/usr/share/pari/doc/refcard.tex is in pari-doc 2.9.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 | % Copyright (c) 2007-2016 Karim Belabas.
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License
% Reference Card for PARI-GP.
% Author:
% Karim Belabas
% Universite de Bordeaux, 351 avenue de la Liberation, F-33405 Talence
% email: Karim.Belabas@math.u-bordeaux.fr
%
% Based on an earlier version by Joseph H. Silverman who kindly let me
% use his original file.
% Thanks to Bill Allombert, Henri Cohen, Gerhard Niklasch, and Joe Silverman
% for comments and corrections.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The original copyright notice read:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Copyright (c) 1993,1994 Joseph H. Silverman. May be freely distributed.
%% Created Tuesday, July 27, 1993
%% Thanks to Stephen Gildea for the multicolumn macro package
%% which I modified from his GNU emacs reference card
%%
%% Original Thanks:
%% I would like to thank Jim Delaney, Kevin Buzzard, Dan Lieman,
%% and Jaap Top for sending me corrections.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file is intended to be processed by plain TeX (TeX82).
\def\TITLE{Pari-GP reference card}
\input refmacro.tex
Note: optional arguments are surrounded by braces $\{\}$.\hfill\break
To start the calculator, type its name in the terminal: \kbd{gp}\hfill\break
To exit \kbd{gp}, type \kbd{quit}, \kbd{\\q}, or \kbd{<C-D>} at prompt.\hfill
\section{Help}
\li{describe function}{?{\it function}}
\li{extended description}{??{\it keyword}}
\li{list of relevant help topics}{???{\it pattern}}
\li{name of GP-1.39 function $f$ in GP-2.*}{whatnow$(f)$}
\section{Input/Output}
\li{previous result, the result before}
{\%{\rm, }\%`{\rm, }\%``{\rm, etc.}}
\li{$n$-th result since startup}{\%$n$}
\li{separate multiple statements on line}{;}
\li{extend statement on additional lines}{\\}
\li{extend statements on several lines}{\{$\seq_1$; $\seq_2$;\}}
\li{comment}{/* $\dots$ */}
\li{one-line comment, rest of line ignored}{\\\\ \dots}
\section{Metacommands \& Defaults}
\li{set default $d$ to \var{val}} {default$(\{d\},\{\var{val}\})$}
\li{toggle timer on/off}{\#}
\li{print time for last result}{\#\#}
\li{print defaults}{\\d}
\li{set debug level to $n$}{\\g $n$}
\li{set memory debug level to $n$}{\\gm $n$}
\li{set $n$ significant digits / bits}{\\p $n$, \\pb $n$}
\li{set $n$ terms in series}{\\ps $n$}
\li{quit GP}{\\q}
\li{print the list of PARI types}{\\t}
\li{print the list of user-defined functions}{\\u}
\li{read file into GP}{\\r {\it filename}}
\section{Debugger / break loop}
\li{get out of break loop}{break {\rm or} <C-D>}
\li{go up/down $n$ frames}{dbg\_up$(\{n\})${\rm, }dbg\_down}
\li{set break point}{breakpoint$()$}
\li{examine object $o$}{dbg\_x$(o)$}
\li{current error data}{dbg\_err$()$}
\li{number of objects on heap and their size}{getheap$()$}
\li{total size of objects on PARI stack}{getstack$()$}
\section{PARI Types \& Input Formats}
\li{\typ{INT}. Integers; hex, binary}{$\pm 31$; $\pm $0x1F, $\pm$0b101}
\li{\typ{REAL}. Reals}{$\pm 3.14$, $6.022$ E$23$}
\li{\typ{INTMOD}. Integers modulo $m$}{Mod$(n,m)$}
\li{\typ{FRAC}. Rational Numbers}{$n/m$}
\li{\typ{FFELT}. Elt in finite field $\F_q$}{ffgen(q)}
\li{\typ{COMPLEX}. Complex Numbers}{$x +y\,*\;$I}
\li{\typ{PADIC}. $p$-adic Numbers}{$x\;+\;$O$(p$\pow$k)$}
\li{\typ{QUAD}. Quadratic Numbers}{$x + y\,*\;$quadgen$(D)$}
\li{\typ{POLMOD}. Polynomials modulo $g$}{Mod$(f,g)$}
\li{\typ{POL}. Polynomials}{$a*x$\pow$n+\cdots+b$}
\li{\typ{SER}. Power Series}{$f\;+\;$O$(x$\pow$k)$}
\li{\typ{RFRAC}. Rational Functions}{$f/g$}
\li{\typ{QFI}/\typ{QFR}. Imag/Real binary quad.\ form}{Qfb$(a,b,c,\{d\})$}
\li{\typ{VEC}/\typ{COL}. Row/Column Vectors}
{[$x,y,z$]{\rm, }[$x,y,z$]\til}
\li{\typ{VEC} integer range}{[1..10]}
% This goes at the bottom of page 1
\shortcopyrightnotice
\newcolumn
\li{\typ{VECSMALL}. Vector of small ints}{Vecsmall([$x,y,z$])}
\li{\typ{MAT}. Matrices}{[$a,b$;$c,d$]}
\li{\typ{LIST}. Lists}{List$($[$x,y,z$]$)$}
\li{\typ{STR}. Strings}{"abc"}
\li{\typ{INFINITY}. $\pm\infty$}{+oo, -oo}
\section{Reserved Variable Names}
\li{$\pi=3.14\dots$, $\gamma=0.57\dots$, $C=0.91\dots$}{Pi{\rm, }Euler{\rm, }Catalan}
\li{square root of $-1$}{I}
\li{Landau's big-oh notation}{O}
\section{Information about an Object}
\li{PARI type of object $x$}{type$(x)$}
\li{length of $x$ / size of $x$ in memory}{\#$x${\rm, }sizebyte$(x)$}
\li{real precision / bit precision of $x$}{precision$(x)${\rm, }bitprecision}
\li{$p$-adic, series prec. of $x$}{padicprec$(x)${\rm, }serprec}
\section{Operators}
\li{basic operations}{+{\rm,} - {\rm,} *{\rm,} /{\rm,} \pow{\rm,} sqr}
\li{\kbd{i=i+1}, \kbd{i=i-1}, \kbd{i=i*j}, \dots}
{i++{\rm,} i--{\rm,} i*=j{\rm,}\dots}
\li{euclidean quotient, remainder}{$x$\bs/$y${\rm,} $x$\bs$y${\rm,}
$x$\%$y${\rm,} divrem$(x,y)$}
\li{shift $x$ left or right $n$ bits}{ $x$<<$n$, $x$>>$n$
{\rm or} shift$(x,\pm n)$}
\li{multiply by $2^n$}{shiftmul$(x,n)$}
\li{comparison operators}
{<={\rm, }<{\rm, }>={\rm, }>{\rm, }=={\rm, }!={\rm, }==={\rm, }lex{\rm, }cmp}
\li{boolean operators (or, and, not)}{||{\rm, } \&\&{\rm ,} !}
\li{bit operations}
{bitand{\rm, }bitneg{\rm, }bitor{\rm, }bitxor{\rm, }bitnegimply}
\li{sign of $x=-1,0,1$}{sign$(x)$}
\li{maximum/minimum of $x$ and $y$}{max{\rm,} min$(x,y)$}
\li{derivative of $f$}{$f$'}
\li{differential operator}{diffop$(f,v,d,\{n=1\})$}
\li{quote operator (formal variable)}{'x}
\li{assignment}{x = \var{value}}
\li{simultaneous assignment $x\leftarrow v_1$, $y\leftarrow v_2$}{[x,y] = v}
\section{Select Components}
\li{$n$-th component of $x$}{component$(x,n)$}
\li{$n$-th component of vector/list $x$}{$x$[$n$]}
\li{components $a,a+1,\dots,b$ of vector $x$}{$x$[$a$..$b$]}
\li{$(m,n)$-th component of matrix $x$}{$x$[$m,n$]}
\li{row $m$ or column $n$ of matrix $x$}{$x$[$m,$]{\rm,} $x$[$,n$]}
\li{numerator/denominator of $x$}{numerator$(x)${\rm, }denominator}
\section{Random Numbers}
\li{random integer/prime in $[0,N[$}{random$(N)${\rm, }randomprime}
\li{get/set random seed}{getrand{\rm, }setrand$(s)$}
\section{Conversions}
\li{to vector, matrix, vec. of small ints}{Col{\rm/}Vec{\rm,}Mat{\rm,}Vecsmall}
\li{to list, set, map, string}{List{\rm,} Set{\rm,} Map{\rm,} Str}
\li{create PARI object $(x\mod y)$}{Mod$(x,y)$}
\li{make $x$ a polynomial of $v$}{Pol$(x,\{v\})$}
\li{as \kbd{Pol}, etc., starting with constant term}
{Polrev{\rm, }Vecrev{\rm, }Colrev}
\li{make $x$ a power series of $v$}{Ser$(x,\{v\})$}
\li{string from bytes / from format+args}{Strchr{\rm, }Strprintf}
\li{TeX string}{Strtex$(x)$}
\li{convert $x$ to simplest possible type}{simplify$(x)$}
\li{object $x$ with real precision $n$}{precision$(x,n)$}
\li{object $x$ with bit precision $n$}{bitprecision$(x,n)$}
\li{set precision to $p$ digits in dynamic scope}{localprec$(p)$}
\li{set precision to $p$ bits in dynamic scope}{localbitprec$(p)$}
\subsec{Conjugates and Lifts}
\li{conjugate of a number $x$}{conj$(x)$}
\li{norm of $x$, product with conjugate}{norm$(x)$}
\li{$L^p$ norm of $x$ ($L^\infty$ if no $p$)}{normlp$(x,\{p\})$}
\li{square of $L^2$ norm of $x$}{norml2$(x)$}
\li{lift of $x$ from Mods and $p$-adics}{lift{\rm,} centerlift$(x)$}
\li{recursive lift}{liftall}
\li{lift all \typ{INT} and \typ{PADIC} ($\to$\typ{INT})}{liftint}
\li{lift all \typ{POLMOD} ($\to$\typ{POL})}{liftpol}
\section{Lists, Sets \& Maps}
{\bf Sets} (= row vector with strictly increasing entries w.r.t. \kbd{cmp})\hfill\break
%
\li{intersection of sets $x$ and $y$}{setintersect$(x,y)$}
\li{set of elements in $x$ not belonging to $y$}{setminus$(x,y)$}
\li{union of sets $x$ and $y$}{setunion$(x,y)$}
\li{does $y$ belong to the set $x$}{setsearch$(x,y,\{\fl\})$}
\li{set of all $f(x,y)$, $x\in X$, $y\in Y$}{setbinop$(f,X,Y)$}
\li{is $x$ a set ?}{setisset$(x)$}
\subsec{Lists. {\rm create empty list: $L$ = \kbd{List}$()$}}
\li{append $x$ to list $L$}{listput$(L,x,\{i\})$}
\li{remove $i$-th component from list $L$}{listpop$(L,\{i\})$}
\li{insert $x$ in list $L$ at position $i$}{listinsert$(L,x,i)$}
\li{sort the list $L$ in place}{listsort$(L,\{\fl\})$}
\subsec{Maps. {\rm create empty dictionnary: $M$ = \kbd{Map}$()$}}
\li{attach value $v$ to key $k$}{mapput$(M,k,v)$}
\li{recover value attach to key $k$ or error}{mapget$(M,k)$}
\li{is key $k$ in the dict ? (set $v$ to $M(k)$)}
{mapisdefined$(M,k,\{\&v\})$}
\li{remove $k$ from map domain}{mapdelete$(M,k)$}
\section{GP Programming}
\subsec{User functions and closures}
$x,y$ are formal parameters; $y$ defaults to \kbd{Pi} if parameter opitted;
$z,t$ are local variables (lexical scope), $z$ initialized to 1.
\hfil\break
{\tt fun(x, y=Pi) = my(z=1, t); \var{seq}\hfil\break}
{\tt fun = (x, y=Pi) -> my(z=1, t); \var{seq}\hfill\break}
\li{attach a help message to $f$}{addhelp$(f)$}
\li{undefine symbol $s$ (also kills help)}{kill$(s)$}
\subsec{Control Statements {\rm ($X$: formal parameter in expression \seq)}}
\li{if $a\ne0$, evaluate $\seq_1$, else $\seq_2$}{if$(a,\{\seq_1\},\{\seq_2\})$}
\smallskip
\li{eval.\ \seq\ for $a\le X\le b$}{for$(X=a,b,\seq)$}
\li{\dots for primes $a\le X\le b$}{forprime$(X=a,b,\seq)$}
\li{\dots for composites $a\le X\le b$}{forcomposite$(X=a,b,\seq)$}
\li{\dots for $a\le X\le b$ stepping $s$}{forstep$(X=a,b,s,\seq)$}
\li{\dots for $X$ dividing $n$}{fordiv$(n,X,\seq)$}
\li{multivariable {\tt for}, lex ordering}{forvec$(X=v,\seq)$}
\li{loop over partitions of $n$}{forpart$(p=n,\seq)$}
\li{loop over vectors $v$, $q(v)\leq B$; $q > 0$}{forqfvec$(v, q, b, \seq)$}
\li{loop over $H < G$ finite abelian group}{forsubgroup$(H=G)$}
\smallskip
\li{evaluate \seq\ until $a\ne0$}{until$(a,\seq)$}
\li{while $a\ne0$, evaluate \seq}{while$(a,\seq)$}
\li{exit $n$ innermost enclosing loops}{break$(\{n\})$}
\li{start new iteration of $n$-th enclosing loop}{next$(\{n\})$}
\li{return $x$ from current subroutine}{return$(\{x\})$}
\subsec{Exceptions, warnings}
\li{raise an exception / warn}{error$()$, warning$()$}
\li{type of error message $E$}{errname$(E)$}
\li{try $\seq_1$, evaluate $\seq_2$ on error}{iferr$(\seq_1, E, \seq_2)$}
\subsec{Functions with closure arguments / results}
\li{select from $v$ according to $f$}{select$(f, v)$}
\li{apply $f$ to all entries in $v$}{apply$(f, v)$}
\li{evaluate $f(a_1,\dots,a_n)$}{call$(f,a)$}
\li{evaluate $f(\dots f(f(a_1,a_2),a_3)\dots,a_n)$}{fold$(f,a)$}
\li{calling function as closure}{self$()$}
\subsec{Sums \& Products}
\li{sum $X=a$ to $X=b$, initialized at $x$}{sum$(X=a,b,\expr,\{x\})$}
\li{sum entries of vector $v$}{vecsum$(v)$}
\li{sum \expr\ over divisors of $n$}{sumdiv$(n,X,\expr)$}
\li{\dots assuming \expr\ multiplicative}{sumdivmult$(n,X,\expr)$}
\li{product $a\le X\le b$, initialized at $x$}{prod$(X=a,b,\expr,\{x\})$}
\li{product over primes $a\le X\le b$}{prodeuler$(X=a,b,\expr)$}
\subsec{Sorting}
\li{sort $x$ by $k$-th component}{vecsort$(x,\{k\},\{fl=0\})$}
\li{min.~$m$ of $x$ ($m=x[i]$), max.}{vecmin$(x,\{\&i\})${\rm, }vecmax}
\li{does $y$ belong to $x$, sorted wrt. $f$}{vecsearch$(x,y,\{f\})$}
\subsec{Input/Output}
\li{print with/without \kbd{\bs n}, \TeX\ format}
{print{\rm, }print1{\rm, }printtex}
\li{print fields with separator}{printsep$(\var{sep},\dots)$,{\rm, }printsep1}
\li{formatted printing}{printf$()$}
\li{write \args\ to file}{write{\rm,} write1{\rm,} writetex$(\file,\args)$}
\li{write $x$ in binary format}{writebin$(\file,x)$}
\li{read file into GP}{read($\{\file\}$)}
\li{\dots return as vector of lines}{readvec($\{\file\}$)}
\li{\dots return as vector of strings}{readstr($\{\file\}$)}
\li{read a string from keyboard}{input$()$}
\subsec{Timers}
\li{CPU time in \var{ms} and reset timer}{gettime$()$}
\li{CPU time in \var{ms} since gp startup}{getabstime$()$}
\li{time in \var{ms} since UNIX Epoch}{getwalltime$()$}
\li{timeout command after $s$ seconds}{alarm$(s, \expr)$}
\subsec{Interface with system}
\li{allocates a new stack of $s$ bytes}{allocatemem$(\{s\})$}
\li{alias \var{old}\ to \var{new}}{alias$(\var{new},\var{old})$}
\li{install function from library}{install$(f,code,\{\var{gpf\/}\},\{\var{lib}\})$}
\li{execute system command $a$}{system$(a)$}
\li{as above, feed result to GP}{extern$(a)$}
\li{as above, return GP string}{externstr$(a)$}
\li{get \kbd{\$VAR} from environment}{getenv$($\kbd{"VAR"}$)$}
\li{expand env. variable in string}{Strexpand$(x)$}
%
\section{Parallel evaluation}
These functions evaluate their arguments in parallel (pthreads or MPI);
args.~must not access global variables and must be free of side
effects. Enabled if threading engine is not \emph{single} in gp
header.\hfil\break
\li{evaluate $f$ on $x[1],\dots,x[n]$}{parapply$(f,x)$}
\li{evaluate closures $f[1],\dots,f[n]$}{pareval$(f)$}
\li{as \kbd{select}}{parselect$(f,A,\{\fl\})$}
\li{as \kbd{sum}}{parsum$(i = a,b,\var{expr},\{x\})$}
\li{as \kbd{vector}}{parvector$(n,i,\{\var{expr}\})$}
\li{eval $f$ for $i=a,\dots,b$}
{parfor$(i = a, \{b\}, f,\{r\}, \{f_2\})$}
\li{\dots for $p$ prime in $[a,b]$}
{parforprime$(p = a, \{b\}, f,\{r\}, \{f_2\})$}
\li{\dots multivariate}
{parforvec$(X = v, f,\{r\}, \{f_2\}, \{\fl\})$}
\li{declare $x$ as inline (allows to use as global)}{inline$(x)$}
\li{stop inlining}{uninline$()$}
\newcolumn
\title{\TITLE}
\centerline{(PARI-GP version \PARIversion)}
\section{Linear Algebra}
%
\li{dimensions of matrix $x$}{matsize$(x)$}
\li{concatenation of $x$ and $y$}{concat$(x,\{y\})$}
\li{extract components of $x$}{vecextract$(x,y,\{z\})$}
\li{transpose of vector or matrix $x$}{mattranspose$(x)$ {\rm or} $x$\til}
\li{adjoint of the matrix $x$}{matadjoint$(x)$}
\li{eigenvectors/values of matrix $x$}{mateigen$(x)$}
\li{characteristic/minimal polynomial of $x$}{charpoly$(x)${\rm, }minpoly}
\li{trace/determinant of matrix $x$}{trace$(x)${\rm, }matdet}
\li{Frobenius form of $x$}{matfrobenius$(x)$}
\li{QR decomposition}{matqr$(x)$}
\li{apply \kbd{matqr}'s transform to $v$}{mathouseholder$(Q,v)$}
\subsec{Constructors \& Special Matrices}
\li{$\{g(x)\colon x \in v~{\rm s.t.}~f(x)\}$}{[g(x) | x <- v, f(x)]}
\li{$\{x\colon x \in v~{\rm s.t.}~f(x)\}$}{[x | x <- v, f(x)]}
\li{$\{g(x)\colon x \in v\}$}{[g(x) | x <- v]}
\li{row vec.\ of \expr\ eval'ed at $1\le i\le n$}{vector$(n,\{i\},\{\expr\})$}
\li{col.\ vec.\ of \expr\ eval'ed at $1\le i\le n$}{vectorv$(n,\{i\},\{\expr\})$}
\li{vector of small ints}{vectorsmall$(n,\{i\},\{\expr\})$}
\li{$[c, c\cdot x, \dots, c\cdot x^n]$}{powers$(x,n,\{c = 1\})$}
\li{matrix $1\le i\le m$, $1\le j\le n$}{matrix$(m,n,\{i\},\{j\},\{\expr\})$}
\li{define matrix by blocks}{matconcat$(B)$}
\li{diagonal matrix with diagonal $x$}{matdiagonal$(x)$}
\li{is $x$ diagonal?}{matisdiagonal$(x)$}
\li{$x\,\cdot\, $\kbd{matdiagonal}$(d)$}{matmuldiagonal$(x,d)$}
\li{$n\times n$ identity matrix}{matid$(n)$}
\li{Hessenberg form of square matrix $x$}{mathess$(x)$}
\li{$n\times n$ Hilbert matrix $H_{ij}=(i+j-1)^{-1}$}{mathilbert$(n)$}
\li{$n\times n$ Pascal triangle}{matpascal$(n-1)$}
\li{companion matrix to polynomial $x$}{matcompanion$(x)$}
\li{Sylvester matrix of $x$}{polsylvestermatrix$(x)$}
\subsec{Gaussian elimination}
\li{kernel of matrix $x$}{matker$(x,\{\fl\})$}
\li{intersection of column spaces of $x$ and $y$}{matintersect$(x,y)$}
\li{solve $M*X = B$ ($M$ invertible)}{matsolve$(M,B)$}
\li{as solve, modulo $D$ (col. vector)}{matsolvemod$(M,D,B)$}
\li{one sol of $M*X = B$}{matinverseimage$(M,B)$}
\li{basis for image of matrix $x$}{matimage$(x)$}
\li{columns of $x$ \emph{not} in \kbd{matimage}}{matimagecompl$(x)$}
\li{supplement columns of $x$ to get basis}{matsupplement$(x)$}
\li{rows, cols to extract invertible matrix}{matindexrank$(x)$}
\li{rank of the matrix $x$}{matrank$(x)$}
\section{Lattices \& Quadratic Forms}
\subsec{Quadratic forms}
\li{evaluate $^tx Q y$}{qfeval$(\{Q=\var{id}\},x,y)$}
\li{evaluate $^tx Q x$}{qfeval$(\{Q=\var{id}\},x)$}
\li{signature of quad form $^ty*x*y$}{qfsign$(x)$}
\li{decomp into squares of $^ty*x*y$}{qfgaussred$(x)$}
\li{eigenvalues/vectors for real symmetric $x$}{qfjacobi$(x)$}
\subsec{HNF and SNF}
\li{upper triangular Hermite Normal Form}{mathnf$(x)$}
\li{HNF of $x$ where $d$ is a multiple of det$(x)$}{mathnfmod$(x,d)$}
\li{multiple of det$(x)$}{matdetint$(x)$}
\li{HNF of $(x \mid\,$\kbd{diagonal}$(D))$}{mathnfmodid$(x,D)$}
\li{elementary divisors of $x$}{matsnf$(x)$}
\li{elementary divisors of $\ZZ[a]/(f'(a))$}{poldiscreduced$(f)$}
\li{integer kernel of $x$}{matkerint$(x)$}
\li{$\ZZ$-module $\leftrightarrow$ $\QQ$-vector space}{matrixqz$(x,p)$}
\subsec{Lattices}
\li{LLL-algorithm applied to columns of $x$}{qflll$(x,\{\fl\})$}
\li{\dots for Gram matrix of lattice}{qflllgram$(x,\{\fl\})$}
\li{find up to $m$ sols of \kbd{qfnorm}$(x,y)\le b$}{qfminim$(x,b,m)$}
\li{$v$, $v[i]:=$number of $y$ s.t. \kbd{qfnorm}$(x,y)= i$}
{qfrep$(x,B,\{\fl\})$}
\li{perfection rank of $x$}{qfperfection$(x)$}
\li{find isomorphism between $q$ and $Q$}{qfisom$(q,Q)$}
\li{precompute for isomorphism test with $q$}{qfisominit$(q)$}
\li{automorphism group of $q$}{qfauto$(q)$}
\li{convert \kbd{qfauto} for GAP/Magma}{qfautoexport$(G,\{\fl\})$}
\li{orbits of $V$ under $G\subset \text{GL}(V)$}
{qforbits$(G,V)$}
\section{Polynomials \& Rational Functions}
\li{all defined polynomial variables}{variables$()$}
\li{get var.~of highest priority (higher than $v$)}
{varhigher$(\var{name},\{v\})$}
\li{\dots of lowest priority (lower than $v$)}
{varlower$(\var{name},\{v\})$}
\subsec{Coefficients, variables and basic operators}
\li{degree of $f$}{poldegree$(f)$}
\li{coeff. of degree $n$ of $f$, leading coeff.}{polcoeff$(f,n)${\rm, }pollead}
\li{main variable / all variables in $f$ }{variable$(f)${\rm, }variables$(f)$}
\li{replace $x$ by $y$ in $f$}{subst$(f,x,y)$}
\li{evaluate $f$ replacing vars by their value}{eval$(f)$}
\li{replace polynomial expr.~$T(x)$ by $y$ in $f$}{substpol$(f,T,y)$}
\li{replace $x_1,\dots,x_n$ by $y_1,\dots,y_n$ in $f$}{substvec$(f,x,y)$}
\li{reciprocal polynomial $x^{\deg f}f(1/x)$}{polrecip$(f)$}
\smallskip
\li{gcd of coefficients of $f$}{content$(f)$}
\li{derivative of $f$ w.r.t. $x$}{deriv$(f,\{x\})$}
\li{formal integral of $f$ w.r.t. $x$}{intformal$(f,\{x\})$}
\li{formal sum of $f$ w.r.t. $x$}{sumformal$(f,\{x\})$}
\subsec{Constructors \& Special Polynomials}
\li{interpolating pol.~eval.~at $a$}{polinterpolate$(X,\{Y\},\{a\})$}
\li{$P_n$, $T_n/U_n$, $H_n$}{pollegendre{\rm, }polchebyshev{\rm, }polhermite}
\li{$n$-th cyclotomic polynomial $\Phi_n$}{polcyclo$(n,\{v\})$}
\li{return $n$ if $f=\Phi_n$, else $0$}{poliscyclo$(f)$}
\li{is $f$ a product of cyclotomic polynomials?}{poliscycloprod$(f)$}
\li{Zagier's polynomial of index $(n,m)$}{polzagier$(n,m)$}
\subsec{Resultant, elimination}
\li{discriminant of polynomial $f$}{poldisc$(f)$}
\li{resultant $R = \text{Res}_v(f,g)$}{polresultant$(f,g,\{v\})$}
\li{$[u,v,R]$, $xu + yv = \text{Res}_v(f,g)$}{polresultantext$(x,y,\{v\})$}
\li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}
\li{initialize $t$ for Thue equation solver}{thueinit$(f)$}
\copyrightnotice
\newcolumn
\title{\TITLE}
\centerline{(PARI-GP version \PARIversion)}
\bigskip
\subsec{Roots and Factorization}
\li{complex roots of $f$}{polroots$(f)$}
\li{number of real roots of $f$ (in $[a,b]$)}{polsturm$(f,\{[a,b]\})$}
\li{real roots of $f$ (in $[a,b]$)}{polrootsreal$(f,\{[a,b]\})$}
\li{symmetric powers of roots of $f$ up to $n$}{polsym$(f,n)$}
\li{Graeffe transform of $f$, $g(x^2)=f(x)f(-x)$}{polgraeffe$(f)$}
\li{factor $f$}{factor$(f)$}
\li{factor $f\mod p$ / roots}{factormod$(f,p)${\rm, }polrootsmod}
\li{\dots using Cantor-Zassenhaus}{factorcantor$(f,p)$}
\li{factor $f$ over $\FF_{p^a}$ / roots}{factorff$(f,p,a)${\rm, }polrootsff}
\li{factor $f$ over $\QQ_p$ / roots}{factorpadic$(f,p,r)${\rm, }polrootspadic}
\li{cyclotomic factors of $f\in\QQ[X]$}{polcyclofactors$(f)$}
\li{find irreducible $T\in \FF_p[x]$, $\deg T = n$}{ffinit$(p,n,\{x\})$}
\li{$\#\{{\rm monic\ irred.}\ T\in \FF_q[x], \deg T = n\}$}{ffnbirred$(q,n)$}
\li{$p$-adic root of $f$ congruent to $a\mod p$}{padicappr$(f,a)$}
\li{Newton polygon of $f$ for prime $p$}{newtonpoly$(f,p)$}
\li{Hensel lift $A/\text{lc}(A) = \prod_i B[i]$ mod $p^e$}
{polhensellift$(A,B,p,e)$}
\li{extensions of $\QQ_p$ of degree $N$}{padicfields$(p,N)$}
\section{Formal \& p-adic Series}
\li{truncate power series or $p$-adic number}{truncate$(x)$}
\li{valuation of $x$ at $p$}{valuation$(x,p)$}
\subsec{Dirichlet and Power Series}
\li{Taylor expansion around $0$ of $f$ w.r.t. $x$}{taylor$(f,x)$}
\li{$\sum a_kb_k t^k$ from $\sum a_kt^k$ and $\sum b_kt^k$}{serconvol$(a,b)$}
\li{$f=\sum a_k t^k$ from $\sum (a_k/k!)t^k$}{serlaplace$(f)$}
\li{reverse power series $F$ so $F(f(x))=x$}{serreverse$(f)$}
\li{Dirichlet series multiplication / division}{dirmul{\rm,} dirdiv$(x,y)$}
\li{Dirichlet Euler product ($b$ terms)}{direuler$(p=a,b,\expr)$}
\section{Transcendental and $p$-adic Functions}
\li{real, imaginary part of $x$}{real$(x)$, imag$(x)$}
\li{absolute value, argument of $x$}{abs$(x)$, arg$(x)$}
\li{square/nth root of $x$}{sqrt$(x)$, sqrtn$(x,n,\{$\&$z\})$}
\li{trig functions}{sin, cos, tan, cotan, sinc}
\li{inverse trig functions}{asin, acos, atan}
\li{hyperbolic functions}{sinh, cosh, tanh, cotanh}
\li{inverse hyperbolic functions}{asinh, acosh, atanh}
\li{log$(x)$, $e^x$, $e^x-1$ }{log{\rm, }exp{\rm, }expm1}
\li{Euler $\Gamma$ function, $\log \Gamma$, $\Gamma'/\Gamma$}
{gamma{\rm, }lngamma{\rm, }psi}
\li{half-integer gamma function $\Gamma(n+1/2)$}{gammah$(n)$}
\li{Riemann's zeta $\zeta(s)=\sum n^{-s}$}{zeta$(s)$}
\li{multiple zeta value (MZV), $\zeta(s_1,\dots,s_k)$}{zetamult$(s)$}
\li{incomplete $\Gamma$ function ($y=\Gamma(s)$)}{incgam$(s,x,\{y\})$}
\li{complementary incomplete $\Gamma$}{incgamc$(s,x)$}
\li{exponential integral $\int_x^\infty e^{-t}/t\,dt$}{eint1$(x)$}
\li{error function $2/\sqrt\pi\int_x^\infty e^{-t^2}dt$}{erfc$(x)$}
\li{dilogarithm of $x$}{dilog$(x)$}
\li{$m$-th polylogarithm of $x$}{polylog$(m,x,\{\fl\})$}
\li{$U$-confluent hypergeometric function}{hyperu$(a,b,u)$}
\li{Bessel $J_n(x)$, $J_{n+1/2}(x)$}{besselj$(n,x)$, besseljh$(n,x)$}
\li{Bessel $I_\nu$, $K_\nu$, $H^1_\nu$, $H^2_\nu$, $N_\nu$}
{(bessel)i{\rm, }k{\rm, }h1{\rm, }h2{\rm, }n}
\li{Lambert $W$: $x$ s.t. $xe^x =y$}{lambertw$(y)$}
\li{Teichmuller character of $p$-adic $x$}{teichmuller$(x)$}
\newcolumn
\section{Iterations, Sums \& Products}
\subsec{Numerical integration for meromorphic functions}
Behaviour at endpoint for Double Exponential methods: either a scalar
($a\in\CC$, regular) or $\pm$\kbd{oo} (decreasing at least as $x^{-2}$) or
\beginindentedkeys
\li{$(x-a)^{-\alpha}$ singularity}{$[a,\alpha]$}
\li{exponential decrease $e^{-\alpha|x|}$}{$[\pm\infty,\alpha]$, $\alpha > 0$}
\li{slow decrease $|x|^{\alpha}$}{$\dots \alpha < -1$}
\li{oscillating as $\cos(kx))$}{$\alpha = k$\kbd{I}, $k > 0$}
\li{oscillating as $\sin(kx))$}{$\alpha = -k$\kbd{I}, $k > 0$}
\endindentedkeys
\li{numerical integration}{intnum$(x=a,b,f,\{T\})$}
\li{weights $T$ for \kbd{intnum}}{intnuminit$(a,b,\{m\})$}
\li{weights $T$ incl.~kernel $K$}{intfuncinit$(a,b,K,\{m\})$}
\li{integrate $(2i\pi)^{-1}f$ on circle $|z - a| = R$}
{intcirc$(x=a,R,f,\{T\})$}
\subsec{Other integration methods}
\li{$n$-point Gauss-Legendre}{intnumgauss$(x=a,b,f,\{n\})$}
\li{weights for $n$-point Gauss-Legendre}{intnumgaussinit$(\{n\})$}
\li{Romberg integration (low accuracy)}{intnumromb$(x=a,b,f,\{\fl\})$}
\subsec{Numerical summation}
\li{sum of series $f(n)$, $n\geq a$ (low accuracy)}{suminf$(n=a,\expr)$}
\li{sum of alternating/positive series}{sumalt{\rm,} sumpos}
\li{sum of series using Euler-Maclaurin}{sumnum$(n=a,f,\{T\})$}
\li{weights for \kbd{sumnum}, $a$ as in DE}
{sumnuminit$(\{\infty, a\})$}
\li{sum of series by Monien summation}{sumnummonien$(n=a,f,\{T\})$}
\li{weights for \kbd{sumnummonien}}
{sumnummonieninit$(\{\infty, a\})$}
\subsec{Products}
\li{product $a\le X\le b$, initialized at $x$}{prod$(X=a,b,\expr,\{x\})$}
\li{product over primes $a\le X\le b$}{prodeuler$(X=a,b,\expr)$}
\li{infinite product $a\le X\le\infty$}{prodinf$(X=a,\expr)$}
\subsec{Other numerical methods}
\li{real root of $f$ in $[a,b]$; bracketed root}{solve$(X=a,b,f)$}
\li{\dots by interval splitting}{solvestep$(X=a,b,f,\{\fl=0\})$}
\li{limit of $f(t)$, $t\to\infty$}{limitnum(f, \{k\}, \{alpha\})}
\li{asymptotic expansion of $f$ at $\infty$}{asympnum(f, \{k\}, \{alpha\})}
\li{numerical derivation w.r.t $x$: $f'(a)$}{derivnum$(x=a, f)$}
\li{evaluate continued fraction $F$ at $t$}
{contfraceval$(F,t,\{L\})$}
\li{power series to cont.~fraction ($L$ terms)}
{contfracinit$(S,\{L\})$}
\li{Pad\'{e} approximant (deg.~denom.~$\leq B$)}{bestapprPade$(S,\{B\})$}
\section{Elementary Arithmetic Functions}
\li{vector of binary digits of $|x|$}{binary$(x)$}
\li{bit number $n$ of integer $x$}{bittest$(x,n)$}
\li{Hamming weight of integer $x$}{hammingweight$(x)$}
\li{digits of integer $x$ in base $B$}{digits$(x,\{B=10\})$}
\li{sum of digits of integer $x$ in base $B$}{sumdigits$(x,\{B=10\})$}
\li{integer from digits}{fromdigits$(v,\{B=10\})$}
\li{ceiling/floor/fractional part}{ceil{\rm, }floor{\rm, }frac}
\li{round $x$ to nearest integer}{round$(x,\{$\&$e\})$}
\li{truncate $x$}{truncate$(x,\{$\&$e\})$}
\li{gcd/LCM of $x$ and $y$}{gcd$(x,y)$, lcm$(x,y)$}
\li{gcd of entries of a vector/matrix}{content$(x)$}
\subsec{Primes and Factorization}
\li{extra prime table}{addprimes$()$}
\li{add primes in $v$ to prime table}{addprimes$(v)$}
\li{remove primes from prime table}{removeprimes$(v)$}
\li{Chebyshev $\pi(x)$, $n$-th prime $p_n$}{primepi$(x)$, prime$(n)$}
\li{vector of first $n$ primes}{primes$(n)$}
\li{smallest prime $\ge x$}{nextprime$(x)$}
\li{largest prime $\le x$}{precprime$(x)$}
\li{factorization of $x$}{factor$(x,\{lim\})$}
\li{\dots selecting specific algorithms}{factorint$(x,\{\fl=0\})$}
\li{$n=df^2$, $d$ squarefree/fundamental}{core$(n,\{fl\})${\rm, }coredisc}
\li{recover $x$ from its factorization}{factorback$(f,\{e\})$}
\li{$x\in\ZZ$, $|x|\leq X$, $\gcd(N,P(x)) \geq N$}
{zncoppersmith$(P,N,X,\{B\})$}
\subsec{Divisors and multiplicative functions}
\li{number of prime divisors $\omega(n)$ / $\Omega(n)$}
{omega$(n)${\rm, }bigomega}
\li{divisors of $n$ / number of divisors $\tau(n)$}{divisors$(n)${\rm, }numdiv}
\li{sum of ($k$-th powers of) divisors of $n$}{sigma$(n,\{k\})$}
\li{M\"obius $\mu$-function}{moebius$(x)$}
\li{Ramanujan's $\tau$-function}{ramanujantau$(x)$}
\subsec{Combinatorics}
\li{factorial of $x$}{$x$!~{\rm or} factorial$(x)$}
\li{binomial coefficient $x\choose y$}{binomial$(x,y)$}
\li{Bernoulli number $B_n$ as real/rational}{bernreal$(n)${\rm, }bernfrac}
\li{Bernoulli polynomial $B_n(x)$}{bernpol$(n,\{x\})$}
\li{$n$-th Fibonacci number}{fibonacci$(n)$}
\li{Stirling numbers $s(n,k)$ and $S(n,k)$}{stirling$(n,k,\{\fl\})$}
\li{number of partitions of $n$}{numbpart$(n)$}
\li{$k$-th permutation on $n$ letters}{numtoperm$(n,k)$}
\li{convert permutation to $(n,k)$ form}{permtonum$(v)$}
\subsec{Multiplicative groups $(\ZZ/N\ZZ)^*$, $\FF_q^*$}
\li{Euler $\phi$-function}{eulerphi$(x)$}
\li{multiplicative order of $x$ (divides $o$)}{znorder$(x,\{o\})${\rm, }fforder}
\li{primitive root mod $q$ / $x$\kbd{.mod}}{znprimroot$(q)${\rm, }ffprimroot$(x)$}
\li{structure of $(\ZZ/n\ZZ)^*$}{znstar$(n)$}
\li{discrete logarithm of $x$ in base $g$}{znlog$(x,g,\{o\})${\rm, }fflog}
\li{Kronecker-Legendre symbol $({x\over y})$}{kronecker$(x,y)$}
\li{quadratic Hilbert symbol (at $p$)}{hilbert$(x,y,\{p\})$}
\subsec{Miscellaneous}
\li{integer square / $n$-th root of $x$}{sqrtint$(x)$, sqrtnint$(x,n)$}
\li{largest integer $e$ s.t. $b^e \leq b$, $e = \lfloor \log_b(x)\rfloor$}
{logint$(x,b,\{\&z\})$}
\li{CRT: solve $z\equiv x$ and $z\equiv y$}{chinese$(x,y)$}
\li{minimal $u,v$ so $xu+yv=\gcd(x,y)$}{gcdext$(x,y)$}
\li{continued fraction of $x$}{contfrac$(x,\{b\},\{lmax\})$}
\li{last convergent of continued fraction $x$}{contfracpnqn$(x)$}
\li{rational approximation to $x$ (den. $\leq B$)}{bestappr$(x,\{B\}k)$}
\section{Characters}
Let \var{cyc} $=[d_1,\dots,d_k]$ represent an abelian group $G = \oplus
(\ZZ/d_j\ZZ)\cdot g_j$ or any
structure $G$ affording a \kbd{.cyc} method; e.g. \kbd{idealstar}$(,q)$
for Dirichlet characters. A character $\chi$ is coded by
$[c_1,\dots,c_k]$ such that $\chi(g_j) = e(n_j/d_j)$.
\hfil\break
\li{$\chi\cdot \psi$; $\chi^{-1}$; $\chi\cdot \psi^{-1}$}
{charmul{\rm, }charconj{\rm, }chardiv}
\li{order of $\chi$}{charorder$(\var{cyc}, \chi)$}
\li{kernel of $\chi$}{charker$(\var{cyc},\chi)$}
\li{$\chi(x)$, $G$ a GP group structure}{chareval$(G, \chi, x, \{z\})$}
\subsec{Dirichlet Characters}
\li{initialize $G = (\ZZ/q\ZZ)^*$}{G = idealstar$(,q)$}
\li{is $\chi$ odd?}{zncharisodd$(G,\chi)$}
\li{real $\chi \to $ Kronecker symbol $(D/.)$}{znchartokronecker$(G,\chi)$}
\li{induce $\chi\in \hat{G}$ to $\ZZ/N\ZZ$}{zncharinduce$(G,\var{chi},N)$}
\subsec{Conrey labelling}
\li{Conrey label $m\in (\ZZ/q\ZZ)^* \to\;$ character}{znconreychar$(G,m)$}
\li{character $\to$ Conrey label}{znconreyexp$(G,\chi)$}
\li{log on Conrey generators}{znconreylog$(G, m)$}
\li{conductor of $\chi$ ($\chi_0$ primitive)}
{znconreyconductor$(G,\chi, \{\chi_0\})$}
\section{True-False Tests}
\li{is $x$ the disc. of a quadratic field?}{isfundamental$(x)$}
\li{is $x$ a prime?}{isprime$(x)$}
\li{is $x$ a strong pseudo-prime?}{ispseudoprime$(x)$}
\li{is $x$ square-free?}{issquarefree$(x)$}
\li{is $x$ a square?}{issquare$(x,\{\&n\})$}
\li{is $x$ a perfect power?}{ispower$(x,\{k\},\{\&n\})$}
\li{is $x$ a perfect power of a prime? ($x=p^n$)}{isprimepower$(x,\&n\})$}
\li{\dots of a pseudoprime?}{ispseudoprimepower$(x,\&n\})$}
\li{is $x$ powerful?}{ispowerful$(x)$}
\li{is $x$ a totient? ($x=\varphi(n)$)}{istotient$(x,\{\&n\})$}
\li{is $x$ a polygonal number? ($x = P(s,n)$)}{ispolygonal$(x, s, \{\&n\})$}
\li{is \var{pol}\ irreducible?}{polisirreducible$(\var{pol})$}
\section{Graphic Functions}
\li{crude graph of \expr\ between $a$ and $b$}{plot$(X=a,b,expr)$}
\subsec{High-resolution plot {\rm (immediate plot)}}
\li{plot \expr\ between $a$ and $b$}{ploth$(X=a,b,expr,\{\fl\},\{n\})$}
\li{plot points given by lists $lx$, $ly$}{plothraw$(lx,ly,\{\fl\})$}
\li{terminal dimensions}{plothsizes$()$}
%
\subsec{Rectwindow functions}
\li{init window $w$, with size $x$,$y$}{plotinit$(w,x,y)$}
\li{erase window $w$}{plotkill$(w)$}
\li{copy $w$ to $w_2$ with offset $(dx,dy)$}{plotcopy$(w,w_2,dx,dy)$}
\li{clips contents of $w$}{plotclip$(w)$}
\li{scale coordinates in $w$}{plotscale$(w,x_1,x_2,y_1,y_2)$}
\li{\kbd{ploth} in $w$}{plotrecth$(w,X=a,b,expr,\{\fl\},\{n\})$}
\li{\kbd{plothraw} in $w$}{plotrecthraw$(w,data,\{\fl\})$}
\li{draw window $w_1$ at $(x_1,y_1)$, \dots} {plotdraw$($[[$w_1,x_1,y_1$]$,\dots$]$)$}
%
\subsec{Low-level Rectwindow Functions}
%\li{}{plotlinetype$(w,)$}
%\li{}{plotpointtype$(w,)$}
%\li{}{plotterm$(w,)$}
\li{set current drawing color in $w$ to $c$}{plotcolor$(w,c)$}
\li{current position of cursor in $w$}{plotcursor$(w)$}
%
\li{write $s$ at cursor's position}{plotstring$(w,s)$}
\li{move cursor to $(x,y)$}{plotmove$(w,x,y)$}
\li{move cursor to $(x+dx,y+dy)$}{plotrmove$(w,dx,dy)$}
\li{draw a box to $(x_2,y_2)$}{plotbox$(w,x_2,y_2)$}
\li{draw a box to $(x+dx,y+dy)$}{plotrbox$(w,dx,dy)$}
\li{draw polygon}{plotlines$(w,lx,ly,\{\fl\})$}
\li{draw points}{plotpoints$(w,lx,ly)$}
\li{draw line to $(x+dx,y+dy)$}{plotrline$(w,dx,dy)$}
\li{draw point $(x+dx,y+dy)$}{plotrpoint$(w,dx,dy)$}
\li{draw point $(x+dx,y+dy)$}{plotrpoint$(w,dx,dy)$}
%
\subsec{Postscript Functions}
\li{as {\tt ploth}}{psploth$(X=a,b,expr,\{\fl\},\{n\})$}
\li{as {\tt plothraw}}{psplothraw$(lx,ly,\{\fl\})$}
\li{as {\tt plotdraw}}{psdraw$($[[$w_1,x_1,y_1$]$,\dots$]$)$}
% This goes at the bottom of the second page (column 6)
\copyrightnotice
\bye
|