEN}{alglathnf}{GEN al, GEN m}.
\subsec{algleftmultable$(\var{al},x)$}\kbdsidx{algleftmultable}\label{se:algleftmultable}
Given an element \var{x} in \var{al}, computes its left multiplication
table. If \var{x} is given in basis form, returns its multiplication table on
the integral basis; if \var{x} is given in algebraic form, returns its
multiplication table on the basis corresponding to the algebraic form of
elements of \var{al}. In every case, if \var{x} is a \typ{COL} of length $n$,
then the output is a $n\times n$ \typ{MAT}.
Also accepts a square matrix with coefficients in \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algleftmultable(A,[0,1,0,0]~)
%2 =
[0 -1 1 0]
[1 0 1 1]
[0 0 1 1]
[0 0 -2 -1]
@eprog
The library syntax is \fun{GEN}{algleftmultable}{GEN al, GEN x}.
\subsec{algmul$(\var{al},x,y)$}\kbdsidx{algmul}\label{se:algmul}
Given two elements $x$ and $y$ in \var{al}, computes their product $x*y$
in the algebra~\var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algmul(A,[1,1,0,0]~,[0,0,2,1]~)
%2 = [2, 3, 5, -4]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algmul}{GEN al, GEN x, GEN y}.
\subsec{algmultable$(\var{al})$}\kbdsidx{algmultable}\label{se:algmultable}
Returns a multiplication table of \var{al} over its
prime subfield ($\Q$ or $\F_p$), as a \typ{VEC} of \typ{MAT}: the left
multiplication tables of basis elements. If \var{al} was output by
\tet{algtableinit}, returns the multiplication table used to define \var{al}.
If \var{al} was output by \tet{alginit}, returns the multiplication table of
the order~${\cal O}_0$ stored in \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? M = algmultable(A);
? #M
%3 = 4
? M[1] \\ multiplication by e_1 = 1
%4 =
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
? M[2]
%5 =
[0 -1 1 0]
[1 0 1 1]
[0 0 1 1]
[0 0 -2 -1]
@eprog
The library syntax is \fun{GEN}{algmultable}{GEN al}.
\subsec{algneg$(\var{al},x)$}\kbdsidx{algneg}\label{se:algneg}
Given an element $x$ in \var{al}, computes its opposite $-x$ in the
algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algneg(A,[1,1,0,0]~)
%2 = [-1, -1, 0, 0]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algneg}{GEN al, GEN x}.
\subsec{algnorm$(\var{al},x)$}\kbdsidx{algnorm}\label{se:algnorm}
Given an element \var{x} in \var{al}, computes its norm. If \var{al} is
a table algebra output by \tet{algtableinit}, returns the absolute norm of
\var{x}, which is an element of $\F_p$ of~$\Q$; if \var{al} is a central
simple algebra output by \tet{alginit}, returns the reduced norm of \var{x},
which is an element of the center of \var{al}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,19);
? algnorm(A,[0,-2,3]~)
%3 = 18
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algnorm}{GEN al, GEN x}.
\subsec{algpoleval$(\var{al},T,b)$}\kbdsidx{algpoleval}\label{se:algpoleval}
Given an element $b$ in \var{al} and a polynomial $T$ in $K[X]$,
computes $T(b)$ in \var{al}.
The library syntax is \fun{GEN}{algpoleval}{GEN al, GEN T, GEN b}.
\subsec{algpow$(\var{al},x,n)$}\kbdsidx{algpow}\label{se:algpow}
Given an element $x$ in \var{al} and an integer $n$, computes the
power $x^n$ in the algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algpow(A,[1,1,0,0]~,7)
%2 = [8, -8, 0, 0]~
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algpow}{GEN al, GEN x, GEN n}.
\subsec{algprimesubalg$(\var{al})$}\kbdsidx{algprimesubalg}\label{se:algprimesubalg}
\var{al} being the output of \tet{algtableinit} representing a semisimple
algebra of positive characteristic, returns a basis of the prime subalgebra
of~\var{al}. The prime subalgebra of~\var{al} is the subalgebra fixed by the
Frobenius automorphism of the center of \var{al}. It is abstractly isomorphic
to a product of copies of $\F_p$.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algprimesubalg(A)
%3 =
[1 0]
[0 1]
[0 0]
@eprog
The library syntax is \fun{GEN}{algprimesubalg}{GEN al}.
\subsec{algquotient$(\var{al},I,\{\fl=0\})$}\kbdsidx{algquotient}\label{se:algquotient}
\var{al} being a table algebra output by \tet{algtableinit} and \var{I}
being a basis of a two-sided ideal of \var{al} represented by a matrix,
returns the quotient $\var{al}/\var{I}$. When $\var{flag}=1$, returns a
\typ{VEC} $[\var{al}/\var{I},\var{proj},\var{lift}]$ where \var{proj} and
\var{lift} are matrices respectively representing the projection map and a
section of it.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? AQ = algquotient(A,[0;1;0]);
? algdim(AQ)
%4 = 2
@eprog
The library syntax is \fun{GEN}{alg_quotient}{GEN al, GEN I, long flag}.
\subsec{algradical$(\var{al})$}\kbdsidx{algradical}\label{se:algradical}
\var{al} being a table algebra output by \tet{algtableinit}, returns a
basis of the Jacobson radical of the algebra \var{al} over its prime field
($\Q$ or $\F_p$).
Here is an example with $A = \Q[x]/(x^2)$, generated by $(1,x)$:
\bprog
? mt = [matid(2),[0,0;1,0]];
? A = algtableinit(mt);
? algradical(A) \\ = (x)
%3 =
[0]
[1]
@eprog
Another one with $2\times 2$ upper triangular matrices over $\Q$, generated
by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$, such that $a^2 =
0$, $ab = a$, $ba = 0$, $b^2 = b$:
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]
[1]
[0]
@eprog
The library syntax is \fun{GEN}{algradical}{GEN al}.
\subsec{algramifiedplaces$(\var{al})$}\kbdsidx{algramifiedplaces}\label{se:algramifiedplaces}
Given a central simple algebra \var{al} output by \tet{alginit}, return a
\typ{VEC} containing the list of places of the center of \var{al} that are
ramified in \var{al}. Each place is described as an integer between~$1$
and~$r_1$ or as a prime ideal.
\bprog
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algramifiedplaces(A)
%3 = [1, [2, [2, 0]~, 1, 2, 1]]
@eprog
The library syntax is \fun{GEN}{algramifiedplaces}{GEN al}.
\subsec{algrandom$(\var{al},b)$}\kbdsidx{algrandom}\label{se:algrandom}
Given an algebra \var{al} and an integer \var{b}, returns a random
element in \var{al} with coefficients in~$[-b,b]$.
The library syntax is \fun{GEN}{algrandom}{GEN al, GEN b}.
\subsec{algrelmultable$(\var{al})$}\kbdsidx{algrelmultable}\label{se:algrelmultable}
Given a central simple algebra \var{al} output by \tet{alginit} defined by a multiplication table over its center (a number field), returns this multiplication table.
\bprog
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? M = algrelmultable(A);
? M[2] == m_i
%8 = 1
? M[3] == m_j
%9 = 1
? M[4] == m_k
%10 = 1
@eprog
The library syntax is \fun{GEN}{algrelmultable}{GEN al}.
\subsec{algsimpledec$(\var{al},\{\fl=0\})$}\kbdsidx{algsimpledec}\label{se:algsimpledec}
\var{al} being the output of \tet{algtableinit} representing a semisimple
algebra, returns a \typ{VEC} $[\var{al}_1,\var{al}_2,\dots,\var{al}_n]$ such
that~\var{al} is isomorphic to the direct sum of the simple algebras
$\var{al}_i$. When $\var{flag}=1$, each component is instead a \typ{VEC}
$[\var{al}_i,\var{proj}_i,\var{lift}_i]$ where $\var{proj}_i$
and~$\var{lift}_i$ are matrices respectively representing the projection map
on the $i$-th factor and a section of it. The factors are sorted by
increasing dimension, then increasing dimension of the center. This ensures
that the ordering of the isomorphism classes of the factors is deterministic
over finite fields, but not necessarily over~$\Q$.
\misctitle{Warning} The images of the $\var{lift}_i$ are not guaranteed to form a direct sum.
The library syntax is \fun{GEN}{algsimpledec}{GEN al, long flag}.
\subsec{algsplittingdata$(\var{al})$}\kbdsidx{algsplittingdata}\label{se:algsplittingdata}
Given a central simple algebra \var{al} output by \tet{alginit} defined
by a multiplication table over its center~$K$ (a number field), returns data
stored to compute a splitting of \var{al} over an extension. This data is a
\typ{VEC} \kbd{[t,Lbas,Lbasinv]} with $3$ components:
\item an element $t$ of \var{al} such that $L=K(t)$ is a maximal subfield
of \var{al};
\item a matrix \kbd{Lbas} expressing a $L$-basis of \var{al} (given an
$L$-vector space structure by multiplication on the right) on the integral
basis of \var{al};
\item a matrix \kbd{Lbasinv} expressing the integral basis of \var{al} on
the previous $L$-basis.
\bprog
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? [t,Lb,Lbi] = algsplittingdata(A);
? t
%8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;
? matsize(Lb)
%9 = [12, 2]
? matsize(Lbi)
%10 = [2, 12]
@eprog
The library syntax is \fun{GEN}{algsplittingdata}{GEN al}.
\subsec{algsplittingfield$(\var{al})$}\kbdsidx{algsplittingfield}\label{se:algsplittingfield}
Given a central simple algebra \var{al} output by \tet{alginit}, returns
an \kbd{rnf} structure: the splitting field of \var{al} that is stored in
\var{al}, as a relative extension of the center.
\bprog
nf = nfinit(y^3-5);
a = y; b = y^2;
{m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
{m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
{m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
mt = [matid(4), m_i, m_j, m_k];
A = alginit(nf,mt,'x);
algsplittingfield(A).pol
%8 = x^2 - y
@eprog
The library syntax is \fun{GEN}{algsplittingfield}{GEN al}.
\subsec{algsplittingmatrix$(\var{al},x)$}\kbdsidx{algsplittingmatrix}\label{se:algsplittingmatrix}
A central simple algebra \var{al} output by \tet{alginit} contains data
describing an isomorphism~$\phi : A\otimes_K L \to M_d(L)$, where $d$ is the
degree of the algebra and $L$ is an extension of $L$ with~$[L:K]=d$. Returns
the matrix $\phi(x)$.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsplittingmatrix(A,[0,0,0,2]~)
%2 =
[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]
[Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)]
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algsplittingmatrix}{GEN al, GEN x}.
\subsec{algsqr$(\var{al},x)$}\kbdsidx{algsqr}\label{se:algsqr}
Given an element $x$ in \var{al}, computes its square $x^2$ in the
algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsqr(A,[1,0,2,0]~)
%2 = [-3, 0, 4, 0]~
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algsqr}{GEN al, GEN x}.
\subsec{algsub$(\var{al},x,y)$}\kbdsidx{algsub}\label{se:algsub}
Given two elements $x$ and $y$ in \var{al}, computes their difference
$x-y$ in the algebra \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
%2 = [0, 1, -1, 0]~
@eprog
Also accepts matrices with coefficients in \var{al}.
The library syntax is \fun{GEN}{algsub}{GEN al, GEN x, GEN y}.
\subsec{algsubalg$(\var{al},B)$}\kbdsidx{algsubalg}\label{se:algsubalg}
\var{al} being a table algebra output by \tet{algtableinit} and \var{B}
being a basis of a subalgebra of \var{al} represented by a matrix, returns an
algebra isomorphic to \var{B}.
\bprog
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? B = algsubalg(A,[1,0; 0,0; 0,1]);
? algdim(A)
%4 = 3
? algdim(B)
%5 = 2
@eprog
The library syntax is \fun{GEN}{algsubalg}{GEN al, GEN B}.
\subsec{algtableinit$(\var{mt}, \{p=0\})$}\kbdsidx{algtableinit}\label{se:algtableinit}
Initialize the associative algebra over $K = \Q$ (p omitted) or $\F_p$
defined by the multiplication table \var{mt}.
As a $K$-vector space, the algebra is generated by a basis
$(e_1 = 1, e_2, \dots, e_n)$; the table is given as a \typ{VEC} of $n$ matrices in
$M_n(K)$, giving the left multiplication by the basis elements $e_i$, in the
given basis.
Assumes that $e_1=1$, that $K e_1\oplus \dots\oplus K e_n]$ describes an
associative algebra over $K$, and in the case $K=\Q$ that the multiplication
table is integral. If the algebra is already known to be central
and simple, then the case $K = \F_p$ is useless, and one should use
\tet{alginit} directly.
The point of this function is to input a finite dimensional $K$-algebra, so
as to later compute its radical, then to split the quotient algebra as a
product of simple algebras over $K$.
The pari object representing such an algebra $A$ is a \typ{VEC} with the
following data:
\item The characteristic of $A$, accessed with \kbd{algchar}.
\item The multiplication table of $A$, accessed with \kbd{algmultable}.
\item The traces of the elements of the basis.
A simple example: the $2\times 2$ upper triangular matrices over $\Q$,
generated by $I_2$, $a = \kbd{[0,1;0,0]}$ and $b = \kbd{[0,0;0,1]}$,
such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$:
\bprog
? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algradical(A) \\ = (a)
%6 =
[0]
[1]
[0]
? algcenter(A) \\ = (I_2)
%7 =
[1]
[0]
[0]
@eprog
The library syntax is \fun{GEN}{algtableinit}{GEN mt, GEN p = NULL}.
\subsec{algtensor$(\var{al1},\var{al2},\{\var{maxord}=1\})$}\kbdsidx{algtensor}\label{se:algtensor}
Given two algebras \var{al1} and \var{al2}, computes their tensor
product. For table algebras output by \tet{algtableinit}, the flag
\var{maxord} is ignored. For central simple algebras output by \tet{alginit},
computes a maximal order by default. Prevent this computation by setting
$\var{maxord}=0$.
Currently only implemented for cyclic algebras of coprime degree over the same
center~$K$, and the tensor product is over~$K$.
The library syntax is \fun{GEN}{algtensor}{GEN al1, GEN al2, long maxord}.
\subsec{algtrace$(\var{al},x)$}\kbdsidx{algtrace}\label{se:algtrace}
Given an element \var{x} in \var{al}, computes its trace. If \var{al} is
a table algebra output by \tet{algtableinit}, returns the absolute trace of
\var{x}, which is an element of $\F_p$ or~$\Q$; if \var{al} is the output of
\tet{alginit}, returns the reduced trace of \var{x}, which is an element of
the center of \var{al}.
\bprog
? A = alginit(nfinit(y), [-1,-1]);
? algtrace(A,[5,0,0,1]~)
%2 = 11
@eprog
Also accepts a square matrix with coefficients in \var{al}.
The library syntax is \fun{GEN}{algtrace}{GEN al, GEN x}.
\subsec{algtype$(\var{al})$}\kbdsidx{algtype}\label{se:algtype}
Given an algebra \var{al} output by \tet{alginit} or by \tet{algtableinit}, returns an integer indicating the type of algebra:
\item $0$: not a valid algebra.
\item $1$: table algebra output by \tet{algtableinit}.
\item $2$: central simple algebra output by \tet{alginit} and represented by
a multiplication table over its center.
\item $3$: central simple algebra output by \tet{alginit} and represented by
a cyclic algebra.
\bprog
? algtype([])
%1 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algtype(A)
%4 = 1
? nf = nfinit(y^3-5);
? a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? algtype(A)
%12 = 2
? A = alginit(nfinit(y), [-1,-1]);
? algtype(A)
%14 = 3
@eprog
The library syntax is \fun{long}{algtype}{GEN al}.
%SECTION: algebras
\section{Polynomials and power series}
We group here all functions which are specific to polynomials or power
series. Many other functions which can be applied on these objects are
described in the other sections. Also, some of the functions described here
can be applied to other types.
\subsec{O$(p\hbox{\kbd{\pow}}e)$}\kbdsidx{O}\label{se:O}
If $p$ is an integer
greater than $2$, returns a $p$-adic $0$ of precision $e$. In all other
cases, returns a power series zero with precision given by $e v$, where $v$
is the $X$-adic valuation of $p$ with respect to its main variable.
The library syntax is \fun{GEN}{ggrando}{}.
\fun{GEN}{zeropadic}{GEN p, long e} for a $p$-adic and
\fun{GEN}{zeroser}{long v, long e} for a power series zero in variable $v$.
\subsec{bezoutres$(A,B,\{v\})$}\kbdsidx{bezoutres}\label{se:bezoutres}
Deprecated alias for \kbd{polresultantext}
The library syntax is \fun{GEN}{polresultantext0}{GEN A, GEN B, long v = -1} where \kbd{v} is a variable number.
\subsec{deriv$(x,\{v\})$}\kbdsidx{deriv}\label{se:deriv}
Derivative of $x$ with respect to the main
variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative
of a scalar type is zero, and the derivative of a vector or matrix is done
componentwise. One can use $x'$ as a shortcut if the derivative is with
respect to the main variable of $x$.
By definition, the main variable of a \typ{POLMOD} is the main variable among
the coefficients from its two polynomial components (representative and
modulus); in other words, assuming a polmod represents an element of
$R[X]/(T(X))$, the variable $X$ is a mute variable and the derivative is
taken with respect to the main variable used in the base ring $R$.
The library syntax is \fun{GEN}{deriv}{GEN x, long v = -1} where \kbd{v} is a variable number.
\subsec{diffop$(x,v,d,\{n=1\})$}\kbdsidx{diffop}\label{se:diffop}
Let $v$ be a vector of variables, and $d$ a vector of the same length,
return the image of $x$ by the $n$-power ($1$ if n is not given) of the differential
operator $D$ that assumes the value \kbd{d[i]} on the variable \kbd{v[i]}.
The value of $D$ on a scalar type is zero, and $D$ applies componentwise to a vector
or matrix. When applied to a \typ{POLMOD}, if no value is provided for the variable
of the modulus, such value is derived using the implicit function theorem.
Some examples:
This function can be used to differentiate formal expressions:
If $E=\exp(X^2)$ then we have $E'=2*X*E$. We can derivate $X*exp(X^2)$ as follow:
\bprog
? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
@eprog
Let \kbd{Sin} and \kbd{Cos} be two function such that $\kbd{Sin}^2+\kbd{Cos}^2=1$
and $\kbd{Cos}'=-\kbd{Sin}$. We can differentiate $\kbd{Sin}/\kbd{Cos}$ as follow,
PARI inferring the value of $\kbd{Sin}'$ from the equation:
\bprog
? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))
@eprog
Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:
\bprog
Bell(k,n=-1)=
{
my(var(i)=eval(Str("X",i)));
my(x,v,dv);
v=vector(k,i,if(i==1,'E,var(i-1)));
dv=vector(k,i,if(i==1,'X*var(1)*'E,var(i)));
x=diffop('E,v,dv,k)/'E;
if(n<0,subst(x,'X,1),polcoeff(x,n,'X))
}
@eprog
The library syntax is \fun{GEN}{diffop0}{GEN x, GEN v, GEN d, long n}.
For $n=1$, the function \fun{GEN}{diffop}{GEN x, GEN v, GEN d} is also available.
\subsec{eval$(x)$}\kbdsidx{eval}\label{se:eval}
Replaces in $x$ the formal variables by the values that
have been assigned to them after the creation of $x$. This is mainly useful
in GP, and not in library mode. Do not confuse this with substitution (see
\kbd{subst}).
If $x$ is a character string, \kbd{eval($x$)} executes $x$ as a GP
command, as if directly input from the keyboard, and returns its
output.
\bprog
? x1 = "one"; x2 = "two";
? n = 1; eval(Str("x", n))
%2 = "one"
? f = "exp"; v = 1;
? eval(Str(f, "(", v, ")"))
%4 = 2.7182818284590452353602874713526624978
@eprog\noindent Note that the first construct could be implemented in a
simpler way by using a vector \kbd{x = ["one","two"]; x[n]}, and the second
by using a closure \kbd{f = exp; f(v)}. The final example is more interesting:
\bprog
? genmat(u,v) = matrix(u,v,i,j, eval( Str("x",i,j) ));
? genmat(2,3) \\ generic 2 x 3 matrix
%2 =
[x11 x12 x13]
[x21 x22 x23]
@eprog
A syntax error in the evaluation expression raises an \kbd{e\_SYNTAX}
exception, which can be trapped as usual:
\bprog
? 1a
*** syntax error, unexpected variable name, expecting $end or ';': 1a
*** ^-
? E(expr) =
{
iferr(eval(expr),
e, print("syntax error"),
errname(e) == "e_SYNTAX");
}
? E("1+1")
%1 = 2
? E("1a")
syntax error
@eprog
\synt{geval}{GEN x}.
\subsec{factorpadic$(\var{pol},p,r)$}\kbdsidx{factorpadic}\label{se:factorpadic}
$p$-adic factorization
of the polynomial \var{pol} to precision $r$, the result being a
two-column matrix as in \kbd{factor}. Note that this is not the same
as a factorization over $\Z/p^r\Z$ (polynomials over that ring do not form a
unique factorization domain, anyway), but approximations in $\Q/p^r\Z$ of
the true factorization in $\Q_p[X]$.
\bprog
? factorpadic(x^2 + 9, 3,5)
%1 =
[(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]
? factorpadic(x^2 + 1, 5,3)
%2 =
[ (1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]
[(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]
@eprog\noindent
The factors are normalized so that their leading coefficient is a power of
$p$. The method used is a modified version of the \idx{round 4} algorithm of
\idx{Zassenhaus}.
If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
well-defined; in this case, the polynomial is first made integral by dividing
out the $p$-adic content, then lifted to $\Z$ using \tet{truncate}
coefficientwise.
Hence we actually factor exactly a polynomial which is only $p$-adically
close to the input. To avoid pitfalls, we advise to only factor polynomials
with exact rational coefficients.
\synt{factorpadic}{GEN f,GEN p, long r} . The function \kbd{factorpadic0} is
deprecated, provided for backward compatibility.
\subsec{intformal$(x,\{v\})$}\kbdsidx{intformal}\label{se:intformal}
\idx{formal integration} of $x$ with respect to the variable $v$ (wrt.
the main variable if $v$ is omitted). Since PARI cannot represent
logarithmic or arctangent terms, any such term in the result will yield an
error:
\bprog
? intformal(x^2)
%1 = 1/3*x^3
? intformal(x^2, y)
%2 = y*x^2
? intformal(1/x)
*** at top-level: intformal(1/x)
*** ^--------------
*** intformal: domain error in intformal: residue(series, pole) != 0
@eprog
The argument $x$ can be of any type. When $x$ is a rational function, we
assume that the base ring is an integral domain of characteristic zero.
By definition, the main variable of a \typ{POLMOD} is the main variable
among the coefficients from its two polynomial components
(representative and modulus); in other words, assuming a polmod represents an
element of $R[X]/(T(X))$, the variable $X$ is a mute variable and the
integral is taken with respect to the main variable used in the base ring $R$.
In particular, it is meaningless to integrate with respect to the main
variable of \kbd{x.mod}:
\bprog
? intformal(Mod(1,x^2+1), 'x)
*** intformal: incorrect priority in intformal: variable x = x
@eprog
The library syntax is \fun{GEN}{integ}{GEN x, long v = -1} where \kbd{v} is a variable number.
\subsec{padicappr$(\var{pol},a)$}\kbdsidx{padicappr}\label{se:padicappr}
Vector of $p$-adic roots of the
polynomial $pol$ congruent to the $p$-adic number $a$ modulo $p$, and with
the same $p$-adic precision as $a$. The number $a$ can be an ordinary
$p$-adic number (type \typ{PADIC}, i.e.~an element of $\Z_p$) or can be an
integral element of a finite extension of $\Q_p$, given as a \typ{POLMOD}
at least one of whose coefficients is a \typ{PADIC}. In this case, the result
is the vector of roots belonging to the same extension of $\Q_p$ as $a$.
The library syntax is \fun{GEN}{padicappr}{GEN pol, GEN a}.
Also available is \fun{GEN}{Zp_appr}{GEN f, GEN a} when $a$ is a
\typ{PADIC}.
\subsec{padicfields$(p, N, \{\fl=0\})$}\kbdsidx{padicfields}\label{se:padicfields}
Returns a vector of polynomials generating all the extensions of degree
$N$ of the field $\Q_p$ of $p$-adic rational numbers; $N$ is
allowed to be a 2-component vector $[n,d]$, in which case we return the
extensions of degree $n$ and discriminant $p^d$.
The list is minimal in the sense that two different polynomials generate
non-isomorphic extensions; in particular, the number of polynomials is the
number of classes of non-isomorphic extensions. If $P$ is a polynomial in this
list, $\alpha$ is any root of $P$ and $K = \Q_p(\alpha)$, then $\alpha$
is the sum of a uniformizer and a (lift of a) generator of the residue field
of $K$; in particular, the powers of $\alpha$ generate the ring of $p$-adic
integers of $K$.
If $\fl = 1$, replace each polynomial $P$ by a vector $[P, e, f, d, c]$
where $e$ is the ramification index, $f$ the residual degree, $d$ the
valuation of the discriminant, and $c$ the number of conjugate fields.
If $\fl = 2$, only return the \emph{number} of extensions in a fixed
algebraic closure (Krasner's formula), which is much faster.
The library syntax is \fun{GEN}{padicfields0}{GEN p, GEN N, long flag}.
Also available is
\fun{GEN}{padicfields}{GEN p, long n, long d, long flag}, which computes
extensions of $\Q_p$ of degree $n$ and discriminant $p^d$.
\subsec{polchebyshev$(n,\{\fl=1\},\{a='x\})$}\kbdsidx{polchebyshev}\label{se:polchebyshev}
Returns the $n^{\text{th}}$
\idx{Chebyshev} polynomial of the first kind $T_n$ ($\fl=1$) or the second
kind $U_n$ ($\fl=2$), evaluated at $a$ (\kbd{'x} by default). Both series of
polynomials satisfy the 3-term relation
$$ P_{n+1} = 2xP_n - P_{n-1}, $$
and are determined by the initial conditions $U_0 = T_0 = 1$, $T_1 = x$,
$U_1 = 2x$. In fact $T_n' = n U_{n-1}$ and, for all complex numbers $z$, we
have $T_n(\cos z) = \cos (nz)$ and $U_{n-1}(\cos z) = \sin(nz)/\sin z$.
If $n \geq 0$, then these polynomials have degree $n$. For $n < 0$,
$T_n$ is equal to $T_{-n}$ and $U_n$ is equal to $-U_{-2-n}$.
In particular, $U_{-1} = 0$.
The library syntax is \fun{GEN}{polchebyshev_eval}{long n, long flag, GEN a = NULL}.
Also available are
\fun{GEN}{polchebyshev}{long n, long flag, long v},
\fun{GEN}{polchebyshev1}{long n, long v} and
\fun{GEN}{polchebyshev2}{long n, long v} for $T_n$ and $U_n$ respectively.
\subsec{polclass$(D, \{\var{inv} = 0\}, \{x = 'x\})$}\kbdsidx{polclass}\label{se:polclass}
Return a polynomial in $\Z[x]$ generating the Hilbert class field for the
imaginary quadratic discriminant $D$. If $inv$ is 0 (the default),
use the modular $j$-function and return the classical Hilbert polynomial,
otherwise use a class invariant. The following invariants correspond to
the different values of $inv$, where $f$ denotes Weber's function
\kbd{weber}, and $w_{p,q}$ the double eta quotient given by
$w_{p,q} = \dfrac{ \eta(x/p)\*\eta(x/q) }{ \eta(x)\*\eta(x/{pq}) }$
The invariants $w_{p,q}$ are not allowed unless they satisfy the following
technical conditions ensuring they do generate the Hilbert class
field and not a strict subfield:
\item if $p\neq q$, we need them both non-inert, prime to the conductor of
$\Z[\sqrt{D}]$. Let $P, Q$ be prime ideals above $p$ and $q$; if both are
unramified, we further require that $P^{\pm 1} Q^{\pm 1}$ be all distinct in
the class group of $\Z[\sqrt{D}]$; if both are ramified, we require that $PQ
\neq 1$ in the class group.
\item if $p = q$, we want it split and prime to the conductor and
the prime ideal above it must have order $\neq 1, 2, 4$ in the class group.
\noindent Invariants are allowed under the additional conditions on $D$
listed below.
\item 0 : $j$
\item 1 : $f$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 2 : $f^2$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 3 : $f^3$, $D = 1 \mod 8$;
\item 4 : $f^4$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 5 : $\gamma_2= j^{1/3}$, $D = 1,2 \mod 3$;
\item 6 : $w_{2,3}$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 8 : $f^8$, $D = 1 \mod 8$ and $D = 1,2 \mod 3$;
\item 9 : $w_{3,3}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;
\item 10: $w_{2,5}$, $D \neq 60 \mod 80$ and $D = 1,2 \mod 3$;
\item 14: $w_{2,7}$, $D = 1 \mod 8$;
\item 15: $w_{3,5}$, $D = 1,2 \mod 3$;
\item 21: $w_{3,7}$, $D = 1 \mod 2$ and $21$ does not divide $D$
\item 23: $w_{2,3}^2$, $D = 1,2 \mod 3$;
\item 24: $w_{2,5}^2$, $D = 1,2 \mod 3$;
\item 26: $w_{2,13}$, $D \neq 156 \mod 208$;
\item 27: $w_{2,7}^2$, $D\neq 28 \mod 112$;
\item 28: $w_{3,3}^2$, $D = 1,2 \mod 3$;
\item 35: $w_{5,7}$, $D = 1,2 \mod 3$;
\item 39: $w_{3,13}$, $D = 1 \mod 2$ and $D = 1,2 \mod 3$;
The algorithm for computing the polynomial does not use the floating point
approach, which would evaluate a precise modular function in a precise
complex argument. Instead, it relies on a faster Chinese remainder based
approach modulo small primes, in which the class invariant is only defined
algebraically by the modular polynomial relating the modular function to $j$.
So in fact, any of the several roots of the modular polynomial may actually
be the class invariant, and more precise assertions cannot be made.
For instance, while \kbd{polclass(D)} returns the minimal polynomial of
$j(\tau)$ with $\tau$ (any) quadratic integer for the discriminant $D$,
the polynomial returned by \kbd{polclass(D, 5)} can be the minimal polynomial
of any of $\gamma_2 (\tau)$, $\zeta_3 \gamma_2 (\tau)$ or
$\zeta_3^2 \gamma_2 (\tau)$, the three roots of the modular polynomial
$j = \gamma_2^3$, in which $j$ has been specialised to $j (\tau)$.
The modular polynomial is given by
$j = {(f^{24}-16)^3 \over f^{24}}$ for Weber's function $f$.
For the double eta quotients of level $N = p q$, all functions are covered
such that the modular curve $X_0^+ (N)$, the function field of which is
generated by the functions invariant under $\Gamma^0 (N)$ and the
Fricke--Atkin--Lehner involution, is of genus $0$ with function field
generated by (a power of) the double eta quotient $w$.
This ensures that the full Hilbert class field (and not a proper subfield)
is generated by class invariants from these double eta quotients.
Then the modular polynomial is of degree $2$ in $j$, and
of degree $\psi (N) = (p+1)(q+1)$ in $w$.
\bprog
? polclass(-163)
%1 = x + 262537412640768000
? polclass(-51, , 'z)
%2 = z^2 + 5541101568*z + 6262062317568
? polclass(-151,1)
x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1
@eprog
The library syntax is \fun{GEN}{polclass}{GEN D, long inv, long x = -1} where \kbd{x} is a variable number.
\subsec{polcoeff$(x,n,\{v\})$}\kbdsidx{polcoeff}\label{se:polcoeff}
Coefficient of degree $n$ of the polynomial $x$, with respect to the
main variable if $v$ is omitted, with respect to $v$ otherwise. If $n$
is greater than the degree, the result is zero.
Naturally applies to scalars (polynomial of degree $0$), as well as to
rational functions whose denominator is a monomial.
It also applies to power series: if $n$ is less than the valuation, the result
is zero. If it is greater than the largest significant degree, then an error
message is issued.
For greater flexibility, $x$ can be a vector or matrix type and the
function then returns \kbd{component(x,n)}.
The library syntax is \fun{GEN}{polcoeff0}{GEN x, long n, long v = -1} where \kbd{v} is a variable number.
\subsec{polcyclo$(n,\{a = 'x\})$}\kbdsidx{polcyclo}\label{se:polcyclo}
$n$-th cyclotomic polynomial, evaluated at $a$ (\kbd{'x} by default). The
integer $n$ must be positive.
Algorithm used: reduce to the case where $n$ is squarefree; to compute the
cyclotomic polynomial, use $\Phi_{np}(x)=\Phi_n(x^p)/\Phi(x)$; to compute
it evaluated, use $\Phi_n(x) = \prod_{d\mid n} (x^d-1)^{\mu(n/d)}$. In the
evaluated case, the algorithm assumes that $a^d - 1$ is either $0$ or
invertible, for all $d\mid n$. If this is not the case (the base ring has
zero divisors), use \kbd{subst(polcyclo(n),x,a)}.
The library syntax is \fun{GEN}{polcyclo_eval}{long n, GEN a = NULL}.
The variant \fun{GEN}{polcyclo}{long n, long v} returns the $n$-th
cyclotomic polynomial in variable $v$.
\subsec{polcyclofactors$(f)$}\kbdsidx{polcyclofactors}\label{se:polcyclofactors}
Returns a vector of polynomials, whose product is the product of
distinct cyclotomic polynomials dividing $f$.
\bprog
? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;
? v = polcyclofactors(f)
%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]
? apply(poliscycloprod, v)
%3 = [1, 1, 1]
? apply(poliscyclo, v)
%4 = [4, 3, 10]
@eprog\noindent In general, the polynomials are products of cyclotomic
polynomials and not themselves irreducible:
\bprog
? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;
? polcyclofactors(g)
%2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]
? factor(%[1])
%3 =
[ x^2 + x + 1 1]
[x^4 + x^3 + x^2 + x + 1 1]
@eprog
The library syntax is \fun{GEN}{polcyclofactors}{GEN f}.
\subsec{poldegree$(x,\{v\})$}\kbdsidx{poldegree}\label{se:poldegree}
Degree of the polynomial $x$ in the main variable if $v$ is omitted, in
the variable $v$ otherwise.
The degree of $0$ is \kbd{-oo}. The degree of a non-zero scalar is $0$.
Finally, when $x$ is a non-zero polynomial or rational function, returns the
ordinary degree of $x$. Raise an error otherwise.
The library syntax is \fun{GEN}{gppoldegree}{GEN x, long v = -1} where \kbd{v} is a variable number.
Also available is
\fun{long}{poldegree}{GEN x, long v}, which returns \tet{-LONG_MAX} if $x = 0$
and the degree as a \kbd{long} integer.
\subsec{poldisc$(\var{pol},\{v\})$}\kbdsidx{poldisc}\label{se:poldisc}
Discriminant of the polynomial
\var{pol} in the main variable if $v$ is omitted, in $v$ otherwise. Uses a
modular algorithm over $\Z$ or $\Q$, and the \idx{subresultant algorithm}
otherwise.
\bprog
? T = x^4 + 2*x+1;
? poldisc(T)
%2 = -176
? poldisc(T^2)
%3 = 0
@eprog
For convenience, the function also applies to types \typ{QUAD} and
\typ{QFI}/\typ{QFR}:
\bprog
? z = 3*quadgen(8) + 4;
? poldisc(z)
%2 = 8
? q = Qfb(1,2,3);
? poldisc(q)
%4 = -8
@eprog
The library syntax is \fun{GEN}{poldisc0}{GEN pol, long v = -1} where \kbd{v} is a variable number.
\subsec{poldiscreduced$(f)$}\kbdsidx{poldiscreduced}\label{se:poldiscreduced}
Reduced discriminant vector of the
(integral, monic) polynomial $f$. This is the vector of elementary divisors
of $\Z[\alpha]/f'(\alpha)\Z[\alpha]$, where $\alpha$ is a root of the
polynomial $f$. The components of the result are all positive, and their
product is equal to the absolute value of the discriminant of~$f$.
The library syntax is \fun{GEN}{reduceddiscsmith}{GEN f}.
\subsec{polgraeffe$(f)$}\kbdsidx{polgraeffe}\label{se:polgraeffe}
Returns the \idx{Graeffe} transform $g$ of $f$, such that $g(x^2) = f(x)
f(-x)$.
The library syntax is \fun{GEN}{polgraeffe}{GEN f}.
\subsec{polhensellift$(A, B, p, e)$}\kbdsidx{polhensellift}\label{se:polhensellift}
Given a prime $p$, an integral polynomial $A$ whose leading coefficient
is a $p$-unit, a vector $B$ of integral polynomials that are monic and
pairwise relatively prime modulo $p$, and whose product is congruent to
$A/\text{lc}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose
product is congruent to $A$ modulo $p^e$.
More generally, if $T$ is an integral polynomial irreducible mod $p$, and
$B$ is a factorization of $A$ over the finite field $\F_p[t]/(T)$, you can
lift it to $\Z_p[t]/(T, p^e)$ by replacing the $p$ argument with $[p,T]$:
\bprog
? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )
%2 = x^2 + (t + 1)
@eprog
The library syntax is \fun{GEN}{polhensellift}{GEN A, GEN B, GEN p, long e}.
\subsec{polhermite$(n,\{a='x\})$}\kbdsidx{polhermite}\label{se:polhermite}
$n^{\text{th}}$ \idx{Hermite} polynomial $H_n$ evaluated at $a$
(\kbd{'x} by default), i.e.
$$ H_n(x) = (-1)^n\*e^{x^2} \dfrac{d^n}{dx^n}e^{-x^2}.$$
The library syntax is \fun{GEN}{polhermite_eval}{long n, GEN a = NULL}.
The variant \fun{GEN}{polhermite}{long n, long v} returns the $n$-th
Hermite polynomial in variable $v$.
\subsec{polinterpolate$(X,\{Y\},\{t = 'x\},\{\&e\})$}\kbdsidx{polinterpolate}\label{se:polinterpolate}
Given the data vectors
$X$ and $Y$ of the same length $n$ ($X$ containing the $x$-coordinates,
and $Y$ the corresponding $y$-coordinates), this function finds the
\idx{interpolating polynomial} $P$ of minimal degree passing through these
points and evaluates it at~$t$. If $Y$ is omitted, the polynomial $P$
interpolates the $(i,X[i])$. If present, $e$ will contain an error estimate
on the returned value.
The library syntax is \fun{GEN}{polint}{GEN X, GEN Y = NULL, GEN t = NULL, GEN *e = NULL}.
\subsec{poliscyclo$(f)$}\kbdsidx{poliscyclo}\label{se:poliscyclo}
Returns 0 if $f$ is not a cyclotomic polynomial, and $n > 0$ if $f =
\Phi_n$, the $n$-th cyclotomic polynomial.
\bprog
? poliscyclo(x^4-x^2+1)
%1 = 12
? polcyclo(12)
%2 = x^4 - x^2 + 1
? poliscyclo(x^4-x^2-1)
%3 = 0
@eprog
The library syntax is \fun{long}{poliscyclo}{GEN f}.
\subsec{poliscycloprod$(f)$}\kbdsidx{poliscycloprod}\label{se:poliscycloprod}
Returns 1 if $f$ is a product of cyclotomic polynomial, and $0$
otherwise.
\bprog
? f = x^6+x^5-x^3+x+1;
? poliscycloprod(f)
%2 = 1
? factor(f)
%3 =
[ x^2 + x + 1 1]
[x^4 - x^2 + 1 1]
? [ poliscyclo(T) | T <- %[,1] ]
%4 = [3, 12]
? polcyclo(3) * polcyclo(12)
%5 = x^6 + x^5 - x^3 + x + 1
@eprog
The library syntax is \fun{long}{poliscycloprod}{GEN f}.
\subsec{polisirreducible$(\var{pol})$}\kbdsidx{polisirreducible}\label{se:polisirreducible}
\var{pol} being a polynomial (univariate in the present version \vers),
returns 1 if \var{pol} is non-constant and irreducible, 0 otherwise.
Irreducibility is checked over the smallest base field over which \var{pol}
seems to be defined.
The library syntax is \fun{long}{isirreducible}{GEN pol}.
\subsec{pollead$(x,\{v\})$}\kbdsidx{pollead}\label{se:pollead}
Leading coefficient of the polynomial or power series $x$. This is
computed with respect to the main variable of $x$ if $v$ is omitted, with
respect to the variable $v$ otherwise.
The library syntax is \fun{GEN}{pollead}{GEN x, long v = -1} where \kbd{v} is a variable number.
\subsec{pollegendre$(n,\{a='x\})$}\kbdsidx{pollegendre}\label{se:pollegendre}
$n^{\text{th}}$ \idx{Legendre polynomial} evaluated at $a$ (\kbd{'x} by
default).
The library syntax is \fun{GEN}{pollegendre_eval}{long n, GEN a = NULL}.
To obtain the $n$-th Legendre polynomial in variable $v$,
use \fun{GEN}{pollegendre}{long n, long v}.
\subsec{polmodular$(L, \{\var{inv} = 0\}, \{x = 'x\}, \{y = 'y\}, \{\var{derivs} = 0\})$}\kbdsidx{polmodular}\label{se:polmodular}
Return the modular polynomial of prime level $L$ in variables $x$ and $y$
for the modular function specified by \kbd{inv}. If \kbd{inv} is 0 (the
default), use the modular $j$ function, if \kbd{inv} is 1 use the
Weber-$f$ function, and if \kbd{inv} is 5 use $\gamma_2 =
\sqrt[3]{j}$.
See \kbd{polclass} for the full list of invariants.
If $x$ is given as \kbd{Mod(j, p)} or an element $j$ of
a finite field (as a \typ{FFELT}), then return the modular polynomial of
level $L$ evaluated at $j$. If $j$ is from a finite field and
\kbd{derivs} is non-zero, then return a triple where the
last two elements are the first and second derivatives of the modular
polynomial evaluated at $j$.
\bprog
? polmodular(3)
%1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ...
? polmodular(7, 1, , 'J)
%2 = x^8 - J^7*x^7 + 7*J^4*x^4 - 8*J*x + J^8
? polmodular(7, 5, 7*ffgen(19)^0, 'j)
%3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18
? polmodular(7, 5, Mod(7,19), 'j)
%4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ...
? u = ffgen(5)^0; T = polmodular(3,0,,'j)*u;
? polmodular(3, 0, u,'j,1)
%6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2]
? subst(T,x,u)
%7 = j^4 + 3*j^2 + 4*j + 1
? subst(T',x,u)
%8 = 3*j^2 + 2*j + 4
? subst(T'',x,u)
%9 = 3*j^3 + 4*j^2 + 4*j + 2
@eprog
The library syntax is \fun{GEN}{polmodular}{long L, long inv, GEN x = NULL, long y = -1, long derivs} where \kbd{y} is a variable number.
\subsec{polrecip$(\var{pol})$}\kbdsidx{polrecip}\label{se:polrecip}
Reciprocal polynomial of \var{pol}, i.e.~the coefficients are in
reverse order. \var{pol} must be a polynomial.
The library syntax is \fun{GEN}{polrecip}{GEN pol}.
\subsec{polresultant$(x,y,\{v\},\{\fl=0\})$}\kbdsidx{polresultant}\label{se:polresultant}
Resultant of the two
polynomials $x$ and $y$ with exact entries, with respect to the main
variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$
otherwise. The algorithm assumes the base ring is a domain. If you also need
the $u$ and $v$ such that $x*u + y*v = \text{Res}(x,y)$, use the
\tet{polresultantext} function.
If $\fl=0$ (default), uses the algorithm best suited to the inputs,
either the \idx{subresultant algorithm} (Lazard/Ducos variant, generic case),
a modular algorithm (inputs in $\Q[X]$) or Sylvester's matrix (inexact
inputs).
If $\fl=1$, uses the determinant of Sylvester's matrix instead; this should
always be slower than the default.
The library syntax is \fun{GEN}{polresultant0}{GEN x, GEN y, long v = -1, long flag} where \kbd{v} is a variable number.
\subsec{polresultantext$(A,B,\{v\})$}\kbdsidx{polresultantext}\label{se:polresultantext}
Finds polynomials $U$ and $V$ such that $A*U + B*V = R$, where $R$ is
the resultant of $U$ and $V$ with respect to the main variables of $A$ and
$B$ if $v$ is omitted, and with respect to $v$ otherwise. Returns the row
vector $[U,V,R]$. The algorithm used (subresultant) assumes that the base
ring is a domain.
\bprog
? A = x*y; B = (x+y)^2;
? [U,V,R] = polresultantext(A, B)
%2 = [-y*x - 2*y^2, y^2, y^4]
? A*U + B*V
%3 = y^4
? [U,V,R] = polresultantext(A, B, y)
%4 = [-2*x^2 - y*x, x^2, x^4]
? A*U+B*V
%5 = x^4
@eprog
The library syntax is \fun{GEN}{polresultantext0}{GEN A, GEN B, long v = -1} where \kbd{v} is a variable number.
Also available is
\fun{GEN}{polresultantext}{GEN x, GEN y}.
\subsec{polroots$(T)$}\kbdsidx{polroots}\label{se:polroots}
Complex roots of the polynomial
$T$, given as a column vector where each root is repeated according to
its multiplicity. The precision is given as for transcendental functions: in
GP it is kept in the variable \kbd{realprecision} and is transparent to the
user, but it must be explicitly given as a second argument in library mode.
The algorithm used is a modification of Sch\"onhage\sidx{Sch\"onage}'s
root-finding algorithm, due to and originally implemented by Gourdon.
It is guaranteed to converge; if furthermore $T$ has rational coefficients,
roots are guaranteed to the required relative accuracy.
The library syntax is \fun{GEN}{roots}{GEN T, long prec}.
\subsec{polrootsmod$(\var{pol},p,\{\fl=0\})$}\kbdsidx{polrootsmod}\label{se:polrootsmod}
Row vector of roots modulo $p$ of the polynomial \var{pol}.
Multiple roots are \emph{not} repeated.
\bprog
? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
@eprog\noindent
If $p$ is very small, you may set $\fl=1$, which uses a naive search.
The library syntax is \fun{GEN}{rootmod0}{GEN pol, GEN p, long flag}.
\subsec{polrootspadic$(x,p,r)$}\kbdsidx{polrootspadic}\label{se:polrootspadic}
Vector of $p$-adic roots of the polynomial \var{pol}, given to
$p$-adic precision $r$ $p$ is assumed to be a prime. Multiple roots are
\emph{not} repeated. Note that this is not the same as the roots in
$\Z/p^r\Z$, rather it gives approximations in $\Z/p^r\Z$ of the true roots
living in $\Q_p$.
\bprog
? polrootspadic(x^3 - x^2 + 64, 2, 5)
%1 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~
@eprog
If \var{pol} has inexact \typ{PADIC} coefficients, this is not always
well-defined; in this case, the polynomial is first made integral by dividing
out the $p$-adic content, then lifted
to $\Z$ using \tet{truncate} coefficientwise. Hence the roots given are
approximations of the roots of an exact polynomial which is $p$-adically
close to the input. To avoid pitfalls, we advise to only factor polynomials
with exact rational coefficients.
The library syntax is \fun{GEN}{rootpadic}{GEN x, GEN p, long r}.
\subsec{polrootsreal$(T, \{\var{ab}\})$}\kbdsidx{polrootsreal}\label{se:polrootsreal}
Real roots of the polynomial $T$ with rational coefficients, multiple
roots being included according to their multiplicity. The roots are given
to a relative accuracy of \kbd{realprecision}. If argument \var{ab} is
present, it must be a vector $[a,b]$ with two components (of type
\typ{INT}, \typ{FRAC} or \typ{INFINITY}) and we restrict to roots belonging
to that closed interval.
\bprog
? \p9
? polrootsreal(x^2-2)
%1 = [-1.41421356, 1.41421356]~
? polrootsreal(x^2-2, [1,+oo])
%2 = [1.41421356]~
? polrootsreal(x^2-2, [2,3])
%3 = []~
? polrootsreal((x-1)*(x-2), [2,3])
%4 = [2.00000000]~
@eprog\noindent
The algorithm used is a modification of Uspensky's method (relying on
Descartes's rule of sign), following Rouillier and Zimmerman's article
``Efficient isolation of a polynomial real roots''
(\url{http://hal.inria.fr/inria-00072518/}). Barring bugs, it is guaranteed
to converge and to give the roots to the required accuracy.
\misctitle{Remark} If the polynomial $T$ is of the
form $Q(x^h)$ for some $h\geq 2$ and \var{ab} is omitted, the routine will
apply the algorithm to $Q$ (restricting to non-negative roots when $h$ is
even), then take $h$-th roots. On the other hand, if you want to specify
\var{ab}, you should apply the routine to $Q$ yourself and a suitable
interval $[a',b']$ using approximate $h$-th roots adapted to your problem:
the function will not perform this change of variables if \var{ab} is present.
The library syntax is \fun{GEN}{realroots}{GEN T, GEN ab = NULL, long prec}.
\subsec{polsturm$(T,\{\var{ab}\})$}\kbdsidx{polsturm}\label{se:polsturm}
Number of real roots of the real squarefree polynomial \var{T}. If
the argument \var{ab} is present, it must be a vector $[a,b]$ with
two real components (of type \typ{INT}, \typ{REAL}, \typ{FRAC}
or \typ{INFINITY}) and we count roots belonging to that closed interval.
If possible, you should stick to exact inputs, that is avoid \typ{REAL}s in
$T$ and the bounds $a,b$: the result is then guaranteed and we use a fast
algorithm (Uspensky's method, relying on Descartes's rule of sign, see
\tet{polrootsreal}); otherwise, we use Sturm's algorithm and the result
may be wrong due to round-off errors.
\bprog
? T = (x-1)*(x-2)*(x-3);
? polsturm(T)
%2 = 3
? polsturm(T, [-oo,2])
%3 = 2
? polsturm(T, [1/2,+oo])
%4 = 3
? polsturm(T, [1, Pi]) \\ Pi inexact: not recommended !
%5 = 3
? polsturm(T*1., [0, 4]) \\ T*1. inexact: not recommended !
%6 = 3
? polsturm(T^2, [0, 4]) \\ not squarefree
*** at top-level: polsturm(T^2,[0,4])
*** ^-------------------
*** polsturm: domain error in polsturm: issquarefree(pol) = 0
? polsturm((T*1.)^2, [0, 4]) \\ not squarefree AND inexact
*** at top-level: polsturm((T*1.)^2,[0
*** ^--------------------
*** polsturm: precision too low in polsturm.
@eprog\noindent In the last example, the input polynomial is not
squarefree but there is no way to ascertain it from the given
floating point approximation: we get a precision error in this case.
%\syn{NO}
The library syntax is \fun{long}{RgX_sturmpart}{GEN T, GEN ab} or
\fun{long}{sturm}{GEN T} (for the case \kbd{ab = NULL}). The function
\fun{long}{sturmpart}{GEN T, GEN a, GEN b} is obsolete and deprecated.
\subsec{polsubcyclo$(n,d,\{v='x\})$}\kbdsidx{polsubcyclo}\label{se:polsubcyclo}
Gives polynomials (in variable $v$) defining the sub-Abelian extensions
of degree $d$ of the cyclotomic field $\Q(\zeta_n)$, where $d\mid \phi(n)$.
If there is exactly one such extension the output is a polynomial, else it is
a vector of polynomials, possibly empty. To get a vector in all cases,
use \kbd{concat([], polsubcyclo(n,d))}.
The function \tet{galoissubcyclo} allows to specify exactly which
sub-Abelian extension should be computed.
The library syntax is \fun{GEN}{polsubcyclo}{long n, long d, long v = -1} where \kbd{v} is a variable number.
\subsec{polsylvestermatrix$(x,y)$}\kbdsidx{polsylvestermatrix}\label{se:polsylvestermatrix}
Forms the Sylvester matrix
corresponding to the two polynomials $x$ and $y$, where the coefficients of
the polynomials are put in the columns of the matrix (which is the natural
direction for solving equations afterwards). The use of this matrix can be
essential when dealing with polynomials with inexact entries, since
polynomial Euclidean division doesn't make much sense in this case.
The library syntax is \fun{GEN}{sylvestermatrix}{GEN x, GEN y}.
\subsec{polsym$(x,n)$}\kbdsidx{polsym}\label{se:polsym}
Creates the column vector of the \idx{symmetric powers} of the roots of the
polynomial $x$ up to power $n$, using Newton's formula.
The library syntax is \fun{GEN}{polsym}{GEN x, long n}.
\subsec{poltchebi$(n,\{v='x\})$}\kbdsidx{poltchebi}\label{se:poltchebi}
Deprecated alias for \kbd{polchebyshev}
The library syntax is \fun{GEN}{polchebyshev1}{long n, long v = -1} where \kbd{v} is a variable number.
\subsec{polzagier$(n,m)$}\kbdsidx{polzagier}\label{se:polzagier}
Creates Zagier's polynomial $P_n^{(m)}$ used in
the functions \kbd{sumalt} and \kbd{sumpos} (with $\fl=1$), see
``Convergence acceleration of alternating series'', Cohen et al.,
\emph{Experiment.~Math.}, vol.~9, 2000, pp.~3--12.
If $m < 0$ or $m \ge n$, $P_n^{(m)} = 0$.
We have
$P_n := P_n^{(0)}$ is $T_n(2x-1)$, where $T_n$ is the Legendre polynomial of
the second kind. For $n > m > 0$, $P_n^{(m)}$ is the $m$-th difference with
step $2$ of the sequence $n^{m+1}P_n$; in this case, it satisfies
$$2 P_n^{(m)}(sin^2 t) = \dfrac{d^{m+1}}{dt^{m+1}}(\sin(2t)^m \sin(2(n-m)t)).$$
%@article {MR2001m:11222,
% AUTHOR = {Cohen, Henri and Rodriguez Villegas, Fernando and Zagier, Don},
% TITLE = {Convergence acceleration of alternating series},
% JOURNAL = {Experiment. Math.},
% VOLUME = {9},
% YEAR = {2000},
% NUMBER = {1},
% PAGES = {3--12},
%}
The library syntax is \fun{GEN}{polzag}{long n, long m}.
\subsec{serconvol$(x,y)$}\kbdsidx{serconvol}\label{se:serconvol}
Convolution (or \idx{Hadamard product}) of the
two power series $x$ and $y$; in other words if $x=\sum a_k*X^k$ and $y=\sum
b_k*X^k$ then $\kbd{serconvol}(x,y)=\sum a_k*b_k*X^k$.
The library syntax is \fun{GEN}{convol}{GEN x, GEN y}.
\subsec{serlaplace$(x)$}\kbdsidx{serlaplace}\label{se:serlaplace}
$x$ must be a power series with non-negative
exponents or a polynomial. If $x=\sum (a_k/k!)*X^k$ then the result is $\sum
a_k*X^k$.
The library syntax is \fun{GEN}{laplace}{GEN x}.
\subsec{serreverse$(s)$}\kbdsidx{serreverse}\label{se:serreverse}
Reverse power series of $s$, i.e. the series $t$ such that $t(s) = x$;
$s$ must be a power series whose valuation is exactly equal to one.
\bprog
? \ps 8
? t = serreverse(tan(x))
%2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)
? tan(t)
%3 = x + O(x^8)
@eprog
The library syntax is \fun{GEN}{serreverse}{GEN s}.
\subsec{subst$(x,y,z)$}\kbdsidx{subst}\label{se:subst}
Replace the simple variable $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but if it is not a genuine
polynomial (or power series, or rational function), the substitution will be
done as if the scalar components were polynomials of degree zero. In
particular, beware that:
\bprog
? subst(1, x, [1,2; 3,4])
%1 =
[1 0]
[0 1]
? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1])
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.
@eprog\noindent
If $x$ is a power series, $z$ must be either a polynomial, a power
series, or a rational function. Finally, if $x$ is a vector,
matrix or list, the substitution is applied to each individual entry.
Use the function \kbd{substvec} to replace several variables at once,
or the function \kbd{substpol} to replace a polynomial expression.
The library syntax is \fun{GEN}{gsubst}{GEN x, long y, GEN z} where \kbd{y} is a variable number.
\subsec{substpol$(x,y,z)$}\kbdsidx{substpol}\label{se:substpol}
Replace the ``variable'' $y$ by the argument $z$ in the ``polynomial''
expression $x$. Every type is allowed for $x$, but the same behavior
as \kbd{subst} above apply.
The difference with \kbd{subst} is that $y$ is allowed to be any polynomial
here. The substitution is done moding out all components of $x$
(recursively) by $y - t$, where $t$ is a new free variable of lowest
priority. Then substituting $t$ by $z$ in the resulting expression. For
instance
\bprog
? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
@eprog
The library syntax is \fun{GEN}{gsubstpol}{GEN x, GEN y, GEN z}.
Further, \fun{GEN}{gdeflate}{GEN T, long v, long d} attempts to
write $T(x)$ in the form $t(x^d)$, where $x=$\kbd{pol\_x}$(v)$, and returns
\kbd{NULL} if the substitution fails (for instance in the example \kbd{\%2}
above).
\subsec{substvec$(x,v,w)$}\kbdsidx{substvec}\label{se:substvec}
$v$ being a vector of monomials of degree 1 (variables),
$w$ a vector of expressions of the same length, replace in the expression
$x$ all occurrences of $v_i$ by $w_i$. The substitutions are done
simultaneously; more precisely, the $v_i$ are first replaced by new
variables in $x$, then these are replaced by the $w_i$:
\bprog
? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y] \\ not [y, 2*y]
@eprog
The library syntax is \fun{GEN}{gsubstvec}{GEN x, GEN v, GEN w}.
\subsec{sumformal$(f,\{v\})$}\kbdsidx{sumformal}\label{se:sumformal}
\idx{formal sum} of the polynomial expression $f$ with respect to the
main variable if $v$ is omitted, with respect to the variable $v$ otherwise;
it is assumed that the base ring has characteristic zero. In other words,
considering $f$ as a polynomial function in the variable $v$,
returns $F$, a polynomial in $v$ vanishing at $0$, such that $F(b) - F(a)
= sum_{v = a+1}^b f(v)$:
\bprog
? sumformal(n) \\ 1 + ... + n
%1 = 1/2*n^2 + 1/2*n
? f(n) = n^3+n^2+1;
? F = sumformal(f(n)) \\ f(1) + ... + f(n)
%3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n
? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)
%4 = 1
? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)
%5 = 1
? sumformal(x^2 + x*y + y^2, y)
%6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)
? x^2 * y + x * sumformal(y) + sumformal(y^2) == %
%7 = 1
@eprog
The library syntax is \fun{GEN}{sumformal}{GEN f, long v = -1} where \kbd{v} is a variable number.
\subsec{taylor$(x,t,\{d=\var{seriesprecision}\})$}\kbdsidx{taylor}\label{se:taylor}
Taylor expansion around $0$ of $x$ with respect to
the simple variable $t$. $x$ can be of any reasonable type, for example a
rational function. Contrary to \tet{Ser}, which takes the valuation into
account, this function adds $O(t^d)$ to all components of $x$.
\bprog
? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)
? Ser(x/(1+y), y, 5)
*** at top-level: Ser(x/(1+y),y,5)
*** ^----------------
*** Ser: main variable must have higher priority in gtoser.
@eprog
The library syntax is \fun{GEN}{tayl}{GEN x, long t, long precdl} where \kbd{t} is a variable number.
\subsec{thue$(\var{tnf},a,\{\var{sol}\})$}\kbdsidx{thue}\label{se:thue}
Returns all solutions of the equation
$P(x,y)=a$ in integers $x$ and $y$, where \var{tnf} was created with
$\kbd{thueinit}(P)$. If present, \var{sol} must contain the solutions of
$\Norm(x)=a$ modulo units of positive norm in the number field
defined by $P$ (as computed by \kbd{bnfisintnorm}). If there are infinitely
many solutions, an error is issued.
It is allowed to input directly the polynomial $P$ instead of a \var{tnf},
in which case, the function first performs \kbd{thueinit(P,0)}. This is
very wasteful if more than one value of $a$ is required.
If \var{tnf} was computed without assuming GRH (flag $1$ in \tet{thueinit}),
then the result is unconditional. Otherwise, it depends in principle of the
truth of the GRH, but may still be unconditionally correct in some
favorable cases. The result is conditional on the GRH if
$a\neq \pm 1$ and, $P$ has a single irreducible rational factor, whose
attached tentative class number $h$ and regulator $R$ (as computed
assuming the GRH) satisfy
\item $h > 1$,
\item $R/0.2 > 1.5$.
Here's how to solve the Thue equation $x^{13} - 5y^{13} = - 4$:
\bprog
? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]
@eprog\noindent In this case, one checks that \kbd{bnfinit(x\pow13 -5).no}
is $1$. Hence, the only solution is $(x,y) = (1,1)$, and the result is
unconditional. On the other hand:
\bprog
? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)
%2 = [[1, 1]] \\ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.reg
%4 = 2.8682185139262873674706034475498755834
@eprog
This time the result is conditional. All results computed using this
particular \var{tnf} are likewise conditional, \emph{except} for a right-hand
side of $\pm 1$.
The above result is in fact correct, so we did not just disprove the GRH:
\bprog
? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]
@eprog
Note that reducible or non-monic polynomials are allowed:
\bprog
? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]
@eprog\noindent Reducible polynomials are in fact much easier to handle.
The library syntax is \fun{GEN}{thue}{GEN tnf, GEN a, GEN sol = NULL}.
\subsec{thueinit$(P,\{\fl=0\})$}\kbdsidx{thueinit}\label{se:thueinit}
Initializes the \var{tnf} corresponding to $P$, a non-constant
univariate polynomial with integer coefficients.
The result is meant to be used in conjunction with \tet{thue} to solve Thue
equations $P(X / Y)Y^{\deg P} = a$, where $a$ is an integer. Accordingly,
$P$ must either have at least two distinct irreducible factors over $\Q$,
or have one irreducible factor $T$ with degree $>2$ or two conjugate
complex roots: under these (necessary and sufficient) conditions, the
equation has finitely many integer solutions.
\bprog
? S = thueinit(t^2+1);
? thue(S, 5)
%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]
? S = thueinit(t+1);
*** at top-level: thueinit(t+1)
*** ^-------------
*** thueinit: domain error in thueinit: P = t + 1
@eprog\noindent The hardest case is when $\deg P > 2$ and $P$ is irreducible
with at least one real root. The routine then uses Bilu-Hanrot's algorithm.
If $\fl$ is non-zero, certify results unconditionally. Otherwise, assume
\idx{GRH}, this being much faster of course. In the latter case, the result
may still be unconditionally correct, see \tet{thue}. For instance in most
cases where $P$ is reducible (not a pure power of an irreducible), \emph{or}
conditional computed class groups are trivial \emph{or} the right hand side
is $\pm1$, then results are unconditional.
\misctitle{Note} The general philosophy is to disprove the existence of large
solutions then to enumerate bounded solutions naively. The implementation
will overflow when there exist huge solutions and the equation has degree
$> 2$ (the quadratic imaginary case is special, since we can use
\kbd{bnfisintnorm}):
\bprog
? thue(t^3+2, 10^30)
*** at top-level: L=thue(t^3+2,10^30)
*** ^-----------------
*** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.
? thue(x^2+2, 10^30) \\ quadratic case much easier
%1 = [[-1000000000000000, 0], [1000000000000000, 0]]
@eprog
\misctitle{Note} It is sometimes possible to circumvent the above, and in any
case obtain an important speed-up, if you can write $P = Q(x^d)$ for some $d >
1$ and $Q$ still satisfying the \kbd{thueinit} hypotheses. You can then solve
the equation attached to $Q$ then eliminate all solutions $(x,y)$ such that
either $x$ or $y$ is not a $d$-th power.
\bprog
? thue(x^4+1, 10^40); \\ stopped after 10 hours
? filter(L,d) =
my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];
? L = thue(x^2+1, 10^40);
? filter(L, 2)
%4 = [[0, 10000000000], [10000000000, 0]]
@eprog\noindent The last 2 commands use less than 20ms.
The library syntax is \fun{GEN}{thueinit}{GEN P, long flag, long prec}.
%SECTION: polynomials
\section{Vectors, matrices, linear algebra and sets}
\label{se:linear_algebra}
Note that most linear algebra functions operating on subspaces defined by
generating sets (such as \tet{mathnf}, \tet{qflll}, etc.) take matrices as
arguments. As usual, the generating vectors are taken to be the
\emph{columns} of the given matrix.
Since PARI does not have a strong typing system, scalars live in
unspecified commutative base rings. It is very difficult to write
robust linear algebra routines in such a general setting. We thus
assume that the base ring is a domain and work over its field of
fractions. If the base ring is \emph{not} a domain, one gets an error as soon
as a non-zero pivot turns out to be non-invertible. Some functions,
e.g.~\kbd{mathnf} or \kbd{mathnfmod}, specifically assume that the base ring is
$\Z$.
\subsec{algdep$(z,k,\{\fl=0\})$}\kbdsidx{algdep}\label{se:algdep}
\sidx{algebraic dependence}
$z$ being real/complex, or $p$-adic, finds a polynomial (in the variable
\kbd{'x}) of degree at most
$k$, with integer coefficients, having $z$ as approximate root. Note that the
polynomial which is obtained is not necessarily the ``correct'' one. In fact
it is not even guaranteed to be irreducible. One can check the closeness
either by a polynomial evaluation (use \tet{subst}), or by computing the
roots of the polynomial given by \kbd{algdep} (use \tet{polroots} or
\tet{polrootspadic}).
Internally, \tet{lindep}$([1,z,\ldots,z^k], \fl)$ is used. A non-zero value of
$\fl$ may improve on the default behavior if the input number is known to a
\emph{huge} accuracy, and you suspect the last bits are incorrect: if $\fl > 0$
the computation is done with an accuracy of $\fl$ decimal digits; to get
meaningful results, the parameter $\fl$ should be smaller than the number of
correct decimal digits in the input.
But default values are usually sufficient, so try without $\fl$ first:
\bprog
? \p200
? z = 2^(1/6)+3^(1/5);
? algdep(z, 30); \\ right in 280ms
? algdep(z, 30, 100); \\ wrong in 169ms
? algdep(z, 30, 170); \\ right in 288ms
? algdep(z, 30, 200); \\ wrong in 320ms
? \p250
? z = 2^(1/6)+3^(1/5); \\ recompute to new, higher, accuracy !
? algdep(z, 30); \\ right in 329ms
? algdep(z, 30, 200); \\ right in 324ms
? \p500
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 677ms
? \p1000
? algdep(2^(1/6)+3^(1/5), 30); \\ right in 1.5s
@eprog\noindent
The changes in \kbd{realprecision} only affect the quality of the
initial approximation to $2^{1/6} + 3^{1/5}$, \kbd{algdep} itself uses
exact operations. The size of its operands depend on the accuracy of the
input of course: more accurate input means slower operations.
Proceeding by increments of 5 digits of accuracy, \kbd{algdep} with default
flag produces its first correct result at 195 digits, and from then on a
steady stream of correct results:
\bprog
\\ assume T contains the correct result, for comparison
forstep(d=100, 250, 5, localprec(d);\
print(d, " ", algdep(2^(1/6)+3^(1/5),30) == T))
@eprog
The above example is the test case studied in a 2000 paper by Borwein and
Lisonek: Applications of integer relation algorithms, \emph{Discrete Math.},
{\bf 217}, p.~65--82. The version of PARI tested there was 1.39, which
succeeded reliably from precision 265 on, in about 200 as much time as the
current version.
The library syntax is \fun{GEN}{algdep0}{GEN z, long k, long flag}.
Also available is \fun{GEN}{algdep}{GEN z, long k} ($\fl=0$).
\subsec{charpoly$(A,\{v='x\},\{\fl=5\})$}\kbdsidx{charpoly}\label{se:charpoly}
\idx{characteristic polynomial}
of $A$ with respect to the variable $v$, i.e.~determinant of $v*I-A$ if $A$
is a square matrix.
\bprog
? charpoly([1,2;3,4]);
%1 = x^2 - 5*x - 2
? charpoly([1,2;3,4],, 't)
%2 = t^2 - 5*t - 2
@eprog\noindent
If $A$ is not a square matrix, the function returns the characteristic
polynomial of the map ``multiplication by $A$'' if $A$ is a scalar:
\bprog
? charpoly(Mod(x+2, x^3-2))
%1 = x^3 - 6*x^2 + 12*x - 10
? charpoly(I)
%2 = x^2 + 1
? charpoly(quadgen(5))
%3 = x^2 - x - 1
? charpoly(ffgen(ffinit(2,4)))
%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
@eprog
The value of $\fl$ is only significant for matrices, and we advise to stick
to the default value. Let $n$ be the dimension of $A$.
If $\fl=0$, same method (Le Verrier's) as for computing the adjoint matrix,
i.e.~using the traces of the powers of $A$. Assumes that $n!$ is
invertible; uses $O(n^4)$ scalar operations.
If $\fl=1$, uses Lagrange interpolation which is usually the slowest method.
Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.
If $\fl=2$, uses the Hessenberg form. Assumes that the base ring is a field.
Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion
unless the base field is finite or $\R$.
If $\fl=3$, uses Berkowitz's division free algorithm, valid over any
ring (commutative, with unit). Uses $O(n^4)$ scalar operations.
If $\fl=4$, $x$ must be integral. Uses a modular algorithm: Hessenberg form
for various small primes, then Chinese remainders.
If $\fl=5$ (default), uses the ``best'' method given $x$.
This means we use Berkowitz unless the base ring is $\Z$ (use $\fl=4$)
or a field where coefficient explosion does not occur,
e.g.~a finite field or the reals (use $\fl=2$).
The library syntax is \fun{GEN}{charpoly0}{GEN A, long v = -1, long flag} where \kbd{v} is a variable number.
Also available are
\fun{GEN}{charpoly}{GEN x, long v} ($\fl=5$),
\fun{GEN}{caract}{GEN A, long v} ($\fl=1$),
\fun{GEN}{carhess}{GEN A, long v} ($\fl=2$),
\fun{GEN}{carberkowitz}{GEN A, long v} ($\fl=3$) and
\fun{GEN}{caradj}{GEN A, long v, GEN *pt}. In this
last case, if \var{pt} is not \kbd{NULL}, \kbd{*pt} receives the address of
the adjoint matrix of $A$ (see \tet{matadjoint}), so both can be obtained at
once.
\subsec{concat$(x,\{y\})$}\kbdsidx{concat}\label{se:concat}
Concatenation of $x$ and $y$. If $x$ or $y$ is
not a vector or matrix, it is considered as a one-dimensional vector. All
types are allowed for $x$ and $y$, but the sizes must be compatible. Note
that matrices are concatenated horizontally, i.e.~the number of rows stays
the same. Using transpositions, one can concatenate them vertically,
but it is often simpler to use \tet{matconcat}.
\bprog
? x = matid(2); y = 2*matid(2);
? concat(x,y)
%2 =
[1 0 2 0]
[0 1 0 2]
? concat(x~,y~)~
%3 =
[1 0]
[0 1]
[2 0]
[0 2]
? matconcat([x;y])
%4 =
[1 0]
[0 1]
[2 0]
[0 2]
@eprog\noindent
To concatenate vectors sideways (i.e.~to obtain a two-row or two-column
matrix), use \tet{Mat} instead, or \tet{matconcat}:
\bprog
? x = [1,2];
? y = [3,4];
? concat(x,y)
%3 = [1, 2, 3, 4]
? Mat([x,y]~)
%4 =
[1 2]
[3 4]
? matconcat([x;y])
%5 =
[1 2]
[3 4]
@eprog
Concatenating a row vector to a matrix having the same number of columns will
add the row to the matrix (top row if the vector is $x$, i.e.~comes first, and
bottom row otherwise).
The empty matrix \kbd{[;]} is considered to have a number of rows compatible
with any operation, in particular concatenation. (Note that this is
\emph{not} the case for empty vectors \kbd{[~]} or \kbd{[~]\til}.)
If $y$ is omitted, $x$ has to be a row vector or a list, in which case its
elements are concatenated, from left to right, using the above rules.
\bprog
? concat([1,2], [3,4])
%1 = [1, 2, 3, 4]
? a = [[1,2]~, [3,4]~]; concat(a)
%2 =
[1 3]
[2 4]
? concat([1,2; 3,4], [5,6]~)
%3 =
[1 2 5]
[3 4 6]
? concat([%, [7,8]~, [1,2,3,4]])
%5 =
[1 2 5 7]
[3 4 6 8]
[1 2 3 4]
@eprog
The library syntax is \fun{GEN}{gconcat}{GEN x, GEN y = NULL}.
\fun{GEN}{gconcat1}{GEN x} is a shortcut for \kbd{gconcat(x,NULL)}.
\subsec{forqfvec$(v,q,b,\var{expr})$}\kbdsidx{forqfvec}\label{se:forqfvec}
$q$ being a square and symmetric integral matrix representing a positive
definite
quadratic form, evaluate \kbd{expr} for all vector $v$ such that $q(v)\leq b$.
The formal variable $v$ runs through all such vectors in turn.
\bprog
? forqfvec(v, [3,2;2,3], 3, print(v))
[0, 1]~
[1, 0]~
[-1, 1]~
@eprog
The library syntax is \fun{void}{forqfvec0}{GEN v, GEN q = NULL, GEN b}.
The following function is also available:
\fun{void}{forqfvec}{void *E, long (*fun)(void *, GEN, GEN, double), GEN q, GEN b}:
Evaluate \kbd{fun(E,w,v,m)} on all $v$ such that $q(v)<b$, where $v$ is a
\typ{VECSMALL} and $m=q(v)$ is a C double. The function \kbd{fun} must
return $0$, unless \kbd{forqfvec} should stop, in which case, it should
return $1$.
\subsec{lindep$(v,\{\fl=0\})$}\kbdsidx{lindep}\label{se:lindep}
\sidx{linear dependence} finds a small non-trivial integral linear
combination between components of $v$. If none can be found return an empty
vector.
If $v$ is a vector with real/complex entries we use a floating point
(variable precision) LLL algorithm. If $\fl = 0$ the accuracy is chosen
internally using a crude heuristic. If $\fl > 0$ the computation is done with
an accuracy of $\fl$ decimal digits. To get meaningful results in the latter
case, the parameter $\fl$ should be smaller than the number of correct
decimal digits in the input.
\bprog
? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
%1 = [-1, -1, 1]~
@eprog
If $v$ is $p$-adic, $\fl$ is ignored and the algorithm LLL-reduces a
suitable (dual) lattice.
\bprog
? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])
%2 = [1, -2]~
@eprog
If $v$ is a matrix (or a vector of column vectors, or a vector of row
vectors), $\fl$ is ignored and the function returns a non trivial kernel
vector if one exists, else an empty vector.
\bprog
? lindep([1,2,3;4,5,6;7,8,9])
%3 = [1, -2, 1]~
? lindep([[1,0], [2,0]])
%4 = [2, -1]~
? lindep([[1,0], [0,1]])
%5 = []~
@eprog
If $v$ contains polynomials or power series over some base field, finds a
linear relation with coefficients in the field.
\bprog
? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])
%4 = [y, y, -1, -y^2]~
@eprog\noindent For better control, it is preferable to use \typ{POL} rather
than \typ{SER} in the input, otherwise one gets a linear combination which is
$t$-adically small, but not necessarily $0$. Indeed, power series are first
converted to the minimal absolute accuracy occurring among the entries of $v$
(which can cause some coefficients to be ignored), then truncated to
polynomials:
\bprog
? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)
%1 = [1, 0]~
? v*L
%2 = t^2+O(t^4) \\ small but not 0
@eprog
The library syntax is \fun{GEN}{lindep0}{GEN v, long flag}.
Also available are \fun{GEN}{lindep}{GEN v} (real/complex entries,
$\fl=0$), \fun{GEN}{lindep2}{GEN v, long flag} (real/complex entries)
\fun{GEN}{padic_lindep}{GEN v} ($p$-adic entries) and
\fun{GEN}{Xadic_lindep}{GEN v} (polynomial entries).
Finally \fun{GEN}{deplin}{GEN v} returns a non-zero kernel vector for a
\typ{MAT} input.
\subsec{matadjoint$(M,\{\fl=0\})$}\kbdsidx{matadjoint}\label{se:matadjoint}
\idx{adjoint matrix} of $M$, i.e.~a matrix $N$
of cofactors of $M$, satisfying $M*N=\det(M)*\Id$. $M$ must be a
(non-necessarily invertible) square matrix of dimension $n$.
If $\fl$ is 0 or omitted, we try to use Leverrier-Faddeev's algorithm,
which assumes that $n!$ invertible. If it fails or $\fl = 1$,
compute $T = \kbd{charpoly}(M)$ independently first and return
$(-1)^{n-1} (T(x)-T(0))/x$ evaluated at $M$.
\bprog
? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);
%2 =
[Mod(1, 4) Mod(2, 4) Mod(3, 4)]
[Mod(3, 4) Mod(0, 4) Mod(1, 4)]
[Mod(2, 4) Mod(3, 4) Mod(0, 4)]
@eprog\noindent
Both algorithms use $O(n^4)$ operations in the base ring, and are usually
slower than computing the characteristic polynomial or the inverse of $M$
directly.
The library syntax is \fun{GEN}{matadjoint0}{GEN M, long flag}.
Also available are
\fun{GEN}{adj}{GEN x} (\fl=0) and
\fun{GEN}{adjsafe}{GEN x} (\fl=1).
\subsec{matcompanion$(x)$}\kbdsidx{matcompanion}\label{se:matcompanion}
The left companion matrix to the non-zero polynomial $x$.
The library syntax is \fun{GEN}{matcompanion}{GEN x}.
\subsec{matconcat$(v)$}\kbdsidx{matconcat}\label{se:matconcat}
Returns a \typ{MAT} built from the entries of $v$, which may
be a \typ{VEC} (concatenate horizontally), a \typ{COL} (concatenate
vertically), or a \typ{MAT} (concatenate vertically each column, and
concatenate vertically the resulting matrices). The entries of $v$ are always
considered as matrices: they can themselves be \typ{VEC} (seen as a row
matrix), a \typ{COL} seen as a column matrix), a \typ{MAT}, or a scalar (seen
as an $1 \times 1$ matrix).
\bprog
? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;
? matconcat([A, B]) \\ horizontal
%1 =
[1 2 5]
[3 4 6]
? matconcat([A, C]~) \\ vertical
%2 =
[1 2]
[3 4]
[7 8]
? matconcat([A, B; C, D]) \\ block matrix
%3 =
[1 2 5]
[3 4 6]
[7 8 9]
@eprog\noindent
If the dimensions of the entries to concatenate do not match up, the above
rules are extended as follows:
\item each entry $v_{i,j}$ of $v$ has a natural length and height: $1 \times
1$ for a scalar, $1 \times n$ for a \typ{VEC} of length $n$, $n \times 1$
for a \typ{COL}, $m \times n$ for an $m\times n$ \typ{MAT}
\item let $H_i$ be the maximum over $j$ of the lengths of the $v_{i,j}$,
let $L_j$ be the maximum over $i$ of the heights of the $v_{i,j}$.
The dimensions of the $(i,j)$-th block in the concatenated matrix are
$H_i \times L_j$.
\item a scalar $s = v_{i,j}$ is considered as $s$ times an identity matrix
of the block dimension $\min (H_i,L_j)$
\item blocks are extended by 0 columns on the right and 0 rows at the
bottom, as needed.
\bprog
? matconcat([1, [2,3]~, [4,5,6]~]) \\ horizontal
%4 =
[1 2 4]
[0 3 5]
[0 0 6]
? matconcat([1, [2,3], [4,5,6]]~) \\ vertical
%5 =
[1 0 0]
[2 3 0]
[4 5 6]
? matconcat([B, C; A, D]) \\ block matrix
%6 =
[5 0 7 8]
[6 0 0 0]
[1 2 9 0]
[3 4 0 9]
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V])) \\ block diagonal
%7 =
[1 2 0 0 0]
[3 4 0 0 0]
[0 0 1 2 3]
[0 0 4 5 6]
[0 0 7 8 9]
@eprog
The library syntax is \fun{GEN}{matconcat}{GEN v}.
\subsec{matdet$(x,\{\fl=0\})$}\kbdsidx{matdet}\label{se:matdet}
Determinant of the square matrix $x$.
If $\fl=0$, uses an appropriate algorithm depending on the coefficients:
\item integer entries: modular method due to Dixon, Pernet and Stein.
\item real or $p$-adic entries: classical Gaussian elimination using maximal
pivot.
\item intmod entries: classical Gaussian elimination using first non-zero
pivot.
\item other cases: Gauss-Bareiss.
If $\fl=1$, uses classical Gaussian elimination with appropriate pivoting
strategy (maximal pivot for real or $p$-adic coefficients). This is usually
worse than the default.
The library syntax is \fun{GEN}{det0}{GEN x, long flag}.
Also available are \fun{GEN}{det}{GEN x} ($\fl=0$),
\fun{GEN}{det2}{GEN x} ($\fl=1$) and \fun{GEN}{ZM_det}{GEN x} for integer
entries.
\subsec{matdetint$(B)$}\kbdsidx{matdetint}\label{se:matdetint}
Let $B$ be an $m\times n$ matrix with integer coefficients. The
\emph{determinant} $D$ of the lattice generated by the columns of $B$ is
the square root of $\det(B^T B)$ if $B$ has maximal rank $m$, and $0$
otherwise.
This function uses the Gauss-Bareiss algorithm to compute a positive
\emph{multiple} of $D$. When $B$ is square, the function actually returns
$D = |\det B|$.
This function is useful in conjunction with \kbd{mathnfmod}, which needs to
know such a multiple. If the rank is maximal and the matrix non-square,
you can obtain $D$ exactly using
\bprog
matdet( mathnfmod(B, matdetint(B)) )
@eprog\noindent
Note that as soon as one of the dimensions gets large ($m$ or $n$ is larger
than 20, say), it will often be much faster to use \kbd{mathnf(B, 1)} or
\kbd{mathnf(B, 4)} directly.
The library syntax is \fun{GEN}{detint}{GEN B}.
\subsec{matdiagonal$(x)$}\kbdsidx{matdiagonal}\label{se:matdiagonal}
$x$ being a vector, creates the diagonal matrix
whose diagonal entries are those of $x$.
\bprog
? matdiagonal([1,2,3]);
%1 =
[1 0 0]
[0 2 0]
[0 0 3]
@eprog\noindent Block diagonal matrices are easily created using
\tet{matconcat}:
\bprog
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V]))
%1 =
[1 2 0 0 0]
[3 4 0 0 0]
[0 0 1 2 3]
[0 0 4 5 6]
[0 0 7 8 9]
@eprog
The library syntax is \fun{GEN}{diagonal}{GEN x}.
\subsec{mateigen$(x,\{\fl=0\})$}\kbdsidx{mateigen}\label{se:mateigen}
Returns the (complex) eigenvectors of $x$ as columns of a matrix.
If $\fl=1$, return $[L,H]$, where $L$ contains the
eigenvalues and $H$ the corresponding eigenvectors; multiple eigenvalues are
repeated according to the eigenspace dimension (which may be less
than the eigenvalue multiplicity in the characteristic polynomial).
This function first computes the characteristic polynomial of $x$ and
approximates its complex roots $(\lambda_i)$, then tries to compute the
eigenspaces as kernels of the $x - \lambda_i$. This algorithm is
ill-conditioned and is likely to miss kernel vectors if some roots of the
characteristic polynomial are close, in particular if it has multiple roots.
\bprog
? A = [13,2; 10,14]; mateigen(A)
%1 =
[-1/2 2/5]
[ 1 1]
? [L,H] = mateigen(A, 1);
? L
%3 = [9, 18]
? H
%4 =
[-1/2 2/5]
[ 1 1]
@eprog\noindent
For symmetric matrices, use \tet{qfjacobi} instead; for Hermitian matrices,
compute
\bprog
A = real(x);
B = imag(x);
y = matconcat([A, -B; B, A]);
@eprog\noindent and apply \kbd{qfjacobi} to $y$.
The library syntax is \fun{GEN}{mateigen}{GEN x, long flag, long prec}.
Also available is \fun{GEN}{eigen}{GEN x, long prec} ($\fl = 0$)
\subsec{matfrobenius$(M,\{\fl\},\{v='x\})$}\kbdsidx{matfrobenius}\label{se:matfrobenius}
Returns the Frobenius form of
the square matrix \kbd{M}. If $\fl=1$, returns only the elementary divisors as
a vector of polynomials in the variable \kbd{v}. If $\fl=2$, returns a
two-components vector [F,B] where \kbd{F} is the Frobenius form and \kbd{B} is
the basis change so that $M=B^{-1}FB$.
The library syntax is \fun{GEN}{matfrobenius}{GEN M, long flag, long v = -1} where \kbd{v} is a variable number.
\subsec{mathess$(x)$}\kbdsidx{mathess}\label{se:mathess}
Returns a matrix similar to the square matrix $x$, which is in upper Hessenberg
form (zero entries below the first subdiagonal).
The library syntax is \fun{GEN}{hess}{GEN x}.
\subsec{mathilbert$(n)$}\kbdsidx{mathilbert}\label{se:mathilbert}
$x$ being a \kbd{long}, creates the
\idx{Hilbert matrix}of order $x$, i.e.~the matrix whose coefficient
($i$,$j$) is $1/ (i+j-1)$.
The library syntax is \fun{GEN}{mathilbert}{long n}.
\subsec{mathnf$(M,\{\fl=0\})$}\kbdsidx{mathnf}\label{se:mathnf}
Let $R$ be a Euclidean ring, equal to $\Z$ or to $K[X]$ for some field
$K$. If $M$ is a (not necessarily square) matrix with entries in $R$, this
routine finds the \emph{upper triangular} \idx{Hermite normal form} of $M$.
If the rank of $M$ is equal to its number of rows, this is a square
matrix. In general, the columns of the result form a basis of the $R$-module
spanned by the columns of $M$.
The values $0,1,2,3$ of $\fl$ have a binary meaning, analogous to the one
in \tet{matsnf}; in this case, binary digits of $\fl$ mean:
\item 1 (complete output): if set, outputs $[H,U]$, where $H$ is the Hermite
normal form of $M$, and $U$ is a transformation matrix such that $MU=[0|H]$.
The matrix $U$ belongs to $\text{GL}(R)$. When $M$ has a large kernel, the
entries of $U$ are in general huge.
\item 2 (generic input): \emph{Deprecated}. If set, assume that $R = K[X]$ is
a polynomial ring; otherwise, assume that $R = \Z$. This flag is now useless
since the routine always checks whether the matrix has integral entries.
\noindent For these 4 values, we use a naive algorithm, which behaves well
in small dimension only. Larger values correspond to different algorithms,
are restricted to \emph{integer} matrices, and all output the unimodular
matrix $U$. From now on all matrices have integral entries.
\item $\fl=4$, returns $[H,U]$ as in ``complete output'' above, using a
variant of \idx{LLL} reduction along the way. The matrix $U$ is provably
small in the $L_2$ sense, and in general close to optimal; but the
reduction is in general slow, although provably polynomial-time.
If $\fl=5$, uses Batut's algorithm and output $[H,U,P]$, such that $H$ and
$U$ are as before and $P$ is a permutation of the rows such that $P$ applied
to $MU$ gives $H$. This is in general faster than $\fl=4$ but the matrix $U$
is usually worse; it is heuristically smaller than with the default algorithm.
When the matrix is dense and the dimension is large (bigger than 100, say),
$\fl = 4$ will be fastest. When $M$ has maximal rank, then
\bprog
H = mathnfmod(M, matdetint(M))
@eprog\noindent will be even faster. You can then recover $U$ as $M^{-1}H$.
\bprog
? M = matrix(3,4,i,j,random([-5,5]))
%1 =
[ 0 2 3 0]
[-5 3 -5 -5]
[ 4 3 -5 4]
? [H,U] = mathnf(M, 1);
? U
%3 =
[-1 0 -1 0]
[ 0 5 3 2]
[ 0 3 1 1]
[ 1 0 0 0]
? H
%5 =
[19 9 7]
[ 0 9 1]
[ 0 0 1]
? M*U
%6 =
[0 19 9 7]
[0 0 9 1]
[0 0 0 1]
@eprog
For convenience, $M$ is allowed to be a \typ{VEC}, which is then
automatically converted to a \typ{MAT}, as per the \tet{Mat} function.
For instance to solve the generalized extended gcd problem, one may use
\bprog
? v = [116085838, 181081878, 314252913,10346840];
? [H,U] = mathnf(v, 1);
? U
%2 =
[ 103 -603 15 -88]
[-146 13 -1208 352]
[ 58 220 678 -167]
[-362 -144 381 -101]
? v*U
%3 = [0, 0, 0, 1]
@eprog\noindent This also allows to input a matrix as a \typ{VEC} of
\typ{COL}s of the same length (which \kbd{Mat} would concatenate to
the \typ{MAT} having those columns):
\bprog
? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)
%1 =
[47 32 12]
[ 0 1 0]
[ 0 0 1]
@eprog
The library syntax is \fun{GEN}{mathnf0}{GEN M, long flag}.
Also available are \fun{GEN}{hnf}{GEN M} ($\fl=0$) and
\fun{GEN}{hnfall}{GEN M} ($\fl=1$). To reduce \emph{huge} relation matrices
(sparse with small entries, say dimension $400$ or more), you can use the
pair \kbd{hnfspec} / \kbd{hnfadd}. Since this is quite technical and the
calling interface may change, they are not documented yet. Look at the code
in \kbd{basemath/hnf\_snf.c}.
\subsec{mathnfmod$(x,d)$}\kbdsidx{mathnfmod}\label{se:mathnfmod}
If $x$ is a (not necessarily square) matrix of
maximal rank with integer entries, and $d$ is a multiple of the (non-zero)
determinant of the lattice spanned by the columns of $x$, finds the
\emph{upper triangular} \idx{Hermite normal form} of $x$.
If the rank of $x$ is equal to its number of rows, the result is a square
matrix. In general, the columns of the result form a basis of the lattice
spanned by the columns of $x$. Even when $d$ is known, this is in general
slower than \kbd{mathnf} but uses much less memory.
The library syntax is \fun{GEN}{hnfmod}{GEN x, GEN d}.
\subsec{mathnfmodid$(x,d)$}\kbdsidx{mathnfmodid}\label{se:mathnfmodid}
Outputs the (upper triangular)
\idx{Hermite normal form} of $x$ concatenated with the diagonal
matrix with diagonal $d$. Assumes that $x$ has integer entries.
Variant: if $d$ is an integer instead of a vector, concatenate $d$ times the
identity matrix.
\bprog
? m=[0,7;-1,0;-1,-1]
%1 =
[ 0 7]
[-1 0]
[-1 -1]
? mathnfmodid(m, [6,2,2])
%2 =
[2 1 1]
[0 1 0]
[0 0 1]
? mathnfmodid(m, 10)
%3 =
[10 7 3]
[ 0 1 0]
[ 0 0 1]
@eprog
The library syntax is \fun{GEN}{hnfmodid}{GEN x, GEN d}.
\subsec{mathouseholder$(Q,v)$}\kbdsidx{mathouseholder}\label{se:mathouseholder}
\sidx{Householder transform}applies a sequence $Q$ of Householder
transforms, as returned by \kbd{matqr}$(M,1)$ to the vector or matrix $v$.
The library syntax is \fun{GEN}{mathouseholder}{GEN Q, GEN v}.
\subsec{matid$(n)$}\kbdsidx{matid}\label{se:matid}
Creates the $n\times n$ identity matrix.
The library syntax is \fun{GEN}{matid}{long n}.
\subsec{matimage$(x,\{\fl=0\})$}\kbdsidx{matimage}\label{se:matimage}
Gives a basis for the image of the
matrix $x$ as columns of a matrix. A priori the matrix can have entries of
any type. If $\fl=0$, use standard Gauss pivot. If $\fl=1$, use
\kbd{matsupplement} (much slower: keep the default flag!).
The library syntax is \fun{GEN}{matimage0}{GEN x, long flag}.
Also available is \fun{GEN}{image}{GEN x} ($\fl=0$).
\subsec{matimagecompl$(x)$}\kbdsidx{matimagecompl}\label{se:matimagecompl}
Gives the vector of the column indices which
are not extracted by the function \kbd{matimage}, as a permutation
(\typ{VECSMALL}). Hence the number of
components of \kbd{matimagecompl(x)} plus the number of columns of
\kbd{matimage(x)} is equal to the number of columns of the matrix $x$.
The library syntax is \fun{GEN}{imagecompl}{GEN x}.
\subsec{matindexrank$(x)$}\kbdsidx{matindexrank}\label{se:matindexrank}
$x$ being a matrix of rank $r$, returns a vector with two
\typ{VECSMALL} components $y$ and $z$ of length $r$ giving a list of rows
and columns respectively (starting from 1) such that the extracted matrix
obtained from these two vectors using $\tet{vecextract}(x,y,z)$ is
invertible.
The library syntax is \fun{GEN}{indexrank}{GEN x}.
\subsec{matintersect$(x,y)$}\kbdsidx{matintersect}\label{se:matintersect}
$x$ and $y$ being two matrices with the same
number of rows each of whose columns are independent, finds a basis of the
$\Q$-vector space equal to the intersection of the spaces spanned by the
columns of $x$ and $y$ respectively. The faster function
\tet{idealintersect} can be used to intersect fractional ideals (projective
$\Z_K$ modules of rank $1$); the slower but much more general function
\tet{nfhnf} can be used to intersect general $\Z_K$-modules.
The library syntax is \fun{GEN}{intersect}{GEN x, GEN y}.
\subsec{matinverseimage$(x,y)$}\kbdsidx{matinverseimage}\label{se:matinverseimage}
Given a matrix $x$ and
a column vector or matrix $y$, returns a preimage $z$ of $y$ by $x$ if one
exists (i.e such that $x z = y$), an empty vector or matrix otherwise. The
complete inverse image is $z + \text{Ker} x$, where a basis of the kernel of
$x$ may be obtained by \kbd{matker}.
\bprog
? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~ \\@com no solution
? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]
[0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [;] \\@com no solution
? K = matker(M)
%6 =
[-2]
[1]
@eprog
The library syntax is \fun{GEN}{inverseimage}{GEN x, GEN y}.
\subsec{matisdiagonal$(x)$}\kbdsidx{matisdiagonal}\label{se:matisdiagonal}
Returns true (1) if $x$ is a diagonal matrix, false (0) if not.
The library syntax is \fun{GEN}{isdiagonal}{GEN x}.
\subsec{matker$(x,\{\fl=0\})$}\kbdsidx{matker}\label{se:matker}
Gives a basis for the kernel of the matrix $x$ as columns of a matrix.
The matrix can have entries of any type, provided they are compatible with
the generic arithmetic operations ($+$, $\times$ and $/$).
If $x$ is known to have integral entries, set $\fl=1$.
The library syntax is \fun{GEN}{matker0}{GEN x, long flag}.
Also available are \fun{GEN}{ker}{GEN x} ($\fl=0$),
\fun{GEN}{keri}{GEN x} ($\fl=1$).
\subsec{matkerint$(x,\{\fl=0\})$}\kbdsidx{matkerint}\label{se:matkerint}
Gives an \idx{LLL}-reduced $\Z$-basis
for the lattice equal to the kernel of the matrix $x$ with rational entries.
\fl is deprecated, kept for backward compatibility.
The library syntax is \fun{GEN}{matkerint0}{GEN x, long flag}.
Use directly \fun{GEN}{kerint}{GEN x} if $x$ is known to have
integer entries, and \tet{Q_primpart} first otherwise.
\subsec{matmuldiagonal$(x,d)$}\kbdsidx{matmuldiagonal}\label{se:matmuldiagonal}
Product of the matrix $x$ by the diagonal
matrix whose diagonal entries are those of the vector $d$. Equivalent to,
but much faster than $x*\kbd{matdiagonal}(d)$.
The library syntax is \fun{GEN}{matmuldiagonal}{GEN x, GEN d}.
\subsec{matmultodiagonal$(x,y)$}\kbdsidx{matmultodiagonal}\label{se:matmultodiagonal}
Product of the matrices $x$ and $y$ assuming that the result is a
diagonal matrix. Much faster than $x*y$ in that case. The result is
undefined if $x*y$ is not diagonal.
The library syntax is \fun{GEN}{matmultodiagonal}{GEN x, GEN y}.
\subsec{matpascal$(n,\{q\})$}\kbdsidx{matpascal}\label{se:matpascal}
Creates as a matrix the lower triangular
\idx{Pascal triangle} of order $x+1$ (i.e.~with binomial coefficients
up to $x$). If $q$ is given, compute the $q$-Pascal triangle (i.e.~using
$q$-binomial coefficients).
The library syntax is \fun{GEN}{matqpascal}{long n, GEN q = NULL}.
Also available is \fun{GEN}{matpascal}{GEN x}.
\subsec{matqr$(M,\{\fl=0\})$}\kbdsidx{matqr}\label{se:matqr}
Returns $[Q,R]$, the \idx{QR-decomposition} of the square invertible
matrix $M$ with real entries: $Q$ is orthogonal and $R$ upper triangular. If
$\fl=1$, the orthogonal matrix is returned as a sequence of Householder
transforms: applying such a sequence is stabler and faster than
multiplication by the corresponding $Q$ matrix.\sidx{Householder transform}
More precisely, if
\bprog
[Q,R] = matqr(M);
[q,r] = matqr(M, 1);
@eprog\noindent then $r = R$ and \kbd{mathouseholder}$(q, M)$ is
(close to) $R$; furthermore
\bprog
mathouseholder(q, matid(#M)) == Q~
@eprog\noindent the inverse of $Q$. This function raises an error if the
precision is too low or $x$ is singular.
The library syntax is \fun{GEN}{matqr}{GEN M, long flag, long prec}.
\subsec{matrank$(x)$}\kbdsidx{matrank}\label{se:matrank}
Rank of the matrix $x$.
The library syntax is \fun{long}{rank}{GEN x}.
\subsec{matrix$(m,n,\{X\},\{Y\},\{\var{expr}=0\})$}\kbdsidx{matrix}\label{se:matrix}
Creation of the
$m\times n$ matrix whose coefficients are given by the expression
\var{expr}. There are two formal parameters in \var{expr}, the first one
($X$) corresponding to the rows, the second ($Y$) to the columns, and $X$
goes from 1 to $m$, $Y$ goes from 1 to $n$. If one of the last 3 parameters
is omitted, fill the matrix with zeroes.
%\syn{NO}
\subsec{matrixqz$(A,\{p=0\})$}\kbdsidx{matrixqz}\label{se:matrixqz}
$A$ being an $m\times n$ matrix in $M_{m,n}(\Q)$, let
$\text{Im}_\Q A$ (resp.~$\text{Im}_\Z A$) the $\Q$-vector space
(resp.~the $\Z$-module) spanned by the columns of $A$. This function has
varying behavior depending on the sign of $p$:
If $p \geq 0$, $A$ is assumed to have maximal rank $n\leq m$. The function
returns a matrix $B\in M_{m,n}(\Z)$, with $\text{Im}_\Q B = \text{Im}_\Q A$,
such that the GCD of all its $n\times n$ minors is coprime to
$p$; in particular, if $p = 0$ (default), this GCD is $1$.
\bprog
? minors(x) = vector(#x[,1], i, matdet(x[^i,]));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7] \\ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]
[5 2]
[7 3]
? minors(%)
%3 = [1, 2, 1] \\ B integral with coprime minors
@eprog
If $p=-1$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Z A$.
If $p=-2$, returns the HNF basis of the lattice $\Z^n \cap \text{Im}_\Q A$.
\bprog
? matrixqz(A,-1)
%4 =
[8 5]
[4 3]
[0 1]
? matrixqz(A,-2)
%5 =
[2 -1]
[1 0]
[0 1]
@eprog
The library syntax is \fun{GEN}{matrixqz0}{GEN A, GEN p = NULL}.
\subsec{matsize$(x)$}\kbdsidx{matsize}\label{se:matsize}
$x$ being a vector or matrix, returns a row vector
with two components, the first being the number of rows (1 for a row vector),
the second the number of columns (1 for a column vector).
The library syntax is \fun{GEN}{matsize}{GEN x}.
\subsec{matsnf$(X,\{\fl=0\})$}\kbdsidx{matsnf}\label{se:matsnf}
If $X$ is a (singular or non-singular) matrix outputs the vector of
\idx{elementary divisors} of $X$, i.e.~the diagonal of the
\idx{Smith normal form} of $X$, normalized so that $d_n \mid d_{n-1} \mid
\ldots \mid d_1$.
The binary digits of \fl\ mean:
1 (complete output): if set, outputs $[U,V,D]$, where $U$ and $V$ are two
unimodular matrices such that $UXV$ is the diagonal matrix $D$. Otherwise
output only the diagonal of $D$. If $X$ is not a square matrix, then $D$
will be a square diagonal matrix padded with zeros on the left or the top.
2 (generic input): if set, allows polynomial entries, in which case the
input matrix must be square. Otherwise, assume that $X$ has integer
coefficients with arbitrary shape.
4 (cleanup): if set, cleans up the output. This means that elementary
divisors equal to $1$ will be deleted, i.e.~outputs a shortened vector $D'$
instead of $D$. If complete output was required, returns $[U',V',D']$ so
that $U'XV' = D'$ holds. If this flag is set, $X$ is allowed to be of the
form `vector of elementary divisors' or $[U,V,D]$ as would normally be output with the cleanup flag
unset.
The library syntax is \fun{GEN}{matsnf0}{GEN X, long flag}.
\subsec{matsolve$(M,B)$}\kbdsidx{matsolve}\label{se:matsolve}
$M$ being an invertible matrix and $B$ a column
vector, finds the solution $X$ of $MX=B$, using Dixon $p$-adic lifting method
if $M$ and $B$ are integral and Gaussian elimination otherwise. This
has the same effect as, but is faster, than $M^{-1}*B$.
The library syntax is \fun{GEN}{gauss}{GEN M, GEN B}.
For integral input, the function
\fun{GEN}{ZM_gauss}{GEN M,GEN B} is also available.
\subsec{matsolvemod$(M,D,B,\{\fl=0\})$}\kbdsidx{matsolvemod}\label{se:matsolvemod}
$M$ being any integral matrix,
$D$ a column vector of non-negative integer moduli, and $B$ an integral
column vector, gives a small integer solution to the system of congruences
$\sum_i m_{i,j}x_j\equiv b_i\pmod{d_i}$ if one exists, otherwise returns
zero. Shorthand notation: $B$ (resp.~$D$) can be given as a single integer,
in which case all the $b_i$ (resp.~$d_i$) above are taken to be equal to $B$
(resp.~$D$).
\bprog
? M = [1,2;3,4];
? matsolvemod(M, [3,4]~, [1,2]~)
%2 = [-2, 0]~
? matsolvemod(M, 3, 1) \\ M X = [1,1]~ over F_3
%3 = [-1, 1]~
? matsolvemod(M, [3,0]~, [1,2]~) \\ x + 2y = 1 (mod 3), 3x + 4y = 2 (in Z)
%4 = [6, -4]~
@eprog
If $\fl=1$, all solutions are returned in the form of a two-component row
vector $[x,u]$, where $x$ is a small integer solution to the system of
congruences and $u$ is a matrix whose columns give a basis of the homogeneous
system (so that all solutions can be obtained by adding $x$ to any linear
combination of columns of $u$). If no solution exists, returns zero.
The library syntax is \fun{GEN}{matsolvemod0}{GEN M, GEN D, GEN B, long flag}.
Also available are \fun{GEN}{gaussmodulo}{GEN M, GEN D, GEN B}
($\fl=0$) and \fun{GEN}{gaussmodulo2}{GEN M, GEN D, GEN B} ($\fl=1$).
\subsec{matsupplement$(x)$}\kbdsidx{matsupplement}\label{se:matsupplement}
Assuming that the columns of the matrix $x$
are linearly independent (if they are not, an error message is issued), finds
a square invertible matrix whose first columns are the columns of $x$,
i.e.~supplement the columns of $x$ to a basis of the whole space.
\bprog
? matsupplement([1;2])
%1 =
[1 0]
[2 1]
@eprog
Raises an error if $x$ has 0 columns, since (due to a long standing design
bug), the dimension of the ambient space (the number of rows) is unknown in
this case:
\bprog
? matsupplement(matrix(2,0))
*** at top-level: matsupplement(matrix
*** ^--------------------
*** matsupplement: sorry, suppl [empty matrix] is not yet implemented.
@eprog
The library syntax is \fun{GEN}{suppl}{GEN x}.
\subsec{mattranspose$(x)$}\kbdsidx{mattranspose}\label{se:mattranspose}
Transpose of $x$ (also $x\til$).
This has an effect only on vectors and matrices.
The library syntax is \fun{GEN}{gtrans}{GEN x}.
\subsec{minpoly$(A,\{v='x\})$}\kbdsidx{minpoly}\label{se:minpoly}
\idx{minimal polynomial}
of $A$ with respect to the variable $v$., i.e. the monic polynomial $P$
of minimal degree (in the variable $v$) such that $P(A) = 0$.
The library syntax is \fun{GEN}{minpoly}{GEN A, long v = -1} where \kbd{v} is a variable number.
\subsec{norml2$(x)$}\kbdsidx{norml2}\label{se:norml2}
Square of the $L^2$-norm of $x$. More precisely,
if $x$ is a scalar, $\kbd{norml2}(x)$ is defined to be the square
of the complex modulus of $x$ (real \typ{QUAD}s are not supported).
If $x$ is a polynomial, a (row or column) vector or a matrix, \kbd{norml2($x$)} is
defined recursively as $\sum_i \kbd{norml2}(x_i)$, where $(x_i)$ run through
the components of $x$. In particular, this yields the usual $\sum |x_i|^2$
(resp.~$\sum |x_{i,j}|^2$) if $x$ is a polynomial or vector (resp.~matrix) with
complex components.
\bprog
? norml2( [ 1, 2, 3 ] ) \\ vector
%1 = 14
? norml2( [ 1, 2; 3, 4] ) \\ matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] ) \\ recursively defined
%4 = 91
@eprog
The library syntax is \fun{GEN}{gnorml2}{GEN x}.
\subsec{normlp$(x,\{p=\var{oo}\})$}\kbdsidx{normlp}\label{se:normlp}
$L^p$-norm of $x$; sup norm if $p$ is omitted or \kbd{+oo}. More precisely,
if $x$ is a scalar, \kbd{normlp}$(x, p)$ is defined to be \kbd{abs}$(x)$.
If $x$ is a polynomial, a (row or column) vector or a matrix:
\item if $p$ is omitted or \kbd{+oo}, then \kbd{normlp($x$)} is defined
recursively as $\max_i \kbd{normlp}(x_i))$, where $(x_i)$ run through the
components of~$x$. In particular, this yields the usual sup norm if $x$ is a
polynomial or vector with complex components.
\item otherwise, \kbd{normlp($x$, $p$)} is defined recursively as $(\sum_i
\kbd{normlp}^p(x_i,p))^{1/p}$. In particular, this yields the usual $(\sum
|x_i|^p)^{1/p}$ if $x$ is a polynomial or vector with complex components.
\bprog
? v = [1,-2,3]; normlp(v) \\ vector
%1 = 3
? normlp(v, +oo) \\ same, more explicit
%2 = 3
? M = [1,-2;-3,4]; normlp(M) \\ matrix
%3 = 4
? T = (1+I) + I*x^2; normlp(T)
%4 = 1.4142135623730950488016887242096980786
? normlp([[1,2], [3,4], 5, 6]) \\ recursively defined
%5 = 6
? normlp(v, 1)
%6 = 6
? normlp(M, 1)
%7 = 10
? normlp(T, 1)
%8 = 2.4142135623730950488016887242096980786
@eprog
The library syntax is \fun{GEN}{gnormlp}{GEN x, GEN p = NULL, long prec}.
\subsec{qfauto$(G,\{\var{fl}\})$}\kbdsidx{qfauto}\label{se:qfauto}
$G$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, outputs the automorphism group of the
associate lattice.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension grows. $G$ can also be given by an
\kbd{qfisominit} structure.
See \kbd{qfisominit} for the meaning of \var{fl}.
The output is a two-components vector $[o,g]$ where $o$ is the group order
and $g$ is the list of generators (as a vector). For each generator $H$,
the equality $G={^t}H\*G\*H$ holds.
The interface of this function is experimental and will likely change in the
future.
This function implements an algorithm of Plesken and Souvignier, following
Souvignier's implementation.
The library syntax is \fun{GEN}{qfauto0}{GEN G, GEN fl = NULL}.
The function \fun{GEN}{qfauto}{GEN G, GEN fl} is also available
where $G$ is a vector of \kbd{zm} matrices.
\subsec{qfautoexport$(\var{qfa},\{\fl\})$}\kbdsidx{qfautoexport}\label{se:qfautoexport}
\var{qfa} being an automorphism group as output by
\tet{qfauto}, export the underlying matrix group as a string suitable
for (no flags or $\fl=0$) GAP or ($\fl=1$) Magma. The following example
computes the size of the matrix group using GAP:
\bprog
? G = qfauto([2,1;1,2])
%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
? s = qfautoexport(G)
%2 = "Group([[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]])"
? extern("echo \"Order("s");\" | gap -q")
%3 = 12
@eprog
The library syntax is \fun{GEN}{qfautoexport}{GEN qfa, long flag}.
\subsec{qfbil$(x,y,\{q\})$}\kbdsidx{qfbil}\label{se:qfbil}
This function is obsolete, use \kbd{qfeval}.
The library syntax is \fun{GEN}{qfbil}{GEN x, GEN y, GEN q = NULL}.
\subsec{qfeval$(\{q\},x,\{y\})$}\kbdsidx{qfeval}\label{se:qfeval}
Evaluate the binary quadratic form $q$ (given by a symmetric matrix)
at the vector $x$; if $y$ is present, evaluate the polar form at $(x,y)$;
if $q$ omitted, use the standard Euclidean scalar product, corresponding to
the identity matrix.
Roughly equivalent to \kbd{x\til * q * y}, but a little faster and
more convenient (does not distinguish between column and row vectors):
\bprog
? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];
? qfeval(q,x,y)
%2 = 23
? for(i=1,10^6, qfeval(q,x,y))
time = 661ms
? for(i=1,10^6, x~*q*y)
time = 697ms
@eprog\noindent The speedup is noticeable for the quadratic form,
compared to \kbd{x\til * q * x}, since we save almost half the
operations:
\bprog
? for(i=1,10^6, qfeval(q,x))
time = 487ms
@eprog\noindent The special case $q = \text{Id}$ is handled faster if we
omit $q$ altogether:
\bprog
? qfeval(,x,y)
%1 = 2
? q = matid(#x);
? for(i=1,10^6, qfeval(q,x,y))
time = 529 ms.
? for(i=1,10^6, qfeval(,x,y))
time = 228 ms.
? for(i=1,10^6, x~*y)
time = 274 ms.
@eprog
We also allow \typ{MAT}s of compatible dimensions for $x$,
and return \kbd{x\til * q * x} in this case as well:
\bprog
? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \\ Gram matrix
%5 =
[66 78 90]
[78 93 108]
[90 108 126]
? q = [1,2,3;2,2,-1;3,-1,9];
? for(i=1,10^6, qfeval(q,M))
time = 2,008 ms.
? for(i=1,10^6, M~*q*M)
time = 2,368 ms.
? for(i=1,10^6, qfeval(,M))
time = 1,053 ms.
? for(i=1,10^6, M~*M)
time = 1,171 ms.
@eprog
If $q$ is a \typ{QFI} or \typ{QFR}, it is implicitly converted to the
attached symmetric \typ{MAT}. This is done more
efficiently than by direct conversion, since we avoid introducing a
denominator $2$ and rational arithmetic:
\bprog
? q = Qfb(2,3,4); x = [2,3];
? qfeval(q, x)
%2 = 62
? Q = Mat(q)
%3 =
[ 2 3/2]
[3/2 4]
? qfeval(Q, x)
%4 = 62
? for (i=1, 10^6, qfeval(q,x))
time = 758 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,110 ms.
@eprog
Finally, when $x$ is a \typ{MAT} with \emph{integral} coefficients, we allow
a \typ{QFI} or \typ{QFR} for $q$ and return the binary
quadratic form $q \circ M$. Again, the conversion to \typ{MAT} is less
efficient in this case:
\bprog
? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];
? qfeval(q, x)
%2 = Qfb(47, 134, 96)
? qfeval(Q,x)
%3 =
[47 67]
[67 96]
? for (i=1, 10^6, qfeval(q,x))
time = 701 ms.
? for (i=1, 10^6, qfeval(Q,x))
time = 1,639 ms.
@eprog
The library syntax is \fun{GEN}{qfeval0}{GEN q = NULL, GEN x, GEN y = NULL}.
\subsec{qfgaussred$(q)$}\kbdsidx{qfgaussred}\label{se:qfgaussred}
\idx{decomposition into squares} of the
quadratic form represented by the symmetric matrix $q$. The result is a
matrix whose diagonal entries are the coefficients of the squares, and the
off-diagonal entries on each line represent the bilinear forms. More
precisely, if $(a_{ij})$ denotes the output, one has
$$ q(x) = \sum_i a_{ii} (x_i + \sum_{j \neq i} a_{ij} x_j)^2 $$
\bprog
? qfgaussred([0,1;1,0])
%1 =
[1/2 1]
[-1 -1/2]
@eprog\noindent This means that $2xy = (1/2)(x+y)^2 - (1/2)(x-y)^2$.
Singular matrices are supported, in which case some diagonal coefficients
will vanish:
\bprog
? qfgaussred([1,1;1,1])
%1 =
[1 1]
[1 0]
@eprog\noindent This means that $x^2 + 2xy + y^2 = (x+y)^2$.
The library syntax is \fun{GEN}{qfgaussred}{GEN q}.
\fun{GEN}{qfgaussred_positive}{GEN q} assumes that $q$ is
positive definite and is a little faster; returns \kbd{NULL} if a vector
with negative norm occurs (non positive matrix or too many rounding errors).
\subsec{qfisom$(G,H,\{\var{fl}\})$}\kbdsidx{qfisom}\label{se:qfisom}
$G$, $H$ being square and symmetric matrices with integer entries representing
positive definite quadratic forms, return an invertible matrix $S$ such that
$G={^t}S\*H\*S$. This defines a isomorphism between the corresponding lattices.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension grows.
See \kbd{qfisominit} for the meaning of \var{fl}.
$G$ can also be given by an \kbd{qfisominit} structure which is preferable if
several forms $H$ need to be compared to $G$.
This function implements an algorithm of Plesken and Souvignier, following
Souvignier's implementation.
The library syntax is \fun{GEN}{qfisom0}{GEN G, GEN H, GEN fl = NULL}.
Also available is \fun{GEN}{qfisom}{GEN G, GEN H, GEN fl}
where $G$ is a vector of \kbd{zm}, and $H$ is a \kbd{zm}.
\subsec{qfisominit$(G,\{\var{fl}\},\{m\})$}\kbdsidx{qfisominit}\label{se:qfisominit}
$G$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, return an \kbd{isom} structure allowing to
compute isomorphisms between $G$ and other quadratic forms faster.
The interface of this function is experimental and will likely change in future
release.
If present, the optional parameter \var{fl} must be a \typ{VEC} with two
components. It allows to specify the invariants used, which can make the
computation faster or slower. The components are
\item \kbd{fl[1]} Depth of scalar product combination to use.
\item \kbd{fl[2]} Maximum level of Bacher polynomials to use.
If present, $m$ must be the set of vectors of norm up to the maximal of the
diagonal entry of $G$, either as a matrix or as given by \kbd{qfminim}.
Otherwise this function computes the minimal vectors so it become very
lengthy as the dimension of $G$ grows.
The library syntax is \fun{GEN}{qfisominit0}{GEN G, GEN fl = NULL, GEN m = NULL}.
Also available is
\fun{GEN}{qfisominit}{GEN F, GEN fl}
where $F$ is a vector of \kbd{zm}.
\subsec{qfjacobi$(A)$}\kbdsidx{qfjacobi}\label{se:qfjacobi}
Apply Jacobi's eigenvalue algorithm to the real symmetric matrix $A$.
This returns $[L, V]$, where
\item $L$ is the vector of (real) eigenvalues of $A$, sorted in increasing
order,
\item $V$ is the corresponding orthogonal matrix of eigenvectors of $A$.
\bprog
? \p19
? A = [1,2;2,1]; mateigen(A)
%1 =
[-1 1]
[ 1 1]
? [L, H] = qfjacobi(A);
? L
%3 = [-1.000000000000000000, 3.000000000000000000]~
? H
%4 =
[ 0.7071067811865475245 0.7071067811865475244]
[-0.7071067811865475244 0.7071067811865475245]
? norml2( (A-L[1])*H[,1] ) \\ approximate eigenvector
%5 = 9.403954806578300064 E-38
? norml2(H*H~ - 1)
%6 = 2.350988701644575016 E-38 \\ close to orthogonal
@eprog
The library syntax is \fun{GEN}{jacobi}{GEN A, long prec}.
\subsec{qflll$(x,\{\fl=0\})$}\kbdsidx{qflll}\label{se:qflll}
\idx{LLL} algorithm applied to the
\emph{columns} of the matrix $x$. The columns of $x$ may be linearly
dependent. The result is a unimodular transformation matrix $T$ such that $x
\cdot T$ is an LLL-reduced basis of the lattice generated by the column
vectors of $x$. Note that if $x$ is not of maximal rank $T$ will not be
square. The LLL parameters are $(0.51,0.99)$, meaning that the Gram-Schmidt
coefficients for the final basis satisfy $\mu_{i,j} \leq |0.51|$, and the
Lov\'{a}sz's constant is $0.99$.
If $\fl=0$ (default), assume that $x$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.
If $\fl=1$, assume that $x$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).
If $\fl=2$, $x$ should be an integer matrix whose columns are linearly
independent. Returns a partially reduced basis for $x$, using an unpublished
algorithm by Peter Montgomery: a basis is said to be \emph{partially reduced}
if $|v_i \pm v_j| \geq |v_i|$ for any two distinct basis vectors $v_i, \,
v_j$.
This is faster than $\fl=1$, esp. when one row is huge compared
to the other rows (knapsack-style), and should quickly produce relatively
short vectors. The resulting basis is \emph{not} LLL-reduced in general.
If LLL reduction is eventually desired, avoid this partial reduction:
applying LLL to the partially reduced matrix is significantly \emph{slower}
than starting from a knapsack-type lattice.
If $\fl=4$, as $\fl=1$, returning a vector $[K, T]$ of matrices: the
columns of $K$ represent a basis of the integer kernel of $x$
(not LLL-reduced in general) and $T$ is the transformation
matrix such that $x\cdot T$ is an LLL-reduced $\Z$-basis of the image
of the matrix $x$.
If $\fl=5$, case as case $4$, but $x$ may have polynomial coefficients.
If $\fl=8$, same as case $0$, but $x$ may have polynomial coefficients.
The library syntax is \fun{GEN}{qflll0}{GEN x, long flag}.
Also available are \fun{GEN}{lll}{GEN x} ($\fl=0$),
\fun{GEN}{lllint}{GEN x} ($\fl=1$), and \fun{GEN}{lllkerim}{GEN x} ($\fl=4$).
\subsec{qflllgram$(G,\{\fl=0\})$}\kbdsidx{qflllgram}\label{se:qflllgram}
Same as \kbd{qflll}, except that the
matrix $G = \kbd{x\til * x}$ is the Gram matrix of some lattice vectors $x$,
and not the coordinates of the vectors themselves. In particular, $G$ must
now be a square symmetric real matrix, corresponding to a positive
quadratic form (not necessarily definite: $x$ needs not have maximal rank).
The result is a unimodular
transformation matrix $T$ such that $x \cdot T$ is an LLL-reduced basis of
the lattice generated by the column vectors of $x$. See \tet{qflll} for
further details about the LLL implementation.
If $\fl=0$ (default), assume that $G$ has either exact (integral or
rational) or real floating point entries. The matrix is rescaled, converted
to integers and the behavior is then as in $\fl = 1$.
If $\fl=1$, assume that $G$ is integral. Computations involving Gram-Schmidt
vectors are approximate, with precision varying as needed (Lehmer's trick,
as generalized by Schnorr). Adapted from Nguyen and Stehl\'e's algorithm
and Stehl\'e's code (\kbd{fplll-1.3}).
$\fl=4$: $G$ has integer entries, gives the kernel and reduced image of $x$.
$\fl=5$: same as $4$, but $G$ may have polynomial coefficients.
The library syntax is \fun{GEN}{qflllgram0}{GEN G, long flag}.
Also available are \fun{GEN}{lllgram}{GEN G} ($\fl=0$),
\fun{GEN}{lllgramint}{GEN G} ($\fl=1$), and \fun{GEN}{lllgramkerim}{GEN G}
($\fl=4$).
\subsec{qfminim$(x,\{b\},\{m\},\{\fl=0\})$}\kbdsidx{qfminim}\label{se:qfminim}
$x$ being a square and symmetric matrix representing a positive definite
quadratic form, this function deals with the vectors of $x$ whose norm is
less than or equal to $b$, enumerated using the Fincke-Pohst algorithm,
storing at most $m$ vectors (no limit if $m$ is omitted). The function
searches for the minimal non-zero vectors if $b$ is omitted. The behavior is
undefined if $x$ is not positive definite (a ``precision too low'' error is
most likely, although more precise error messages are possible). The precise
behavior depends on $\fl$.
If $\fl=0$ (default), returns at most $2m$ vectors. The result is a
three-component vector, the first component being the number of vectors
enumerated (which may be larger than $2m$), the second being the maximum
norm found, and the last vector
is a matrix whose columns are found vectors, only one being given for each
pair $\pm v$ (at most $m$ such pairs, unless $m$ was omitted). The vectors
are returned in no particular order.
If $\fl=1$, ignores $m$ and returns $[N,v]$, where $v$ is a non-zero vector
of length $N \leq b$, or $[]$ if no non-zero vector has length $\leq b$.
If no explicit $b$ is provided, return a vector of smallish norm
(smallest vector in an LLL-reduced basis).
In these two cases, $x$ must have \emph{integral} entries. The
implementation uses low precision floating point computations for maximal
speed, which gives incorrect result when $x$ has large entries. (The
condition is checked in the code and the routine raises an error if
large rounding errors occur.) A more robust, but much slower,
implementation is chosen if the following flag is used:
If $\fl=2$, $x$ can have non integral real entries. In this case, if $b$
is omitted, the ``minimal'' vectors only have approximately the same norm.
If $b$ is omitted, $m$ is an upper bound for the number of vectors that
will be stored and returned, but all minimal vectors are nevertheless
enumerated. If $m$ is omitted, all vectors found are stored and returned;
note that this may be a huge vector!
\bprog
? x = matid(2);
? qfminim(x) \\@com 4 minimal vectors of norm 1: $\pm[0,1]$, $\pm[1,0]$
%2 = [4, 1, [0, 1; 1, 0]]
? { x =
[4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1, 0, 1,-1,-1;
0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 0, 1,-1,-1, 0, 0;
0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 1, 0;
0, 0,-2, 0, 4, 0, 0, 0, 1,-1, 0, 0, 1, 0, 0, 0,-2, 0, 0,-1, 1, 1, 0, 0;
-2, -2,0, 0, 0, 4,-2, 0,-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,-1, 1, 1;
0, 0, 0, 0, 0,-2, 4,-2, 0, 0, 0, 0, 0, 1, 0, 0, 0,-1, 0, 0, 0, 1,-1, 0;
0, 0, 0, 0, 0, 0,-2, 4, 0, 0, 0, 0,-1, 0, 0, 0, 0, 0,-1,-1,-1, 0, 1, 0;
0, 0, 0, 0, 1,-1, 0, 0, 4, 0,-2, 0, 1, 1, 0,-1, 0, 1, 0, 0, 0, 0, 0, 0;
0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 0, 0, 1, 1,-1, 1, 0, 0, 0, 1, 0, 0, 1, 0;
0, 0, 0, 0, 0, 0, 0, 0,-2, 0, 4,-2, 0,-1, 0, 0, 0,-1, 0,-1, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,-2, 4,-1, 1, 0, 0,-1, 1, 0, 1, 1, 1,-1, 0;
1, 0,-1, 1, 1, 0, 0,-1, 1, 1, 0,-1, 4, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1,-1;
-1,-1, 1,-1, 0, 0, 1, 0, 1, 1,-1, 1, 0, 4, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1;
0, 0, 0, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0;
0, 0, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 1, 0, 4, 0, 0, 0, 0, 1, 1, 0, 0;
0, 0, 1, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 1, 1;
1, 0, 0, 1, 0, 0,-1, 0, 1, 0,-1, 1, 1, 0, 0, 0, 1, 4, 0, 1, 1, 0, 1, 0;
0, 0, 0,-1, 0, 1, 0,-1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 4, 0, 1, 1, 0, 1;
-1, -1,1, 0,-1, 1, 0,-1, 0, 1,-1, 1, 0, 1, 0, 0, 1, 1, 0, 4, 0, 0, 1, 1;
0, 0,-1, 1, 1, 0, 0,-1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 4, 1, 0, 1;
0, 1,-1,-1, 1,-1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 4, 0, 1;
0,-1, 0, 1, 0, 1,-1, 1, 0, 1, 0,-1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 4, 1;
-2,-1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 4]; }
? qfminim(x,,0) \\ the Leech lattice has 196560 minimal vectors of norm 4
time = 648 ms.
%4 = [196560, 4, [;]]
? qfminim(x,,0,2); \\ safe algorithm. Slower and unnecessary here.
time = 18,161 ms.
%5 = [196560, 4.000061035156250000, [;]]
@eprog\noindent\sidx{Leech lattice}\sidx{minimal vector}
In the last example, we store 0 vectors to limit memory use. All minimal
vectors are nevertheless enumerated. Provided \kbd{parisize} is about 50MB,
\kbd{qfminim(x)} succeeds in 2.5 seconds.
The library syntax is \fun{GEN}{qfminim0}{GEN x, GEN b = NULL, GEN m = NULL, long flag, long prec}.
Also available are
\fun{GEN}{minim}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=0$),
\fun{GEN}{minim2}{GEN x, GEN b = NULL, GEN m = NULL} ($\fl=1$).
\fun{GEN}{minim_raw}{GEN x, GEN b = NULL, GEN m = NULL} (do not perform LLL
reduction on x and return \kbd{NULL} on accuracy error).
\subsec{qfnorm$(x,\{q\})$}\kbdsidx{qfnorm}\label{se:qfnorm}
This function is obsolete, use \kbd{qfeval}.
The library syntax is \fun{GEN}{qfnorm}{GEN x, GEN q = NULL}.
\subsec{qforbits$(G,V)$}\kbdsidx{qforbits}\label{se:qforbits}
Return the orbits of $V$ under the action of the group
of linear transformation generated by the set $G$.
It is assumed that $G$ contains minus identity, and only one vector
in $\{v, -v\}$ should be given.
If $G$ does not stabilize $V$, the function return $0$.
In the example below, we compute representatives and lengths of the orbits of
the vectors of norm $\leq 3$ under the automorphisms of the lattice $A_1^6$.
\bprog
? Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);
? apply(x->[x[1],#x],qforbits(G,V))
%2 = [[[0,0,0,0,0,1]~,6],[[0,0,0,0,1,-1]~,30],[[0,0,0,1,-1,-1]~,80]]
@eprog
The library syntax is \fun{GEN}{qforbits}{GEN G, GEN V}.
\subsec{qfparam$(G, \var{sol}, \{\fl = 0\})$}\kbdsidx{qfparam}\label{se:qfparam}
Coefficients of binary quadratic forms that parametrize the
solutions of the ternary quadratic form $G$, using the particular
solution~\var{sol}.
\fl is optional and can be 1, 2, or 3, in which case the \fl-th form is
reduced. The default is \fl=0 (no reduction).
\bprog
? G = [1,0,0;0,1,0;0,0,-34];
? M = qfparam(G, qfsolve(G))
%2 =
[ 3 -10 -3]
[-5 -6 5]
[ 1 0 1]
@eprog
Indeed, the solutions can be parametrized as
$$(3x^2 - 10xy - 3y^2)^2 + (-5x^2 - 6xy + 5y^2)^2 -34(x^2 + y^2)^2 = 0.$$
\bprog
? v = y^2 * M*[1,x/y,(x/y)^2]~
%3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
? v~*G*v
%4 = 0
@eprog
The library syntax is \fun{GEN}{qfparam}{GEN G, GEN sol, long flag}.
\subsec{qfperfection$(G)$}\kbdsidx{qfperfection}\label{se:qfperfection}
$G$ being a square and symmetric matrix with
integer entries representing a positive definite quadratic form, outputs the
perfection rank of the form. That is, gives the rank of the family of the $s$
symmetric matrices $v_iv_i^t$, where $s$ is half the number of minimal
vectors and the $v_i$ ($1\le i\le s$) are the minimal vectors.
Since this requires computing the minimal vectors, the computations can
become very lengthy as the dimension of $x$ grows.
The library syntax is \fun{GEN}{perf}{GEN G}.
\subsec{qfrep$(q,B,\{\fl=0\})$}\kbdsidx{qfrep}\label{se:qfrep}
$q$ being a square and symmetric matrix with integer entries representing a
positive definite quadratic form, count the vectors representing successive
integers.
\item If $\fl = 0$, count all vectors. Outputs the vector whose $i$-th
entry, $1 \leq i \leq B$ is half the number of vectors $v$ such that $q(v)=i$.
\item If $\fl = 1$, count vectors of even norm. Outputs the vector
whose $i$-th entry, $1 \leq i \leq B$ is half the number of vectors such
that $q(v) = 2i$.
\bprog
? q = [2, 1; 1, 3];
? qfrep(q, 5)
%2 = Vecsmall([0, 1, 2, 0, 0]) \\ 1 vector of norm 2, 2 of norm 3, etc.
? qfrep(q, 5, 1)
%3 = Vecsmall([1, 0, 0, 1, 0]) \\ 1 vector of norm 2, 0 of norm 4, etc.
@eprog\noindent
This routine uses a naive algorithm based on \tet{qfminim}, and
will fail if any entry becomes larger than $2^{31}$ (or $2^{63}$).
The library syntax is \fun{GEN}{qfrep0}{GEN q, GEN B, long flag}.
\subsec{qfsign$(x)$}\kbdsidx{qfsign}\label{se:qfsign}
Returns $[p,m]$ the signature of the quadratic form represented by the
symmetric matrix $x$. Namely, $p$ (resp.~$m$) is the number of positive
(resp.~negative) eigenvalues of $x$. The result is computed using Gaussian
reduction.
The library syntax is \fun{GEN}{qfsign}{GEN x}.
\subsec{qfsolve$(G)$}\kbdsidx{qfsolve}\label{se:qfsolve}
Given a square symmetric matrix $G$ of dimension $n \geq 1$, solve over
$\Q$ the quadratic equation $X^tGX = 0$. The matrix $G$ must have rational
coefficients. The solution might be a single non-zero vector (vectorv) or a
matrix (whose columns generate a totally isotropic subspace).
If no solution exists, returns an integer, that can be a prime $p$ such that
there is no local solution at $p$, or $-1$ if there is no real solution,
or $-2$ if $n = 2$ and $-\det G$ is positive but not a square (which implies
there is a real solution, but no local solution at some $p$ dividing $\det G$).
\bprog
? G = [1,0,0;0,1,0;0,0,-34];
? qfsolve(G)
%1 = [-3, -5, 1]~
? qfsolve([1,0; 0,2])
%2 = -1 \\ no real solution
? qfsolve([1,0,0;0,3,0; 0,0,-2])
%3 = 3 \\ no solution in Q_3
? qfsolve([1,0; 0,-2])
%4 = -2 \\ no solution, n = 2
@eprog
The library syntax is \fun{GEN}{qfsolve}{GEN G}.
\subsec{seralgdep$(s,p,r)$}\kbdsidx{seralgdep}\label{se:seralgdep}
\sidx{algebraic dependence} finds a linear relation between powers $(1,s,
\dots, s^p)$ of the series $s$, with polynomial coefficients of degree
$\leq r$. In case no relation is found, return $0$.
\bprog
? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);
? seralgdep(s, 2, 2)
%2 = -x^2 + (8*y^2 + 20*y + 1)
? subst(%, x, s)
%3 = O(y^6)
? seralgdep(s, 1, 3)
%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
? seralgdep(s, 1, 2)
%5 = 0
@eprog\noindent The series main variable must not be $x$, so as to be able
to express the result as a polynomial in $x$.
The library syntax is \fun{GEN}{seralgdep}{GEN s, long p, long r}.
\subsec{setbinop$(f,X,\{Y\})$}\kbdsidx{setbinop}\label{se:setbinop}
The set whose elements are the f(x,y), where x,y run through X,Y.
respectively. If $Y$ is omitted, assume that $X = Y$ and that $f$ is symmetric:
$f(x,y) = f(y,x)$ for all $x,y$ in $X$.
\bprog
? X = [1,2,3]; Y = [2,3,4];
? setbinop((x,y)->x+y, X,Y) \\ set X + Y
%2 = [3, 4, 5, 6, 7]
? setbinop((x,y)->x-y, X,Y) \\ set X - Y
%3 = [-3, -2, -1, 0, 1]
? setbinop((x,y)->x+y, X) \\ set 2X = X + X
%2 = [2, 3, 4, 5, 6]
@eprog
The library syntax is \fun{GEN}{setbinop}{GEN f, GEN X, GEN Y = NULL}.
\subsec{setintersect$(x,y)$}\kbdsidx{setintersect}\label{se:setintersect}
Intersection of the two sets $x$ and $y$ (see \kbd{setisset}).
If $x$ or $y$ is not a set, the result is undefined.
The library syntax is \fun{GEN}{setintersect}{GEN x, GEN y}.
\subsec{setisset$(x)$}\kbdsidx{setisset}\label{se:setisset}
Returns true (1) if $x$ is a set, false (0) if
not. In PARI, a set is a row vector whose entries are strictly
increasing with respect to a (somewhat arbitrary) universal comparison
function. To convert any object into a set (this is most useful for
vectors, of course), use the function \kbd{Set}.
\bprog
? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = [1, 2, 3]
@eprog
The library syntax is \fun{long}{setisset}{GEN x}.
\subsec{setminus$(x,y)$}\kbdsidx{setminus}\label{se:setminus}
Difference of the two sets $x$ and $y$ (see \kbd{setisset}),
i.e.~set of elements of $x$ which do not belong to $y$.
If $x$ or $y$ is not a set, the result is undefined.
The library syntax is \fun{GEN}{setminus}{GEN x, GEN y}.
\subsec{setsearch$(S,x,\{\fl=0\})$}\kbdsidx{setsearch}\label{se:setsearch}
Determines whether $x$ belongs to the set $S$ (see \kbd{setisset}).
We first describe the default behaviour, when $\fl$ is zero or omitted. If $x$
belongs to the set $S$, returns the index $j$ such that $S[j]=x$, otherwise
returns 0.
\bprog
? T = [7,2,3,5]; S = Set(T);
? setsearch(S, 2)
%2 = 1
? setsearch(S, 4) \\ not found
%3 = 0
? setsearch(T, 7) \\ search in a randomly sorted vector
%4 = 0 \\ WRONG !
@eprog\noindent
If $S$ is not a set, we also allow sorted lists with
respect to the \tet{cmp} sorting function, without repeated entries,
as per \tet{listsort}$(L,1)$; otherwise the result is undefined.
\bprog
? L = List([1,4,2,3,2]); setsearch(L, 4)
%1 = 0 \\ WRONG !
? listsort(L, 1); L \\ sort L first
%2 = List([1, 2, 3, 4])
? setsearch(L, 4)
%3 = 4 \\ now correct
@eprog\noindent
If $\fl$ is non-zero, this function returns the index $j$ where $x$ should be
inserted, and $0$ if it already belongs to $S$. This is meant to be used for
dynamically growing (sorted) lists, in conjunction with \kbd{listinsert}.
\bprog
? L = List([1,5,2,3,2]); listsort(L,1); L
%1 = List([1,2,3,5])
? j = setsearch(L, 4, 1) \\ 4 should have been inserted at index j
%2 = 4
? listinsert(L, 4, j); L
%3 = List([1, 2, 3, 4, 5])
@eprog
The library syntax is \fun{long}{setsearch}{GEN S, GEN x, long flag}.
\subsec{setunion$(x,y)$}\kbdsidx{setunion}\label{se:setunion}
Union of the two sets $x$ and $y$ (see \kbd{setisset}).
If $x$ or $y$ is not a set, the result is undefined.
The library syntax is \fun{GEN}{setunion}{GEN x, GEN y}.
\subsec{trace$(x)$}\kbdsidx{trace}\label{se:trace}
This applies to quite general $x$. If $x$ is not a
matrix, it is equal to the sum of $x$ and its conjugate, except for polmods
where it is the trace as an algebraic number.
For $x$ a square matrix, it is the ordinary trace. If $x$ is a
non-square matrix (but not a vector), an error occurs.
The library syntax is \fun{GEN}{gtrace}{GEN x}.
\subsec{vecextract$(x,y,\{z\})$}\kbdsidx{vecextract}\label{se:vecextract}
Extraction of components of the vector or matrix $x$ according to $y$.
In case $x$ is a matrix, its components are the \emph{columns} of $x$. The
parameter $y$ is a component specifier, which is either an integer, a string
describing a range, or a vector.
If $y$ is an integer, it is considered as a mask: the binary bits of $y$ are
read from right to left, but correspond to taking the components from left to
right. For example, if $y=13=(1101)_2$ then the components 1,3 and 4 are
extracted.
If $y$ is a vector (\typ{VEC}, \typ{COL} or \typ{VECSMALL}), which must have
integer entries, these entries correspond to the component numbers to be
extracted, in the order specified.
If $y$ is a string, it can be
\item a single (non-zero) index giving a component number (a negative
index means we start counting from the end).
\item a range of the form \kbd{"$a$..$b$"}, where $a$ and $b$ are
indexes as above. Any of $a$ and $b$ can be omitted; in this case, we take
as default values $a = 1$ and $b = -1$, i.e.~ the first and last components
respectively. We then extract all components in the interval $[a,b]$, in
reverse order if $b < a$.
In addition, if the first character in the string is \kbd{\pow}, the
complement of the given set of indices is taken.
If $z$ is not omitted, $x$ must be a matrix. $y$ is then the \emph{row}
specifier, and $z$ the \emph{column} specifier, where the component specifier
is as explained above.
\bprog
? v = [a, b, c, d, e];
? vecextract(v, 5) \\@com mask
%1 = [a, c]
? vecextract(v, [4, 2, 1]) \\@com component list
%2 = [d, b, a]
? vecextract(v, "2..4") \\@com interval
%3 = [b, c, d]
? vecextract(v, "-1..-3") \\@com interval + reverse order
%4 = [e, d, c]
? vecextract(v, "^2") \\@com complement
%5 = [a, c, d, e]
? vecextract(matid(3), "2..", "..")
%6 =
[0 1 0]
[0 0 1]
@eprog
The range notations \kbd{v[i..j]} and \kbd{v[\pow i]} (for \typ{VEC} or
\typ{COL}) and \kbd{M[i..j, k..l]} and friends (for \typ{MAT}) implement a
subset of the above, in a simpler and \emph{faster} way, hence should be
preferred in most common situations. The following features are not
implemented in the range notation:
\item reverse order,
\item omitting either $a$ or $b$ in \kbd{$a$..$b$}.
The library syntax is \fun{GEN}{extract0}{GEN x, GEN y, GEN z = NULL}.
\subsec{vecsearch$(v,x,\{\var{cmpf}\})$}\kbdsidx{vecsearch}\label{se:vecsearch}
Determines whether $x$ belongs to the sorted vector or list $v$: return
the (positive) index where $x$ was found, or $0$ if it does not belong to
$v$.
If the comparison function cmpf is omitted, we assume that $v$ is sorted in
increasing order, according to the standard comparison function \kbd{lex},
thereby restricting the possible types for $x$ and the elements of $v$
(integers, fractions, reals, and vectors of such).
If \kbd{cmpf} is present, it is understood as a comparison function and we
assume that $v$ is sorted according to it, see \tet{vecsort} for how to
encode comparison functions.
\bprog
? v = [1,3,4,5,7];
? vecsearch(v, 3)
%2 = 2
? vecsearch(v, 6)
%3 = 0 \\ not in the list
? vecsearch([7,6,5], 5) \\ unsorted vector: result undefined
%4 = 0
@eprog
By abuse of notation, $x$ is also allowed to be a matrix, seen as a vector
of its columns; again by abuse of notation, a \typ{VEC} is considered
as part of the matrix, if its transpose is one of the matrix columns.
\bprog
? v = vecsort([3,0,2; 1,0,2]) \\ sort matrix columns according to lex order
%1 =
[0 2 3]
[0 2 1]
? vecsearch(v, [3,1]~)
%2 = 3
? vecsearch(v, [3,1]) \\ can search for x or x~
%3 = 3
? vecsearch(v, [1,2])
%4 = 0 \\ not in the list
@eprog\noindent
The library syntax is \fun{long}{vecsearch}{GEN v, GEN x, GEN cmpf = NULL}.
\subsec{vecsort$(x,\{\var{cmpf}\},\{\fl=0\})$}\kbdsidx{vecsort}\label{se:vecsort}
Sorts the vector $x$ in ascending order, using a mergesort method.
$x$ must be a list, vector or matrix (seen as a vector of its columns).
Note that mergesort is stable, hence the initial ordering of ``equal''
entries (with respect to the sorting criterion) is not changed.
If \kbd{cmpf} is omitted, we use the standard comparison function
\kbd{lex}, thereby restricting the possible types for the elements of $x$
(integers, fractions or reals and vectors of those). If \kbd{cmpf} is
present, it is understood as a comparison function and we sort according to
it. The following possibilities exist:
\item an integer $k$: sort according to the value of the $k$-th
subcomponents of the components of~$x$.
\item a vector: sort lexicographically according to the components listed in
the vector. For example, if $\kbd{cmpf}=\kbd{[2,1,3]}$, sort with respect to
the second component, and when these are equal, with respect to the first,
and when these are equal, with respect to the third.
\item a comparison function (\typ{CLOSURE}), with two arguments $x$ and $y$,
and returning an integer which is $<0$, $>0$ or $=0$ if $x<y$, $x>y$ or
$x=y$ respectively. The \tet{sign} function is very useful in this context:
\bprog
? vecsort([3,0,2; 1,0,2]) \\ sort columns according to lex order
%1 =
[0 2 3]
[0 2 1]
? vecsort(v, (x,y)->sign(y-x)) \\@com reverse sort
? vecsort(v, (x,y)->sign(abs(x)-abs(y))) \\@com sort by increasing absolute value
? cmpf(x,y) = my(dx = poldisc(x), dy = poldisc(y)); sign(abs(dx) - abs(dy))
? vecsort([x^2+1, x^3-2, x^4+5*x+1], cmpf)
@eprog\noindent
The last example used the named \kbd{cmpf} instead of an anonymous function,
and sorts polynomials with respect to the absolute value of their
discriminant. A more efficient approach would use precomputations to ensure
a given discriminant is computed only once:
\bprog
? DISC = vector(#v, i, abs(poldisc(v[i])));
? perm = vecsort(vector(#v,i,i), (x,y)->sign(DISC[x]-DISC[y]))
? vecextract(v, perm)
@eprog\noindent Similar ideas apply whenever we sort according to the values
of a function which is expensive to compute.
\noindent The binary digits of \fl\ mean:
\item 1: indirect sorting of the vector $x$, i.e.~if $x$ is an
$n$-component vector, returns a permutation of $[1,2,\dots,n]$ which
applied to the components of $x$ sorts $x$ in increasing order.
For example, \kbd{vecextract(x, vecsort(x,,1))} is equivalent to
\kbd{vecsort(x)}.
\item 4: use descending instead of ascending order.
\item 8: remove ``duplicate'' entries with respect to the sorting function
(keep the first occurring entry). For example:
\bprog
? vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \\@com make everything compare equal
%1 = [3.141592653589793238462643383]
? vecsort([[2,3],[0,1],[0,3]], 2, 8)
%2 = [[0, 1], [2, 3]]
@eprog
The library syntax is \fun{GEN}{vecsort0}{GEN x, GEN cmpf = NULL, long flag}.
\subsec{vecsum$(v)$}\kbdsidx{vecsum}\label{se:vecsum}
Return the sum of the components of the vector $v$. Return $0$ on an
empty vector.
\bprog
? vecsum([1,2,3])
%1 = 6
? vecsum([])
%2 = 0
@eprog
The library syntax is \fun{GEN}{vecsum}{GEN v}.
\subsec{vector$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vector}\label{se:vector}
Creates a row vector (type
\typ{VEC}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
\bprog
? vector(3,i, 5*i)
%1 = [5, 10, 15]
? vector(3)
%2 = [0, 0, 0]
@eprog
The variable $X$ is lexically scoped to each evaluation of \var{expr}. Any
change to $X$ within \var{expr} does not affect subsequent evaluations, it
still runs 1 to $n$. A local change allows for example different indexing:
\bprog
vector(10, i, i=i-1; f(i)) \\ i = 0, ..., 9
vector(10, i, i=2*i; f(i)) \\ i = 2, 4, ..., 20
@eprog\noindent
This per-element scope for $X$ differs from \kbd{for} loop evaluations,
as the following example shows:
\bprog
n = 3
v = vector(n); vector(n, i, i++) ----> [2, 3, 4]
v = vector(n); for (i = 1, n, v[i] = i++) ----> [2, 0, 4]
@eprog\noindent
%\syn{NO}
\subsec{vectorsmall$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vectorsmall}\label{se:vectorsmall}
Creates a row vector of small integers (type
\typ{VECSMALL}) with $n$ components whose components are the expression
\var{expr} evaluated at the integer points between 1 and $n$. If one of the
last two arguments is omitted, fill the vector with zeroes.
%\syn{NO}
\subsec{vectorv$(n,\{X\},\{\var{expr}=0\})$}\kbdsidx{vectorv}\label{se:vectorv}
As \tet{vector}, but returns a column vector (type \typ{COL}).
%\syn{NO}
%SECTION: linear_algebra
\section{Sums, products, integrals and similar functions}
\label{se:sums}
Although the \kbd{gp} calculator is programmable, it is useful to have
a number of preprogrammed loops, including sums, products, and a certain
number of recursions. Also, a number of functions from numerical analysis
like numerical integration and summation of series will be described here.
One of the parameters in these loops must be the control variable, hence a
simple variable name. In the descriptions, the letter $X$ will always denote
any simple variable name, and represents the formal parameter used in the
function. The expression to be summed, integrated, etc. is any legal PARI
expression, including of course expressions using loops.
\misctitle{Library mode}
Since it is easier to program directly the loops in library mode, these
functions are mainly useful for GP programming. On the other hand, numerical
routines code a function (to be integrated, summed, etc.) with two parameters
named
\bprog
GEN (*eval)(void*,GEN)
void *E; \\ context: eval(E, x) must evaluate your function at x.
@eprog\noindent
see the Libpari manual for details.
\misctitle{Numerical integration}\sidx{numerical integration}
Starting with version 2.2.9 the ``double exponential'' univariate
integration method is implemented in \tet{intnum} and its variants. Romberg
integration is still available under the name \kbd{intnumromb}, but
superseded. It is possible to compute numerically integrals to thousands of
decimal places in reasonable time, as long as the integrand is regular. It is
also reasonable to compute numerically integrals in several variables,
although more than two becomes lengthy. The integration domain may be
non-compact, and the integrand may have reasonable singularities at
endpoints. To use \kbd{intnum}, you must split the integral into a sum
of subintegrals where the function has no singularities except at the
endpoints. Polynomials in logarithms are not considered singular, and
neglecting these logs, singularities are assumed to be algebraic (asymptotic
to $C(x-a)^{-\alpha}$ for some $\alpha > -1$ when $x$ is
close to $a$), or to correspond to simple discontinuities of some (higher)
derivative of the function. For instance, the point $0$ is a singularity of
$\text{abs}(x)$.
See also the discrete summation methods below, sharing the prefix \kbd{sum}.
\subsec{asympnum$(\var{expr},\{k={20}\},\{\var{alpha} = 1\})$}\kbdsidx{asympnum}\label{se:asympnum}
Asymptotic expansion of \var{expr}, corresponding to a sequence $u(n)$,
assuming it has the shape
$$u(n) \approx \sum_{i \geq 0} a_i n^{-i\alpha}$$
with rational coefficients $a_i$ with reasonable height; the algorithm
is heuristic and performs repeated calls to limitnum, with
\kbd{k} and \kbd{alpha} are as in \kbd{limitnum}
\bprog
? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \\ failure !
? l = limitnum(f)
%3 = 2.5066282746310005024157652848110452530
? asympnum(n->f(n)/l) \\ normalize
%4 = [1, 1/12, 1/288, -139/51840]
@eprog\noindent and we indeed get a few terms of Stirling's expansion. Note
that it helps to normalize with a limit computed to higher accuracy:
\bprog
? \p100
? L = limitnum(f)
? \p38
? asympnum(n->f(n)/L) \\ we get more terms!
%6 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,\
5246819/75246796800, -534703531/902961561600]
@eprog\noindent If \kbd{alpha} is not an integer, loss of accuracy is
expected, so it should be precomputed to double accuracy, say:
\bprog
? \p38
? asympnum(n->-log(1-1/n^Pi),,Pi)
%1 = [0, 1, 1/2, 1/3]
? asympnum(n->-log(1-1/sqrt(n)),,1/2)
%2 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12, \
1/13, 1/14, 1/15, 1/16, 1/17, 1/18, 1/19, 1/20, 1/21, 1/22]
? localprec(100); a = Pi;
? asympnum(n->-log(1-1/n^a),,a) \\ better !
%4 = [0, 1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 1/11, 1/12]
@eprog
\synt{asympnum}{void *E, GEN (*u)(void *,GEN,long), long muli, GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return $u(n)$ in precision \kbd{prec}.
Also available is
\fun{GEN}{asympnum0}{GEN u, long muli, GEN alpha, long prec}, where $u$
must be a vector of sufficient length as above.
\subsec{contfraceval$(\var{CF},t,\{\var{lim}=-1\})$}\kbdsidx{contfraceval}\label{se:contfraceval}
Given a continued fraction \kbd{CF} output by \kbd{contfracinit}, evaluate
the first \kbd{lim} terms of the continued fraction at \kbd{t} (all
terms if \kbd{lim} is negative or omitted; if positive, \kbd{lim} must be
less than or equal to the length of \kbd{CF}.
The library syntax is \fun{GEN}{contfraceval}{GEN CF, GEN t, long lim}.
\subsec{contfracinit$(M,\{\var{lim} = -1\})$}\kbdsidx{contfracinit}\label{se:contfracinit}
Given $M$ representing the power series $S=\sum_{n\ge0} M[n+1]z^n$,
transform it into a continued fraction; restrict to $n\leq \kbd{lim}$
if latter is non-negative. $M$ can be a vector, a power
series, a polynomial, or a rational function.
The result is a 2-component vector $[A,B]$ such that
$S = M[1] / (1+A[1]z+B[1]z^2/(1+A[2]z+B[2]z^2/(1+...1/(1+A[lim/2]z))))$.
Does not work if any coefficient of $M$ vanishes, nor for series for
which certain partial denominators vanish.
The library syntax is \fun{GEN}{contfracinit}{GEN M, long lim}.
\subsec{derivnum$(X=a,\var{expr})$}\kbdsidx{derivnum}\label{se:derivnum}
Numerical derivation of \var{expr} with respect to $X$ at $X=a$.
\bprog
? derivnum(x=0,sin(exp(x))) - cos(1)
%1 = -1.262177448 E-29
@eprog
A clumsier approach, which would not work in library mode, is
\bprog
? f(x) = sin(exp(x))
? f'(0) - cos(1)
%1 = -1.262177448 E-29
@eprog
When $a$ is a power series, compute \kbd{derivnum(t=a,f)} as $f'(a) =
(f(a))'/a'$.
\synt{derivnum}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}. Also
available is \fun{GEN}{derivfun}{void *E, GEN (*eval)(void *, GEN), GEN a, long prec}, which also allows power series for $a$.
\subsec{intcirc$(X=a,R,\var{expr},\{\var{tab}\})$}\kbdsidx{intcirc}\label{se:intcirc}
Numerical
integration of $(2i\pi)^{-1}\var{expr}$ with respect to $X$ on the circle
$|X-a| = R$.
In other words, when \var{expr} is a meromorphic
function, sum of the residues in the corresponding disk; \var{tab} is as in
\kbd{intnum}, except that if computed with \kbd{intnuminit} it should be with
the endpoints \kbd{[-1, 1]}.
\bprog
? \p105
? intcirc(s=1, 0.5, zeta(s)) - 1
time = 496 ms.
%1 = 1.2883911040127271720 E-101 + 0.E-118*I
@eprog
\synt{intcirc}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN R,GEN tab, long prec}.
\subsec{intfuncinit$(t=a,b,f,\{m=0\})$}\kbdsidx{intfuncinit}\label{se:intfuncinit}
Initialize tables for use with integral transforms such Fourier,
Laplace or Mellin transforms, in order to compute
$$ \int_a^b f(t) k(t,z) \, dt $$
for some kernel $k(t,z)$.
The endpoints $a$ and $b$ are coded as in \kbd{intnum}, $f$ is the
function to which the integral transform is to be applied and the
non-negative integer $m$ is as in \kbd{intnum}: multiply the number of
sampling points roughly by $2^m$, hopefully increasing the accuracy. This
function is particularly useful when the function $f$ is hard to compute,
such as a gamma product.
\misctitle{Limitation} the endpoints $a$ and $b$ must be at infinity,
with the same asymptotic behaviour. Oscillating types are not supported.
This is easily overcome by integrating vectors of functions, see example
below.
\misctitle{Examples}
\item numerical Fourier transform
$$F(z) = \int_{-\infty}^{+\infty} f(t)e^{-2i\pi z t}\, dt. $$
First the easy case, assume that $f$ decrease exponentially:
\bprog
f(t) = exp(-t^2);
A = [-oo,1];
B = [+oo,1];
\p200
T = intfuncinit(t = A,B , f(t));
F(z) =
{ my(a = -2*I*Pi*z);
intnum(t = A,B, exp(a*t), T);
}
? F(1) - sqrt(Pi)*exp(-Pi^2)
%1 = -1.3... E-212
@eprog\noindent
Now the harder case, $f$ decrease slowly: we must specify the oscillating
behaviour. Thus, we cannot precompute usefully since everything depends on
the point we evaluate at:
\bprog
f(t) = 1 / (1+ abs(t));
\p200
\\ Fourier cosine transform
FC(z) =
{ my(a = 2*Pi*z);
intnum(t = [-oo, a*I], [+oo, a*I], cos(a*t)*f(t));
}
FC(1)
@eprog
\item Fourier coefficients: we must integrate over a period, but
\kbd{intfuncinit} does not support finite endpoints.
The solution is to integrate a vector of functions !
\bprog
FourierSin(f, T, k) = \\ first k sine Fourier coeffs
{
my (w = 2*Pi/T);
my (v = vector(k+1));
intnum(t = -T/2, T/2,
my (z = exp(I*w*t));
v[1] = z;
for (j = 2, k, v[j] = v[j-1]*z);
f(t) * imag(v)) * 2/T;
}
FourierSin(t->sin(2*t), 2*Pi, 10)
@eprog\noindent The same technique can be used instead of \kbd{intfuncinit}
to integrate $f(t) k(t,z)$ whenever the list of $z$-values is known
beforehand.
Note that the above code includes an unrelated optimization: the
$\sin(j w t)$ are computed as imaginary parts of $\exp(i j w t)$ and the
latter by successive multiplications.
\item numerical Mellin inversion
$$F(z) = (2i\pi)^{-1} \int_{c -i\infty}^{c+i\infty} f(s)z^{-s}\, ds
= (2\pi)^{-1} \int_{-\infty}^{+\infty}
f(c + i t)e^{-\log z(c + it)}\, dt. $$
We take $c = 2$ in the program below:
\bprog
f(s) = gamma(s)^3; \\ f(c+it) decrease as exp(-3Pi|t|/2)
c = 2; \\ arbitrary
A = [-oo,3*Pi/2];
B = [+oo,3*Pi/2];
T = intfuncinit(t=A,B, f(c + I*t));
F(z) =
{ my (a = -log(z));
intnum(t=A,B, exp(a*I*t), T)*exp(a*c) / (2*Pi);
}
@eprog
\synt{intfuncinit}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,long m, long prec}.
\subsec{intnum$(X=a,b,\var{expr},\{\var{tab}\})$}\kbdsidx{intnum}\label{se:intnum}
Numerical integration
of \var{expr} on $]a,b[$ with respect to $X$, using the
double-exponential method, and thus $O(D\log D)$ evaluation of
the integrand in precision $D$. The integrand may have values
belonging to a vector space over the real numbers; in particular, it can be
complex-valued or vector-valued. But it is assumed that the function is
regular on $]a,b[$. If the endpoints $a$ and $b$ are finite and the
function is regular there, the situation is simple:
\bprog
? intnum(x = 0,1, x^2)
%1 = 0.3333333333333333333333333333
? intnum(x = 0,Pi/2, [cos(x), sin(x)])
%2 = [1.000000000000000000000000000, 1.000000000000000000000000000]
@eprog\noindent
An endpoint equal to $\pm\infty$ is coded as \kbd{+oo} or \kbd{-oo}, as
expected:
\bprog
? intnum(x = 1,+oo, 1/x^2)
%3 = 1.000000000000000000000000000
@eprog\noindent
In basic usage, it is assumed that the function does not decrease
exponentially fast at infinity:
\bprog
? intnum(x=0,+oo, exp(-x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: overflow in expo().
@eprog\noindent
We shall see in a moment how to avoid that last problem, after describing
the last \emph{optional} argument \var{tab}.
\misctitle{The \var{tab} argument}
The routine uses weights $w_i$, which are mostly independent of the function
being integrated, evaluated at many sampling points $x_i$ and
approximates the integral by $\sum w_i f(x_i)$. If \var{tab} is
\item a non-negative integer $m$, we multiply the number of sampling points
by $2^m$, hopefully increasing accuracy. Note that the running time
increases roughly by a factor $2^m$. One may try consecutive values of $m$
until they give the same value up to an accepted error.
\item a set of integration tables containing precomputed $x_i$ and $w_i$
as output by \tet{intnuminit}. This is useful if several integrations of
the same type are performed (on the same kind of interval and functions,
for a given accuracy): we skip a precomputation of $O(D\log D)$
elementary functions in accuracy $D$, whose running time has the same order
of magnitude as the evaluation of the integrand. This is in particular
useful for multivariate integrals.
\misctitle{Specifying the behavior at endpoints}
This is done as follows. An endpoint $a$ is either given as such (a scalar,
real or complex, \kbd{oo} or \kbd{-oo} for $\pm\infty$), or as a two
component vector $[a,\alpha]$, to indicate the behavior of the integrand in a
neighborhood of $a$.
If $a$ is finite, the code $[a,\alpha]$ means the function has a
singularity of the form $(x-a)^{\alpha}$, up to logarithms. (If $\alpha \ge
0$, we only assume the function is regular, which is the default assumption.)
If a wrong singularity exponent is used, the result will lose a catastrophic
number of decimals:
\bprog
? intnum(x=0, 1, x^(-1/2)) \\@com assume $x^{-1/2}$ is regular at 0
%1 = 1.9999999999999999999999999999827931660
? intnum(x=[0,-1/2], 1, x^(-1/2)) \\@com no, it's not
%2 = 2.0000000000000000000000000000000000000
? intnum(x=[0,-1/10], 1, x^(-1/2)) \\@com using a wrong exponent is bad
%3 = 1.9999999999999999999999999999999901912
@eprog
If $a$ is $\pm\infty$, which is coded as \kbd{+oo} or \kbd{-oo},
the situation is more complicated, and $[\pm\kbd{oo},\alpha]$ means:
\item $\alpha=0$ (or no $\alpha$ at all, i.e. simply $\pm\kbd{oo}$)
assumes that the integrand tends to zero moderately quickly, at least as
$O(x^{-2})$ but not exponentially fast.
\item $\alpha>0$ assumes that the function tends to zero exponentially fast
approximately as $\exp(-\alpha x)$. This includes oscillating but quickly
decreasing functions such as $\exp(-x)\sin(x)$.
\bprog
? intnum(x=0, +oo, exp(-2*x))
*** at top-level: intnum(x=0,+oo,exp(-
*** ^--------------------
*** exp: exponent (expo) overflow
? intnum(x=0, [+oo, 2], exp(-2*x)) \\@com OK!
%1 = 0.50000000000000000000000000000000000000
? intnum(x=0, [+oo, 3], exp(-2*x)) \\@com imprecise exponent, still OK !
%2 = 0.50000000000000000000000000000000000000
? intnum(x=0, [+oo, 10], exp(-2*x)) \\@com wrong exponent $\Rightarrow$ disaster
%3 = 0.49999999999952372962457451698256707393
@eprog\noindent As the last exemple shows, the exponential decrease rate
\emph{must} be indicated to avoid overflow, but the method is robust enough
for a rough guess to be acceptable.
\item $\alpha<-1$ assumes that the function tends to $0$ slowly, like
$x^{\alpha}$. Here the algorithm is less robust and it is essential to give a
sharp $\alpha$, unless $\alpha \le -2$ in which case we use
the default algorithm as if $\alpha$ were missing (or equal to $0$).
\bprog
? intnum(x=1, +oo, x^(-3/2)) \\ default
%1 = 1.9999999999999999999999999999646391207
? intnum(x=1, [+oo,-3/2], x^(-3/2)) \\ precise decrease rate
%2 = 2.0000000000000000000000000000000000000
? intnum(x=1, [+oo,-11/10], x^(-3/2)) \\ worse than default
%3 = 2.0000000000000000000000000089298011973
@eprog
\smallskip The last two codes are reserved for oscillating functions.
Let $k > 0$ real, and $g(x)$ a non-oscillating function tending slowly to $0$
(e.g. like a negative power of $x$), then
\item $\alpha=k * I$ assumes that the function behaves like $\cos(kx)g(x)$.
\item $\alpha=-k* I$ assumes that the function behaves like $\sin(kx)g(x)$.
\noindent Here it is critical to give the exact value of $k$. If the
oscillating part is not a pure sine or cosine, one must expand it into a
Fourier series, use the above codings, and sum the resulting contributions.
Otherwise you will get nonsense. Note that $\cos(kx)$, and similarly
$\sin(kx)$, means that very function, and not a translated version such as
$\cos(kx+a)$.
\misctitle{Note} If $f(x)=\cos(kx)g(x)$ where $g(x)$ tends to zero
exponentially fast as $\exp(-\alpha x)$, it is up to the user to choose
between $[\pm\kbd{oo},\alpha]$ and $[\pm\kbd{oo},k* I]$, but a good rule of
thumb is that
if the oscillations are weaker than the exponential decrease, choose
$[\pm\kbd{oo},\alpha]$, otherwise choose $[\pm\kbd{oo},k*I]$, although the
latter can
reasonably be used in all cases, while the former cannot. To take a specific
example, in the inverse Mellin transform, the integrand is almost always a
product of an exponentially decreasing and an oscillating factor. If we
choose the oscillating type of integral we perhaps obtain the best results,
at the expense of having to recompute our functions for a different value of
the variable $z$ giving the transform, preventing us to use a function such
as \kbd{intfuncinit}. On the other hand using the exponential type of
integral, we obtain less accurate results, but we skip expensive
recomputations. See \kbd{intfuncinit} for more explanations.
\smallskip
We shall now see many examples to get a feeling for what the various
parameters achieve. All examples below assume precision is set to $115$
decimal digits. We first type
\bprog
? \p 115
@eprog
\misctitle{Apparent singularities} In many cases, apparent singularities
can be ignored. For instance, if $f(x) = 1
/(\exp(x)-1) - \exp(-x)/x$, then $\int_0^\infty f(x)\,dx=\gamma$, Euler's
constant \kbd{Euler}. But
\bprog
? f(x) = 1/(exp(x)-1) - exp(-x)/x
? intnum(x = 0, [oo,1], f(x)) - Euler
%1 = 0.E-115
@eprog\noindent
But close to $0$ the function $f$ is computed with an enormous loss of
accuracy, and we are in fact lucky that it get multiplied by weights which are
sufficiently close to $0$ to hide this:
\bprog
? f(1e-200)
%2 = -3.885337784451458142 E84
@eprog
A more robust solution is to define the function differently near special
points, e.g. by a Taylor expansion
\bprog
? F = truncate( f(t + O(t^10)) ); \\@com expansion around t = 0
? poldegree(F)
%4 = 7
? g(x) = if (x > 1e-18, f(x), subst(F,t,x)); \\@com note that $7 \cdot 18 > 105$
? intnum(x = 0, [oo,1], g(x)) - Euler
%2 = 0.E-115
@eprog\noindent It is up to the user to determine constants such as the
$10^{-18}$ and $10$ used above.
\misctitle{True singularities} With true singularities the result is worse.
For instance
\bprog
? intnum(x = 0, 1, x^(-1/2)) - 2
%1 = -3.5... E-68 \\@com only $68$ correct decimals
? intnum(x = [0,-1/2], 1, x^(-1/2)) - 2
%2 = 0.E-114 \\@com better
@eprog
\misctitle{Oscillating functions}
\bprog
? intnum(x = 0, oo, sin(x) / x) - Pi/2
%1 = 16.19.. \\@com nonsense
? intnum(x = 0, [oo,1], sin(x)/x) - Pi/2
%2 = -0.006.. \\@com bad
? intnum(x = 0, [oo,-I], sin(x)/x) - Pi/2
%3 = 0.E-115 \\@com perfect
? intnum(x = 0, [oo,-I], sin(2*x)/x) - Pi/2 \\@com oops, wrong $k$
%4 = 0.06...
? intnum(x = 0, [oo,-2*I], sin(2*x)/x) - Pi/2
%5 = 0.E-115 \\@com perfect
? intnum(x = 0, [oo,-I], sin(x)^3/x) - Pi/4
%6 = -0.0008... \\@com bad
? sin(x)^3 - (3*sin(x)-sin(3*x))/4
%7 = O(x^17)
@eprog\noindent
We may use the above linearization and compute two oscillating integrals with
endpoints \kbd{[oo, -I]} and \kbd{[oo, -3*I]} respectively, or
notice the obvious change of variable, and reduce to the single integral
${1\over 2}\int_0^\infty \sin(x)/x\,dx$. We finish with some more complicated
examples:
\bprog
? intnum(x = 0, [oo,-I], (1-cos(x))/x^2) - Pi/2
%1 = -0.0003... \\@com bad
? intnum(x = 0, 1, (1-cos(x))/x^2) \
+ intnum(x = 1, oo, 1/x^2) - intnum(x = 1, [oo,I], cos(x)/x^2) - Pi/2
%2 = 0.E-115 \\@com perfect
? intnum(x = 0, [oo, 1], sin(x)^3*exp(-x)) - 0.3
%3 = -7.34... E-55 \\@com bad
? intnum(x = 0, [oo,-I], sin(x)^3*exp(-x)) - 0.3
%4 = 8.9... E-103 \\@com better. Try higher $m$
? tab = intnuminit(0,[oo,-I], 1); \\@com double number of sampling points
? intnum(x = 0, oo, sin(x)^3*exp(-x), tab) - 0.3
%6 = 0.E-115 \\@com perfect
@eprog
\misctitle{Warning} Like \tet{sumalt}, \kbd{intnum} often assigns a
reasonable value to diverging integrals. Use these values at your own risk!
For example:
\bprog
? intnum(x = 0, [oo, -I], x^2*sin(x))
%1 = -2.0000000000...
@eprog\noindent
Note the formula
$$ \int_0^\infty \sin(x)/x^s\,dx = \cos(\pi s/2) \Gamma(1-s)\;, $$
a priori valid only for $0 < \Re(s) < 2$, but the right hand side provides an
analytic continuation which may be evaluated at $s = -2$\dots
\misctitle{Multivariate integration}
Using successive univariate integration with respect to different formal
parameters, it is immediate to do naive multivariate integration. But it is
important to use a suitable \kbd{intnuminit} to precompute data for the
\emph{internal} integrations at least!
For example, to compute the double integral on the unit disc $x^2+y^2\le1$
of the function $x^2+y^2$, we can write
\bprog
? tab = intnuminit(-1,1);
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab),tab) - Pi/2
%2 = -7.1... E-115 \\@com OK
@eprog\noindent
The first \var{tab} is essential, the second optional. Compare:
\bprog
? tab = intnuminit(-1,1);
time = 4 ms.
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2));
time = 3,092 ms. \\@com slow
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab), tab);
time = 252 ms. \\@com faster
? intnum(x=-1,1, intnum(y=-sqrt(1-x^2),sqrt(1-x^2), x^2+y^2, tab));
time = 261 ms. \\@com the \emph{internal} integral matters most
@eprog
\synt{intnum}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b,GEN tab, long prec},
where an omitted \var{tab} is coded as \kbd{NULL}.
\subsec{intnumgauss$(X=a,b,\var{expr},\{\var{tab}\})$}\kbdsidx{intnumgauss}\label{se:intnumgauss}
Numerical integration of \var{expr} on the compact interval $[a,b]$ with
respect to $X$ using Gauss-Legendre quadrature; \kbd{tab} is either omitted
or precomputed with \kbd{intnumgaussinit}. As a convenience, it can be an
integer $n$ in which case we call
\kbd{intnumgaussinit}$(n)$ and use $n$-point quadrature.
\bprog
? test(n, b = 1) = T=intnumgaussinit(n);\
intnumgauss(x=-b,b, 1/(1+x^2),T) - 2*atan(b);
? test(0) \\ default
%1 = -9.490148553624725335 E-22
? test(40)
%2 = -6.186629001816965717 E-31
? test(50)
%3 = -1.1754943508222875080 E-38
? test(50, 2) \\ double interval length
%4 = -4.891779568527713636 E-21
? test(90, 2) \\ n must almost be doubled as well!
%5 = -9.403954806578300064 E-38
@eprog\noindent On the other hand, we recommend to split the integral
and change variables rather than increasing $n$ too much:
\bprog
? f(x) = 1/(1+x^2);
? b = 100;
? intnumgauss(x=0,1, f(x)) + intnumgauss(x=1,1/b, f(1/x)*(-1/x^2)) - atan(b)
%3 = -1.0579449157400587572 E-37
@eprog
The library syntax is \fun{GEN}{intnumgauss0}{GEN X, GEN b, GEN expr, GEN tab = NULL, long prec}.
\subsec{intnumgaussinit$(\{n\})$}\kbdsidx{intnumgaussinit}\label{se:intnumgaussinit}
Initialize tables for $n$-point Gauss-Legendre integration of
a smooth function $f$ lon a compact
interval $[a,b]$ at current \kbd{realprecision}. If $n$ is omitted, make a
default choice $n \approx \kbd{realprecision}$, suitable for analytic
functions on $[-1,1]$. The error is bounded by
$$
\dfrac{(b-a)^{2n+1} (n!)^4}{(2n+1)[(2n)!]^3} f^{(2n)} (\xi) ,
\qquad a < \xi < b
$$
so, if the interval length increases, $n$ should be increased as well.
\bprog
? T = intnumgaussinit();
? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)
%1 = -5.877471754111437540 E-39
? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)
%2 = -8.358367809712546836 E-35
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
%3 = -9.490148553624725335 E-22
? T = intnumgaussinit(50);
? intnumgauss(t=-1,1,1/(1+t^2), T) - Pi/2
%5 = -1.1754943508222875080 E-38
? intnumgauss(t=-5,5,1/(1+t^2), T) - 2*atan(5)
%6 = -1.2[...]E-8
@eprog
On the other hand, we recommend to split the integral and change variables
rather than increasing $n$ too much, see \tet{intnumgauss}.
The library syntax is \fun{GEN}{intnumgaussinit}{long n, long prec}.
\subsec{intnuminit$(a,b,\{m=0\})$}\kbdsidx{intnuminit}\label{se:intnuminit}
Initialize tables for integration from
$a$ to $b$, where $a$ and $b$ are coded as in \kbd{intnum}. Only the
compactness, the possible existence of singularities, the speed of decrease
or the oscillations at infinity are taken into account, and not the values.
For instance {\tt intnuminit(-1,1)} is equivalent to {\tt intnuminit(0,Pi)},
and {\tt intnuminit([0,-1/2],oo)} is equivalent to
{\tt intnuminit([-1,-1/2], -oo)}; on the other hand, the order matters
and
{\tt intnuminit([0,-1/2], [1,-1/3])} is \emph{not} equivalent to
{\tt intnuminit([0,-1/3], [1,-1/2])} !
If $m$ is present, it must be non-negative and we multiply the default
number of sampling points by $2^m$ (increasing the running time by a
similar factor).
The result is technical and liable to change in the future, but we document
it here for completeness. Let $x=\phi(t)$, $t\in ]-\infty,\infty[$ be an
internally chosen change of variable, achieving double exponential decrease of
the integrand at infinity. The integrator \kbd{intnum} will compute
$$ h \sum_{|n| < N} \phi'(nh) F(\phi(nh)) $$
for some integration step $h$ and truncation parameter $N$.
In basic use, let
\bprog
[h, x0, w0, xp, wp, xm, wm] = intnuminit(a,b);
@eprog
\item $h$ is the integration step
\item $x_0 = \phi(0)$ and $w_0 = \phi'(0)$,
\item \var{xp} contains the $\phi(nh)$, $0 < n < N$,
\item \var{xm} contains the $\phi(nh)$, $0 < -n < N$, or is empty.
\item \var{wp} contains the $\phi'(nh)$, $0 < n < N$,
\item \var{wm} contains the $\phi'(nh)$, $0 < -n < N$, or is empty.
The arrays \var{xm} and \var{wm} are left empty when $\phi$ is an odd
function. In complicated situations when non-default behaviour is specified at
end points, \kbd{intnuminit} may return up to $3$ such arrays, corresponding
to a splitting of up to $3$ integrals of basic type.
If the functions to be integrated later are of the form $F = f(t) k(t,z)$
for some kernel $k$ (e.g. Fourier, Laplace, Mellin, \dots), it is
useful to also precompute the values of $f(\phi(nh))$, which is accomplished
by \tet{intfuncinit}. The hard part is to determine the behaviour
of $F$ at endpoints, depending on $z$.
The library syntax is \fun{GEN}{intnuminit}{GEN a, GEN b, long m, long prec}.
\subsec{intnumromb$(X=a,b,\var{expr},\{\fl=0\})$}\kbdsidx{intnumromb}\label{se:intnumromb}
Numerical integration of \var{expr} (smooth in $]a,b[$), with respect to
$X$. Suitable for low accuracy; if \var{expr} is very regular (e.g. analytic
in a large region) and high accuracy is desired, try \tet{intnum} first.
Set $\fl=0$ (or omit it altogether) when $a$ and $b$ are not too large, the
function is smooth, and can be evaluated exactly everywhere on the interval
$[a,b]$.
If $\fl=1$, uses a general driver routine for doing numerical integration,
making no particular assumption (slow).
$\fl=2$ is tailored for being used when $a$ or $b$ are infinite using the
change of variable $t = 1/X$. One \emph{must} have $ab>0$, and in fact if
for example $b=+\infty$, then it is preferable to have $a$ as large as
possible, at least $a\ge1$.
If $\fl=3$, the function is allowed to be undefined
at $a$ (but right continuous) or $b$ (left continuous),
for example the function $\sin(x)/x$ between $x=0$ and $1$.
The user should not require too much accuracy: \tet{realprecision} about
30 decimal digits (\tet{realbitprecision} about 100 bits) is OK,
but not much more. In addition, analytical cleanup of the integral must have
been done: there must be no singularities in the interval or at the
boundaries. In practice this can be accomplished with a change of
variable. Furthermore, for improper integrals, where one or both of the
limits of integration are plus or minus infinity, the function must decrease
sufficiently rapidly at infinity, which can often be accomplished through
integration by parts. Finally, the function to be integrated should not be
very small (compared to the current precision) on the entire interval. This
can of course be accomplished by just multiplying by an appropriate constant.
Note that \idx{infinity} can be represented with essentially no loss of
accuracy by an appropriate huge number. However beware of real underflow
when dealing with rapidly decreasing functions. For example, in order to
compute the $\int_0^\infty e^{-x^2}\,dx$ to 28 decimal digits, then one can
set infinity equal to 10 for example, and certainly not to \kbd{1e1000}.
\synt{intnumromb_bitprec}{void *E, GEN (*eval)(void*,GEN), GEN a, GEN b, long flag, long bitprec},
where $\kbd{eval}(x, E)$ returns the value of the function at $x$.
You may store any additional information required by \kbd{eval} in $E$, or set
it to \kbd{NULL}. The historical variant
\synt{intnumromb}{\dots, long prec}, where \kbd{prec} is expressed in words,
not bits, is obsolete and should no longer be used.
\subsec{limitnum$(\var{expr},\{k = {20}\},\{\var{alpha}=1\})$}\kbdsidx{limitnum}\label{se:limitnum}
Lagrange-Zagier numerical extrapolation of \var{expr}, corresponding to a
sequence
$u_n$, either given by a closure \kbd{n->u(n)} or by a vector of values
I.e., assuming that $u_n$ tends to a finite limit $\ell$, try to determine
$\ell$. This routine is purely numerical and heuristic, thus may or may not
work on your examples; $k$ is ignored if $u$ is given by a vector,
and otherwise is a multiplier such that we extrapolate from $u(kn)$.
Assume that $u_n$ has an asymptotic expansion in $n^{-\alpha}$ :
$$u_n = \ell + \sum_{i\geq 1} a_i n^{-i\alpha}$$
for some $a_i$.
\bprog
? limitnum(n -> n*sin(1/n))
%1 = 1.0000000000000000000000000000000000000
? limitnum(n -> (1+1/n)^n) - exp(1)
%2 = 0.E-37
? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)! )
%3 = 3.1415926535897932384626433832795028842
? Pi
%4 = 3.1415926535897932384626433832795028842
@eprog\noindent
If $u_n$ is given by a vector, it must be long enough for the extrapolation
to make sense: at least $k$ times the current \kbd{realprecision}. The
preferred format is thus a closure, although it becomes inconvenient
when $u_n$ cannot be directly computed in time polynomial in $\log n$,
for instance if it is defined as a sum or by induction. In that case,
passing a vector of values is the best option. It usually pays off to
interpolate $u(kn)$ for some $k > 1$:
\bprog
? limitnum(vector(10,n,(1+1/n)^n))
*** ^--------------------
*** limitnum: non-existent component in limitnum: index < 20
\\ at this accuracy, we must have at least 20 values
? limitnum(vector(20,n,(1+1/n)^n)) - exp(1)
%5 = -2.05... E-20
? limitnum(vector(20,n, m=10*n;(1+1/m)^m)) - exp(1) \\ better accuracy
%6 = 0.E-37
? v = vector(20); s = 0;
? for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%9 = -1.6... E-19
? V = vector(200); s = 0;
? for(i=1,#V, s += 1/i; V[i]= s);
? v = vector(#V \ 10, i, V[10*i] - log(10*i));
? limitnum(v) - Euler
%13 = 6.43... E-29
@eprog
\synt{limitnum}{void *E, GEN (*u)(void *,GEN,long), long muli, GEN alpha, long prec}, where \kbd{u(E, n, prec)} must return $u(n)$ in precision \kbd{prec}.
Also available is
\fun{GEN}{limitnum0}{GEN u, long muli, GEN alpha, long prec}, where $u$
must be a vector of sufficient length as above.
\subsec{prod$(X=a,b,\var{expr},\{x=1\})$}\kbdsidx{prod}\label{se:prod}
Product of expression
\var{expr}, initialized at $x$, the formal parameter $X$ going from $a$ to
$b$. As for \kbd{sum}, the main purpose of the initialization parameter $x$
is to force the type of the operations being performed. For example if it is
set equal to the integer 1, operations will start being done exactly. If it
is set equal to the real $1.$, they will be done using real numbers having
the default precision. If it is set equal to the power series $1+O(X^k)$ for
a certain $k$, they will be done using power series of precision at most $k$.
These are the three most common initializations.
\noindent As an extreme example, compare
\bprog
? prod(i=1, 100, 1 - X^i); \\@com this has degree $5050$ !!
time = 128 ms.
? prod(i=1, 100, 1 - X^i, 1 + O(X^101))
time = 8 ms.
%2 = 1 - X - X^2 + X^5 + X^7 - X^12 - X^15 + X^22 + X^26 - X^35 - X^40 + \
X^51 + X^57 - X^70 - X^77 + X^92 + X^100 + O(X^101)
@eprog\noindent
Of course, in this specific case, it is faster to use \tet{eta},
which is computed using Euler's formula.
\bprog
? prod(i=1, 1000, 1 - X^i, 1 + O(X^1001));
time = 589 ms.
? \ps1000
seriesprecision = 1000 significant terms
? eta(X) - %
time = 8ms.
%4 = O(X^1001)
@eprog
\synt{produit}{GEN a, GEN b, char *expr, GEN x}.
\subsec{prodeuler$(X=a,b,\var{expr})$}\kbdsidx{prodeuler}\label{se:prodeuler}
Product of expression \var{expr},
initialized at 1. (i.e.~to a \emph{real} number equal to 1 to the current
\kbd{realprecision}), the formal parameter $X$ ranging over the prime numbers
between $a$ and $b$.\sidx{Euler product}
\synt{prodeuler}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, long prec}.
\subsec{prodinf$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{prodinf}\label{se:prodinf}
\idx{infinite product} of
expression \var{expr}, the formal parameter $X$ starting at $a$. The evaluation
stops when the relative error of the expression minus 1 is less than the
default precision. In particular, non-convergent products result in infinite
loops. The expressions must always evaluate to an element of $\C$.
If $\fl=1$, do the product of the ($1+\var{expr}$) instead.
\synt{prodinf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}
($\fl=0$), or \tet{prodinf1} with the same arguments ($\fl=1$).
\subsec{solve$(X=a,b,\var{expr})$}\kbdsidx{solve}\label{se:solve}
Find a real root of expression
\var{expr} between $a$ and $b$, under the condition
$\var{expr}(X=a) * \var{expr}(X=b) \le 0$. (You will get an error message
\kbd{roots must be bracketed in solve} if this does not hold.)
This routine uses Brent's method and can fail miserably if \var{expr} is
not defined in the whole of $[a,b]$ (try \kbd{solve(x=1, 2, tan(x))}).
\synt{zbrent}{void *E,GEN (*eval)(void*,GEN),GEN a,GEN b,long prec}.
\subsec{solvestep$(X=a,b,\var{step},\var{expr},\{\fl=0\})$}\kbdsidx{solvestep}\label{se:solvestep}
Find zeros of a continuous function in the real interval $[a,b]$ by naive
interval splitting. This function is heuristic and may or may not find the
intended zeros. Binary digits of \fl\ mean
\item 1: return as soon as one zero is found, otherwise return all
zeros found;
\item 2: refine the splitting until at least one zero is found
(may loop indefinitely if there are no zeros);
\item 4: do a multiplicative search (we must have $a > 0$ and $\var{step} >
1$), otherwise an additive search; \var{step} is the multiplicative or
additive step.
\item 8: refine the splitting until at least one zero is very close to an
integer.
\bprog
? solvestep(X=0,10,1,sin(X^2),1)
%1 = 1.7724538509055160272981674833411451828
? solvestep(X=1,12,2,besselj(4,X),4)
%2 = [7.588342434..., 11.064709488...]
@eprog\noindent
\synt{solvestep}{void *E, GEN (*eval)(void*,GEN), GEN a,GEN b, GEN step,long flag,long prec}.
\subsec{sum$(X=a,b,\var{expr},\{x=0\})$}\kbdsidx{sum}\label{se:sum}
Sum of expression \var{expr},
initialized at $x$, the formal parameter going from $a$ to $b$. As for
\kbd{prod}, the initialization parameter $x$ may be given to force the type
of the operations being performed.
\noindent As an extreme example, compare
\bprog
? sum(i=1, 10^4, 1/i); \\@com rational number: denominator has $4345$ digits.
time = 236 ms.
? sum(i=1, 5000, 1/i, 0.)
time = 8 ms.
%2 = 9.787606036044382264178477904
@eprog
\synt{somme}{GEN a, GEN b, char *expr, GEN x}.
\subsec{sumalt$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{sumalt}\label{se:sumalt}
Numerical summation of the series \var{expr}, which should be an
\idx{alternating series} $(-1)^k a_k$, the formal variable $X$ starting at
$a$. Use an algorithm of Cohen, Villegas and Zagier (\emph{Experiment. Math.}
{\bf 9} (2000), no.~1, 3--12).
If $\fl=0$, assuming that the $a_k$ are the moments of a positive
measure on $[0,1]$, the relative error is $O(3+\sqrt8)^{-n}$ after using
$a_k$ for $k\leq n$. If \kbd{realprecision} is $p$, we thus set
$n = \log(10)p/\log(3+\sqrt8)\approx 1.3 p$; besides the time needed to
compute the $a_k$, $k\leq n$, the algorithm overhead is negligible: time
$O(p^2)$ and space $O(p)$.
If $\fl=1$, use a variant with more complicated polynomials, see
\tet{polzagier}. If the $a_k$ are the moments of $w(x)dx$ where $w$
(or only $xw(x^2)$) is a smooth function extending analytically to the whole
complex plane, convergence is in $O(14.4^{-n})$. If $xw(x^2)$ extends
analytically to a smaller region, we still have exponential convergence,
with worse constants. Usually faster when the computation of $a_k$ is
expensive. If \kbd{realprecision} is $p$, we thus set
$n = \log(10)p/\log(14.4)\approx 0.86 p$; besides the time needed to
compute the $a_k$, $k\leq n$, the algorithm overhead is \emph{not}
negligible: time $O(p^3)$ and space $O(p^2)$. Thus, even if the analytic
conditions for rigorous use are met, this variant is only worthwile if the
$a_k$ are hard to compute, at least $O(p^2)$ individually on average:
otherwise we gain a small constant factor (1.5, say) in the number of
needed $a_k$ at the expense of a large overhead.
The conditions for rigorous use are hard to check but the routine is best used
heuristically: even divergent alternating series can sometimes be summed by
this method, as well as series which are not exactly alternating (see for
example \secref{se:user_defined}). It should be used to try and guess the
value of an infinite sum. (However, see the example at the end of
\secref{se:userfundef}.)
If the series already converges geometrically,
\tet{suminf} is often a better choice:
\bprog
? \p28
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
? suminf(i = 1, -(-1)^i / i) \\@com Had to hit \kbd{C-C}
*** at top-level: suminf(i=1,-(-1)^i/i)
*** ^------
*** suminf: user interrupt after 10min, 20,100 ms.
? \p1000
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 90 ms.
%2 = 4.459597722 E-1002
? sumalt(i = 0, (-1)^i / i!) - exp(-1)
time = 670 ms.
%3 = -4.03698781490633483156497361352190615794353338591897830587 E-944
? suminf(i = 0, (-1)^i / i!) - exp(-1)
time = 110 ms.
%4 = -8.39147638 E-1000 \\ @com faster and more accurate
@eprog
\synt{sumalt}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumalt2} with the same arguments ($\fl = 1$).
\subsec{sumdiv$(n,X,\var{expr})$}\kbdsidx{sumdiv}\label{se:sumdiv}
Sum of expression \var{expr} over the positive divisors of $n$.
This function is a trivial wrapper essentially equivalent to
\bprog
D = divisors(n);
for (i = 1, #D, X = D[i]; eval(expr))
@eprog\noindent (except that \kbd{X} is lexically scoped to the \kbd{sumdiv}
loop). If \var{expr} is a multiplicative function, use \tet{sumdivmult}.
%\syn{NO}
\subsec{sumdivmult$(n,d,\var{expr})$}\kbdsidx{sumdivmult}\label{se:sumdivmult}
Sum of \emph{multiplicative} expression \var{expr} over the positive
divisors $d$ of $n$. Assume that \var{expr} evaluates to $f(d)$
where $f$ is multiplicative: $f(1) = 1$ and $f(ab) = f(a)f(b)$ for coprime
$a$ and $b$.
%\syn{NO}
\subsec{suminf$(X=a,\var{expr})$}\kbdsidx{suminf}\label{se:suminf}
\idx{infinite sum} of expression
\var{expr}, the formal parameter $X$ starting at $a$. The evaluation stops
when the relative error of the expression is less than the default precision
for 3 consecutive evaluations. The expressions must always evaluate to a
complex number.
If the series converges slowly, make sure \kbd{realprecision} is low (even 28
digits may be too much). In this case, if the series is alternating or the
terms have a constant sign, \tet{sumalt} and \tet{sumpos} should be used
instead.
\bprog
? \p28
? suminf(i = 1, -(-1)^i / i) \\@com Had to hit \kbd{C-C}
*** at top-level: suminf(i=1,-(-1)^i/i)
*** ^------
*** suminf: user interrupt after 10min, 20,100 ms.
? sumalt(i = 1, -(-1)^i / i) - log(2)
time = 0 ms.
%1 = -2.524354897 E-29
@eprog
\synt{suminf}{void *E, GEN (*eval)(void*,GEN), GEN a, long prec}.
\subsec{sumnum$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnum}\label{se:sumnum}
Numerical summation of $f(n)$ at high accuracy using Euler-MacLaurin,
the variable $n$ taking values from $a$ to $+\infty$, where $f$ is assumed to
have positive values and is a $C^\infty$ function; \kbd{a} must be an integer
and \kbd{tab}, if given, is the output of \kbd{sumnuminit}. The latter
precomputes abcissas and weights, speeding up the computation; it also allows
to specify the behaviour at infinity via \kbd{sumnuminit([+oo, asymp])}.
\bprog
? \p500
? z3 = zeta(3);
? sumpos(n = 1, n^-3) - z3
time = 2,332 ms.
%2 = 2.438468843 E-501
? sumnum(n = 1, n^-3) - z3 \\ here slower than sumpos
time = 2,752 ms.
%3 = 0.E-500
@eprog
\misctitle{Complexity}
The function $f$ will be evaluated at $O(D \log D)$ real arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$. The routine is geared
towards slowly decreasing functions: if $f$ decreases exponentially fast,
then one of \kbd{suminf} or \kbd{sumpos} should be preferred.
If $f$ satisfies the stronger hypotheses required for Monien summation,
i.e. if $f(1/z)$ is holomorphic in a complex neighbourhood of $[0,1]$,
then \tet{sumnummonien} will be faster since it only requires $O(D/\log D)$
evaluations:
\bprog
? sumnummonien(n = 1, 1/n^3) - z3
time = 1,985 ms.
%3 = 0.E-500
@eprog\noindent The \kbd{tab} argument precomputes technical data
not depending on the expression being summed and valid for a given accuracy,
speeding up immensely later calls:
\bprog
? tab = sumnuminit();
time = 2,709 ms.
? sumnum(n = 1, 1/n^3, tab) - z3 \\ now much faster than sumpos
time = 40 ms.
%5 = 0.E-500
? tabmon = sumnummonieninit(); \\ Monien summation allows precomputations too
time = 1,781 ms.
? sumnummonien(n = 1, 1/n^3, tabmon) - z3
time = 2 ms.
%7 = 0.E-500
@eprog\noindent The speedup due to precomputations becomes less impressive
when the function $f$ is expensive to evaluate, though:
\bprog
? sumnum(n = 1, lngamma(1+1/n)/n, tab);
time = 14,180 ms.
? sumnummonien(n = 1, lngamma(1+1/n)/n, tabmon); \\ fewer evaluations
time = 717 ms.
@eprog
\misctitle{Behaviour at infinity}
By default, \kbd{sumnum} assumes that \var{expr} decreases slowly at infinity,
but at least like $O(n^{-2})$. If the function decreases like $n^{\alpha}$
for some $-2 < \alpha < -1$, then it must be indicated via
\bprog
tab = sumnuminit([+oo, alpha]); /* alpha < 0 slow decrease */
@eprog\noindent otherwise loss of accuracy is expected.
If the functions decreases quickly, like $\exp(-\alpha n)$ for some
$\alpha > 0$, then it must be indicated via
\bprog
tab = sumnuminit([+oo, alpha]); /* alpha > 0 exponential decrease */
@eprog\noindent otherwise exponent overflow will occur.
\bprog
? sumnum(n=1,2^-n)
*** at top-level: sumnum(n=1,2^-n)
*** ^----
*** _^_: overflow in expo().
? tab = sumnuminit([+oo,log(2)]); sumnum(n=1,2^-n, tab)
%1 = 1.000[...]
@eprog
As a shortcut, one can also input
\bprog
sumnum(n = [a, asymp], f)
@eprog\noindent instead of
\bprog
tab = sumnuminit(asymp);
sumnum(n = a, f, tab)
@eprog
\misctitle{Further examples}
\bprog
? \p200
? sumnum(n = 1, n^(-2)) - zeta(2) \\ accurate, fast
time = 200 ms.
%1 = -2.376364457868949779 E-212
? sumpos(n = 1, n^(-2)) - zeta(2) \\ even faster
time = 96 ms.
%2 = 0.E-211
? sumpos(n=1,n^(-4/3)) - zeta(4/3) \\ now much slower
time = 13,045 ms.
%3 = -9.980730723049589073 E-210
? sumnum(n=1,n^(-4/3)) - zeta(4/3) \\ fast but inaccurate
time = 365 ms.
%4 = -9.85[...]E-85
? sumnum(n=[1,-4/3],n^(-4/3)) - zeta(4/3) \\ with decrease rate, now accurate
time = 416 ms.
%5 = -4.134874156691972616 E-210
? tab = sumnuminit([+oo,-4/3]);
time = 196 ms.
? sumnum(n=1, n^(-4/3), tab) - zeta(4/3) \\ faster with precomputations
time = 216 ms.
%5 = -4.134874156691972616 E-210
? sumnum(n=1,-log(n)*n^(-4/3), tab) - zeta'(4/3)
time = 321 ms.
%7 = 7.224147951921607329 E-210
@eprog
Note that in the case of slow decrease ($\alpha < 0$), the exact
decrease rate must be indicated, while in the case of exponential decrease,
a rough value will do. In fact, for exponentially decreasing functions,
\kbd{sumnum} is given for completeness and comparison purposes only: one
of \kbd{suminf} or \kbd{sumpos} should always be preferred.
\bprog
? sumnum(n=[1, 1], 2^-n) \\ pretend we decrease as exp(-n)
time = 240 ms.
%8 = 1.000[...] \\ perfect
? sumpos(n=1, 2^-n)
%9 = 1.000[...] \\ perfect and instantaneous
@eprog
\synt{sumnum}{(void *E, GEN (*eval)(void*, GEN), GEN a, GEN tab, long prec)}
where an omitted \var{tab} is coded as \kbd{NULL}.
\subsec{sumnuminit$(\{\var{asymp}\})$}\kbdsidx{sumnuminit}\label{se:sumnuminit}
Initialize tables for Euler--MacLaurin delta summation of a series with
positive terms. If given, \kbd{asymp} is of the form $[\kbd{+oo}, \alpha]$,
as in \tet{intnum} and indicates the decrease rate at infinity of functions
to be summed. A positive
$\alpha > 0$ encodes an exponential decrease of type $\exp(-\alpha n)$ and
a negative $-2 < \alpha < -1$ encodes a slow polynomial decrease of type
$n^{\alpha}$.
\bprog
? \p200
? sumnum(n=1, n^-2);
time = 200 ms.
? tab = sumnuminit();
time = 188 ms.
? sumnum(n=1, n^-2, tab); \\ faster
time = 8 ms.
? tab = sumnuminit([+oo, log(2)]); \\ decrease like 2^-n
time = 200 ms.
? sumnum(n=1, 2^-n, tab)
time = 44 ms.
? tab = sumnuminit([+oo, -4/3]); \\ decrease like n^(-4/3)
time = 200 ms.
? sumnum(n=1, n^(-4/3), tab);
time = 221 ms.
@eprog
The library syntax is \fun{GEN}{sumnuminit}{GEN asymp = NULL, long prec}.
\subsec{sumnummonien$(n=a,f,\{\var{tab}\})$}\kbdsidx{sumnummonien}\label{se:sumnummonien}
Numerical summation $\sum_{n\geq a} f(n)$ at high accuracy, the variable
$n$ taking values from the integer $a$ to $+\infty$ using Monien summation,
which assumes that $f(1/z)$ has a complex analytic continuation in a (complex)
neighbourhood of the segment $[0,1]$.
The function $f$ is evaluated at $O(D / \log D)$ real arguments,
where $D \approx \kbd{realprecision} \cdot \log(10)$.
By default, assume that $f(n) = O(n^{-2})$ and has a non-zero asymptotic
expansion
$$f(n) = \sum_{i\geq 2} a_i n^{-i}$$
at infinity. To handle more complicated behaviours and allow time-saving
precomputations (for a given \kbd{realprecision}), see \kbd{sumnummonieninit}.
The library syntax is \fun{GEN}{sumnummonien0}{GEN n, GEN f, GEN tab = NULL, long prec}.
\subsec{sumnummonieninit$(\{\var{asymp}\},\{w\},\{\var{n0} = 1\})$}\kbdsidx{sumnummonieninit}\label{se:sumnummonieninit}
Initialize tables for Monien summation of a series $\sum_{n\geq n_0}
f(n)$ where $f(1/z)$ has a complex analytic continuation in a (complex)
neighbourhood of the segment $[0,1]$.
By default, assume that $f(n) = O(n^{-2})$ and has a non-zero asymptotic
expansion
$$f(n) = \sum_{i\geq 2} a_i / n^i$$
at infinity. Note that the sum starts at $i = 2$! The argument \kbd{asymp}
allows to specify different expansions:
\item a real number $\alpha > 1$ means
$$f(n) = \sum_{i\geq 1} a_i / n^{\alpha i}$$
(Now the summation starts at $1$.)
\item a vector $[\alpha,\beta]$ of reals, where we must have $\alpha > 0$
and $\alpha + \beta > 1$ to ensure convergence, means that
$$f(n) = \sum_{i\geq 1} a_i / n^{\alpha i + \beta}$$
Note that $\kbd{asymp} = [\alpha, \alpha]$ is equivalent to
$\kbd{asymp}=\alpha$.
\bprog
? \p57
? s = sumnum(n = 1, sin(1/sqrt(n)) / n); \\ reference point
? \p38
? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s
%2 = -0.001[...] \\ completely wrong
? t = sumnummonieninit([1,1/2]); \\ f(n) = sum_i 1 / n^(i/2+1)
? sumnummonien(n = 1, sin(1/sqrt(n)) / n, t) - s
%3 = 0.E-37 \\ now correct
@eprog\noindent (As a matter of fact, in the above summation, the
result given by \kbd{sumnum} at \kbd{\bs p38} is slighly incorrect,
so we had to increase the accuracy to \kbd{\bs p57}.)
The argument $w$ is used to sum expressions of the form
$$ \sum_{n\geq n_0} f(n) w(n),$$
for varying $f$ \emph{as above}, and fixed weight function $w$, where we
further assume that the auxiliary sums
$$g_w(m) = \sum_{n\geq n_0} w(n) / n^{\alpha m + \beta} $$
converge for all $m\geq 1$. Note that for non-negative integers $k$,
and weight $w(n) = (\log n)^k$, the function $g_w(m) = \zeta^{(k)}(\alpha m +
\beta)$ has a simple expression; for general weights, $g_w$ is
computed using \kbd{sumnum}. The following variants are available
\item an integer $k \geq 0$, to code $w(n) = (\log n)^k$;
only the cases $k = 0,1$ are presently implemented; due to a poor
implementation of $\zeta$ derivatives, it is not currently worth it
to exploit the special shape of $g_w$ when $k > 0$;
\item a \typ{CLOSURE} computing the values $w(n)$, where we
assume that $w(n) = O(n^\epsilon)$ for all $\epsilon > 0$;
\item a vector $[w, \kbd{fast}]$, where $w$ is a closure as above
and \kbd{fast} is a scalar;
we assume that $w(n) = O(n^{\kbd{fast}+\epsilon})$; note that
$\kbd{w} = [w, 0]$ is equivalent to $\kbd{w} = w$.
\item a vector $[w, \kbd{oo}]$, where $w$ is a closure as above;
we assume that $w(n)$ decreases exponentially. Note that in this case,
\kbd{sumnummonien} is provided for completeness and comparison purposes only:
one of \kbd{suminf} or \kbd{sumpos} should be preferred in practice.
The cases where $w$ is a closure or $w(n) = \log n$ are the only ones where
$n_0$ is taken into account and stored in the result. The subsequent call to
\kbd{sumnummonien} \emph{must} use the same value.
\bprog
? \p300
? sumnummonien(n = 1, n^-2*log(n)) + zeta'(2)
time = 536 ms.
%1 = -1.323[...]E-6 \\ completely wrong, f does not satisfy hypotheses !
? tab = sumnummonieninit(, 1); \\ codes w(n) = log(n)
time = 18,316 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 44 ms.
%3 = -5.562684646268003458 E-309 \\ now perfect
? tab = sumnummonieninit(, n->log(n)); \\ generic, about as fast
time = 18,693 ms.
? sumnummonien(n = 1, n^-2, tab) + zeta'(2)
time = 40 ms.
%5 = -5.562684646268003458 E-309 \\ identical result
@eprog
The library syntax is \fun{GEN}{sumnummonieninit}{GEN asymp = NULL, GEN w = NULL, GEN n0 = NULL, long prec}.
\subsec{sumpos$(X=a,\var{expr},\{\fl=0\})$}\kbdsidx{sumpos}\label{se:sumpos}
Numerical summation of the series \var{expr}, which must be a series of
terms having the same sign, the formal variable $X$ starting at $a$. The
algorithm used is Van Wijngaarden's trick for converting such a series into
an alternating one, then we use \tet{sumalt}. For regular functions, the
function \kbd{sumnum} is in general much faster once the initializations
have been made using \kbd{sumnuminit}.
The routine is heuristic and assumes that \var{expr} is more or less a
decreasing function of $X$. In particular, the result will be completely
wrong if \var{expr} is 0 too often. We do not check either that all terms
have the same sign. As \tet{sumalt}, this function should be used to
try and guess the value of an infinite sum.
If $\fl=1$, use \kbd{sumalt}$(,1)$ instead of \kbd{sumalt}$(,0)$, see
\secref{se:sumalt}. Requiring more stringent analytic properties for
rigorous use, but allowing to compute fewer series terms.
To reach accuracy $10^{-p}$, both algorithms require $O(p^2)$ space;
furthermore, assuming the terms decrease polynomially (in $O(n^{-C})$), both
need to compute $O(p^2)$ terms. The \kbd{sumpos}$(,1)$ variant has a smaller
implied constant (roughly 1.5 times smaller). Since the \kbd{sumalt}$(,1)$
overhead is now small compared to the time needed to compute series terms,
this last variant should be about 1.5 faster. On the other hand, the
achieved accuracy may be much worse: as for \tet{sumalt}, since
conditions for rigorous use are hard to check, the routine is best used
heuristically.
\synt{sumpos}{void *E, GEN (*eval)(void*,GEN),GEN a,long prec}. Also
available is \tet{sumpos2} with the same arguments ($\fl = 1$).
%SECTION: sums
\section{Plotting functions}
Although plotting is not even a side purpose of PARI, a number of plotting
functions are provided. Moreover, a lot of people suggested ideas or
submitted patches for this section of the code. There are three types of
graphic functions.
\subsec{High-level plotting functions} (all the functions starting with
\kbd{ploth}) in which the user has little to do but explain what type of plot
he wants, and whose syntax is similar to the one used in the preceding
section.
\subsec{Low-level plotting functions} (called \var{rectplot} functions,
sharing the prefix \kbd{plot}), where every drawing primitive (point, line,
box, etc.) is specified by the user. These low-level functions work as
follows. You have at your disposal 16 virtual windows which are filled
independently, and can then be physically ORed on a single window at
user-defined positions. These windows are numbered from 0 to 15, and must be
initialized before being used by the function \kbd{plotinit}, which specifies
the height and width of the virtual window (called a \var{rectwindow} in the
sequel). At all times, a virtual cursor (initialized at $[0,0]$) is attached
to the window, and its current value can be obtained using the function
\kbd{plotcursor}.
A number of primitive graphic objects (called \var{rect} objects) can then
be drawn in these windows, using a default color attached to that window
(which can be changed using the \kbd{plotcolor} function) and only the part
of the object which is inside the window will be drawn, with the exception of
polygons and strings which are drawn entirely. The ones sharing the prefix
\kbd{plotr} draw relatively to the current position of the virtual cursor,
the others use absolute coordinates. Those having the prefix \kbd{plotrecth}
put in the rectwindow a large batch of rect objects corresponding to the
output of the related \kbd{ploth} function.
Finally, the actual physical drawing is done using \kbd{plotdraw}. The
rectwindows are preserved so that further drawings using the same windows at
different positions or different windows can be done without extra work. To
erase a window, use \kbd{plotkill}. It is not possible to partially erase a
window: erase it completely, initialize it again, then fill it with the
graphic objects that you want to keep.
In addition to initializing the window, you may use a scaled window to
avoid unnecessary conversions. For this, use \kbd{plotscale}. As long as this
function is not called, the scaling is simply the number of pixels, the
origin being at the upper left and the $y$-coordinates going downwards.
Plotting functions are platform independent, but a number of graphical
drivers are available for screen output: X11-windows (hence also for GUI's
based on X11 such as Openwindows and Motif), and the Qt and FLTK graphical
libraries. The physical window opened by \kbd{plotdraw} or any of the
\kbd{ploth*} functions is completely separated from \kbd{gp} (technically, a
\kbd{fork} is done, and the non-graphical memory is immediately freed in the
child process), which means you can go on working in the current \kbd{gp}
session, without having to kill the window first. This window can be closed,
enlarged or reduced using the standard window manager functions. No zooming
procedure is implemented though (yet).
\subsec{Functions for PostScript output} in the same way that \kbd{printtex} allows you to have a \TeX\ output
corresponding to printed results, the functions starting with \kbd{ps} allow
you to have \tet{PostScript} output of the plots. This will not be identical
with the screen output, but sufficiently close. Note that you can use
PostScript output even if you do not have the plotting routines enabled. The
PostScript output is written in a file whose name is derived from the
\tet{psfile} default (\kbd{./pari.ps} if you did not tamper with it). Each
time a new PostScript output is asked for, the PostScript output is appended
to that file. Hence you probably want to remove this file, or change the
value of \kbd{psfile}, in between plots. On the other hand, in this manner,
as many plots as desired can be kept in a single file. \smallskip
\subsec{Library mode} \emph{None of the graphic functions are available
within the PARI library, you must be under \kbd{gp} to use them}. The reason
for that is that you really should not use PARI for heavy-duty graphical work,
there are better specialized alternatives around. This whole set of routines
was only meant as a convenient, but simple-minded, visual aid. If you really
insist on using these in your program (we warned you), the source
(\kbd{plot*.c}) should be readable enough for you to achieve something.
\subsec{plot$(X=a,b,\var{expr},\{\var{Ymin}\},\{\var{Ymax}\})$}\kbdsidx{plot}\label{se:plot}
Crude ASCII plot of the function represented by expression \var{expr}
from $a$ to $b$, with \var{Y} ranging from \var{Ymin} to \var{Ymax}. If
\var{Ymin} (resp. \var{Ymax}) is not given, the minimum (resp. the maximum)
of the computed values of the expression is used instead.
The library syntax is \fun{void}{pariplot}{GEN X, GEN b, GEN expr, GEN Ymin = NULL, GEN Ymax = NULL, long prec}.
\subsec{plotbox$(w,\var{x2},\var{y2})$}\kbdsidx{plotbox}\label{se:plotbox}
Let $(x1,y1)$ be the current position of the virtual cursor. Draw in the
rectwindow $w$ the outline of the rectangle which is such that the points
$(x1,y1)$ and $(x2,y2)$ are opposite corners. Only the part of the rectangle
which is in $w$ is drawn. The virtual cursor does \emph{not} move.
\subsec{plotclip$(w)$}\kbdsidx{plotclip}\label{se:plotclip}
`clips' the content of rectwindow $w$, i.e remove all parts of the
drawing that would not be visible on the screen. Together with
\tet{plotcopy} this function enables you to draw on a scratchpad before
committing the part you're interested in to the final picture.
\subsec{plotcolor$(w,c)$}\kbdsidx{plotcolor}\label{se:plotcolor}
Set default color to $c$ in rectwindow $w$.
This is only implemented for the X-windows, fltk and Qt graphing engines.
Possible values for $c$ are given by the \tet{graphcolormap} default,
factory setting are
1=black, 2=blue, 3=violetred, 4=red, 5=green, 6=grey, 7=gainsborough.
but this can be considerably extended.
\subsec{plotcopy$(\var{sourcew},\var{destw},\var{dx},\var{dy},\{\fl=0\})$}\kbdsidx{plotcopy}\label{se:plotcopy}
Copy the contents of rectwindow \var{sourcew} to rectwindow \var{destw}
with offset (dx,dy). If flag's bit 1 is set, dx and dy express fractions of
the size of the current output device, otherwise dx and dy are in pixels. dx
and dy are relative positions of northwest corners if other bits of flag
vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners
\subsec{plotcursor$(w)$}\kbdsidx{plotcursor}\label{se:plotcursor}
Give as a 2-component vector the current
(scaled) position of the virtual cursor corresponding to the rectwindow $w$.
\subsec{plotdraw$(\var{list}, \{\fl=0\})$}\kbdsidx{plotdraw}\label{se:plotdraw}
Physically draw the rectwindows given in $list$
which must be a vector whose number of components is divisible by 3. If
$list=[w1,x1,y1,w2,x2,y2,\dots]$, the windows $w1$, $w2$, etc.~are
physically placed with their upper left corner at physical position
$(x1,y1)$, $(x2,y2)$,\dots\ respectively, and are then drawn together.
Overlapping regions will thus be drawn twice, and the windows are considered
transparent. Then display the whole drawing in a special window on your
screen. If $\fl \neq 0$, x1, y1 etc. express fractions of the size of the
current output device
\subsec{ploth$(X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{ploth}\label{se:ploth}
High precision plot of the function $y=f(x)$ represented by the expression
\var{expr}, $x$ going from $a$ to $b$. This opens a specific window (which is
killed whenever you click on it), and returns a four-component vector giving
the coordinates of the bounding box in the form
$[\var{xmin},\var{xmax},\var{ymin},\var{ymax}]$.
\misctitle{Important note} \kbd{ploth} may evaluate \kbd{expr} thousands of
times; given the relatively low resolution of plotting devices, few
significant digits of the result will be meaningful. Hence you should keep
the current precision to a minimum (e.g.~9) before calling this function.
$n$ specifies the number of reference point on the graph, where a value of 0
means we use the hardwired default values (1000 for general plot, 1500 for
parametric plot, and 8 for recursive plot).
If no $\fl$ is given, \var{expr} is either a scalar expression $f(X)$, in which
case the plane curve $y=f(X)$ will be drawn, or a vector
$[f_1(X),\dots,f_k(X)]$, and then all the curves $y=f_i(X)$ will be drawn in
the same window.
\noindent The binary digits of $\fl$ mean:
\item $1 = \kbd{Parametric}$: \tev{parametric plot}. Here \var{expr} must
be a vector with an even number of components. Successive pairs are then
understood as the parametric coordinates of a plane curve. Each of these are
then drawn.
For instance:
\bprog
ploth(X=0,2*Pi,[sin(X),cos(X)], "Parametric")
ploth(X=0,2*Pi,[sin(X),cos(X)])
ploth(X=0,2*Pi,[X,X,sin(X),cos(X)], "Parametric")
@eprog\noindent draw successively a circle, two entwined sinusoidal curves
and a circle cut by the line $y=x$.
\item $2 = \kbd{Recursive}$: \tev{recursive plot}. If this flag is set,
only \emph{one} curve can be drawn at a time, i.e.~\var{expr} must be either a
two-component vector (for a single parametric curve, and the parametric flag
\emph{has} to be set), or a scalar function. The idea is to choose pairs of
successive reference points, and if their middle point is not too far away
from the segment joining them, draw this as a local approximation to the
curve. Otherwise, add the middle point to the reference points. This is
fast, and usually more precise than usual plot. Compare the results of
\bprog
ploth(X=-1,1, sin(1/X), "Recursive")
ploth(X=-1,1, sin(1/X))
@eprog\noindent
for instance. But beware that if you are extremely unlucky, or choose too few
reference points, you may draw some nice polygon bearing little resemblance
to the original curve. For instance you should \emph{never} plot recursively
an odd function in a symmetric interval around 0. Try
\bprog
ploth(x = -20, 20, sin(x), "Recursive")
@eprog\noindent
to see why. Hence, it's usually a good idea to try and plot the same curve
with slightly different parameters.
The other values toggle various display options:
\item $4 = \kbd{no\_Rescale}$: do not rescale plot according to the
computed extrema. This is used in conjunction with \tet{plotscale} when
graphing multiple functions on a rectwindow (as a \tet{plotrecth} call):
\bprog
s = plothsizes();
plotinit(0, s[2]-1, s[2]-1);
plotscale(0, -1,1, -1,1);
plotrecth(0, t=0,2*Pi, [cos(t),sin(t)], "Parametric|no_Rescale")
plotdraw([0, -1,1]);
@eprog\noindent
This way we get a proper circle instead of the distorted ellipse produced by
\bprog
ploth(t=0,2*Pi, [cos(t),sin(t)], "Parametric")
@eprog
\item $8 = \kbd{no\_X\_axis}$: do not print the $x$-axis.
\item $16 = \kbd{no\_Y\_axis}$: do not print the $y$-axis.
\item $32 = \kbd{no\_Frame}$: do not print frame.
\item $64 = \kbd{no\_Lines}$: only plot reference points, do not join them.
\item $128 = \kbd{Points\_too}$: plot both lines and points.
\item $256 = \kbd{Splines}$: use splines to interpolate the points.
\item $512 = \kbd{no\_X\_ticks}$: plot no $x$-ticks.
\item $1024 = \kbd{no\_Y\_ticks}$: plot no $y$-ticks.
\item $2048 = \kbd{Same\_ticks}$: plot all ticks with the same length.
\item $4096 = \kbd{Complex}$: is a parametric plot but where each member of
\kbd{expr} is considered a complex number encoding the two coordinates of a
point. For instance:
\bprog
ploth(X=0,2*Pi,exp(I*X), "Complex")
ploth(X=0,2*Pi,[(1+I)*X,exp(I*X)], "Complex")
@eprog\noindent will draw respectively a circle and a circle cut by the line
$y=x$.
\subsec{plothraw$(\var{listx},\var{listy},\{\fl=0\})$}\kbdsidx{plothraw}\label{se:plothraw}
Given \var{listx} and \var{listy} two vectors of equal length, plots (in
high precision) the points whose $(x,y)$-coordinates are given in
\var{listx} and \var{listy}. Automatic positioning and scaling is done, but
with the same scaling factor on $x$ and $y$. If $\fl$ is 1, join points,
other non-0 flags toggle display options and should be combinations of bits
$2^k$, $k \geq 3$ as in \kbd{ploth}.
\subsec{plothsizes$(\{\fl=0\})$}\kbdsidx{plothsizes}\label{se:plothsizes}
Return data corresponding to the output window
in the form of a 6-component vector: window width and height, sizes for ticks
in horizontal and vertical directions (this is intended for the \kbd{gnuplot}
interface and is currently not significant), width and height of characters.
If $\fl = 0$, sizes of ticks and characters are in
pixels, otherwise are fractions of the screen size
\subsec{plotinit$(w,\{x\},\{y\},\{\fl=0\})$}\kbdsidx{plotinit}\label{se:plotinit}
Initialize the rectwindow $w$,
destroying any rect objects you may have already drawn in $w$. The virtual
cursor is set to $(0,0)$. The rectwindow size is set to width $x$ and height
$y$; omitting either $x$ or $y$ means we use the full size of the device
in that direction.
If $\fl=0$, $x$ and $y$ represent pixel units. Otherwise, $x$ and $y$
are understood as fractions of the size of the current output device (hence
must be between $0$ and $1$) and internally converted to pixels.
The plotting device imposes an upper bound for $x$ and $y$, for instance the
number of pixels for screen output. These bounds are available through the
\tet{plothsizes} function. The following sequence initializes in a portable
way (i.e independent of the output device) a window of maximal size, accessed
through coordinates in the $[0,1000] \times [0,1000]$ range:
\bprog
s = plothsizes();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0,1000, 0,1000);
@eprog
\subsec{plotkill$(w)$}\kbdsidx{plotkill}\label{se:plotkill}
Erase rectwindow $w$ and free the corresponding memory. Note that if you
want to use the rectwindow $w$ again, you have to use \kbd{plotinit} first
to specify the new size. So it's better in this case to use \kbd{plotinit}
directly as this throws away any previous work in the given rectwindow.
\subsec{plotlines$(w,X,Y,\{\fl=0\})$}\kbdsidx{plotlines}\label{se:plotlines}
Draw on the rectwindow $w$
the polygon such that the (x,y)-coordinates of the vertices are in the
vectors of equal length $X$ and $Y$. For simplicity, the whole
polygon is drawn, not only the part of the polygon which is inside the
rectwindow. If $\fl$ is non-zero, close the polygon. In any case, the
virtual cursor does not move.
$X$ and $Y$ are allowed to be scalars (in this case, both have to).
There, a single segment will be drawn, between the virtual cursor current
position and the point $(X,Y)$. And only the part thereof which
actually lies within the boundary of $w$. Then \emph{move} the virtual cursor
to $(X,Y)$, even if it is outside the window. If you want to draw a
line from $(x1,y1)$ to $(x2,y2)$ where $(x1,y1)$ is not necessarily the
position of the virtual cursor, use \kbd{plotmove(w,x1,y1)} before using this
function.
\subsec{plotlinetype$(w,\var{type})$}\kbdsidx{plotlinetype}\label{se:plotlinetype}
This function is obsolete and currently a no-op.
Change the type of lines subsequently plotted in rectwindow $w$.
\var{type} $-2$ corresponds to frames, $-1$ to axes, larger values may
correspond to something else. $w = -1$ changes highlevel plotting.
\subsec{plotmove$(w,x,y)$}\kbdsidx{plotmove}\label{se:plotmove}
Move the virtual cursor of the rectwindow $w$ to position $(x,y)$.
\subsec{plotpoints$(w,X,Y)$}\kbdsidx{plotpoints}\label{se:plotpoints}
Draw on the rectwindow $w$ the
points whose $(x,y)$-coordinates are in the vectors of equal length $X$ and
$Y$ and which are inside $w$. The virtual cursor does \emph{not} move. This
is basically the same function as \kbd{plothraw}, but either with no scaling
factor or with a scale chosen using the function \kbd{plotscale}.
As was the case with the \kbd{plotlines} function, $X$ and $Y$ are allowed to
be (simultaneously) scalar. In this case, draw the single point $(X,Y)$ on
the rectwindow $w$ (if it is actually inside $w$), and in any case
\emph{move} the virtual cursor to position $(x,y)$.
\subsec{plotpointsize$(w,\var{size})$}\kbdsidx{plotpointsize}\label{se:plotpointsize}
This function is obsolete. It is currently a no-op.
Changes the ``size'' of following points in rectwindow $w$. If $w = -1$,
change it in all rectwindows.
\subsec{plotpointtype$(w,\var{type})$}\kbdsidx{plotpointtype}\label{se:plotpointtype}
This function is obsolete and currently a no-op.
change the type of points subsequently plotted in rectwindow $w$.
$\var{type} = -1$ corresponds to a dot, larger values may correspond to
something else. $w = -1$ changes highlevel plotting.
\subsec{plotrbox$(w,\var{dx},\var{dy})$}\kbdsidx{plotrbox}\label{se:plotrbox}
Draw in the rectwindow $w$ the outline of the rectangle which is such
that the points $(x1,y1)$ and $(x1+dx,y1+dy)$ are opposite corners, where
$(x1,y1)$ is the current position of the cursor. Only the part of the
rectangle which is in $w$ is drawn. The virtual cursor does \emph{not} move.
\subsec{plotrecth$(w,X=a,b,\var{expr},\{\fl=0\},\{n=0\})$}\kbdsidx{plotrecth}\label{se:plotrecth}
Writes to rectwindow $w$ the curve output of
\kbd{ploth}$(w,X=a,b,\var{expr},\fl,n)$. Returns a vector for the bounding box.
\subsec{plotrecthraw$(w,\var{data},\{\var{flags}=0\})$}\kbdsidx{plotrecthraw}\label{se:plotrecthraw}
Plot graph(s) for
\var{data} in rectwindow $w$. $\fl$ has the same significance here as in
\kbd{ploth}, though recursive plot is no more significant.
\var{data} is a vector of vectors, each corresponding to a list a coordinates.
If parametric plot is set, there must be an even number of vectors, each
successive pair corresponding to a curve. Otherwise, the first one contains
the $x$ coordinates, and the other ones contain the $y$-coordinates
of curves to plot.
\subsec{plotrline$(w,\var{dx},\var{dy})$}\kbdsidx{plotrline}\label{se:plotrline}
Draw in the rectwindow $w$ the part of the segment
$(x1,y1)-(x1+dx,y1+dy)$ which is inside $w$, where $(x1,y1)$ is the current
position of the virtual cursor, and move the virtual cursor to
$(x1+dx,y1+dy)$ (even if it is outside the window).
\subsec{plotrmove$(w,\var{dx},\var{dy})$}\kbdsidx{plotrmove}\label{se:plotrmove}
Move the virtual cursor of the rectwindow $w$ to position
$(x1+dx,y1+dy)$, where $(x1,y1)$ is the initial position of the cursor
(i.e.~to position $(dx,dy)$ relative to the initial cursor).
\subsec{plotrpoint$(w,\var{dx},\var{dy})$}\kbdsidx{plotrpoint}\label{se:plotrpoint}
Draw the point $(x1+dx,y1+dy)$ on the rectwindow $w$ (if it is inside
$w$), where $(x1,y1)$ is the current position of the cursor, and in any case
move the virtual cursor to position $(x1+dx,y1+dy)$.
\subsec{plotscale$(w,\var{x1},\var{x2},\var{y1},\var{y2})$}\kbdsidx{plotscale}\label{se:plotscale}
Scale the local coordinates of the rectwindow $w$ so that $x$ goes from
$x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2<x1$ and $y2<y1$ being
allowed). Initially, after the initialization of the rectwindow $w$ using
the function \kbd{plotinit}, the default scaling is the graphic pixel count,
and in particular the $y$ axis is oriented downwards since the origin is at
the upper left. The function \kbd{plotscale} allows to change all these
defaults and should be used whenever functions are graphed.
\subsec{plotstring$(w,x,\{\var{flags}=0\})$}\kbdsidx{plotstring}\label{se:plotstring}
Draw on the rectwindow $w$ the String $x$ (see \secref{se:strings}), at
the current position of the cursor.
\fl\ is used for justification: bits 1 and 2 regulate horizontal alignment:
left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical
alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small
gap between point and string: horizontal if bit 16 is set, vertical if bit
32 is set (see the tutorial for an example).
\subsec{psdraw$(\var{list}, \{\fl=0\})$}\kbdsidx{psdraw}\label{se:psdraw}
Same as \kbd{plotdraw}, except that the output is a PostScript program
appended to the \kbd{psfile}, and flag!=0 scales the plot from size of the
current output device to the standard PostScript plotting size
\subsec{psploth$(X=a,b,\var{expr},\{\var{flags}=0\},\{n=0\})$}\kbdsidx{psploth}\label{se:psploth}
Same as \kbd{ploth}, except that the output is a PostScript program
appended to the \kbd{psfile}.
\subsec{psplothraw$(\var{listx},\var{listy},\{\fl=0\})$}\kbdsidx{psplothraw}\label{se:psplothraw}
Same as \kbd{plothraw}, except that the output is a PostScript program
appended to the \kbd{psfile}.
%SECTION: graphic
\section{Programming in GP: control statements}
\sidx{programming}\label{se:programming}
A number of control statements are available in GP. They are simpler and
have a syntax slightly different from their C counterparts, but are quite
powerful enough to write any kind of program. Some of them are specific to
GP, since they are made for number theorists. As usual, $X$ will denote any
simple variable name, and \var{seq} will always denote a sequence of
expressions, including the empty sequence.
\misctitle{Caveat} In constructs like
\bprog
for (X = a,b, seq)
@eprog\noindent
the variable \kbd{X} is lexically scoped to the loop, leading to possibly
unexpected behavior:
\bprog
n = 5;
for (n = 1, 10,
if (something_nice(), break);
);
\\ @com at this point \kbd{n} is 5 !
@eprog\noindent
If the sequence \kbd{seq} modifies the loop index, then the loop
is modified accordingly:
\bprog
? for (n = 1, 10, n += 2; print(n))
3
6
9
12
@eprog
\subsec{break$(\{n=1\})$}\kbdsidx{break}\label{se:break}
Interrupts execution of current \var{seq}, and
immediately exits from the $n$ innermost enclosing loops, within the
current function call (or the top level loop); the integer $n$ must be
positive. If $n$ is greater than the number of enclosing loops, all
enclosing loops are exited.
\subsec{breakpoint$()$}\kbdsidx{breakpoint}\label{se:breakpoint}
Interrupt the program and enter the breakloop. The program continues when
the breakloop is exited.
\bprog
? f(N,x)=my(z=x^2+1);breakpoint();gcd(N,z^2+1-z);
? f(221,3)
*** at top-level: f(221,3)
*** ^--------
*** in function f: my(z=x^2+1);breakpoint();gcd(N,z
*** ^--------------------
*** Break loop: type <Return> to continue; 'break' to go back to GP
break> z
10
break>
%2 = 13
@eprog
\subsec{dbg\_down$(\{n=1\})$}\kbdsidx{dbg_down}\label{se:dbg_down}
(In the break loop) go down n frames. This allows to cancel a previous call to
\kbd{dbg\_up}.
\subsec{dbg\_err$()$}\kbdsidx{dbg_err}\label{se:dbg_err}
In the break loop, return the error data of the current error, if any.
See \tet{iferr} for details about error data. Compare:
\bprog
? iferr(1/(Mod(2,12019)^(6!)-1),E,Vec(E))
%1 = ["e_INV", "Fp_inv", Mod(119, 12019)]
? 1/(Mod(2,12019)^(6!)-1)
*** at top-level: 1/(Mod(2,12019)^(6!)-
*** ^--------------------
*** _/_: impossible inverse in Fp_inv: Mod(119, 12019).
*** Break loop: type 'break' to go back to GP prompt
break> Vec(dbg_err())
["e_INV", "Fp_inv", Mod(119, 12019)]
@eprog
\subsec{dbg\_up$(\{n=1\})$}\kbdsidx{dbg_up}\label{se:dbg_up}
(In the break loop) go up n frames. This allows to inspect data of the
parent function. To cancel a \tet{dbg_up} call, use \tet{dbg_down}
\subsec{dbg\_x$(A,\{n\})$}\kbdsidx{dbg_x}\label{se:dbg_x}
Print the inner structure of \kbd{A}, complete if \kbd{n} is omitted, up
to level \kbd{n} otherwise. This is useful for debugging. This is similar to
\b{x} but does not require \kbd{A} to be an history entry. In particular,
it can be used in the break loop.
\subsec{for$(X=a,b,\var{seq})$}\kbdsidx{for}\label{se:for}
Evaluates \var{seq}, where
the formal variable $X$ goes from $a$ to $b$. Nothing is done if $a>b$.
$a$ and $b$ must be in $\R$. If $b$ is set to \kbd{+oo}, the loop will not
stop; it is expected that the caller will break out of the loop itself at some
point, using \kbd{break} or \kbd{return}.
\subsec{forcomposite$(n=a,\{b\},\var{seq})$}\kbdsidx{forcomposite}\label{se:forcomposite}
Evaluates \var{seq},
where the formal variable $n$ ranges over the composite numbers between the
non-negative real numbers $a$ to $b$, including $a$ and $b$ if they are
composite. Nothing is done if $a>b$.
\bprog
? forcomposite(n = 0, 10, print(n))
4
6
8
9
10
@eprog\noindent Omitting $b$ means we will run through all composites $\geq a$,
starting an infinite loop; it is expected that the user will break out of
the loop himself at some point, using \kbd{break} or \kbd{return}.
Note that the value of $n$ cannot be modified within \var{seq}:
\bprog
? forcomposite(n = 2, 10, n = [])
*** at top-level: forcomposite(n=2,10,n=[])
*** ^---
*** index read-only: was changed to [].
@eprog
\subsec{fordiv$(n,X,\var{seq})$}\kbdsidx{fordiv}\label{se:fordiv}
Evaluates \var{seq}, where
the formal variable $X$ ranges through the divisors of $n$
(see \tet{divisors}, which is used as a subroutine). It is assumed that
\kbd{factor} can handle $n$, without negative exponents. Instead of $n$,
it is possible to input a factorization matrix, i.e. the output of
\kbd{factor(n)}.
This routine uses \kbd{divisors} as a subroutine, then loops over the
divisors. In particular, if $n$ is an integer, divisors are sorted by
increasing size.
To avoid storing all divisors, possibly using a lot of memory, the following
(much slower) routine loops over the divisors using essentially constant
space:
\bprog
FORDIV(N)=
{ my(P, E);
P = factor(N); E = P[,2]; P = P[,1];
forvec( v = vector(#E, i, [0,E[i]]),
X = factorback(P, v)
\\ ...
);
}
? for(i=1,10^5, FORDIV(i))
time = 3,445 ms.
? for(i=1,10^5, fordiv(i, d, ))
time = 490 ms.
@eprog
\subsec{forell$(E,a,b,\var{seq},\{\fl=0\})$}\kbdsidx{forell}\label{se:forell}
Evaluates \var{seq}, where the formal variable $E = [\var{name}, M, G]$
ranges through all elliptic curves of conductors from $a$ to $b$. In this
notation \var{name} is the curve name in Cremona's elliptic curve database,
$M$ is the minimal model, $G$ is a $\Z$-basis of the free part of the
Mordell-Weil group $E(\Q)$. If flag is non-zero, select
only the first curve in each isogeny class.
\bprog
? forell(E, 1, 500, my([name,M,G] = E); \
if (#G > 1, print(name)))
389a1
433a1
446d1
? c = 0; forell(E, 1, 500, c++); c \\ number of curves
%2 = 2214
? c = 0; forell(E, 1, 500, c++, 1); c \\ number of isogeny classes
%3 = 971
@eprog\noindent
The \tet{elldata} database must be installed and contain data for the
specified conductors.
\synt{forell}{void *data, long (*call)(void*,GEN), long a, long b, long flag}.
\subsec{forpart$(X=k,\var{seq},\{a=k\},\{n=k\})$}\kbdsidx{forpart}\label{se:forpart}
Evaluate \var{seq} over the partitions $X=[x_1,\dots x_n]$ of the
integer $k$, i.e.~increasing sequences $x_1\leq x_2\dots \leq x_n$ of sum
$x_1+\dots + x_n=k$. By convention, $0$ admits only the empty partition and
negative numbers have no partitions. A partition is given by a
\typ{VECSMALL}, where parts are sorted in nondecreasing order:
\bprog
? forpart(X=3, print(X))
Vecsmall([3])
Vecsmall([1, 2])
Vecsmall([1, 1, 1])
@eprog\noindent Optional parameters $n$ and $a$ are as follows:
\item $n=\var{nmax}$ (resp. $n=[\var{nmin},\var{nmax}]$) restricts
partitions to length less than $\var{nmax}$ (resp. length between
$\var{nmin}$ and $nmax$), where the \emph{length} is the number of nonzero
entries.
\item $a=\var{amax}$ (resp. $a=[\var{amin},\var{amax}]$) restricts the parts
to integers less than $\var{amax}$ (resp. between $\var{amin}$ and
$\var{amax}$).
By default, parts are positive and we remove zero entries unless $amin\leq0$,
in which case $X$ is of constant length $\var{nmax}$.
\bprog
\\ at most 3 non-zero parts, all <= 4
? forpart(v=5,print(Vec(v)),4,3)
[1, 4]
[2, 3]
[1, 1, 3]
[1, 2, 2]
\\ between 2 and 4 parts less than 5, fill with zeros
? forpart(v=5,print(Vec(v)),[0,5],[2,4])
[0, 0, 1, 4]
[0, 0, 2, 3]
[0, 1, 1, 3]
[0, 1, 2, 2]
[1, 1, 1, 2]
@eprog\noindent
The behavior is unspecified if $X$ is modified inside the loop.
\synt{forpart}{void *data, long (*call)(void*,GEN), long k, GEN a, GEN n}.
\subsec{forprime$(p=a,\{b\},\var{seq})$}\kbdsidx{forprime}\label{se:forprime}
Evaluates \var{seq},
where the formal variable $p$ ranges over the prime numbers between the real
numbers $a$ to $b$, including $a$ and $b$ if they are prime. More precisely,
the value of
$p$ is incremented to \kbd{nextprime($p$ + 1)}, the smallest prime strictly
larger than $p$, at the end of each iteration. Nothing is done if $a>b$.
\bprog
? forprime(p = 4, 10, print(p))
5
7
@eprog\noindent Setting $b$ to \kbd{+oo} means we will run through all primes
$\geq a$, starting an infinite loop; it is expected that the caller will break
out of the loop itself at some point, using \kbd{break} or \kbd{return}.
Note that the value of $p$ cannot be modified within \var{seq}:
\bprog
? forprime(p = 2, 10, p = [])
*** at top-level: forprime(p=2,10,p=[])
*** ^---
*** prime index read-only: was changed to [].
@eprog
\subsec{forstep$(X=a,b,s,\var{seq})$}\kbdsidx{forstep}\label{se:forstep}
Evaluates \var{seq},
where the formal variable $X$ goes from $a$ to $b$, in increments of $s$.
Nothing is done if $s>0$ and $a>b$ or if $s<0$ and $a<b$. $s$ must be in
$\R^*$ or a vector of steps $[s_1,\dots,s_n]$. In the latter case, the
successive steps are used in the order they appear in $s$.
\bprog
? forstep(x=5, 20, [2,4], print(x))
5
7
11
13
17
19
@eprog\noindent Setting $b$ to \kbd{+oo} will start an infinite loop; it is
expected that the caller will break out of the loop itself at some point,
using \kbd{break} or \kbd{return}.
\subsec{forsubgroup$(H=G,\{\var{bound}\},\var{seq})$}\kbdsidx{forsubgroup}\label{se:forsubgroup}
Evaluates \var{seq} for
each subgroup $H$ of the \emph{abelian} group $G$ (given in
SNF\sidx{Smith normal form} form or as a vector of elementary divisors).
If \var{bound} is present, and is a positive integer, restrict the output to
subgroups of index less than \var{bound}. If \var{bound} is a vector
containing a single positive integer $B$, then only subgroups of index
exactly equal to $B$ are computed
The subgroups are not ordered in any
obvious way, unless $G$ is a $p$-group in which case Birkhoff's algorithm
produces them by decreasing index. A \idx{subgroup} is given as a matrix
whose columns give its generators on the implicit generators of $G$. For
example, the following prints all subgroups of index less than 2 in $G =
\Z/2\Z g_1 \times \Z/2\Z g_2$:
\bprog
? G = [2,2]; forsubgroup(H=G, 2, print(H))
[1; 1]
[1; 2]
[2; 1]
[1, 0; 1, 1]
@eprog\noindent
The last one, for instance is generated by $(g_1, g_1 + g_2)$. This
routine is intended to treat huge groups, when \tet{subgrouplist} is not an
option due to the sheer size of the output.
For maximal speed the subgroups have been left as produced by the algorithm.
To print them in canonical form (as left divisors of $G$ in HNF form), one
can for instance use
\bprog
? G = matdiagonal([2,2]); forsubgroup(H=G, 2, print(mathnf(concat(G,H))))
[2, 1; 0, 1]
[1, 0; 0, 2]
[2, 0; 0, 1]
[1, 0; 0, 1]
@eprog\noindent
Note that in this last representation, the index $[G:H]$ is given by the
determinant. See \tet{galoissubcyclo} and \tet{galoisfixedfield} for
applications to \idx{Galois} theory.
\synt{forsubgroup}{void *data, long (*call)(void*,GEN), GEN G, GEN bound}.
\subsec{forvec$(X=v,\var{seq},\{\fl=0\})$}\kbdsidx{forvec}\label{se:forvec}
Let $v$ be an $n$-component
vector (where $n$ is arbitrary) of two-component vectors $[a_i,b_i]$
for $1\le i\le n$, where all entries $a_i$, $b_i$ are real numbers.
This routine lets $X$ vary over the $n$-dimensional hyperrectangle
given by $v$, that is, $X$ is an $n$-dimensional vector taking
successively its entries $X[i]$ in the range $[a_i,b_i]$ with lexicographic
ordering. (The component with the highest index moves the fastest.)
The type of $X$ is the same as the type of $v$: \typ{VEC} or \typ{COL}.
The expression \var{seq} is evaluated with the successive values of $X$.
If $\fl=1$, generate only nondecreasing vectors $X$, and
if $\fl=2$, generate only strictly increasing vectors $X$.
\bprog
? forvec (X=[[0,1],[-1,1]], print(X));
[0, -1]
[0, 0]
[0, 1]
[1, -1]
[1, 0]
[1, 1]
? forvec (X=[[0,1],[-1,1]], print(X), 1);
[0, 0]
[0, 1]
[1, 1]
? forvec (X=[[0,1],[-1,1]], print(X), 2)
[0, 1]
@eprog
\subsec{if$(a,\{\var{seq1}\},\{\var{seq2}\})$}\kbdsidx{if}\label{se:if}
Evaluates the expression sequence \var{seq1} if $a$ is non-zero, otherwise
the expression \var{seq2}. Of course, \var{seq1} or \var{seq2} may be empty:
\kbd{if ($a$,\var{seq})} evaluates \var{seq} if $a$ is not equal to zero
(you don't have to write the second comma), and does nothing otherwise,
\kbd{if ($a$,,\var{seq})} evaluates \var{seq} if $a$ is equal to zero, and
does nothing otherwise. You could get the same result using the \kbd{!}
(\kbd{not}) operator: \kbd{if (!$a$,\var{seq})}.
The value of an \kbd{if} statement is the value of the branch that gets
evaluated: for instance
\bprog
x = if(n % 4 == 1, y, z);
@eprog\noindent sets $x$ to $y$ if $n$ is $1$ modulo $4$, and to $z$
otherwise.
Successive 'else' blocks can be abbreviated in a single compound \kbd{if}
as follows:
\bprog
if (test1, seq1,
test2, seq2,
...
testn, seqn,
seqdefault);
@eprog\noindent is equivalent to
\bprog
if (test1, seq1
, if (test2, seq2
, ...
if (testn, seqn, seqdefault)...));
@eprog For instance, this allows to write traditional switch / case
constructions:
\bprog
if (x == 0, do0(),
x == 1, do1(),
x == 2, do2(),
dodefault());
@eprog
\misctitle{Remark}
The boolean operators \kbd{\&\&} and \kbd{||} are evaluated
according to operator precedence as explained in \secref{se:operators}, but,
contrary to other operators, the evaluation of the arguments is stopped
as soon as the final truth value has been determined. For instance
\bprog
if (x != 0 && f(1/x), ...)
@eprog
\noindent is a perfectly safe statement.
\misctitle{Remark} Functions such as \kbd{break} and \kbd{next} operate on
\emph{loops}, such as \kbd{for$xxx$}, \kbd{while}, \kbd{until}. The \kbd{if}
statement is \emph{not} a loop. (Obviously!)
\subsec{iferr$(\var{seq1},E,\var{seq2},\{\var{pred}\})$}\kbdsidx{iferr}\label{se:iferr}
Evaluates the expression sequence \var{seq1}. If an error occurs,
set the formal parameter \var{E} set to the error data.
If \var{pred} is not present or evaluates to true, catch the error
and evaluate \var{seq2}. Both \var{pred} and \var{seq2} can reference \var{E}.
The error type is given by \kbd{errname(E)}, and other data can be
accessed using the \tet{component} function. The code \var{seq2} should check
whether the error is the one expected. In the negative the error can be
rethrown using \tet{error(E)} (and possibly caught by an higher \kbd{iferr}
instance). The following uses \kbd{iferr} to implement Lenstra's ECM factoring
method
\bprog
? ecm(N, B = 1000!, nb = 100)=
{
for(a = 1, nb,
iferr(ellmul(ellinit([a,1]*Mod(1,N)), [0,1]*Mod(1,N), B),
E, return(gcd(lift(component(E,2)),N)),
errname(E)=="e_INV" && type(component(E,2)) == "t_INTMOD"))
}
? ecm(2^101-1)
%2 = 7432339208719
@eprog
The return value of \kbd{iferr} itself is the value of \var{seq2} if an
error occurs, and the value of \var{seq1} otherwise. We now describe the
list of valid error types, and the attached error data \var{E}; in each
case, we list in order the components of \var{E}, accessed via
\kbd{component(E,1)}, \kbd{component(E,2)}, etc.
\misctitle{Internal errors, ``system'' errors}
\item \kbd{"e\_ARCH"}. A requested feature $s$ is not available on this
architecture or operating system.
\var{E} has one component (\typ{STR}): the missing feature name $s$.
\item \kbd{"e\_BUG"}. A bug in the PARI library, in function $s$.
\var{E} has one component (\typ{STR}): the function name $s$.
\item \kbd{"e\_FILE"}. Error while trying to open a file.
\var{E} has two components, 1 (\typ{STR}): the file type (input, output,
etc.), 2 (\typ{STR}): the file name.
\item \kbd{"e\_IMPL"}. A requested feature $s$ is not implemented.
\var{E} has one component, 1 (\typ{STR}): the feature name $s$.
\item \kbd{"e\_PACKAGE"}. Missing optional package $s$.
\var{E} has one component, 1 (\typ{STR}): the package name $s$.
\misctitle{Syntax errors, type errors}
\item \kbd{"e\_DIM"}. The dimensions of arguments $x$ and $y$ submitted
to function $s$ does not match up.
E.g., multiplying matrices of inconsistent dimension, adding vectors of
different lengths,\dots
\var{E} has three component, 1 (\typ{STR}): the function name $s$, 2: the
argument $x$, 3: the argument $y$.
\item \kbd{"e\_FLAG"}. A flag argument is out of bounds in function $s$.
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_NOTFUNC"}. Generated by the PARI evaluator; tried to use a
\kbd{GEN} $x$ which is not a \typ{CLOSURE} in a function call syntax (as in
\kbd{f = 1; f(2);}).
\var{E} has one component, 1: the offending \kbd{GEN} $x$.
\item \kbd{"e\_OP"}. Impossible operation between two objects than cannot
be typecast to a sensible common domain for deeper reasons than a type
mismatch, usually for arithmetic reasons. As in \kbd{O(2) + O(3)}: it is
valid to add two \typ{PADIC}s, provided the underlying prime is the same; so
the addition is not forbidden a priori for type reasons, it only becomes so
when inspecting the objects and trying to perform the operation.
\var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
2: first argument, 3: second argument.
\item \kbd{"e\_TYPE"}. An argument $x$ of function $s$ had an unexpected type.
(As in \kbd{factor("blah")}.)
\var{E} has two components, 1 (\typ{STR}): the function name $s$,
2: the offending argument $x$.
\item \kbd{"e\_TYPE2"}. Forbidden operation between two objects than cannot be
typecast to a sensible common domain, because their types do not match up.
(As in \kbd{Mod(1,2) + Pi}.)
\var{E} has three components, 1 (\typ{STR}): the operator name \var{op},
2: first argument, 3: second argument.
\item \kbd{"e\_PRIORITY"}. Object $o$ in function $s$ contains
variables whose priority is incompatible with the expected operation.
E.g.~\kbd{Pol([x,1], 'y)}: this raises an error because it's not possible to
create a polynomial whose coefficients involve variables with higher priority
than the main variable. $E$ has four components: 1 (\typ{STR}): the function
name $s$, 2: the offending argument $o$, 3 (\typ{STR}): an operator
$\var{op}$ describing the priority error, 4 (\typ{POL}):
the variable $v$ describing the priority error. The argument
satisfies $\kbd{variable}(x)~\var{op} \kbd{variable}(v)$.
\item \kbd{"e\_VAR"}. The variables of arguments $x$ and $y$ submitted
to function $s$ does not match up. E.g., considering the algebraic number
\kbd{Mod(t,t\pow2+1)} in \kbd{nfinit(x\pow2+1)}.
\var{E} has three component, 1 (\typ{STR}): the function name $s$, 2
(\typ{POL}): the argument $x$, 3 (\typ{POL}): the argument $y$.
\misctitle{Overflows}
\item \kbd{"e\_COMPONENT"}. Trying to access an inexistent component in a
vector/matrix/list in a function: the index is less than $1$ or greater
than the allowed length.
\var{E} has four components,
1 (\typ{STR}): the function name
2 (\typ{STR}): an operator $\var{op}$ ($<$ or $>$),
2 (\typ{GEN}): a numerical limit $l$ bounding the allowed range,
3 (\kbd{GEN}): the index $x$. It satisfies $x$ \var{op} $l$.
\item \kbd{"e\_DOMAIN"}. An argument is not in the function's domain.
\var{E} has five components, 1 (\typ{STR}): the function name,
2 (\typ{STR}): the mathematical name of the out-of-domain argument
3 (\typ{STR}): an operator $\var{op}$ describing the domain error,
4 (\typ{GEN}): the numerical limit $l$ describing the domain error,
5 (\kbd{GEN}): the out-of-domain argument $x$. The argument satisfies $x$
\var{op} $l$, which prevents it from belonging to the function's domain.
\item \kbd{"e\_MAXPRIME"}. A function using the precomputed list of prime
numbers ran out of primes.
\var{E} has one component, 1 (\typ{INT}): the requested prime bound, which
overflowed \kbd{primelimit} or $0$ (bound is unknown).
\item \kbd{"e\_MEM"}. A call to \tet{pari_malloc} or \tet{pari_realloc}
failed. \var{E} has no component.
\item \kbd{"e\_OVERFLOW"}. An object in function $s$ becomes too large to be
represented within PARI's hardcoded limits. (As in \kbd{2\pow2\pow2\pow10} or
\kbd{exp(1e100)}, which overflow in \kbd{lg} and \kbd{expo}.)
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_PREC"}. Function $s$ fails because input accuracy is too low.
(As in \kbd{floor(1e100)} at default accuracy.)
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_STACK"}. The PARI stack overflows.
\var{E} has no component.
\misctitle{Errors triggered intentionally}
\item \kbd{"e\_ALARM"}. A timeout, generated by the \tet{alarm} function.
\var{E} has one component (\typ{STR}): the error message to print.
\item \kbd{"e\_USER"}. A user error, as triggered by
\tet{error}($g_1,\dots,g_n)$.
\var{E} has one component, 1 (\typ{VEC}): the vector of $n$ arguments given
to \kbd{error}.
\misctitle{Mathematical errors}
\item \kbd{"e\_CONSTPOL"}. An argument of function $s$ is a constant
polynomial, which does not make sense. (As in \kbd{galoisinit(Pol(1))}.)
\var{E} has one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_COPRIME"}. Function $s$ expected coprime arguments,
and did receive $x,y$, which were not.
\var{E} has three component, 1 (\typ{STR}): the function name $s$,
2: the argument $x$, 3: the argument $y$.
\item \kbd{"e\_INV"}. Tried to invert a non-invertible object $x$ in
function $s$.
\var{E} has two components, 1 (\typ{STR}): the function name $s$,
2: the non-invertible $x$. If $x = \kbd{Mod}(a,b)$
is a \typ{INTMOD} and $a$ is not $0$ mod $b$, this allows to factor
the modulus, as \kbd{gcd}$(a,b)$ is a non-trivial divisor of $b$.
\item \kbd{"e\_IRREDPOL"}. Function $s$ expected an irreducible polynomial,
and did receive $T$, which was not. (As in \kbd{nfinit(x\pow2-1)}.)
\var{E} has two component, 1 (\typ{STR}): the function name $s$,
2 (\typ{POL}): the polynomial $x$.
\item \kbd{"e\_MISC"}. Generic uncategorized error.
\var{E} has one component (\typ{STR}): the error message to print.
\item \kbd{"e\_MODULUS"}. moduli $x$ and $y$ submitted to function $s$ are
inconsistent. As in
\bprog
nfalgtobasis(nfinit(t^3-2), Mod(t,t^2+1)
@eprog\noindent
\var{E} has three component, 1 (\typ{STR}): the function $s$,
2: the argument $x$, 3: the argument $x$.
\item \kbd{"e\_PRIME"}. Function $s$ expected a prime number,
and did receive $p$, which was not. (As in \kbd{idealprimedec(nf, 4)}.)
\var{E} has two component, 1 (\typ{STR}): the function name $s$,
2: the argument $p$.
\item \kbd{"e\_ROOTS0"}. An argument of function $s$ is a zero polynomial,
and we need to consider its roots. (As in \kbd{polroots(0)}.) \var{E} has
one component, 1 (\typ{STR}): the function name $s$.
\item \kbd{"e\_SQRTN"}. Trying to compute an $n$-th root of $x$, which does
not exist, in function $s$. (As in \kbd{sqrt(Mod(-1,3))}.)
\var{E} has two components, 1 (\typ{STR}): the function name $s$,
2: the argument $x$.
\subsec{next$(\{n=1\})$}\kbdsidx{next}\label{se:next}
Interrupts execution of current $seq$,
resume the next iteration of the innermost enclosing loop, within the
current function call (or top level loop). If $n$ is specified, resume at
the $n$-th enclosing loop. If $n$ is bigger than the number of enclosing
loops, all enclosing loops are exited.
\subsec{return$(\{x=0\})$}\kbdsidx{return}\label{se:return}
Returns from current subroutine, with
result $x$. If $x$ is omitted, return the \kbd{(void)} value (return no
result, like \kbd{print}).
\subsec{until$(a,\var{seq})$}\kbdsidx{until}\label{se:until}
Evaluates \var{seq} until $a$ is not
equal to 0 (i.e.~until $a$ is true). If $a$ is initially not equal to 0,
\var{seq} is evaluated once (more generally, the condition on $a$ is tested
\emph{after} execution of the \var{seq}, not before as in \kbd{while}).
\subsec{while$(a,\var{seq})$}\kbdsidx{while}\label{se:while}
While $a$ is non-zero, evaluates the expression sequence \var{seq}. The
test is made \emph{before} evaluating the $seq$, hence in particular if $a$
is initially equal to zero the \var{seq} will not be evaluated at all.
%SECTION: programming/control
\section{Programming in GP: other specific functions}
\label{se:gp_program}
In addition to the general PARI functions, it is necessary to have some
functions which will be of use specifically for \kbd{gp}, though a few of these can
be accessed under library mode. Before we start describing these, we recall
the difference between \emph{strings} and \emph{keywords} (see
\secref{se:strings}): the latter don't get expanded at all, and you can type
them without any enclosing quotes. The former are dynamic objects, where
everything outside quotes gets immediately expanded.
\subsec{Strprintf$(\var{fmt},\{x\}*)$}\kbdsidx{Strprintf}\label{se:Strprintf}
Returns a string built from the remaining arguments according to the
format fmt. The format consists of ordinary characters (not \%), printed
unchanged, and conversions specifications. See \kbd{printf}.
%\syn{NO}
\subsec{addhelp$(\var{sym},\var{str})$}\kbdsidx{addhelp}\label{se:addhelp}
Changes the help message for the symbol \kbd{sym}. The string \var{str}
is expanded on the spot and stored as the online help for \kbd{sym}. It is
recommended to document global variables and user functions in this way,
although \kbd{gp} will not protest if you don't.
You can attach a help text to an alias, but it will never be
shown: aliases are expanded by the \kbd{?} help operator and we get the help
of the symbol the alias points to. Nothing prevents you from modifying the
help of built-in PARI functions. But if you do, we would like to hear why you
needed it!
Without \tet{addhelp}, the standard help for user functions consists of its
name and definition.
\bprog
gp> f(x) = x^2;
gp> ?f
f =
(x)->x^2
@eprog\noindent Once addhelp is applied to $f$, the function code is no
longer included. It can still be consulted by typing the function name:
\bprog
gp> addhelp(f, "Square")
gp> ?f
Square
gp> f
%2 = (x)->x^2
@eprog
The library syntax is \fun{void}{addhelp}{const char *sym, const char *str}.
\subsec{alarm$(\{s = 0\},\{\var{code}\})$}\kbdsidx{alarm}\label{se:alarm}
If \var{code} is omitted, trigger an \var{e\_ALARM} exception after $s$
seconds, cancelling any previously set alarm; stop a pending alarm if $s =
0$ or is omitted.
Otherwise, if $s$ is positive, the function evaluates \var{code},
aborting after $s$ seconds. The return value is the value of \var{code} if
it ran to completion before the alarm timeout, and a \typ{ERROR} object
otherwise.
\bprog
? p = nextprime(10^25); q = nextprime(10^26); N = p*q;
? E = alarm(1, factor(N));
? type(E)
%3 = "t_ERROR"
? print(E)
%4 = error("alarm interrupt after 964 ms.")
? alarm(10, factor(N)); \\ enough time
%5 =
[ 10000000000000000000000013 1]
[100000000000000000000000067 1]
@eprog\noindent Here is a more involved example: the function
\kbd{timefact(N,sec)} below tries to factor $N$ and gives up after \var{sec}
seconds, returning a partial factorisation.
\bprog
\\ Time-bounded partial factorization
default(factor_add_primes,1);
timefact(N,sec)=
{
F = alarm(sec, factor(N));
if (type(F) == "t_ERROR", factor(N, 2^24), F);
}
@eprog\noindent We either return the factorization directly, or replace the
\typ{ERROR} result by a simple bounded factorization \kbd{factor(N, 2\pow 24)}.
Note the \tet{factor_add_primes} trick: any prime larger than $2^{24}$
discovered while attempting the initial factorization is stored and
remembered. When the alarm rings, the subsequent bounded factorization finds
it right away.
\misctitle{Caveat} It is not possible to set a new alarm \emph{within}
another \kbd{alarm} code: the new timer erases the parent one.
The library syntax is \fun{GEN}{gp_alarm}{long s, GEN code = NULL}.
\subsec{alias$(\var{newsym},\var{sym})$}\kbdsidx{alias}\label{se:alias}
Defines the symbol \var{newsym} as an alias for the symbol \var{sym}:
\bprog
? alias("det", "matdet");
? det([1,2;3,4])
%1 = -2
@eprog\noindent
You are not restricted to ordinary functions, as in the above example:
to alias (from/to) member functions, prefix them with `\kbd{\_.}';
to alias operators, use their internal name, obtained by writing
\kbd{\_} in lieu of the operators argument: for instance, \kbd{\_!} and
\kbd{!\_} are the internal names of the factorial and the
logical negation, respectively.
\bprog
? alias("mod", "_.mod");
? alias("add", "_+_");
? alias("_.sin", "sin");
? mod(Mod(x,x^4+1))
%2 = x^4 + 1
? add(4,6)
%3 = 10
? Pi.sin
%4 = 0.E-37
@eprog
Alias expansion is performed directly by the internal GP compiler.
Note that since alias is performed at compilation-time, it does not
require any run-time processing, however it only affects GP code
compiled \emph{after} the alias command is evaluated. A slower but more
flexible alternative is to use variables. Compare
\bprog
? fun = sin;
? g(a,b) = intnum(t=a,b,fun(t));
? g(0, Pi)
%3 = 2.0000000000000000000000000000000000000
? fun = cos;
? g(0, Pi)
%5 = 1.8830410776607851098 E-39
@eprog\noindent
with
\bprog
? alias(fun, sin);
? g(a,b) = intnum(t=a,b,fun(t));
? g(0,Pi)
%2 = 2.0000000000000000000000000000000000000
? alias(fun, cos); \\ Oops. Does not affect *previous* definition!
? g(0,Pi)
%3 = 2.0000000000000000000000000000000000000
? g(a,b) = intnum(t=a,b,fun(t)); \\ Redefine, taking new alias into account
? g(0,Pi)
%5 = 1.8830410776607851098 E-39
@eprog
A sample alias file \kbd{misc/gpalias} is provided with
the standard distribution.
The library syntax is \fun{void}{alias0}{const char *newsym, const char *sym}.
\subsec{allocatemem$(\{s=0\})$}\kbdsidx{allocatemem}\label{se:allocatemem}
This special operation changes the stack size \emph{after}
initialization. $x$ must be a non-negative integer. If $x > 0$, a new stack
of at least $x$ bytes is allocated. We may allocate more than $x$ bytes if
$x$ is way too small, or for alignment reasons: the current formula is
$\max(16*\ceil{x/16}, 500032)$ bytes.
If $x=0$, the size of the new stack is twice the size of the old one.
This command is much more useful if \tet{parisizemax} is non-zero, and we
describe this case first. With \kbd{parisizemax} enabled, there are three
sizes of interest:
\item a virtual stack size, \tet{parisizemax}, which is an absolute upper
limit for the stack size; this is set by \kbd{default(parisizemax, ...)}.
\item the desired typical stack size, \tet{parisize}, that will grow as
needed, up to \tet{parisizemax}; this is set by \kbd{default(parisize, ...)}.
\item the current stack size, which is less that \kbd{parisizemax},
typically equal to \kbd{parisize} but possibly larger and increasing
dynamically as needed; \kbd{allocatemem} allows to change that one
explicitly.
The \kbd{allocatemem} command forces stack
usage to increase temporarily (up to \kbd{parisizemax} of course); for
instance if you notice using \kbd{\bs gm2} that we seem to collect garbage a
lot, e.g.
\bprog
? \gm2
debugmem = 2
? default(parisize,"32M")
*** Warning: new stack size = 32000000 (30.518 Mbytes).
? bnfinit('x^2+10^30-1)
*** bnfinit: collecting garbage in hnffinal, i = 1.
*** bnfinit: collecting garbage in hnffinal, i = 2.
*** bnfinit: collecting garbage in hnffinal, i = 3.
@eprog\noindent and so on for hundred of lines. Then, provided the
\tet{breakloop} default is set, you can interrupt the computation, type
\kbd{allocatemem(100*10\pow6)} at the break loop prompt, then let the
computation go on by typing \kbd{<Enter>}. Back at the \kbd{gp} prompt,
the desired stack size of \kbd{parisize} is restored. Note that changing either
\kbd{parisize} or \kbd{parisizemax} at the break loop prompt would interrupt
the computation, contrary to the above.
In most cases, \kbd{parisize} will increase automatically (up to
\kbd{parisizemax}) and there is no need to perform the above maneuvers.
But that the garbage collector is sufficiently efficient that
a given computation can still run without increasing the stack size,
albeit very slowly due to the frequent garbage collections.
\misctitle{Deprecated: when \kbd{parisizemax} is unset}
This is currently still the default behavior in order not to break backward
compatibility. The rest of this section documents the
behavior of \kbd{allocatemem} in that (deprecated) situation: it becomes a
synonym for \kbd{default(parisize,...)}. In that case, there is no
notion of a virtual stack, and the stack size is always equal to
\kbd{parisize}. If more memory is needed, the PARI stack overflows, aborting
the computation.
Thus, increasing \kbd{parisize} via \kbd{allocatemem} or
\kbd{default(parisize,...)} before a big computation is important.
Unfortunately, either must be typed at the \kbd{gp} prompt in
interactive usage, or left by itself at the start of batch files.
They cannot be used meaningfully in loop-like constructs, or as part of a
larger expression sequence, e.g
\bprog
allocatemem(); x = 1; \\@com This will not set \kbd{x}!
@eprog\noindent
In fact, all loops are immediately exited, user functions terminated, and
the rest of the sequence following \kbd{allocatemem()} is silently
discarded, as well as all pending sequences of instructions. We just go on
reading the next instruction sequence from the file we are in (or from the
user). In particular, we have the following possibly unexpected behavior: in
\bprog
read("file.gp"); x = 1
@eprog\noindent were \kbd{file.gp} contains an \kbd{allocatemem} statement,
the \kbd{x = 1} is never executed, since all pending instructions in the
current sequence are discarded.
The reason for these unfortunate side-effects is that, with
\kbd{parisizemax} disabled, increasing the stack size physically
moves the stack, so temporary objects created during the current expression
evaluation are not correct anymore. (In particular byte-compiled expressions,
which are allocated on the stack.) To avoid accessing obsolete pointers to
the old stack, this routine ends by a \kbd{longjmp}.
The library syntax is \fun{void}{gp_allocatemem}{GEN s = NULL}.
\subsec{apply$(f, A)$}\kbdsidx{apply}\label{se:apply}
Apply the \typ{CLOSURE} \kbd{f} to the entries of \kbd{A}. If \kbd{A}
is a scalar, return \kbd{f(A)}. If \kbd{A} is a polynomial or power series,
apply \kbd{f} on all coefficients. If \kbd{A} is a vector or list, return
the elements $f(x)$ where $x$ runs through \kbd{A}. If \kbd{A} is a matrix,
return the matrix whose entries are the $f(\kbd{A[i,j]})$.
\bprog
? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]
[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4
@eprog\noindent Note that many functions already act componentwise on
vectors or matrices, but they almost never act on lists; in this
case, \kbd{apply} is a good solution:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^-------
*** lift: incorrect type in lift.
? apply(lift, L);
%2 = List([1, 2])
@eprog
\misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{LIST} or \typ{MAT},
the alternative set-notations
\bprog
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
@eprog\noindent
are available as shortcuts for
\bprog
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
@eprog\noindent respectively:
\bprog
? L = List([Mod(1,3), Mod(2,4)]);
? [ lift(x) | x<-L ]
%2 = [1, 2]
@eprog
\synt{genapply}{void *E, GEN (*fun)(void*,GEN), GEN a}.
\subsec{call$(f, A)$}\kbdsidx{call}\label{se:call}
$A=[a_1,\dots, a_n]$ being a vector and $f$ being a function, returns the
evaluation of $f(a_1,\dots,a_n)$.
$f$ can also be the name of a built-in GP function.
If $\# A =1$, \tet{call}($f,A$) = \tet{apply}($f,A$)[1].
If $f$ is variadic, the variadic arguments must grouped in a vector in
the last component of $A$.
This function is useful
\item when writing a variadic function, to call another one:
\bprog
fprintf(file,format,args[..]) = write(file,call(Strprintf,[format,args]))
@eprog
\item when dealing with function arguments with unspecified arity
The function below implements a global memoization interface:
\bprog
memo=Map();
memoize(f,A[..])=
{
my(res);
if(!mapisdefined(memo, [f,A], &res),
res = call(f,A);
mapput(memo,[f,A],res));
res;
}
@eprog
for example:
\bprog
? memoize(factor,2^128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 76 ms.
? memoize(factor,2^128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 0 ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)
? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? fibo(100)
%7 = 354224848179261915075
@eprog
\item to call operators through their internal names without using
\kbd{alias}
\bprog
matnbelts(M) = call("_*_",matsize(M))
@eprog
The library syntax is \fun{GEN}{call0}{GEN f, GEN A}.
\subsec{default$(\{\var{key}\},\{\var{val}\})$}\kbdsidx{default}\label{se:default}
Returns the default corresponding to keyword \var{key}. If \var{val} is
present, sets the default to \var{val} first (which is subject to string
expansion first). Typing \kbd{default()} (or \b{d}) yields the complete
default list as well as their current values. See \secref{se:defaults} for an
introduction to GP defaults, \secref{se:gp_defaults} for a
list of available defaults, and \secref{se:meta} for some shortcut
alternatives. Note that the shortcuts are meant for interactive use and
usually display more information than \kbd{default}.
The library syntax is \fun{GEN}{default0}{const char *key = NULL, const char *val = NULL}.
\subsec{errname$(E)$}\kbdsidx{errname}\label{se:errname}
Returns the type of the error message \kbd{E} as a string.
The library syntax is \fun{GEN}{errname}{GEN E}.
\subsec{error$(\{\var{str}\}*)$}\kbdsidx{error}\label{se:error}
Outputs its argument list (each of
them interpreted as a string), then interrupts the running \kbd{gp} program,
returning to the input prompt. For instance
\bprog
error("n = ", n, " is not squarefree!")
@eprog\noindent
% \syn{NO}
\subsec{extern$(\var{str})$}\kbdsidx{extern}\label{se:extern}
The string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output fed into \kbd{gp}, just as if read from a file.
The library syntax is \fun{GEN}{gpextern}{const char *str}.
\subsec{externstr$(\var{str})$}\kbdsidx{externstr}\label{se:externstr}
The string \var{str} is the name of an external command (i.e.~one you
would type from your UNIX shell prompt). This command is immediately run and
its output is returned as a vector of GP strings, one component per output
line.
The library syntax is \fun{GEN}{externstr}{const char *str}.
\subsec{fold$(f, A)$}\kbdsidx{fold}\label{se:fold}
Apply the \typ{CLOSURE} \kbd{f} of arity $2$ to the entries of \kbd{A},
in order to return \kbd{f(\dots f(f(A[1],A[2]),A[3])\dots ,A[\#A])}.
\bprog
? fold((x,y)->x*y, [1,2,3,4])
%1 = 24
? fold((x,y)->[x,y], [1,2,3,4])
%2 = [[[1, 2], 3], 4]
? fold((x,f)->f(x), [2,sqr,sqr,sqr])
%3 = 256
? fold((x,y)->(x+y)/(1-x*y),[1..5])
%4 = -9/19
? bestappr(tan(sum(i=1,5,atan(i))))
%5 = -9/19
@eprog
The library syntax is \fun{GEN}{fold0}{GEN f, GEN A}.
Also available is
\fun{GEN}{genfold}{void *E, GEN (*fun)(void*,GEN, GEN), GEN A}.
\subsec{getabstime$()$}\kbdsidx{getabstime}\label{se:getabstime}
Returns the CPU time (in milliseconds) elapsed since \kbd{gp} startup.
This provides a reentrant version of \kbd{gettime}:
\bprog
my (t = getabstime());
...
print("Time: ", getabstime() - t);
@eprog
For a version giving wall-clock time, see \tet{getwalltime}.
The library syntax is \fun{long}{getabstime}{}.
\subsec{getenv$(s)$}\kbdsidx{getenv}\label{se:getenv}
Return the value of the environment variable \kbd{s} if it is defined, otherwise return 0.
The library syntax is \fun{GEN}{gp_getenv}{const char *s}.
\subsec{getheap$()$}\kbdsidx{getheap}\label{se:getheap}
Returns a two-component row vector giving the
number of objects on the heap and the amount of memory they occupy in long
words. Useful mainly for debugging purposes.
The library syntax is \fun{GEN}{getheap}{}.
\subsec{getrand$()$}\kbdsidx{getrand}\label{se:getrand}
Returns the current value of the seed used by the
pseudo-random number generator \tet{random}. Useful mainly for debugging
purposes, to reproduce a specific chain of computations. The returned value
is technical (reproduces an internal state array), and can only be used as an
argument to \tet{setrand}.
The library syntax is \fun{GEN}{getrand}{}.
\subsec{getstack$()$}\kbdsidx{getstack}\label{se:getstack}
Returns the current value of $\kbd{top}-\kbd{avma}$, i.e.~the number of
bytes used up to now on the stack. Useful mainly for debugging purposes.
The library syntax is \fun{long}{getstack}{}.
\subsec{gettime$()$}\kbdsidx{gettime}\label{se:gettime}
Returns the CPU time (in milliseconds) used since either the last call to
\kbd{gettime}, or to the beginning of the containing GP instruction (if
inside \kbd{gp}), whichever came last.
For a reentrant version, see \tet{getabstime}.
For a version giving wall-clock time, see \tet{getwalltime}.
The library syntax is \fun{long}{gettime}{}.
\subsec{getwalltime$()$}\kbdsidx{getwalltime}\label{se:getwalltime}
Returns the time (in milliseconds) elapsed since the UNIX Epoch
(1970-01-01 00:00:00 (UTC)).
\bprog
my (t = getwalltime());
...
print("Time: ", getwalltime() - t);
@eprog
The library syntax is \fun{GEN}{getwalltime}{}.
\subsec{global$(\var{list} \var{of} \var{variables})$}\kbdsidx{global}\label{se:global}
Obsolete. Scheduled for deletion.
% \syn{NO}
\subsec{inline$(x,...,z)$}\kbdsidx{inline}\label{se:inline}
(Experimental) declare $x,\ldots, z$ as inline variables. Such variables
behave like lexically scoped variable (see my()) but with unlimited scope.
It is however possible to exit the scope by using \kbd{uninline()}.
When used in a GP script, it is recommended to call \kbd{uninline()} before
the script's end to avoid inline variables leaking outside the script.
\subsec{input$()$}\kbdsidx{input}\label{se:input}
Reads a string, interpreted as a GP expression,
from the input file, usually standard input (i.e.~the keyboard). If a
sequence of expressions is given, the result is the result of the last
expression of the sequence. When using this instruction, it is useful to
prompt for the string by using the \kbd{print1} function. Note that in the
present version 2.19 of \kbd{pari.el}, when using \kbd{gp} under GNU Emacs (see
\secref{se:emacs}) one \emph{must} prompt for the string, with a string
which ends with the same prompt as any of the previous ones (a \kbd{"? "}
will do for instance).
The library syntax is \fun{GEN}{gp_input}{}.
\subsec{install$(\var{name},\var{code},\{\var{gpname}\},\{\var{lib}\})$}\kbdsidx{install}\label{se:install}
Loads from dynamic library \var{lib} the function \var{name}. Assigns to it
the name \var{gpname} in this \kbd{gp} session, with \emph{prototype}
\var{code} (see below). If \var{gpname} is omitted, uses \var{name}.
If \var{lib} is omitted, all symbols known to \kbd{gp} are available: this
includes the whole of \kbd{libpari.so} and possibly others (such as
\kbd{libc.so}).
Most importantly, \kbd{install} gives you access to all non-static functions
defined in the PARI library. For instance, the function
\bprog
GEN addii(GEN x, GEN y)
@eprog\noindent adds two PARI integers, and is not directly accessible under
\kbd{gp} (it is eventually called by the \kbd{+} operator of course):
\bprog
? install("addii", "GG")
? addii(1, 2)
%1 = 3
@eprog\noindent
It also allows to add external functions to the \kbd{gp} interpreter.
For instance, it makes the function \tet{system} obsolete:
\bprog
? install(system, vs, sys,/*omitted*/)
? sys("ls gp*")
gp.c gp.h gp_rl.c
@eprog\noindent This works because \kbd{system} is part of \kbd{libc.so},
which is linked to \kbd{gp}. It is also possible to compile a shared library
yourself and provide it to gp in this way: use \kbd{gp2c}, or do it manually
(see the \kbd{modules\_build} variable in \kbd{pari.cfg} for hints).
Re-installing a function will print a warning and update the prototype code
if needed. However, it will not reload a symbol from the library, even if the
latter has been recompiled.
\misctitle{Prototype} We only give a simplified description here, covering
most functions, but there are many more possibilities. The full documentation
is available in \kbd{libpari.dvi}, see
\bprog
??prototype
@eprog
\item First character \kbd{i}, \kbd{l}, \kbd{v} : return type int / long /
void. (Default: \kbd{GEN})
\item One letter for each mandatory argument, in the same order as they appear
in the argument list: \kbd{G} (\kbd{GEN}), \kbd{\&}
(\kbd{GEN*}), \kbd{L} (\kbd{long}), \kbd{s} (\kbd{char *}), \kbd{n}
(variable).
\item \kbd{p} to supply \kbd{realprecision} (usually \kbd{long prec} in the
argument list), \kbd{P} to supply \kbd{seriesprecision}
(usually \kbd{long precdl}).
\noindent We also have special constructs for optional arguments and default
values:
\item \kbd{DG} (optional \kbd{GEN}, \kbd{NULL} if omitted),
\item \kbd{D\&} (optional \kbd{GEN*}, \kbd{NULL} if omitted),
\item \kbd{Dn} (optional variable, $-1$ if omitted),
For instance the prototype corresponding to
\bprog
long issquareall(GEN x, GEN *n = NULL)
@eprog\noindent is \kbd{lGD\&}.
\misctitle{Caution} This function may not work on all systems, especially
when \kbd{gp} has been compiled statically. In that case, the first use of an
installed function will provoke a Segmentation Fault (this should never
happen with a dynamically linked executable). If you intend to use this
function, please check first on some harmless example such as the one above
that it works properly on your machine.
The library syntax is \fun{void}{gpinstall}{const char *name, const char *code, const char *gpname, const char *lib}.
\subsec{kill$(\var{sym})$}\kbdsidx{kill}\label{se:kill}
Restores the symbol \kbd{sym} to its ``undefined'' status, and deletes any
help messages attached to \kbd{sym} using \kbd{addhelp}. Variable names
remain known to the interpreter and keep their former priority: you cannot
make a variable ``less important" by killing it!
\bprog
? z = y = 1; y
%1 = 1
? kill(y)
? y \\ restored to ``undefined'' status
%2 = y
? variable()
%3 = [x, y, z] \\ but the variable name y is still known, with y > z !
@eprog\noindent
For the same reason, killing a user function (which is an ordinary
variable holding a \typ{CLOSURE}) does not remove its name from the list of
variable names.
If the symbol is attached to a variable --- user functions being an
important special case ---, one may use the \idx{quote} operator
\kbd{a = 'a} to reset variables to their starting values. However, this
will not delete a help message attached to \kbd{a}, and is also slightly
slower than \kbd{kill(a)}.
\bprog
? x = 1; addhelp(x, "foo"); x
%1 = 1
? x = 'x; x \\ same as 'kill', except we don't delete help.
%2 = x
? ?x
foo
@eprog\noindent
On the other hand, \kbd{kill} is the only way to remove aliases and installed
functions.
\bprog
? alias(fun, sin);
? kill(fun);
? install(addii, GG);
? kill(addii);
@eprog
The library syntax is \fun{void}{kill0}{const char *sym}.
\subsec{listcreate$(\{n\})$}\kbdsidx{listcreate}\label{se:listcreate}
This function is obsolete, use \kbd{List}.
Creates an empty list. This routine used to have a mandatory argument,
which is now ignored (for backward compatibility).
% \syn{NO}
\subsec{listinsert$(L,x,n)$}\kbdsidx{listinsert}\label{se:listinsert}
Inserts the object $x$ at
position $n$ in $L$ (which must be of type \typ{LIST}). This has
complexity $O(\#L - n + 1)$: all the
remaining elements of \var{list} (from position $n+1$ onwards) are shifted
to the right.
The library syntax is \fun{GEN}{listinsert}{GEN L, GEN x, long n}.
\subsec{listkill$(L)$}\kbdsidx{listkill}\label{se:listkill}
Obsolete, retained for backward compatibility. Just use \kbd{L = List()}
instead of \kbd{listkill(L)}. In most cases, you won't even need that, e.g.
local variables are automatically cleared when a user function returns.
The library syntax is \fun{void}{listkill}{GEN L}.
\subsec{listpop$(\var{list},\{n\})$}\kbdsidx{listpop}\label{se:listpop}
Removes the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}). If $n$ is omitted,
or greater than the list current length, removes the last element.
If the list is already empty, do nothing. This runs in time $O(\#L - n + 1)$.
The library syntax is \fun{void}{listpop0}{GEN list, long n}.
\subsec{listput$(\var{list},x,\{n\})$}\kbdsidx{listput}\label{se:listput}
Sets the $n$-th element of the list
\var{list} (which must be of type \typ{LIST}) equal to $x$. If $n$ is omitted,
or greater than the list length, appends $x$. The function returns the
inserted element.
\bprog
? L = List();
? listput(L, 1)
%2 = 1
? listput(L, 2)
%3 = 2
? L
%4 = List([1, 2])
@eprog
You may put an element into an occupied cell (not changing the
list length), but it is easier to use the standard \kbd{list[n] = x}
construct.
\bprog
? listput(L, 3, 1) \\ insert at position 1
%5 = 3
? L
%6 = List([3, 2])
? L[2] = 4 \\ simpler
%7 = List([3, 4])
? L[10] = 1 \\ can't insert beyond the end of the list
*** at top-level: L[10]=1
*** ^------
*** non-existent component: index > 2
? listput(L, 1, 10) \\ but listput can
%8 = 1
? L
%9 = List([3, 2, 1])
@eprog
This function runs in time $O(\#L)$ in the worst case (when the list must
be reallocated), but in time $O(1)$ on average: any number of successive
\kbd{listput}s run in time $O(\#L)$, where $\#L$ denotes the list
\emph{final} length.
The library syntax is \fun{GEN}{listput0}{GEN list, GEN x, long n}.
\subsec{listsort$(L,\{\fl=0\})$}\kbdsidx{listsort}\label{se:listsort}
Sorts the \typ{LIST} \var{list} in place, with respect to the (somewhat
arbitrary) universal comparison function \tet{cmp}. In particular, the
ordering is the same as for sets and \tet{setsearch} can be used on a sorted
list.
\bprog
? L = List([1,2,4,1,3,-1]); listsort(L); L
%1 = List([-1, 1, 1, 2, 3, 4])
? setsearch(L, 4)
%2 = 6
? setsearch(L, -2)
%3 = 0
@eprog\noindent This is faster than the \kbd{vecsort} command since the list
is sorted in place: no copy is made. No value returned.
If $\fl$ is non-zero, suppresses all repeated coefficients.
The library syntax is \fun{void}{listsort}{GEN L, long flag}.
\subsec{localbitprec$(p)$}\kbdsidx{localbitprec}\label{se:localbitprec}
Set the real precision to $p$ bits in the dynamic scope. All computations
are performed as if \tet{realbitprecision} was $p$:
transcendental constants (e.g.~\kbd{Pi}) and
conversions from exact to floating point inexact data use $p$ bits, as well as
iterative routines implicitly using a floating point
accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
But \kbd{realbitprecision} itself is unaffected
and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
In effect, this is similar to
\bprog
my(bit = default(realbitprecision));
default(realbitprecision,p);
...
default(realbitprecision, bit);
@eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
a global variable, which in fact never changes and is only temporarily masked)
and more robust: if the above computation is interrupted or an exception
occurs, \kbd{realbitprecision} will not be restored as intended.
Such \kbd{localbitprec} statements can be nested, the innermost one taking
precedence as expected. Beware that \kbd{localbitprec} follows the semantic of
\tet{local}, not \tet{my}: a subroutine called from \kbd{localbitprec} scope
uses the local accuracy:
\bprog
? f()=bitprecision(1.0);
? f()
%2 = 128
? localbitprec(1000); f()
%3 = 1024
@eprog\noindent Note that the bit precision of \emph{data} (\kbd{1.0} in the
above example) increases by steps of 64 (32 on a 32-bit machine) so we get
$1024$ instead of the expected $1000$; \kbd{localbitprec} bounds the
relative error exactly as specified in functions that support that
granularity (e.g.~\kbd{lfun}), and rounded to the next multiple of 64
(resp.~32) everywhere else.
\misctitle{Warning} Changing \kbd{realbitprecision} or \kbd{realprecision}
in programs is deprecated in favor of \kbd{localbitprec} and
\kbd{localprec}. Think about the \kbd{realprecision} and
\kbd{realbitprecision} defaults as interactive commands for the \kbd{gp}
interpreter, best left out of GP programs. Indeed, the above rules imply that
mixing both constructs yields surprising results:
\bprog
? \p38
? localprec(19); default(realprecision,1000); Pi
%1 = 3.141592653589793239
? \p
realprecision = 1001 significant digits (1000 digits displayed)
@eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
\kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
we leave the \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
it is not ``restored'' to the original value.
%\syn{NO}
\subsec{localprec$(p)$}\kbdsidx{localprec}\label{se:localprec}
Set the real precision to $p$ in the dynamic scope. All computations
are performed as if \tet{realprecision} was $p$:
transcendental constants (e.g.~\kbd{Pi}) and
conversions from exact to floating point inexact data use $p$ decimal
digits, as well as iterative routines implicitly using a floating point
accuracy as a termination criterion (e.g.~\tet{solve} or \tet{intnum}).
But \kbd{realprecision} itself is unaffected
and is ``unmasked'' when we exit the dynamic (\emph{not} lexical) scope.
In effect, this is similar to
\bprog
my(prec = default(realprecision));
default(realprecision,p);
...
default(realprecision, prec);
@eprog\noindent but is both less cumbersome, cleaner (no need to manipulate
a global variable, which in fact never changes and is only temporarily masked)
and more robust: if the above computation is interrupted or an exception
occurs, \kbd{realprecision} will not be restored as intended.
Such \kbd{localprec} statements can be nested, the innermost one taking
precedence as expected. Beware that \kbd{localprec} follows the semantic of
\tet{local}, not \tet{my}: a subroutine called from \kbd{localprec} scope
uses the local accuracy:
\bprog
? f()=precision(1.);
? f()
%2 = 38
? localprec(19); f()
%3 = 19
@eprog\noindent
\misctitle{Warning} Changing \kbd{realprecision} itself in programs is
now deprecated in favor of \kbd{localprec}. Think about the
\kbd{realprecision} default as an interactive command for the \kbd{gp}
interpreter, best left out of GP programs. Indeed, the above rules
imply that mixing both constructs yields surprising results:
\bprog
? \p38
? localprec(19); default(realprecision,100); Pi
%1 = 3.141592653589793239
? \p
realprecision = 115 significant digits (100 digits displayed)
@eprog\noindent Indeed, \kbd{realprecision} itself is ignored within
\kbd{localprec} scope, so \kbd{Pi} is computed to a low accuracy. And when
we leave \kbd{localprec} scope, \kbd{realprecision} only regains precedence,
it is not ``restored'' to the original value.
%\syn{NO}
\subsec{mapdelete$(M,x)$}\kbdsidx{mapdelete}\label{se:mapdelete}
Removes $x$ from the domain of the map $M$.
\bprog
? M = Map(["a",1; "b",3; "c",7]);
? mapdelete(M,"b");
? Mat(M)
["a" 1]
["c" 7]
@eprog
The library syntax is \fun{void}{mapdelete}{GEN M, GEN x}.
\subsec{mapget$(M,x)$}\kbdsidx{mapget}\label{se:mapget}
Returns the image of $x$ by the map $M$.
\bprog
? M=Map(["a",23;"b",43]);
? mapget(M,"a")
%2 = 23
? mapget(M,"b")
%3 = 43
@eprog\noindent Raises an exception when the key $x$ is not present in $M$.
\bprog
? mapget(M,"c")
*** at top-level: mapget(M,"c")
*** ^-------------
*** mapget: non-existent component in mapget: index not in map
@eprog
The library syntax is \fun{GEN}{mapget}{GEN M, GEN x}.
\subsec{mapisdefined$(M,x,\{\&z\})$}\kbdsidx{mapisdefined}\label{se:mapisdefined}
Returns true ($1$) if \kbd{x} has an image by the map $M$, false ($0$)
otherwise. If \kbd{z} is present, set \kbd{z} to the image of $x$, if it exists.
\bprog
? M1 = Map([1, 10; 2, 20]);
? mapisdefined(M1,3)
%1 = 0
? mapisdefined(M1, 1, &z)
%2 = 1
? z
%3 = 10
@eprog
\bprog
? M2 = Map(); N = 19;
? for (a=0, N-1, mapput(M2, a^3%N, a));
? {for (a=0, N-1,
if (mapisdefined(M2, a, &b),
printf("%d is the cube of %d mod %d\n",a,b,N)));}
0 is the cube of 0 mod 19
1 is the cube of 11 mod 19
7 is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19
@eprog
The library syntax is \fun{GEN}{mapisdefined}{GEN M, GEN x, GEN *z = NULL}.
\subsec{mapput$(M,x,y)$}\kbdsidx{mapput}\label{se:mapput}
Associates $x$ to $y$ in the map $M$. The value $y$ can be retrieved
with \tet{mapget}.
\bprog
? M = Map();
? mapput(M, "foo", 23);
? mapput(M, 7718, "bill");
? mapget(M, "foo")
%4 = 23
? mapget(M, 7718)
%5 = "bill"
? Vec(M) \\ keys
%6 = [7718, "foo"]
? Mat(M)
%7 =
[ 7718 "bill"]
["foo" 23]
@eprog
The library syntax is \fun{void}{mapput}{GEN M, GEN x, GEN y}.
\subsec{print$(\{\var{str}\}*)$}\kbdsidx{print}\label{se:print}
Outputs its (string) arguments in raw format, ending with a newline.
%\syn{NO}
\subsec{print1$(\{\var{str}\}*)$}\kbdsidx{print1}\label{se:print1}
Outputs its (string) arguments in raw
format, without ending with a newline. Note that you can still embed newlines
within your strings, using the \b{n} notation~!
%\syn{NO}
\subsec{printf$(\var{fmt},\{x\}*)$}\kbdsidx{printf}\label{se:printf}
This function is based on the C library command of the same name.
It prints its arguments according to the format \var{fmt}, which specifies how
subsequent arguments are converted for output. The format is a
character string composed of zero or more directives:
\item ordinary characters (not \kbd{\%}), printed unchanged,
\item conversions specifications (\kbd{\%} followed by some characters)
which fetch one argument from the list and prints it according to the
specification.
More precisely, a conversion specification consists in a \kbd{\%}, one or more
optional flags (among \kbd{\#}, \kbd{0}, \kbd{-}, \kbd{+}, ` '), an optional
decimal digit string specifying a minimal field width, an optional precision
in the form of a period (`\kbd{.}') followed by a decimal digit string, and
the conversion specifier (among \kbd{d},\kbd{i}, \kbd{o}, \kbd{u},
\kbd{x},\kbd{X}, \kbd{p}, \kbd{e},\kbd{E}, \kbd{f}, \kbd{g},\kbd{G}, \kbd{s}).
\misctitle{The flag characters} The character \kbd{\%} is followed by zero or
more of the following flags:
\item \kbd{\#}: the value is converted to an ``alternate form''. For
\kbd{o} conversion (octal), a \kbd{0} is prefixed to the string. For \kbd{x}
and \kbd{X} conversions (hexa), respectively \kbd{0x} and \kbd{0X} are
prepended. For other conversions, the flag is ignored.
\item \kbd{0}: the value should be zero padded. For
\kbd{d},
\kbd{i},
\kbd{o},
\kbd{u},
\kbd{x},
\kbd{X}
\kbd{e},
\kbd{E},
\kbd{f},
\kbd{F},
\kbd{g}, and
\kbd{G} conversions, the value is padded on the left with zeros rather than
blanks. (If the \kbd{0} and \kbd{-} flags both appear, the \kbd{0} flag is
ignored.)
\item \kbd{-}: the value is left adjusted on the field boundary. (The
default is right justification.) The value is padded on the right with
blanks, rather than on the left with blanks or zeros. A \kbd{-} overrides a
\kbd{0} if both are given.
\item \kbd{` '} (a space): a blank is left before a positive number
produced by a signed conversion.
\item \kbd{+}: a sign (+ or -) is placed before a number produced by a
signed conversion. A \kbd{+} overrides a space if both are used.
\misctitle{The field width} An optional decimal digit string (whose first
digit is non-zero) specifying a \emph{minimum} field width. If the value has
fewer characters than the field width, it is padded with spaces on the left
(or right, if the left-adjustment flag has been given). In no case does a
small field width cause truncation of a field; if the value is wider than
the field width, the field is expanded to contain the conversion result.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The precision} An optional precision in the form of a period
(`\kbd{.}') followed by a decimal digit string. This gives
the number of digits to appear after the radix character for \kbd{e},
\kbd{E}, \kbd{f}, and \kbd{F} conversions, the maximum number of significant
digits for \kbd{g} and \kbd{G} conversions, and the maximum number of
characters to be printed from an \kbd{s} conversion.
Instead of a decimal digit string, one may write \kbd{*} to specify that the
field width is given in the next argument.
\misctitle{The length modifier} This is ignored under \kbd{gp}, but
necessary for \kbd{libpari} programming. Description given here for
completeness:
\item \kbd{l}: argument is a \kbd{long} integer.
\item \kbd{P}: argument is a \kbd{GEN}.
\misctitle{The conversion specifier} A character that specifies the type of
conversion to be applied.
\item \kbd{d}, \kbd{i}: a signed integer.
\item \kbd{o}, \kbd{u}, \kbd{x}, \kbd{X}: an unsigned integer, converted
to unsigned octal (\kbd{o}), decimal (\kbd{u}) or hexadecimal (\kbd{x} or
\kbd{X}) notation. The letters \kbd{abcdef} are used for \kbd{x}
conversions; the letters \kbd{ABCDEF} are used for \kbd{X} conversions.
\item \kbd{e}, \kbd{E}: the (real) argument is converted in the style
\kbd{[ -]d.ddd e[ -]dd}, where there is one digit before the decimal point,
and the number of digits after it is equal to the precision; if the
precision is missing, use the current \kbd{realprecision} for the total
number of printed digits. If the precision is explicitly 0, no decimal-point
character appears. An \kbd{E} conversion uses the letter \kbd{E} rather
than \kbd{e} to introduce the exponent.
\item \kbd{f}, \kbd{F}: the (real) argument is converted in the style
\kbd{[ -]ddd.ddd}, where the number of digits after the decimal point
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision} for the total number of printed digits. If the precision
is explicitly 0, no decimal-point character appears. If a decimal point
appears, at least one digit appears before it.
\item \kbd{g}, \kbd{G}: the (real) argument is converted in style
\kbd{e} or \kbd{f} (or \kbd{E} or \kbd{F} for \kbd{G} conversions)
\kbd{[ -]ddd.ddd}, where the total number of digits printed
is equal to the precision; if the precision is missing, use the current
\kbd{realprecision}. If the precision is explicitly 0, it is treated as 1.
Style \kbd{e} is used when
the decimal exponent is $< -4$, to print \kbd{0.}, or when the integer
part cannot be decided given the known significant digits, and the \kbd{f}
format otherwise.
\item \kbd{c}: the integer argument is converted to an unsigned char, and the
resulting character is written.
\item \kbd{s}: convert to a character string. If a precision is given, no
more than the specified number of characters are written.
\item \kbd{p}: print the address of the argument in hexadecimal (as if by
\kbd{\%\#x}).
\item \kbd{\%}: a \kbd{\%} is written. No argument is converted. The complete
conversion specification is \kbd{\%\%}.
\noindent Examples:
\bprog
? printf("floor: %d, field width 3: %3d, with sign: %+3d\n", Pi, 1, 2);
floor: 3, field width 3: 1, with sign: +2
? printf("%.5g %.5g %.5g\n",123,123/456,123456789);
123.00 0.26974 1.2346 e8
? printf("%-2.5s:%2.5s:%2.5s\n", "P", "PARI", "PARIGP");
P :PARI:PARIG
\\ min field width and precision given by arguments
? x = 23; y=-1/x; printf("x=%+06.2f y=%+0*.*f\n", x, 6, 2, y);
x=+23.00 y=-00.04
\\ minimum fields width 5, pad left with zeroes
? for (i = 2, 5, printf("%05d\n", 10^i))
00100
01000
10000
100000 \\@com don't truncate fields whose length is larger than the minimum width
? printf("%.2f |%06.2f|", Pi,Pi)
3.14 | 3.14|
@eprog\noindent All numerical conversions apply recursively to the entries
of vectors and matrices:
\bprog
? printf("%4d", [1,2,3]);
[ 1, 2, 3]
? printf("%5.2f", mathilbert(3));
[ 1.00 0.50 0.33]
[ 0.50 0.33 0.25]
[ 0.33 0.25 0.20]
@eprog
\misctitle{Technical note} Our implementation of \tet{printf}
deviates from the C89 and C99 standards in a few places:
\item whenever a precision is missing, the current \kbd{realprecision} is
used to determine the number of printed digits (C89: use 6 decimals after
the radix character).
\item in conversion style \kbd{e}, we do not impose that the
exponent has at least two digits; we never write a \kbd{+} sign in the
exponent; 0 is printed in a special way, always as \kbd{0.E\var{exp}}.
\item in conversion style \kbd{f}, we switch to style \kbd{e} if the
exponent is greater or equal to the precision.
\item in conversion \kbd{g} and \kbd{G}, we do not remove trailing zeros
from the fractional part of the result; nor a trailing decimal point;
0 is printed in a special way, always as \kbd{0.E\var{exp}}.
%\syn{NO}
\subsec{printsep$(\var{sep},\{\var{str}\}*)$}\kbdsidx{printsep}\label{se:printsep}
Outputs its (string) arguments in raw format, ending with a newline.
Successive entries are separated by \var{sep}:
\bprog
? printsep(":", 1,2,3,4)
1:2:3:4
@eprog
%\syn{NO}
\subsec{printsep1$(\var{sep},\{\var{str}\}*)$}\kbdsidx{printsep1}\label{se:printsep1}
Outputs its (string) arguments in raw format, without ending with a
newline. Successive entries are separated by \var{sep}:
\bprog
? printsep1(":", 1,2,3,4);print("|")
1:2:3:4
@eprog
%\syn{NO}
\subsec{printtex$(\{\var{str}\}*)$}\kbdsidx{printtex}\label{se:printtex}
Outputs its (string) arguments in \TeX\ format. This output can then be
used in a \TeX\ manuscript.
The printing is done on the standard output. If you want to print it to a
file you should use \kbd{writetex} (see there).
Another possibility is to enable the \tet{log} default
(see~\secref{se:defaults}).
You could for instance do:\sidx{logfile}
%
\bprog
default(logfile, "new.tex");
default(log, 1);
printtex(result);
@eprog
%\syn{NO}
\subsec{quit$(\{\var{status} = 0\})$}\kbdsidx{quit}\label{se:quit}
Exits \kbd{gp} and return to the system with exit status
\kbd{status}, a small integer. A non-zero exit status normally indicates
abnormal termination. (Note: the system actually sees only
\kbd{status} mod $256$, see your man pages for \kbd{exit(3)} or \kbd{wait(2)}).
\subsec{read$(\{\var{filename}\})$}\kbdsidx{read}\label{se:read}
Reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is the result of the last expression evaluated.
If a GP \tet{binary file} is read using this command (see
\secref{se:writebin}), the file is loaded and the last object in the file
is returned.
In case the file you read in contains an \tet{allocatemem} statement (to be
generally avoided), you should leave \kbd{read} instructions by themselves,
and not part of larger instruction sequences.
The library syntax is \fun{GEN}{gp_read_file}{const char *filename}.
\subsec{readstr$(\{\var{filename}\})$}\kbdsidx{readstr}\label{se:readstr}
Reads in the file \var{filename} and return a vector of GP strings,
each component containing one line from the file. If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}.
The library syntax is \fun{GEN}{readstr}{const char *filename}.
\subsec{readvec$(\{\var{filename}\})$}\kbdsidx{readvec}\label{se:readvec}
Reads in the file
\var{filename} (subject to string expansion). If \var{filename} is
omitted, re-reads the last file that was fed into \kbd{gp}. The return
value is a vector whose components are the evaluation of all sequences
of instructions contained in the file. For instance, if \var{file} contains
\bprog
1
2
3
@eprog\noindent
then we will get:
\bprog
? \r a
%1 = 1
%2 = 2
%3 = 3
? read(a)
%4 = 3
? readvec(a)
%5 = [1, 2, 3]
@eprog
In general a sequence is just a single line, but as usual braces and
\kbd{\bs} may be used to enter multiline sequences.
The library syntax is \fun{GEN}{gp_readvec_file}{const char *filename}.
The underlying library function
\fun{GEN}{gp_readvec_stream}{FILE *f} is usually more flexible.
\subsec{select$(f, A, \{\fl = 0\})$}\kbdsidx{select}\label{se:select}
We first describe the default behavior, when $\fl$ is 0 or omitted.
Given a vector or list \kbd{A} and a \typ{CLOSURE} \kbd{f}, \kbd{select}
returns the elements $x$ of \kbd{A} such that $f(x)$ is non-zero. In other
words, \kbd{f} is seen as a selection function returning a boolean value.
\bprog
? select(x->isprime(x), vector(50,i,i^2+1))
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %)
%2 = [2, 5, 17, 37]
@eprog\noindent returns the primes of the form $i^2+1$ for some $i\leq 50$,
then the elements less than 100 in the preceding result. The \kbd{select}
function also applies to a matrix \kbd{A}, seen as a vector of columns, i.e. it
selects columns instead of entries, and returns the matrix whose columns are
the selected ones.
\misctitle{Remark} For $v$ a \typ{VEC}, \typ{COL}, \typ{LIST} or \typ{MAT},
the alternative set-notations
\bprog
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
@eprog\noindent
are available as shortcuts for
\bprog
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
@eprog\noindent respectively:
\bprog
? [ x | x <- vector(50,i,i^2+1), isprime(x) ]
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
@eprog
\noindent If $\fl = 1$, this function returns instead the \emph{indices} of
the selected elements, and not the elements themselves (indirect selection):
\bprog
? V = vector(50,i,i^2+1);
? select(x->isprime(x), V, 1)
%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
? vecextract(V, %)
%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
@eprog\noindent
The following function lists the elements in $(\Z/N\Z)^*$:
\bprog
? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])
@eprog
\noindent Finally
\bprog
? select(x->x, M)
@eprog\noindent selects the non-0 entries in \kbd{M}. If the latter is a
\typ{MAT}, we extract the matrix of non-0 columns. Note that \emph{removing}
entries instead of selecting them just involves replacing the selection
function \kbd{f} with its negation:
\bprog
? select(x->!isprime(x), vector(50,i,i^2+1))
@eprog
\synt{genselect}{void *E, long (*fun)(void*,GEN), GEN a}. Also available
is \fun{GEN}{genindexselect}{void *E, long (*fun)(void*, GEN), GEN a},
corresponding to $\fl = 1$.
\subsec{self$()$}\kbdsidx{self}\label{se:self}
Return the calling function or closure as a \typ{CLOSURE} object.
This is useful for defining anonymous recursive functions.
\bprog
? (n->if(n==0,1,n*self()(n-1)))(5)
%1 = 120
@eprog
The library syntax is \fun{GEN}{pari_self}{}.
\subsec{setrand$(n)$}\kbdsidx{setrand}\label{se:setrand}
Reseeds the random number generator using the seed $n$. No value is
returned. The seed is either a technical array output by \kbd{getrand}, or a
small positive integer, used to generate deterministically a suitable state
array. For instance, running a randomized computation starting by
\kbd{setrand(1)} twice will generate the exact same output.
The library syntax is \fun{void}{setrand}{GEN n}.
\subsec{system$(\var{str})$}\kbdsidx{system}\label{se:system}
\var{str} is a string representing a system command. This command is
executed, its output written to the standard output (this won't get into your
logfile), and control returns to the PARI system. This simply calls the C
\kbd{system} command.
The library syntax is \fun{void}{gpsystem}{const char *str}.
\subsec{trap$(\{e\}, \{\var{rec}\}, \var{seq})$}\kbdsidx{trap}\label{se:trap}
This function is obsolete, use \tet{iferr}, which has a nicer and much
more powerful interface. For compatibility's sake we now describe the
\emph{obsolete} function \tet{trap}.
This function tries to
evaluate \var{seq}, trapping runtime error $e$, that is effectively preventing
it from aborting computations in the usual way; the recovery sequence
\var{rec} is executed if the error occurs and the evaluation of \var{rec}
becomes the result of the command. If $e$ is omitted, all exceptions are
trapped. See \secref{se:errorrec} for an introduction to error recovery
under \kbd{gp}.
\bprog
? \\@com trap division by 0
? inv(x) = trap (e_INV, INFINITY, 1/x)
? inv(2)
%1 = 1/2
? inv(0)
%2 = INFINITY
@eprog\noindent
Note that \var{seq} is effectively evaluated up to the point that produced
the error, and the recovery sequence is evaluated starting from that same
context, it does not "undo" whatever happened in the other branch (restore
the evaluation context):
\bprog
? x = 1; trap (, /* recover: */ x, /* try: */ x = 0; 1/x)
%1 = 0
@eprog
\misctitle{Note} The interface is currently not adequate for trapping
individual exceptions. In the current version \vers, the following keywords
are recognized, but the name list will be expanded and changed in the
future (all library mode errors can be trapped: it's a matter of defining
the keywords to \kbd{gp}):
\kbd{e\_ALARM}: alarm time-out
\kbd{e\_ARCH}: not available on this architecture or operating system
\kbd{e\_STACK}: the PARI stack overflows
\kbd{e\_INV}: impossible inverse
\kbd{e\_IMPL}: not yet implemented
\kbd{e\_OVERFLOW}: all forms of arithmetic overflow, including length
or exponent overflow (when a larger value is supplied than the
implementation can handle).
\kbd{e\_SYNTAX}: syntax error
\kbd{e\_MISC}: miscellaneous error
\kbd{e\_TYPE}: wrong type
\kbd{e\_USER}: user error (from the \kbd{error} function)
The library syntax is \fun{GEN}{trap0}{const char *e = NULL, GEN rec = NULL, GEN seq = NULL}.
\subsec{type$(x)$}\kbdsidx{type}\label{se:type}
This is useful only under \kbd{gp}. Returns the internal type name of
the PARI object $x$ as a string. Check out existing type names with the
metacommand \b{t}. For example \kbd{type(1)} will return "\typ{INT}".
The library syntax is \fun{GEN}{type0}{GEN x}.
The macro \kbd{typ} is usually simpler to use since it returns a
\kbd{long} that can easily be matched with the symbols \typ{*}. The name
\kbd{type} was avoided since it is a reserved identifier for some compilers.
\subsec{uninline$()$}\kbdsidx{uninline}\label{se:uninline}
(Experimental) Exit the scope of all current \kbd{inline} variables.
\subsec{version$()$}\kbdsidx{version}\label{se:version}
Returns the current version number as a \typ{VEC} with three integer
components (major version number, minor version number and patchlevel);
if your sources were obtained through our version control system, this will
be followed by further more precise arguments, including
e.g.~a~\kbd{git} \emph{commit hash}.
This function is present in all versions of PARI following releases 2.3.4
(stable) and 2.4.3 (testing).
Unless you are working with multiple development versions, you probably only
care about the 3 first numeric components. In any case, the \kbd{lex} function
offers a clever way to check against a particular version number, since it will
compare each successive vector entry, numerically or as strings, and will not
mind if the vectors it compares have different lengths:
\bprog
if (lex(version(), [2,3,5]) >= 0,
\\ code to be executed if we are running 2.3.5 or more recent.
,
\\ compatibility code
);
@eprog\noindent On a number of different machines, \kbd{version()} could return either of
\bprog
%1 = [2, 3, 4] \\ released version, stable branch
%1 = [2, 4, 3] \\ released version, testing branch
%1 = [2, 6, 1, 15174, ""505ab9b"] \\ development
@eprog
In particular, if you are only working with released versions, the first
line of the gp introductory message can be emulated by
\bprog
[M,m,p] = version();
printf("GP/PARI CALCULATOR Version %s.%s.%s", M,m,p);
@eprog\noindent If you \emph{are} working with many development versions of
PARI/GP, the 4th and/or 5th components can be profitably included in the
name of your logfiles, for instance.
\misctitle{Technical note} For development versions obtained via \kbd{git},
the 4th and 5th components are liable to change eventually, but we document
their current meaning for completeness. The 4th component counts the number
of reachable commits in the branch (analogous to \kbd{svn}'s revision
number), and the 5th is the \kbd{git} commit hash. In particular, \kbd{lex}
comparison still orders correctly development versions with respect to each
others or to released versions (provided we stay within a given branch,
e.g. \kbd{master})!
The library syntax is \fun{GEN}{pari_version}{}.
\subsec{warning$(\{\var{str}\}*)$}\kbdsidx{warning}\label{se:warning}
Outputs the message ``user warning''
and the argument list (each of them interpreted as a string).
If colors are enabled, this warning will be in a different color,
making it easy to distinguish.
\bprog
warning(n, " is very large, this might take a while.")
@eprog
% \syn{NO}
\subsec{whatnow$(\var{key})$}\kbdsidx{whatnow}\label{se:whatnow}
If keyword \var{key} is the name of a function that was present in GP
version 1.39.15, outputs the new function name and syntax, if it
changed at all. Functions that where introduced since then, then modified
are also recognized.
\bprog
? whatnow("mu")
New syntax: mu(n) ===> moebius(n)
moebius(x): Moebius function of x.
? whatnow("sin")
This function did not change
@eprog When a function was removed and the underlying functionality
is not available under a compatible interface, no equivalent is mentioned:
\bprog
? whatnow("buchfu")
This function no longer exists
@eprog\noindent (The closest equivalent would be to set \kbd{K = bnfinit(T)}
then access \kbd{K.fu}.)
\subsec{write$(\var{filename},\{\var{str}\}*)$}\kbdsidx{write}\label{se:write}
Writes (appends) to \var{filename} the remaining arguments, and appends a
newline (same output as \kbd{print}).
%\syn{NO}
\subsec{write1$(\var{filename},\{\var{str}\}*)$}\kbdsidx{write1}\label{se:write1}
Writes (appends) to \var{filename} the remaining arguments without a
trailing newline (same output as \kbd{print1}).
%\syn{NO}
\subsec{writebin$(\var{filename},\{x\})$}\kbdsidx{writebin}\label{se:writebin}
Writes (appends) to
\var{filename} the object $x$ in binary format. This format is not human
readable, but contains the exact internal structure of $x$, and is much
faster to save/load than a string expression, as would be produced by
\tet{write}. The binary file format includes a magic number, so that such a
file can be recognized and correctly input by the regular \tet{read} or \b{r}
function. If saved objects refer to polynomial variables that are not
defined in the new session, they will be displayed as \kbd{t$n$} for some
integer $n$ (the attached variable number).
Installed functions and history objects can not be saved via this function.
If $x$ is omitted, saves all user variables from the session, together with
their names. Reading such a ``named object'' back in a \kbd{gp} session will set
the corresponding user variable to the saved value. E.g after
\bprog
x = 1; writebin("log")
@eprog\noindent
reading \kbd{log} into a clean session will set \kbd{x} to $1$.
The relative variables priorities (see \secref{se:priority}) of new variables
set in this way remain the same (preset variables retain their former
priority, but are set to the new value). In particular, reading such a
session log into a clean session will restore all variables exactly as they
were in the original one.
Just as a regular input file, a binary file can be compressed
using \tet{gzip}, provided the file name has the standard \kbd{.gz}
extension.\sidx{binary file}
In the present implementation, the binary files are architecture dependent
and compatibility with future versions of \kbd{gp} is not guaranteed. Hence
binary files should not be used for long term storage (also, they are
larger and harder to compress than text files).
The library syntax is \fun{void}{gpwritebin}{const char *filename, GEN x = NULL}.
\subsec{writetex$(\var{filename},\{\var{str}\}*)$}\kbdsidx{writetex}\label{se:writetex}
As \kbd{write}, in \TeX\ format.
%\syn{NO}
%SECTION: programming/specific
\section{Parallel programming}
These function are only available if PARI was configured using
\kbd{Configure --mt=\dots}. Two multithread interfaces are supported:
\item POSIX threads
\item Message passing interface (MPI)
As a rule, POSIX threads are well-suited for single systems, while MPI is used
by most clusters. However the parallel GP interface does not depend on the
chosen multithread interface: a properly written GP program will work
identically with both.
\subsec{parapply$(f, x)$}\kbdsidx{parapply}\label{se:parapply}
Parallel evaluation of \kbd{f} on the elements of \kbd{x}.
The function \kbd{f} must not access global variables or variables
declared with local(), and must be free of side effects.
\bprog
parapply(factor,[2^256 + 1, 2^193 - 1])
@eprog
factors $2^{256} + 1$ and $2^{193} - 1$ in parallel.
\bprog
{
my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));
parapply(p->ellcard(E,p), V)
}
@eprog
computes the order of $E(\F_p)$ for $12$ random primes of $200$ bits.
The library syntax is \fun{GEN}{parapply}{GEN f, GEN x}.
\subsec{pareval$(x)$}\kbdsidx{pareval}\label{se:pareval}
Parallel evaluation of the elements of \kbd{x}, where \kbd{x} is a
vector of closures. The closures must be of arity $0$, must not access
global variables or variables declared with \kbd{local} and must be
free of side effects.
The library syntax is \fun{GEN}{pareval}{GEN x}.
\subsec{parfor$(i=a,\{b\},\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parfor}\label{se:parfor}
Evaluates in parallel the expression \kbd{expr1} in the formal
argument $i$ running from $a$ to $b$.
If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $i$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $i$ takes the
corresponding argument.
The computations of \kbd{expr1} are \emph{started} in increasing order
of $i$; otherwise said, the computation for $i=c$ is started after those
for $i=1, \ldots, c-1$ have been started, but before the computation for
$i=c+1$ is started. Notice that the order of \emph{completion}, that is,
the order in which the different $r$ become available, may be different;
\kbd{expr2} is evaluated sequentially on each $r$ as it appears.
The following example computes the sum of the squares of the integers
from $1$ to $10$ by computing the squares in parallel and is equivalent
to \kbd{parsum (i=1, 10, i\^{}2)}:
\bprog
? s=0;
? parfor (i=1, 10, i^2, r, s=s+r)
? s
%3 = 385
@eprog
More precisely, apart from a potentially different order of evaluation
due to the parallelism, the line containing \kbd{parfor} is equivalent to
\bprog
? my (r); for (i=1, 10, r=i^2; s=s+r)
@eprog
The sequentiality of the evaluation of \kbd{expr2} ensures that the
variable \kbd{s} is not modified concurrently by two different additions,
although the order in which the terms are added is non-deterministic.
It is allowed for \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}. If that happens for $i=c$,
then the evaluation of \kbd{expr1} and \kbd{expr2} is continued
for all values $i<c$, and the return value is the one obtained for
the smallest $i$ causing an interruption in \kbd{expr2} (it may be
undefined if this is a \kbd{break}/\kbd{next}).
In that case, using side-effects
in \kbd{expr2} may lead to undefined behavior, as the exact
number of values of $i$ for which it is executed is non-deterministic.
The following example computes \kbd{nextprime(1000)} in parallel:
\bprog
? parfor (i=1000, , isprime (i), r, if (r, return (i)))
%1 = 1009
@eprog
%\syn{NO}
\subsec{parforprime$(p=a,\{b\},\var{expr1},\{r\},\{\var{expr2}\})$}\kbdsidx{parforprime}\label{se:parforprime}
Behaves exactly as \kbd{parfor}, but loops only over prime values $p$.
Precisely, the functions evaluates in parallel the expression \kbd{expr1}
in the formal
argument $p$ running through the primes from $a$ to $b$.
If $b$ is set to \kbd{+oo}, the loop runs indefinitely.
If $r$ and \kbd{expr2} are present, the expression \kbd{expr2} in the
formal variables $r$ and $p$ is evaluated with $r$ running through all
the different results obtained for \kbd{expr1} and $p$ takes the
corresponding argument.
It is allowed fo \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}; see the remarks in the documentation
of \kbd{parfor} for details.
%\syn{NO}
\subsec{parforvec$(X=v,\var{expr1},\{j\},\{\var{expr2}\},\{\fl\})$}\kbdsidx{parforvec}\label{se:parforvec}
Evaluates the sequence \kbd{expr2} (dependent on $X$ and $j$) for $X$
as generated by \kbd{forvec}, in random order, computed in parallel. Substitute
for $j$ the value of \kbd{expr1} (dependent on $X$).
It is allowed fo \kbd{expr2} to exit the loop using
\kbd{break}/\kbd{next}/\kbd{return}, however in that case, \kbd{expr2} will
still be evaluated for all remaining value of $p$ less than the current one,
unless a subsequent \kbd{break}/\kbd{next}/\kbd{return} happens.
%\syn{NO}
\subsec{parselect$(f, A, \{\fl = 0\})$}\kbdsidx{parselect}\label{se:parselect}
Selects elements of $A$ according to the selection function $f$, done in
parallel. If \fl is $1$, return the indices of those elements (indirect
selection) The function \kbd{f} must not access global variables or
variables declared with local(), and must be free of side effects.
The library syntax is \fun{GEN}{parselect}{GEN f, GEN A, long flag}.
\subsec{parsum$(i=a,b,\var{expr},\{x\})$}\kbdsidx{parsum}\label{se:parsum}
Sum of expression \var{expr}, initialized at $x$, the formal parameter
going from $a$ to $b$, evaluated in parallel in random order.
The expression \kbd{expr} must not access global variables or
variables declared with \kbd{local()}, and must be free of side effects.
\bprog
parsum(i=1,1000,ispseudoprime(2^prime(i)-1))
@eprog
returns the numbers of prime numbers among the first $1000$ Mersenne numbers.
%\syn{NO}
\subsec{parvector$(N,i,\var{expr})$}\kbdsidx{parvector}\label{se:parvector}
As \kbd{vector(N,i,expr)} but the evaluations of \kbd{expr} are done in
parallel. The expression \kbd{expr} must not access global variables or
variables declared with \kbd{local()}, and must be free of side effects.
\bprog
parvector(10,i,quadclassunit(2^(100+i)+1).no)
@eprog\noindent
computes the class numbers in parallel.
%\syn{NO}
%SECTION: programming/parallel
\section{GP defaults}
\label{se:gp_defaults} This section documents the GP defaults, be sure to
check out \tet{parisize} and \tet{parisizemax} !
\subsec{TeXstyle}\kbdsidx{TeXstyle}\label{se:def,TeXstyle}
The bits of this default allow
\kbd{gp} to use less rigid TeX formatting commands in the logfile. This
default is only taken into account when $\kbd{log} = 3$. The bits of
\kbd{TeXstyle} have the following meaning
2: insert \kbd{\bs right} / \kbd{\bs left} pairs where appropriate.
4: insert discretionary breaks in polynomials, to enhance the probability of
a good line break.
The default value is \kbd{0}.
\subsec{breakloop}\kbdsidx{breakloop}\label{se:def,breakloop}
If true, enables the ``break loop'' debugging mode, see
\secref{se:break_loop}.
The default value is \kbd{1} if we are running an interactive \kbd{gp}
session, and \kbd{0} otherwise.
\subsec{colors}\kbdsidx{colors}\label{se:def,colors}
This default is only usable if \kbd{gp}
is running within certain color-capable terminals. For instance \kbd{rxvt},
\kbd{color\_xterm} and modern versions of \kbd{xterm} under X Windows, or
standard Linux/DOS text consoles. It causes \kbd{gp} to use a small palette of
colors for its output. With xterms, the colormap used corresponds to the
resources \kbd{Xterm*color$n$} where $n$ ranges from $0$ to $15$ (see the
file \kbd{misc/color.dft} for an example). Accepted values for this
default are strings \kbd{"$a_1$,\dots,$a_k$"} where $k\le7$ and each
$a_i$ is either
\noindent\item the keyword \kbd{no} (use the default color, usually
black on transparent background)
\noindent\item an integer between 0 and 15 corresponding to the
aforementioned colormap
\noindent\item a triple $[c_0,c_1,c_2]$ where $c_0$ stands for foreground
color, $c_1$ for background color, and $c_2$ for attributes (0 is default, 1
is bold, 4 is underline).
The output objects thus affected are respectively error messages,
history numbers, prompt, input line, output, help messages, timer (that's
seven of them). If $k < 7$, the remaining $a_i$ are assumed to be $no$. For
instance
%
\bprog
default(colors, "9, 5, no, no, 4")
@eprog
\noindent
typesets error messages in color $9$, history numbers in color $5$, output in
color $4$, and does not affect the rest.
A set of default colors for dark (reverse video or PC console) and light
backgrounds respectively is activated when \kbd{colors} is set to
\kbd{darkbg}, resp.~\kbd{lightbg} (or any proper prefix: \kbd{d} is
recognized as an abbreviation for \kbd{darkbg}). A bold variant of
\kbd{darkbg}, called \kbd{boldfg}, is provided if you find the former too
pale.
\emacs In the present version, this default is incompatible with PariEmacs.
Changing it will just fail silently (the alternative would be to display
escape sequences as is, since Emacs will refuse to interpret them).
You must customize color highlighting from the PariEmacs side, see its
documentation.
The default value is \kbd{""} (no colors).
\subsec{compatible}\kbdsidx{compatible}\label{se:def,compatible}
Obsolete. This default is now a no-op.
\subsec{datadir}\kbdsidx{datadir}\label{se:def,datadir}
The name of directory containing the optional data files. For now,
this includes the \kbd{elldata}, \kbd{galdata}, \kbd{galpol}, \kbd{seadata}
packages.
The default value is \kbd{/usr/local/share/pari}, or the override specified
via \kbd{Configure --datadir=}.
\subsec{debug}\kbdsidx{debug}\label{se:def,debug}
Debugging level. If it is non-zero, some extra messages may be printed,
according to what is going on (see~\b{g}).
The default value is \kbd{0} (no debugging messages).
\subsec{debugfiles}\kbdsidx{debugfiles}\label{se:def,debugfiles}
File usage debugging level. If it is non-zero, \kbd{gp} will print
information on file descriptors in use, from PARI's point of view
(see~\b{gf}).
The default value is \kbd{0} (no debugging messages).
\subsec{debugmem}\kbdsidx{debugmem}\label{se:def,debugmem}
Memory debugging level. If it is non-zero, \kbd{gp} will regularly print
information on memory usage. If it's greater than 2, it will indicate any
important garbage collecting and the function it is taking place in
(see~\b{gm}).
\noindent {\bf Important Note:} As it noticeably slows down the performance,
the first functionality (memory usage) is disabled if you're not running a
version compiled for debugging (see Appendix~A).
The default value is \kbd{0} (no debugging messages).
\subsec{echo}\kbdsidx{echo}\label{se:def,echo}
This toggle is either 1 (on) or 0 (off). When \kbd{echo}
mode is on, each command is reprinted before being executed. This can be
useful when reading a file with the \b{r} or \kbd{read} commands. For
example, it is turned on at the beginning of the test files used to check
whether \kbd{gp} has been built correctly (see \b{e}).
The default value is \kbd{0} (no echo).
\subsec{factor\_add\_primes}\kbdsidx{def,factor_add_primes}\label{se:def,factor_add_primes}
This toggle is either 1 (on) or 0 (off). If on,
the integer factorization machinery calls \tet{addprimes} on prime
factors that were difficult to find (larger than $2^{24}$), so they are
automatically tried first in other factorizations. If a routine is performing
(or has performed) a factorization and is interrupted by an error or via
Control-C, this lets you recover the prime factors already found. The
downside is that a huge \kbd{addprimes} table unrelated to the current
computations will slow down arithmetic functions relying on integer
factorization; one should then empty the table using \tet{removeprimes}.
The default value is \kbd{0}.
\subsec{factor\_proven}\kbdsidx{def,factor_proven}\label{se:def,factor_proven}
This toggle is either 1 (on) or 0 (off). By
default, the factors output by the integer factorization machinery are
only pseudo-primes, not proven primes. If this toggle is
set, a primality proof is done for each factor and all results depending on
integer factorization are fully proven. This flag does not affect partial
factorization when it is explicitly requested. It also does not affect the
private table managed by \tet{addprimes}: its entries are included as is in
factorizations, without being tested for primality.
The default value is \kbd{0}.
\subsec{format}\kbdsidx{format}\label{se:def,format}
Of the form x$.n$, where x (conversion style)
is a letter in $\{\kbd{e},\kbd{f},\kbd{g}\}$, and $n$ (precision) is an
integer; this affects the way real numbers are printed:
\item If the conversion style is \kbd{e}, real numbers are printed in
\idx{scientific format}, always with an explicit exponent,
e.g.~\kbd{3.3 E-5}.
\item In style \kbd{f}, real numbers are generally printed in
\idx{fixed floating point format} without exponent, e.g.~\kbd{0.000033}. A
large real number, whose integer part is not well defined (not enough
significant digits), is printed in style~\kbd{e}. For instance
\kbd{10.\pow 100} known to ten significant digits is always printed in style
\kbd{e}.
\item In style \kbd{g}, non-zero real numbers are printed in \kbd{f} format,
except when their decimal exponent is $< -4$, in which case they are printed
in \kbd{e} format. Real zeroes (of arbitrary exponent) are printed in \kbd{e}
format.
The precision $n$ is the number of significant digits printed for real
numbers, except if $n<0$ where all the significant digits will be printed
(initial default 28, or 38 for 64-bit machines). For more powerful formatting
possibilities, see \tet{printf} and \tet{Strprintf}.
The default value is \kbd{"g.28"} and \kbd{"g.38"} on 32-bit and
64-bit machines, respectively.
\subsec{graphcolormap}\kbdsidx{graphcolormap}\label{se:def,graphcolormap}
A vector of colors, to be
used by hi-res graphing routines. Its length is arbitrary, but it must
contain at least 3 entries: the first 3 colors are used for background,
frame/ticks and axes respectively. All colors in the colormap may be freely
used in \tet{plotcolor} calls.
A color is either given as in the default by character strings or by an RGB
code. For valid character strings, see the standard \kbd{rgb.txt} file in X11
distributions, where we restrict to lowercase letters and remove all
whitespace from color names. An RGB code is a vector with 3 integer entries
between 0 and 255. For instance \kbd{[250, 235, 215]} and
\kbd{"antiquewhite"} represent the same color. RGB codes are cryptic but
often easier to generate.
The default value is [\kbd{"white"}, \kbd{"black"}, \kbd{"blue"},
\kbd{"violetred"}, \kbd{"red"}, \kbd{"green"}, \kbd{"grey"},
\kbd{"gainsboro"}].
\subsec{graphcolors}\kbdsidx{graphcolors}\label{se:def,graphcolors}
Entries in the
\tet{graphcolormap} that will be used to plot multi-curves. The successive
curves are drawn in colors
\kbd{graphcolormap[graphcolors[1]]}, \kbd{graphcolormap[graphcolors[2]]},
\dots
cycling when the \kbd{graphcolors} list is exhausted.
The default value is \kbd{[4,5]}.
\subsec{help}\kbdsidx{help}\label{se:def,help}
Name of the external help program to use from within \kbd{gp} when
extended help is invoked, usually through a \kbd{??} or \kbd{???} request
(see \secref{se:exthelp}), or \kbd{M-H} under readline (see
\secref{se:readline}).
The default value is the path to the \kbd{gphelp} script we install.
\subsec{histfile}\kbdsidx{histfile}\label{se:def,histfile}
Name of a file where
\kbd{gp} will keep a history of all \emph{input} commands (results are
omitted). If this file exists when the value of \kbd{histfile} changes,
it is read in and becomes part of the session history. Thus, setting this
default in your gprc saves your readline history between sessions. Setting
this default to the empty string \kbd{""} changes it to
\kbd{$<$undefined$>$}
The default value is \kbd{$<$undefined$>$} (no history file).
\subsec{histsize}\kbdsidx{histsize}\label{se:def,histsize}
\kbd{gp} keeps a history of the last
\kbd{histsize} results computed so far, which you can recover using the
\kbd{\%} notation (see \secref{se:history}). When this number is exceeded,
the oldest values are erased. Tampering with this default is the only way to
get rid of the ones you do not need anymore.
The default value is \kbd{5000}.
\subsec{lines}\kbdsidx{lines}\label{se:def,lines}
If set to a positive value, \kbd{gp} prints at
most that many lines from each result, terminating the last line shown with
\kbd{[+++]} if further material has been suppressed. The various \kbd{print}
commands (see \secref{se:gp_program}) are unaffected, so you can always type
\kbd{print(\%)} or \b{a} to view the full result. If the actual screen width
cannot be determined, a ``line'' is assumed to be 80 characters long.
The default value is \kbd{0}.
\subsec{linewrap}\kbdsidx{linewrap}\label{se:def,linewrap}
If set to a positive value, \kbd{gp} wraps every single line after
printing that many characters.
The default value is \kbd{0} (unset).
\subsec{log}\kbdsidx{log}\label{se:def,log}
This can be either 0 (off) or 1, 2, 3
(on, see below for the various modes). When logging mode is turned on, \kbd{gp}
opens a log file, whose exact name is determined by the \kbd{logfile}
default. Subsequently, all the commands and results will be written to that
file (see \b{l}). In case a file with this precise name already existed, it
will not be erased: your data will be \emph{appended} at the end.
The specific positive values of \kbd{log} have the following meaning
1: plain logfile
2: emit color codes to the logfile (if \kbd{colors} is set).
3: write LaTeX output to the logfile (can be further customized using
\tet{TeXstyle}).
The default value is \kbd{0}.
\subsec{logfile}\kbdsidx{logfile}\label{se:def,logfile}
Name of the log file to be used when the \kbd{log} toggle is on.
Environment and time expansion are performed.
The default value is \kbd{"pari.log"}.
\subsec{nbthreads}\kbdsidx{nbthreads}\label{se:def,nbthreads}
Number of threads to use for parallel computing.
The exact meaning an default depend on the \kbd{mt} engine used:
\item \kbd{single}: not used (always one thread).
\item \kbd{pthread}: number of threads (unlimited, default: number of core)
\item \kbd{mpi}: number of MPI process to use (limited to the number allocated by \kbd{mpirun},
default: use all allocated process).
\subsec{new\_galois\_format}\kbdsidx{def,new_galois_format}\label{se:def,new_galois_format}
This toggle is either 1 (on) or 0 (off). If on,
the \tet{polgalois} command will use a different, more
consistent, naming scheme for Galois groups. This default is provided to
ensure that scripts can control this behavior and do not break unexpectedly.
The default value is \kbd{0}. This value will change to $1$ (set) in the next
major version.
\subsec{output}\kbdsidx{output}\label{se:def,output}
There are three possible values: 0
(=~\var{raw}), 1 (=~\var{prettymatrix}), or 3
(=~\var{external} \var{prettyprint}). This
means that, independently of the default \kbd{format} for reals which we
explained above, you can print results in three ways:
\item \tev{raw format}, i.e.~a format which is equivalent to what you
input, including explicit multiplication signs, and everything typed on a
line instead of two dimensional boxes. This can have several advantages, for
instance it allows you to pick the result with a mouse or an editor, and to
paste it somewhere else.
\item \tev{prettymatrix format}: this is identical to raw format, except
that matrices are printed as boxes instead of horizontally. This is
prettier, but takes more space and cannot be used for input. Column vectors
are still printed horizontally.
\item \tev{external prettyprint}: pipes all \kbd{gp}
output in TeX format to an external prettyprinter, according to the value of
\tet{prettyprinter}. The default script (\tet{tex2mail}) converts its input
to readable two-dimensional text.
Independently of the setting of this default, an object can be printed
in any of the three formats at any time using the commands \b{a} and \b{m}
and \b{B} respectively.
The default value is \kbd{1} (\var{prettymatrix}).
\subsec{parisize}\kbdsidx{parisize}\label{se:def,parisize}
\kbd{gp}, and in fact any program using the PARI
library, needs a \tev{stack} in which to do its computations; \kbd{parisize}
is the stack size, in bytes. It is recommended to increase this
default using a \tet{gprc}, to the value you believe PARI should be happy
with, given your typical computation. We strongly recommend to also
set \tet{parisizemax} to a much larger value, about what you believe your
machine can stand: PARI will then try to fit its computations within about
\kbd{parisize} bytes, but will increase the stack size if needed (up to
\kbd{parisizemax}). Once the memory intensive computation is over, PARI
will restore the stack size to the originally requested \kbd{parisize}.
The default value is 4M, resp.~8M on a 32-bit, resp.~64-bit machine.
\subsec{parisizemax}\kbdsidx{parisizemax}\label{se:def,parisizemax}
\kbd{gp}, and in fact any program using the PARI library, needs a
\tev{stack} in which to do its computations. If non-zero, \kbd{parisizemax}
is the maximum size the stack can grow to, in bytes. If zero, the stack will
not automatically grow, and will be limited to the value of \kbd{parisize}.
We strongly recommend to set \tet{parisizemax} to a non-zero value, about
what you believe your machine can stand: PARI will then try to fit its
computations within about \kbd{parisize} bytes, but will increase the stack
size if needed (up to \kbd{parisizemax}). Once the memory intensive
computation is over, PARI will restore the stack size to the originally
requested \kbd{parisize}.
The default value is $0$.
\subsec{path}\kbdsidx{path}\label{se:def,path}
This is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to read a file whose name is not given by an absolute path
(does not start with \kbd{/}, \kbd{./} or \kbd{../}), \kbd{gp} will look for
it in these directories, in the order they were written in \kbd{path}. Here,
as usual, \kbd{.} means the current directory, and \kbd{..} its immediate
parent. Environment expansion is performed.
The default value is \kbd{".:\til:\til/gp"} on UNIX systems,
\kbd{".;C:\bs;C:\bs GP"} on DOS, OS/2 and Windows, and \kbd{"."} otherwise.
\subsec{prettyprinter}\kbdsidx{prettyprinter}\label{se:def,prettyprinter}
The name of an external prettyprinter to use when
\kbd{output} is~3 (alternate prettyprinter). Note that the default
\tet{tex2mail} looks much nicer than the built-in ``beautified
format'' ($\kbd{output} = 2$).
The default value is \kbd{"tex2mail -TeX -noindent -ragged -by\_par"}.
\subsec{primelimit}\kbdsidx{primelimit}\label{se:def,primelimit}
\kbd{gp} precomputes a list of
all primes less than \kbd{primelimit} at initialization time, and can build
fast sieves on demand to quickly iterate over primes up to the \emph{square}
of \kbd{primelimit}. These are used by many arithmetic functions, usually for
trial division purposes. The maximal value is $2^{32} - 2049$ (resp $2^{64} -
2049$) on a 32-bit (resp.~64-bit) machine, but values beyond $10^8$,
allowing to iterate over primes up to $10^{16}$, do not seem useful.
Since almost all arithmetic functions eventually require some table of prime
numbers, PARI guarantees that the first 6547 primes, up to and
including 65557, are precomputed, even if \kbd{primelimit} is $1$.
This default is only used on startup: changing it will not recompute a new
table.
\misctitle{Deprecated feature} \kbd{primelimit} was used in some
situations by algebraic number theory functions using the
\tet{nf_PARTIALFACT} flag (\tet{nfbasis}, \tet{nfdisc}, \tet{nfinit}, \dots):
this assumes that all primes $p > \kbd{primelimit}$ have a certain
property (the equation order is $p$-maximal). This is never done by default,
and must be explicitly set by the user of such functions. Nevertheless,
these functions now provide a more flexible interface, and their use
of the global default \kbd{primelimit} is deprecated.
\misctitle{Deprecated feature} \kbd{factor(N, 0)} was used to partially
factor integers by removing all prime factors $\leq$ \kbd{primelimit}.
Don't use this, supply an explicit bound: \kbd{factor(N, bound)},
which avoids relying on an unpredictable global variable.
The default value is \kbd{500k}.
\subsec{prompt}\kbdsidx{prompt}\label{se:def,prompt}
A string that will be printed as
prompt. Note that most usual escape sequences are available there: \b{e} for
Esc, \b{n} for Newline, \dots, \kbd{\bs\bs} for \kbd{\bs}. Time expansion is
performed.
This string is sent through the library function \tet{strftime} (on a
Unix system, you can try \kbd{man strftime} at your shell prompt). This means
that \kbd{\%} constructs have a special meaning, usually related to the time
and date. For instance, \kbd{\%H} = hour (24-hour clock) and \kbd{\%M} =
minute [00,59] (use \kbd{\%\%} to get a real \kbd{\%}).
If you use \kbd{readline}, escape sequences in your prompt will result in
display bugs. If you have a relatively recent \kbd{readline} (see the comment
at the end of \secref{se:def,colors}), you can brace them with special sequences
(\kbd{\bs[} and \kbd{\bs]}), and you will be safe. If these just result in
extra spaces in your prompt, then you'll have to get a more recent
\kbd{readline}. See the file \kbd{misc/gprc.dft} for an example.
\emacs {\bf Caution}: PariEmacs needs to know about the prompt pattern to
separate your input from previous \kbd{gp} results, without ambiguity. It is
not a trivial problem to adapt automatically this regular expression to an
arbitrary prompt (which can be self-modifying!). See PariEmacs's
documentation.
The default value is \kbd{"? "}.
\subsec{prompt\_cont}\kbdsidx{def,prompt_cont}\label{se:def,prompt_cont}
A string that will be printed
to prompt for continuation lines (e.g. in between braces, or after a
line-terminating backslash). Everything that applies to \kbd{prompt}
applies to \kbd{prompt\_cont} as well.
The default value is \kbd{""}.
\subsec{psfile}\kbdsidx{psfile}\label{se:def,psfile}
Name of the default file where
\kbd{gp} is to dump its PostScript drawings (these are appended, so that no
previous data are lost). Environment and time expansion are performed.
The default value is \kbd{"pari.ps"}.
\subsec{readline}\kbdsidx{readline}\label{se:def,readline}
Switches readline line-editing
facilities on and off. This may be useful if you are running \kbd{gp} in a Sun
\tet{cmdtool}, which interacts badly with readline. Of course, until readline
is switched on again, advanced editing features like automatic completion
and editing history are not available.
The default value is \kbd{1}.
\subsec{realbitprecision}\kbdsidx{realbitprecision}\label{se:def,realbitprecision}
The number of significant bits used to convert exact inputs given to
transcendental functions (see \secref{se:trans}), or to create
absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
instance). Unless you tamper with the \tet{format} default, this is also
the number of significant bits used to print a \typ{REAL} number;
\kbd{format} will override this latter behaviour, and allow you to have a
large internal precision while outputting few digits for instance.
Note that most PARI's functions currently handle precision on a word basis (by
increments of 32 or 64 bits), hence bit precision may be a little larger
than the number of bits you expected. For instance to get 10 bits of
precision, you need one word of precision which, on a 64-bit machine,
correspond to 64 bits. To make things even more confusing, this internal bit
accuracy is converted to decimal digits when printing floating point numbers:
now 64 bits correspond to 19 printed decimal digits
($19 < \log_{10}(2^{64}) < 20$).
The value returned when typing \kbd{default(realbitprecision)} is the internal
number of significant bits, not the number of printed decimal digits:
\bprog
? default(realbitprecision, 10)
? \pb
realbitprecision = 64 significant bits
? default(realbitprecision)
%1 = 64
? \p
realprecision = 3 significant digits
? default(realprecision)
%2 = 19
@eprog\noindent Note that \tet{realprecision} and \kbd{\bs p} allow
to view and manipulate the internal precision in decimal digits.
The default value is \kbd{128}, resp.~\kbd{96}, on a 64-bit, resp~.32-bit,
machine.
\subsec{realprecision}\kbdsidx{realprecision}\label{se:def,realprecision}
The number of significant digits used to convert exact inputs given to
transcendental functions (see \secref{se:trans}), or to create
absolute floating point constants (input as \kbd{1.0} or \kbd{Pi} for
instance). Unless you tamper with the \tet{format} default, this is also
the number of significant digits used to print a \typ{REAL} number;
\kbd{format} will override this latter behaviour, and allow you to have a
large internal precision while outputting few digits for instance.
Note that PARI's internal precision works on a word basis (by increments of
32 or 64 bits), hence may be a little larger than the number of decimal
digits you expected. For instance to get 2 decimal digits you need one word
of precision which, on a 64-bit machine, actually gives you 19 digits ($19 <
\log_{10}(2^{64}) < 20$). The value returned when typing
\kbd{default(realprecision)} is the internal number of significant digits,
not the number of printed digits:
\bprog
? default(realprecision, 2)
realprecision = 19 significant digits (2 digits displayed)
? default(realprecision)
%1 = 19
@eprog
The default value is \kbd{38}, resp.~\kbd{28}, on a 64-bit, resp.~32-bit,
machine.
\subsec{recover}\kbdsidx{recover}\label{se:def,recover}
This toggle is either 1 (on) or 0 (off). If you change this to $0$, any
error becomes fatal and causes the gp interpreter to exit immediately. Can be
useful in batch job scripts.
The default value is \kbd{1}.
\subsec{secure}\kbdsidx{secure}\label{se:def,secure}
This toggle is either 1 (on) or 0 (off). If on, the \tet{system} and
\tet{extern} command are disabled. These two commands are potentially
dangerous when you execute foreign scripts since they let \kbd{gp} execute
arbitrary UNIX commands. \kbd{gp} will ask for confirmation before letting
you (or a script) unset this toggle.
The default value is \kbd{0}.
\subsec{seriesprecision}\kbdsidx{seriesprecision}\label{se:def,seriesprecision}
Number of significant terms
when converting a polynomial or rational function to a power series
(see~\b{ps}).
The default value is \kbd{16}.
\subsec{simplify}\kbdsidx{simplify}\label{se:def,simplify}
This toggle is either 1 (on) or 0 (off). When the PARI library computes
something, the type of the
result is not always the simplest possible. The only type conversions which
the PARI library does automatically are rational numbers to integers (when
they are of type \typ{FRAC} and equal to integers), and similarly rational
functions to polynomials (when they are of type \typ{RFRAC} and equal to
polynomials). This feature is useful in many cases, and saves time, but can
be annoying at times. Hence you can disable this and, whenever you feel like
it, use the function \kbd{simplify} (see Chapter 3) which allows you to
simplify objects to the simplest possible types recursively (see~\b{y}).
\sidx{automatic simplification}
The default value is \kbd{1}.
\subsec{sopath}\kbdsidx{sopath}\label{se:def,sopath}
This is a list of directories, separated by colons ':'
(semicolons ';' in the DOS world, since colons are preempted for drive names).
When asked to \tet{install} an external symbol from a shared library whose
name is not given by an absolute path (does not start with \kbd{/}, \kbd{./}
or \kbd{../}), \kbd{gp} will look for it in these directories, in the order
they were written in \kbd{sopath}. Here, as usual, \kbd{.} means the current
directory, and \kbd{..} its immediate parent. Environment expansion is
performed.
The default value is \kbd{""}, corresponding to an empty list of
directories: \tet{install} will use the library name as input (and look in
the current directory if the name is not an absolute path).
\subsec{strictargs}\kbdsidx{strictargs}\label{se:def,strictargs}
This toggle is either 1 (on) or 0 (off). If on, all arguments to \emph{new}
user functions are mandatory unless the function supplies an explicit default
value.
Otherwise arguments have the default value $0$.
In this example,
\bprog
fun(a,b=2)=a+b
@eprog
\kbd{a} is mandatory, while \kbd{b} is optional. If \kbd{strictargs} is on:
\bprog
? fun()
*** at top-level: fun()
*** ^-----
*** in function fun: a,b=2
*** ^-----
*** missing mandatory argument 'a' in user function.
@eprog
This applies to functions defined while \kbd{strictargs} is on. Changing \kbd{strictargs}
does not affect the behavior of previously defined functions.
The default value is \kbd{0}.
\subsec{strictmatch}\kbdsidx{strictmatch}\label{se:def,strictmatch}
Obsolete. This toggle is now a no-op.
\subsec{threadsize}\kbdsidx{threadsize}\label{se:def,threadsize}
In parallel mode, each thread needs its own private \tev{stack} in which
to do its computations, see \kbd{parisize}. This value determines the size
in bytes of the stacks of each thread, so the total memory allocated will be
$\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$.
If set to $0$, the value used is the same as \kbd{parisize}.
The default value is $0$.
\subsec{threadsizemax}\kbdsidx{threadsizemax}\label{se:def,threadsizemax}
In parallel mode, each threads needs its own private \tev{stack} in which
to do its computations, see \kbd{parisize}. This value determines the maximal
size in bytes of the stacks of each thread, so the total memory allocated will
be between $\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsize}$. and
$\kbd{parisize}+\kbd{nbthreads}\times\kbd{threadsizemax}$.
If set to $0$, the value used is the same as \kbd{threadsize}.
The default value is $0$.
\subsec{timer}\kbdsidx{timer}\label{se:def,timer}
This toggle is either 1 (on) or 0 (off). Every instruction sequence
in the gp calculator (anything ended by a newline in your input) is timed,
to some accuracy depending on the hardware and operating system. When
\tet{timer} is on, each such timing is printed immediately before the
output as follows:
\bprog
? factor(2^2^7+1)
time = 108 ms. \\ this line omitted if 'timer' is 0
%1 =
[ 59649589127497217 1]
[5704689200685129054721 1]
@eprog\noindent (See also \kbd{\#} and \kbd{\#\#}.)
The time measured is the user \idx{CPU time}, \emph{not} including the time
for printing the results. If the time is negligible ($< 1$ ms.), nothing is
printed: in particular, no timing should be printed when defining a user
function or an alias, or installing a symbol from the library.
The default value is \kbd{0} (off).
%SECTION: default
\vfill\eject
|