This file is indexed.

/usr/share/pari/doc/refcard.tex is in pari-doc 2.9.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
% Copyright (c) 2007-2016 Karim Belabas.
% Permission is granted to copy, distribute and/or modify this document
% under the terms of the GNU General Public License

% Reference Card for PARI-GP.
% Author:
%  Karim Belabas
%  Universite de Bordeaux, 351 avenue de la Liberation, F-33405 Talence
%  email: Karim.Belabas@math.u-bordeaux.fr
%
% Based on an earlier version by Joseph H. Silverman who kindly let me
% use his original file.
% Thanks to Bill Allombert, Henri Cohen, Gerhard Niklasch, and Joe Silverman
% for comments and corrections.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% The original copyright notice read:
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Copyright (c) 1993,1994 Joseph H. Silverman. May be freely distributed.
%% Created Tuesday, July 27, 1993
%% Thanks to Stephen Gildea for the multicolumn macro package
%% which I modified from his GNU emacs reference card
%%
%% Original Thanks:
%%  I would like to thank Jim Delaney, Kevin Buzzard, Dan Lieman,
%%  and Jaap Top for sending me corrections.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% This file is intended to be processed by plain TeX (TeX82).
\def\TITLE{Pari-GP reference card}
\input refmacro.tex

Note: optional arguments are surrounded by braces $\{\}$.\hfill\break
To start the calculator, type its name in the terminal: \kbd{gp}\hfill\break
To exit \kbd{gp}, type \kbd{quit}, \kbd{\\q}, or \kbd{<C-D>} at prompt.\hfill
\section{Help}
\li{describe function}{?{\it function}}
\li{extended description}{??{\it keyword}}
\li{list of relevant help topics}{???{\it pattern}}
\li{name of GP-1.39 function $f$ in GP-2.*}{whatnow$(f)$}

\section{Input/Output}
\li{previous result, the result before}
  {\%{\rm, }\%`{\rm, }\%``{\rm, etc.}}
\li{$n$-th result since startup}{\%$n$}
\li{separate multiple statements on line}{;}
\li{extend statement on additional lines}{\\}
\li{extend statements on several lines}{\{$\seq_1$; $\seq_2$;\}}
\li{comment}{/* $\dots$ */}
\li{one-line comment, rest of line ignored}{\\\\ \dots}

\section{Metacommands \& Defaults}
\li{set default $d$ to \var{val}} {default$(\{d\},\{\var{val}\})$}
\li{toggle timer on/off}{\#}
\li{print time for last result}{\#\#}
\li{print defaults}{\\d}
\li{set debug level to $n$}{\\g $n$}
\li{set memory debug level to $n$}{\\gm $n$}
\li{set $n$ significant digits / bits}{\\p $n$, \\pb $n$}
\li{set $n$ terms in series}{\\ps $n$}
\li{quit GP}{\\q}
\li{print the list of PARI types}{\\t}
\li{print the list of user-defined functions}{\\u}
\li{read file into GP}{\\r {\it filename}}

\section{Debugger / break loop}
\li{get out of break loop}{break {\rm or} <C-D>}
\li{go up/down $n$ frames}{dbg\_up$(\{n\})${\rm, }dbg\_down}
\li{set break point}{breakpoint$()$}
\li{examine object $o$}{dbg\_x$(o)$}
\li{current error data}{dbg\_err$()$}
\li{number of objects on heap and their size}{getheap$()$}
\li{total size of objects on PARI stack}{getstack$()$}

\section{PARI Types \& Input Formats}
\li{\typ{INT}. Integers; hex, binary}{$\pm 31$; $\pm $0x1F, $\pm$0b101}
\li{\typ{REAL}. Reals}{$\pm 3.14$, $6.022$ E$23$}
\li{\typ{INTMOD}. Integers modulo $m$}{Mod$(n,m)$}
\li{\typ{FRAC}. Rational Numbers}{$n/m$}
\li{\typ{FFELT}. Elt in finite field $\F_q$}{ffgen(q)}
\li{\typ{COMPLEX}. Complex Numbers}{$x +y\,*\;$I}
\li{\typ{PADIC}. $p$-adic Numbers}{$x\;+\;$O$(p$\pow$k)$}
\li{\typ{QUAD}. Quadratic Numbers}{$x + y\,*\;$quadgen$(D)$}
\li{\typ{POLMOD}. Polynomials modulo $g$}{Mod$(f,g)$}
\li{\typ{POL}. Polynomials}{$a*x$\pow$n+\cdots+b$}
\li{\typ{SER}. Power Series}{$f\;+\;$O$(x$\pow$k)$}
\li{\typ{RFRAC}. Rational Functions}{$f/g$}
\li{\typ{QFI}/\typ{QFR}. Imag/Real binary quad.\ form}{Qfb$(a,b,c,\{d\})$}
\li{\typ{VEC}/\typ{COL}. Row/Column Vectors}
  {[$x,y,z$]{\rm, }[$x,y,z$]\til}
\li{\typ{VEC} integer range}{[1..10]}

% This goes at the bottom of page 1
\shortcopyrightnotice
\newcolumn

\li{\typ{VECSMALL}. Vector of small ints}{Vecsmall([$x,y,z$])}
\li{\typ{MAT}. Matrices}{[$a,b$;$c,d$]}
\li{\typ{LIST}. Lists}{List$($[$x,y,z$]$)$}
\li{\typ{STR}. Strings}{"abc"}
\li{\typ{INFINITY}. $\pm\infty$}{+oo, -oo}

\section{Reserved Variable Names}
\li{$\pi=3.14\dots$, $\gamma=0.57\dots$, $C=0.91\dots$}{Pi{\rm, }Euler{\rm, }Catalan}
\li{square root of $-1$}{I}
\li{Landau's big-oh notation}{O}


\section{Information about an Object}
\li{PARI type of object $x$}{type$(x)$}
\li{length of $x$ / size of $x$ in memory}{\#$x${\rm, }sizebyte$(x)$}
\li{real precision / bit precision of $x$}{precision$(x)${\rm, }bitprecision}
\li{$p$-adic, series prec. of $x$}{padicprec$(x)${\rm, }serprec}

\section{Operators}
\li{basic operations}{+{\rm,} - {\rm,} *{\rm,} /{\rm,} \pow{\rm,} sqr}
\li{\kbd{i=i+1}, \kbd{i=i-1}, \kbd{i=i*j}, \dots}
  {i++{\rm,} i--{\rm,} i*=j{\rm,}\dots}
\li{euclidean quotient, remainder}{$x$\bs/$y${\rm,} $x$\bs$y${\rm,}
$x$\%$y${\rm,} divrem$(x,y)$}
\li{shift $x$ left or right $n$ bits}{ $x$<<$n$, $x$>>$n$
  {\rm or} shift$(x,\pm n)$}
\li{multiply by $2^n$}{shiftmul$(x,n)$}
\li{comparison operators}
   {<={\rm, }<{\rm, }>={\rm, }>{\rm, }=={\rm, }!={\rm, }==={\rm, }lex{\rm, }cmp}
\li{boolean operators (or, and, not)}{||{\rm, } \&\&{\rm ,} !}
\li{bit operations}
   {bitand{\rm, }bitneg{\rm, }bitor{\rm, }bitxor{\rm, }bitnegimply}
\li{sign of $x=-1,0,1$}{sign$(x)$}
\li{maximum/minimum of $x$ and $y$}{max{\rm,} min$(x,y)$}
\li{derivative of $f$}{$f$'}
\li{differential operator}{diffop$(f,v,d,\{n=1\})$}
\li{quote operator (formal variable)}{'x}
\li{assignment}{x = \var{value}}
\li{simultaneous assignment $x\leftarrow v_1$, $y\leftarrow v_2$}{[x,y] = v}
\section{Select Components}
\li{$n$-th component of $x$}{component$(x,n)$}
\li{$n$-th component of vector/list $x$}{$x$[$n$]}
\li{components $a,a+1,\dots,b$ of vector $x$}{$x$[$a$..$b$]}
\li{$(m,n)$-th component of matrix $x$}{$x$[$m,n$]}
\li{row $m$ or column $n$ of matrix $x$}{$x$[$m,$]{\rm,} $x$[$,n$]}
\li{numerator/denominator of $x$}{numerator$(x)${\rm, }denominator}

\section{Random Numbers}
\li{random integer/prime in $[0,N[$}{random$(N)${\rm, }randomprime}
\li{get/set random seed}{getrand{\rm, }setrand$(s)$}

\section{Conversions}
\li{to vector, matrix, vec. of small ints}{Col{\rm/}Vec{\rm,}Mat{\rm,}Vecsmall}
\li{to list, set, map, string}{List{\rm,} Set{\rm,} Map{\rm,} Str}
\li{create PARI object $(x\mod y)$}{Mod$(x,y)$}
\li{make $x$ a polynomial of $v$}{Pol$(x,\{v\})$}
\li{as \kbd{Pol}, etc., starting with constant term}
   {Polrev{\rm, }Vecrev{\rm, }Colrev}
\li{make $x$ a power series of $v$}{Ser$(x,\{v\})$}
\li{string from bytes / from format+args}{Strchr{\rm, }Strprintf}
\li{TeX string}{Strtex$(x)$}
\li{convert $x$ to simplest possible type}{simplify$(x)$}
\li{object $x$ with real precision $n$}{precision$(x,n)$}
\li{object $x$ with bit precision $n$}{bitprecision$(x,n)$}
\li{set precision to $p$ digits in dynamic scope}{localprec$(p)$}
\li{set precision to $p$ bits in dynamic scope}{localbitprec$(p)$}

\subsec{Conjugates and Lifts}
\li{conjugate of a number $x$}{conj$(x)$}
\li{norm of $x$, product with conjugate}{norm$(x)$}
\li{$L^p$ norm of $x$ ($L^\infty$ if no $p$)}{normlp$(x,\{p\})$}
\li{square of $L^2$ norm of $x$}{norml2$(x)$}
\li{lift of $x$ from Mods and $p$-adics}{lift{\rm,} centerlift$(x)$}
\li{recursive lift}{liftall}
\li{lift all \typ{INT} and \typ{PADIC} ($\to$\typ{INT})}{liftint}
\li{lift all \typ{POLMOD} ($\to$\typ{POL})}{liftpol}

\section{Lists, Sets \& Maps}
  {\bf Sets} (= row vector with strictly increasing entries w.r.t. \kbd{cmp})\hfill\break
%
\li{intersection of sets $x$ and $y$}{setintersect$(x,y)$}
\li{set of elements in $x$ not belonging to $y$}{setminus$(x,y)$}
\li{union of sets $x$ and $y$}{setunion$(x,y)$}
\li{does $y$ belong to the set $x$}{setsearch$(x,y,\{\fl\})$}
\li{set of all $f(x,y)$, $x\in X$, $y\in Y$}{setbinop$(f,X,Y)$}
\li{is $x$ a set ?}{setisset$(x)$}

\subsec{Lists. {\rm create empty list: $L$ = \kbd{List}$()$}}
\li{append $x$ to list $L$}{listput$(L,x,\{i\})$}
\li{remove $i$-th component from list $L$}{listpop$(L,\{i\})$}
\li{insert $x$ in list $L$ at position $i$}{listinsert$(L,x,i)$}
\li{sort the list $L$ in place}{listsort$(L,\{\fl\})$}

\subsec{Maps. {\rm create empty dictionnary: $M$ = \kbd{Map}$()$}}
\li{attach value $v$ to key $k$}{mapput$(M,k,v)$}
\li{recover value attach to key $k$ or error}{mapget$(M,k)$}
\li{is key $k$ in the dict ? (set $v$ to $M(k)$)}
   {mapisdefined$(M,k,\{\&v\})$}
\li{remove $k$ from map domain}{mapdelete$(M,k)$}

\section{GP Programming}
\subsec{User functions and closures}
$x,y$ are formal parameters; $y$ defaults to \kbd{Pi} if parameter opitted;
$z,t$ are local variables (lexical scope), $z$ initialized to 1.
\hfil\break
 {\tt fun(x, y=Pi) = my(z=1, t); \var{seq}\hfil\break}
 {\tt fun = (x, y=Pi) -> my(z=1, t); \var{seq}\hfill\break}
\li{attach a help message to $f$}{addhelp$(f)$}
\li{undefine symbol $s$ (also kills help)}{kill$(s)$}
\subsec{Control Statements {\rm ($X$: formal parameter in expression \seq)}}
\li{if $a\ne0$, evaluate $\seq_1$, else $\seq_2$}{if$(a,\{\seq_1\},\{\seq_2\})$}
\smallskip

\li{eval.\ \seq\ for $a\le X\le b$}{for$(X=a,b,\seq)$}
\li{\dots for primes $a\le X\le b$}{forprime$(X=a,b,\seq)$}
\li{\dots for composites $a\le X\le b$}{forcomposite$(X=a,b,\seq)$}
\li{\dots for $a\le X\le b$ stepping $s$}{forstep$(X=a,b,s,\seq)$}
\li{\dots for $X$ dividing $n$}{fordiv$(n,X,\seq)$}
\li{multivariable {\tt for}, lex ordering}{forvec$(X=v,\seq)$}
\li{loop over partitions of $n$}{forpart$(p=n,\seq)$}
\li{loop over vectors $v$, $q(v)\leq B$; $q > 0$}{forqfvec$(v, q, b, \seq)$}
\li{loop over $H < G$ finite abelian group}{forsubgroup$(H=G)$}
\smallskip

\li{evaluate \seq\ until $a\ne0$}{until$(a,\seq)$}
\li{while $a\ne0$, evaluate \seq}{while$(a,\seq)$}
\li{exit $n$ innermost enclosing loops}{break$(\{n\})$}
\li{start new iteration of $n$-th enclosing loop}{next$(\{n\})$}
\li{return $x$ from current subroutine}{return$(\{x\})$}

\subsec{Exceptions, warnings}
\li{raise an exception / warn}{error$()$, warning$()$}
\li{type of error message $E$}{errname$(E)$}
\li{try $\seq_1$, evaluate $\seq_2$ on error}{iferr$(\seq_1, E, \seq_2)$}

\subsec{Functions with closure arguments / results}
\li{select from $v$ according to $f$}{select$(f, v)$}
\li{apply $f$ to all entries in $v$}{apply$(f, v)$}
\li{evaluate $f(a_1,\dots,a_n)$}{call$(f,a)$}
\li{evaluate $f(\dots f(f(a_1,a_2),a_3)\dots,a_n)$}{fold$(f,a)$}
\li{calling function as closure}{self$()$}

\subsec{Sums \& Products}
\li{sum $X=a$ to $X=b$, initialized at $x$}{sum$(X=a,b,\expr,\{x\})$}
\li{sum entries of vector $v$}{vecsum$(v)$}
\li{sum \expr\ over divisors of $n$}{sumdiv$(n,X,\expr)$}
\li{\dots assuming \expr\ multiplicative}{sumdivmult$(n,X,\expr)$}
\li{product $a\le X\le b$, initialized at $x$}{prod$(X=a,b,\expr,\{x\})$}
\li{product over primes $a\le X\le b$}{prodeuler$(X=a,b,\expr)$}

\subsec{Sorting}
\li{sort $x$ by $k$-th component}{vecsort$(x,\{k\},\{fl=0\})$}
\li{min.~$m$ of $x$ ($m=x[i]$), max.}{vecmin$(x,\{\&i\})${\rm, }vecmax}
\li{does $y$ belong to $x$, sorted wrt. $f$}{vecsearch$(x,y,\{f\})$}

\subsec{Input/Output}
\li{print with/without \kbd{\bs n}, \TeX\ format}
   {print{\rm, }print1{\rm, }printtex}
\li{print fields with separator}{printsep$(\var{sep},\dots)$,{\rm, }printsep1}
\li{formatted printing}{printf$()$}
\li{write \args\ to file}{write{\rm,} write1{\rm,} writetex$(\file,\args)$}
\li{write $x$ in binary format}{writebin$(\file,x)$}
\li{read file into GP}{read($\{\file\}$)}
\li{\dots return as vector of lines}{readvec($\{\file\}$)}
\li{\dots return as vector of strings}{readstr($\{\file\}$)}
\li{read a string from keyboard}{input$()$}

\subsec{Timers}
\li{CPU time in \var{ms} and reset timer}{gettime$()$}
\li{CPU time in \var{ms} since gp startup}{getabstime$()$}
\li{time in \var{ms} since UNIX Epoch}{getwalltime$()$}
\li{timeout command after $s$ seconds}{alarm$(s, \expr)$}

\subsec{Interface with system}
\li{allocates a new stack of $s$ bytes}{allocatemem$(\{s\})$}
\li{alias \var{old}\ to \var{new}}{alias$(\var{new},\var{old})$}
\li{install function from library}{install$(f,code,\{\var{gpf\/}\},\{\var{lib}\})$}
\li{execute system command $a$}{system$(a)$}
\li{as above, feed result to GP}{extern$(a)$}
\li{as above, return GP string}{externstr$(a)$}
\li{get \kbd{\$VAR} from environment}{getenv$($\kbd{"VAR"}$)$}
\li{expand env. variable in string}{Strexpand$(x)$}

%
\section{Parallel evaluation}
These functions evaluate their arguments in parallel (pthreads or MPI);
args.~must not access global variables and must be free of side
effects. Enabled if threading engine is not \emph{single} in gp
header.\hfil\break
\li{evaluate $f$ on $x[1],\dots,x[n]$}{parapply$(f,x)$}
\li{evaluate closures $f[1],\dots,f[n]$}{pareval$(f)$}
\li{as \kbd{select}}{parselect$(f,A,\{\fl\})$}
\li{as \kbd{sum}}{parsum$(i = a,b,\var{expr},\{x\})$}
\li{as \kbd{vector}}{parvector$(n,i,\{\var{expr}\})$}
\li{eval $f$ for $i=a,\dots,b$}
   {parfor$(i = a, \{b\}, f,\{r\}, \{f_2\})$}
\li{\dots for $p$ prime in $[a,b]$}
   {parforprime$(p = a, \{b\}, f,\{r\}, \{f_2\})$}
\li{\dots multivariate}
   {parforvec$(X = v, f,\{r\}, \{f_2\}, \{\fl\})$}
\li{declare $x$ as inline (allows to use as global)}{inline$(x)$}
\li{stop inlining}{uninline$()$}

\newcolumn
\title{\TITLE}

\centerline{(PARI-GP version \PARIversion)}

\section{Linear Algebra}
%
\li{dimensions of matrix $x$}{matsize$(x)$}
\li{concatenation of $x$ and $y$}{concat$(x,\{y\})$}
\li{extract components of $x$}{vecextract$(x,y,\{z\})$}
\li{transpose of vector or matrix $x$}{mattranspose$(x)$ {\rm or} $x$\til}
\li{adjoint of the matrix $x$}{matadjoint$(x)$}
\li{eigenvectors/values of matrix $x$}{mateigen$(x)$}
\li{characteristic/minimal polynomial of $x$}{charpoly$(x)${\rm, }minpoly}
\li{trace/determinant of matrix $x$}{trace$(x)${\rm, }matdet}
\li{Frobenius form of $x$}{matfrobenius$(x)$}
\li{QR decomposition}{matqr$(x)$}
\li{apply \kbd{matqr}'s transform to $v$}{mathouseholder$(Q,v)$}

\subsec{Constructors \& Special Matrices}
\li{$\{g(x)\colon x \in v~{\rm s.t.}~f(x)\}$}{[g(x) | x <- v, f(x)]}
\li{$\{x\colon x \in v~{\rm s.t.}~f(x)\}$}{[x | x <- v, f(x)]}
\li{$\{g(x)\colon x \in v\}$}{[g(x) | x <- v]}
\li{row vec.\ of \expr\ eval'ed at $1\le i\le n$}{vector$(n,\{i\},\{\expr\})$}
\li{col.\ vec.\ of \expr\ eval'ed at $1\le i\le n$}{vectorv$(n,\{i\},\{\expr\})$}
\li{vector of small ints}{vectorsmall$(n,\{i\},\{\expr\})$}
\li{$[c, c\cdot x, \dots, c\cdot x^n]$}{powers$(x,n,\{c = 1\})$}
\li{matrix $1\le i\le m$, $1\le j\le n$}{matrix$(m,n,\{i\},\{j\},\{\expr\})$}
\li{define matrix by blocks}{matconcat$(B)$}
\li{diagonal matrix with diagonal $x$}{matdiagonal$(x)$}
\li{is $x$ diagonal?}{matisdiagonal$(x)$}
\li{$x\,\cdot\, $\kbd{matdiagonal}$(d)$}{matmuldiagonal$(x,d)$}
\li{$n\times n$ identity matrix}{matid$(n)$}
\li{Hessenberg form of square matrix $x$}{mathess$(x)$}
\li{$n\times n$ Hilbert matrix $H_{ij}=(i+j-1)^{-1}$}{mathilbert$(n)$}
\li{$n\times n$ Pascal triangle}{matpascal$(n-1)$}
\li{companion matrix to polynomial $x$}{matcompanion$(x)$}
\li{Sylvester matrix of $x$}{polsylvestermatrix$(x)$}

\subsec{Gaussian elimination}
\li{kernel of matrix $x$}{matker$(x,\{\fl\})$}
\li{intersection of column spaces of $x$ and $y$}{matintersect$(x,y)$}
\li{solve $M*X = B$ ($M$ invertible)}{matsolve$(M,B)$}
\li{as solve, modulo $D$ (col. vector)}{matsolvemod$(M,D,B)$}
\li{one sol of $M*X = B$}{matinverseimage$(M,B)$}
\li{basis for image of matrix $x$}{matimage$(x)$}
\li{columns of $x$ \emph{not} in \kbd{matimage}}{matimagecompl$(x)$}
\li{supplement columns of $x$ to get basis}{matsupplement$(x)$}
\li{rows, cols to extract invertible matrix}{matindexrank$(x)$}
\li{rank of the matrix $x$}{matrank$(x)$}

\section{Lattices \& Quadratic Forms}
\subsec{Quadratic forms}
\li{evaluate $^tx Q y$}{qfeval$(\{Q=\var{id}\},x,y)$}
\li{evaluate $^tx Q x$}{qfeval$(\{Q=\var{id}\},x)$}
\li{signature of quad form $^ty*x*y$}{qfsign$(x)$}
\li{decomp into squares of $^ty*x*y$}{qfgaussred$(x)$}
\li{eigenvalues/vectors for real symmetric $x$}{qfjacobi$(x)$}

\subsec{HNF and SNF}
\li{upper triangular Hermite Normal Form}{mathnf$(x)$}
\li{HNF of $x$ where $d$ is a multiple of det$(x)$}{mathnfmod$(x,d)$}
\li{multiple of det$(x)$}{matdetint$(x)$}
\li{HNF of $(x \mid\,$\kbd{diagonal}$(D))$}{mathnfmodid$(x,D)$}
\li{elementary divisors of $x$}{matsnf$(x)$}
\li{elementary divisors of $\ZZ[a]/(f'(a))$}{poldiscreduced$(f)$}
\li{integer kernel of $x$}{matkerint$(x)$}
\li{$\ZZ$-module $\leftrightarrow$ $\QQ$-vector space}{matrixqz$(x,p)$}

\subsec{Lattices}
\li{LLL-algorithm applied to columns of $x$}{qflll$(x,\{\fl\})$}
\li{\dots for Gram matrix of lattice}{qflllgram$(x,\{\fl\})$}
\li{find up to $m$ sols of \kbd{qfnorm}$(x,y)\le b$}{qfminim$(x,b,m)$}
\li{$v$, $v[i]:=$number of $y$ s.t. \kbd{qfnorm}$(x,y)= i$}
    {qfrep$(x,B,\{\fl\})$}
\li{perfection rank of $x$}{qfperfection$(x)$}
\li{find isomorphism between $q$ and $Q$}{qfisom$(q,Q)$}
\li{precompute for isomorphism test with $q$}{qfisominit$(q)$}
\li{automorphism group of $q$}{qfauto$(q)$}
\li{convert \kbd{qfauto} for GAP/Magma}{qfautoexport$(G,\{\fl\})$}
\li{orbits of $V$ under $G\subset \text{GL}(V)$}
   {qforbits$(G,V)$}

\section{Polynomials \& Rational Functions}
\li{all defined polynomial variables}{variables$()$}
\li{get var.~of highest priority (higher than $v$)}
   {varhigher$(\var{name},\{v\})$}
\li{\dots of lowest priority (lower than $v$)}
   {varlower$(\var{name},\{v\})$}

\subsec{Coefficients, variables and basic operators}
\li{degree of $f$}{poldegree$(f)$}
\li{coeff. of degree $n$ of $f$, leading coeff.}{polcoeff$(f,n)${\rm, }pollead}
\li{main variable / all variables in $f$ }{variable$(f)${\rm, }variables$(f)$}
\li{replace $x$ by $y$ in $f$}{subst$(f,x,y)$}
\li{evaluate $f$ replacing vars by their value}{eval$(f)$}
\li{replace polynomial expr.~$T(x)$ by $y$ in $f$}{substpol$(f,T,y)$}
\li{replace $x_1,\dots,x_n$ by $y_1,\dots,y_n$ in $f$}{substvec$(f,x,y)$}
\li{reciprocal polynomial $x^{\deg f}f(1/x)$}{polrecip$(f)$}
\smallskip

\li{gcd of coefficients of $f$}{content$(f)$}
\li{derivative of $f$ w.r.t. $x$}{deriv$(f,\{x\})$}
\li{formal integral of $f$ w.r.t. $x$}{intformal$(f,\{x\})$}
\li{formal sum of $f$ w.r.t. $x$}{sumformal$(f,\{x\})$}

\subsec{Constructors \& Special Polynomials}
\li{interpolating pol.~eval.~at $a$}{polinterpolate$(X,\{Y\},\{a\})$}
\li{$P_n$, $T_n/U_n$, $H_n$}{pollegendre{\rm, }polchebyshev{\rm, }polhermite}
\li{$n$-th cyclotomic polynomial $\Phi_n$}{polcyclo$(n,\{v\})$}
\li{return $n$ if $f=\Phi_n$, else $0$}{poliscyclo$(f)$}
\li{is $f$ a product of cyclotomic polynomials?}{poliscycloprod$(f)$}
\li{Zagier's polynomial of index $(n,m)$}{polzagier$(n,m)$}

\subsec{Resultant, elimination}
\li{discriminant of polynomial $f$}{poldisc$(f)$}
\li{resultant $R = \text{Res}_v(f,g)$}{polresultant$(f,g,\{v\})$}
\li{$[u,v,R]$, $xu + yv = \text{Res}_v(f,g)$}{polresultantext$(x,y,\{v\})$}
\li{solve Thue equation $f(x,y)=a$}{thue$(t,a,\{sol\})$}
\li{initialize $t$ for Thue equation solver}{thueinit$(f)$}
\copyrightnotice

\newcolumn
\title{\TITLE}

\centerline{(PARI-GP version \PARIversion)}
\bigskip

\subsec{Roots and Factorization}
\li{complex roots of $f$}{polroots$(f)$}
\li{number of real roots of $f$ (in $[a,b]$)}{polsturm$(f,\{[a,b]\})$}
\li{real roots of $f$ (in $[a,b]$)}{polrootsreal$(f,\{[a,b]\})$}
\li{symmetric powers of roots of $f$ up to $n$}{polsym$(f,n)$}
\li{Graeffe transform of $f$, $g(x^2)=f(x)f(-x)$}{polgraeffe$(f)$}
\li{factor $f$}{factor$(f)$}
\li{factor $f\mod p$ / roots}{factormod$(f,p)${\rm, }polrootsmod}
\li{\dots using Cantor-Zassenhaus}{factorcantor$(f,p)$}
\li{factor $f$ over $\FF_{p^a}$ / roots}{factorff$(f,p,a)${\rm, }polrootsff}
\li{factor $f$ over $\QQ_p$ / roots}{factorpadic$(f,p,r)${\rm, }polrootspadic}
\li{cyclotomic factors of $f\in\QQ[X]$}{polcyclofactors$(f)$}


\li{find irreducible $T\in \FF_p[x]$, $\deg T = n$}{ffinit$(p,n,\{x\})$}
\li{$\#\{{\rm monic\ irred.}\ T\in \FF_q[x], \deg T = n\}$}{ffnbirred$(q,n)$}
\li{$p$-adic root of $f$ congruent to $a\mod p$}{padicappr$(f,a)$}
\li{Newton polygon of $f$ for prime $p$}{newtonpoly$(f,p)$}
\li{Hensel lift $A/\text{lc}(A) = \prod_i B[i]$ mod $p^e$}
   {polhensellift$(A,B,p,e)$}
\li{extensions of $\QQ_p$ of degree $N$}{padicfields$(p,N)$}

\section{Formal \& p-adic Series}
\li{truncate power series or $p$-adic number}{truncate$(x)$}
\li{valuation of $x$ at $p$}{valuation$(x,p)$}
\subsec{Dirichlet and Power Series}
\li{Taylor expansion around $0$ of $f$ w.r.t. $x$}{taylor$(f,x)$}
\li{$\sum a_kb_k t^k$ from $\sum a_kt^k$ and $\sum b_kt^k$}{serconvol$(a,b)$}
\li{$f=\sum a_k t^k$ from $\sum (a_k/k!)t^k$}{serlaplace$(f)$}
\li{reverse power series $F$ so $F(f(x))=x$}{serreverse$(f)$}
\li{Dirichlet series multiplication / division}{dirmul{\rm,} dirdiv$(x,y)$}
\li{Dirichlet Euler product ($b$ terms)}{direuler$(p=a,b,\expr)$}


\section{Transcendental and $p$-adic Functions}
\li{real, imaginary part of $x$}{real$(x)$, imag$(x)$}
\li{absolute value, argument of $x$}{abs$(x)$, arg$(x)$}
\li{square/nth root of $x$}{sqrt$(x)$, sqrtn$(x,n,\{$\&$z\})$}
\li{trig functions}{sin, cos, tan, cotan, sinc}
\li{inverse trig functions}{asin, acos, atan}
\li{hyperbolic functions}{sinh, cosh, tanh, cotanh}
\li{inverse hyperbolic functions}{asinh, acosh, atanh}
\li{log$(x)$, $e^x$, $e^x-1$ }{log{\rm, }exp{\rm, }expm1}
\li{Euler $\Gamma$ function, $\log \Gamma$, $\Gamma'/\Gamma$}
   {gamma{\rm, }lngamma{\rm, }psi}
\li{half-integer gamma function $\Gamma(n+1/2)$}{gammah$(n)$}
\li{Riemann's zeta $\zeta(s)=\sum n^{-s}$}{zeta$(s)$}
\li{multiple zeta value (MZV), $\zeta(s_1,\dots,s_k)$}{zetamult$(s)$}
\li{incomplete $\Gamma$ function ($y=\Gamma(s)$)}{incgam$(s,x,\{y\})$}
\li{complementary incomplete $\Gamma$}{incgamc$(s,x)$}
\li{exponential integral $\int_x^\infty e^{-t}/t\,dt$}{eint1$(x)$}
\li{error function $2/\sqrt\pi\int_x^\infty e^{-t^2}dt$}{erfc$(x)$}
\li{dilogarithm of $x$}{dilog$(x)$}
\li{$m$-th polylogarithm of $x$}{polylog$(m,x,\{\fl\})$}
\li{$U$-confluent hypergeometric function}{hyperu$(a,b,u)$}
\li{Bessel $J_n(x)$, $J_{n+1/2}(x)$}{besselj$(n,x)$, besseljh$(n,x)$}
\li{Bessel $I_\nu$, $K_\nu$, $H^1_\nu$, $H^2_\nu$, $N_\nu$}
{(bessel)i{\rm, }k{\rm, }h1{\rm, }h2{\rm, }n}
\li{Lambert $W$: $x$ s.t. $xe^x =y$}{lambertw$(y)$}
\li{Teichmuller character of $p$-adic $x$}{teichmuller$(x)$}

\newcolumn

\section{Iterations, Sums \& Products}

\subsec{Numerical integration for meromorphic functions}
Behaviour at endpoint for Double Exponential methods: either a scalar
($a\in\CC$, regular) or $\pm$\kbd{oo} (decreasing at least as $x^{-2}$) or
\beginindentedkeys
  \li{$(x-a)^{-\alpha}$ singularity}{$[a,\alpha]$}
  \li{exponential decrease $e^{-\alpha|x|}$}{$[\pm\infty,\alpha]$, $\alpha > 0$}
  \li{slow decrease $|x|^{\alpha}$}{$\dots \alpha < -1$}
  \li{oscillating as $\cos(kx))$}{$\alpha = k$\kbd{I}, $k > 0$}
  \li{oscillating as $\sin(kx))$}{$\alpha = -k$\kbd{I}, $k > 0$}
\endindentedkeys
\li{numerical integration}{intnum$(x=a,b,f,\{T\})$}
\li{weights $T$ for \kbd{intnum}}{intnuminit$(a,b,\{m\})$}
\li{weights $T$ incl.~kernel $K$}{intfuncinit$(a,b,K,\{m\})$}
\li{integrate $(2i\pi)^{-1}f$ on circle $|z - a| = R$}
   {intcirc$(x=a,R,f,\{T\})$}

\subsec{Other integration methods}
\li{$n$-point Gauss-Legendre}{intnumgauss$(x=a,b,f,\{n\})$}
\li{weights for $n$-point Gauss-Legendre}{intnumgaussinit$(\{n\})$}
\li{Romberg integration (low accuracy)}{intnumromb$(x=a,b,f,\{\fl\})$}

\subsec{Numerical summation}
\li{sum of series $f(n)$, $n\geq a$ (low accuracy)}{suminf$(n=a,\expr)$}
\li{sum of alternating/positive series}{sumalt{\rm,} sumpos}
\li{sum of series using Euler-Maclaurin}{sumnum$(n=a,f,\{T\})$}
\li{weights for \kbd{sumnum}, $a$ as in DE}
   {sumnuminit$(\{\infty, a\})$}
\li{sum of series by Monien summation}{sumnummonien$(n=a,f,\{T\})$}
\li{weights for \kbd{sumnummonien}}
   {sumnummonieninit$(\{\infty, a\})$}

\subsec{Products}
\li{product $a\le X\le b$, initialized at $x$}{prod$(X=a,b,\expr,\{x\})$}
\li{product over primes $a\le X\le b$}{prodeuler$(X=a,b,\expr)$}
\li{infinite product $a\le X\le\infty$}{prodinf$(X=a,\expr)$}

\subsec{Other numerical methods}
\li{real root of $f$ in $[a,b]$; bracketed root}{solve$(X=a,b,f)$}
\li{\dots by interval splitting}{solvestep$(X=a,b,f,\{\fl=0\})$}
\li{limit of $f(t)$, $t\to\infty$}{limitnum(f, \{k\}, \{alpha\})}
\li{asymptotic expansion of $f$ at $\infty$}{asympnum(f, \{k\}, \{alpha\})}
\li{numerical derivation w.r.t $x$: $f'(a)$}{derivnum$(x=a, f)$}
\li{evaluate continued fraction $F$ at $t$}
   {contfraceval$(F,t,\{L\})$}
\li{power series to cont.~fraction ($L$ terms)}
   {contfracinit$(S,\{L\})$}
\li{Pad\'{e} approximant (deg.~denom.~$\leq B$)}{bestapprPade$(S,\{B\})$}

\section{Elementary Arithmetic Functions}
\li{vector of binary digits of $|x|$}{binary$(x)$}
\li{bit number $n$ of integer $x$}{bittest$(x,n)$}
\li{Hamming weight of integer $x$}{hammingweight$(x)$}
\li{digits of integer $x$ in base $B$}{digits$(x,\{B=10\})$}
\li{sum of digits of integer $x$ in base $B$}{sumdigits$(x,\{B=10\})$}
\li{integer from digits}{fromdigits$(v,\{B=10\})$}
\li{ceiling/floor/fractional part}{ceil{\rm, }floor{\rm, }frac}
\li{round $x$ to nearest integer}{round$(x,\{$\&$e\})$}
\li{truncate $x$}{truncate$(x,\{$\&$e\})$}
\li{gcd/LCM of $x$ and $y$}{gcd$(x,y)$, lcm$(x,y)$}
\li{gcd of entries of a vector/matrix}{content$(x)$}

\subsec{Primes and Factorization}
\li{extra prime table}{addprimes$()$}
\li{add primes in $v$ to prime table}{addprimes$(v)$}
\li{remove primes from prime table}{removeprimes$(v)$}
\li{Chebyshev $\pi(x)$, $n$-th prime $p_n$}{primepi$(x)$, prime$(n)$}
\li{vector of first $n$ primes}{primes$(n)$}
\li{smallest prime $\ge x$}{nextprime$(x)$}
\li{largest prime $\le x$}{precprime$(x)$}
\li{factorization of $x$}{factor$(x,\{lim\})$}
\li{\dots selecting specific algorithms}{factorint$(x,\{\fl=0\})$}
\li{$n=df^2$, $d$ squarefree/fundamental}{core$(n,\{fl\})${\rm, }coredisc}
\li{recover $x$ from its factorization}{factorback$(f,\{e\})$}
\li{$x\in\ZZ$, $|x|\leq X$, $\gcd(N,P(x)) \geq N$}
   {zncoppersmith$(P,N,X,\{B\})$}

\subsec{Divisors and multiplicative functions}
\li{number of prime divisors $\omega(n)$ / $\Omega(n)$}
   {omega$(n)${\rm, }bigomega}
\li{divisors of $n$ / number of divisors $\tau(n)$}{divisors$(n)${\rm, }numdiv}
\li{sum of ($k$-th powers of) divisors of $n$}{sigma$(n,\{k\})$}
\li{M\"obius $\mu$-function}{moebius$(x)$}
\li{Ramanujan's $\tau$-function}{ramanujantau$(x)$}

\subsec{Combinatorics}
\li{factorial of $x$}{$x$!~{\rm or} factorial$(x)$}
\li{binomial coefficient $x\choose y$}{binomial$(x,y)$}
\li{Bernoulli number $B_n$ as real/rational}{bernreal$(n)${\rm, }bernfrac}
\li{Bernoulli polynomial $B_n(x)$}{bernpol$(n,\{x\})$}
\li{$n$-th Fibonacci number}{fibonacci$(n)$}
\li{Stirling numbers $s(n,k)$ and $S(n,k)$}{stirling$(n,k,\{\fl\})$}
\li{number of partitions of $n$}{numbpart$(n)$}
\li{$k$-th permutation on $n$ letters}{numtoperm$(n,k)$}
\li{convert permutation to $(n,k)$ form}{permtonum$(v)$}

\subsec{Multiplicative groups $(\ZZ/N\ZZ)^*$, $\FF_q^*$}
\li{Euler $\phi$-function}{eulerphi$(x)$}
\li{multiplicative order of $x$ (divides $o$)}{znorder$(x,\{o\})${\rm, }fforder}
\li{primitive root mod $q$ / $x$\kbd{.mod}}{znprimroot$(q)${\rm, }ffprimroot$(x)$}
\li{structure of $(\ZZ/n\ZZ)^*$}{znstar$(n)$}
\li{discrete logarithm of $x$ in base $g$}{znlog$(x,g,\{o\})${\rm, }fflog}
\li{Kronecker-Legendre symbol $({x\over y})$}{kronecker$(x,y)$}
\li{quadratic Hilbert symbol (at $p$)}{hilbert$(x,y,\{p\})$}

\subsec{Miscellaneous}
\li{integer square / $n$-th root of $x$}{sqrtint$(x)$, sqrtnint$(x,n)$}
\li{largest integer $e$ s.t. $b^e \leq b$, $e = \lfloor \log_b(x)\rfloor$}
   {logint$(x,b,\{\&z\})$}
\li{CRT: solve $z\equiv x$ and $z\equiv y$}{chinese$(x,y)$}
\li{minimal $u,v$ so $xu+yv=\gcd(x,y)$}{gcdext$(x,y)$}
\li{continued fraction of $x$}{contfrac$(x,\{b\},\{lmax\})$}
\li{last convergent of continued fraction $x$}{contfracpnqn$(x)$}
\li{rational approximation to $x$ (den. $\leq B$)}{bestappr$(x,\{B\}k)$}

\section{Characters}
Let \var{cyc} $=[d_1,\dots,d_k]$ represent an abelian group $G = \oplus
(\ZZ/d_j\ZZ)\cdot g_j$ or any
structure $G$ affording a \kbd{.cyc} method; e.g. \kbd{idealstar}$(,q)$
for Dirichlet characters. A character $\chi$ is coded by
$[c_1,\dots,c_k]$ such that $\chi(g_j) = e(n_j/d_j)$.
\hfil\break
\li{$\chi\cdot \psi$; $\chi^{-1}$; $\chi\cdot \psi^{-1}$}
   {charmul{\rm, }charconj{\rm, }chardiv}
\li{order of $\chi$}{charorder$(\var{cyc}, \chi)$}
\li{kernel of $\chi$}{charker$(\var{cyc},\chi)$}
\li{$\chi(x)$, $G$ a GP group structure}{chareval$(G, \chi, x, \{z\})$}

\subsec{Dirichlet Characters}
\li{initialize $G = (\ZZ/q\ZZ)^*$}{G = idealstar$(,q)$}
\li{is $\chi$ odd?}{zncharisodd$(G,\chi)$}
\li{real $\chi \to $ Kronecker symbol $(D/.)$}{znchartokronecker$(G,\chi)$}
\li{induce $\chi\in \hat{G}$ to $\ZZ/N\ZZ$}{zncharinduce$(G,\var{chi},N)$}

\subsec{Conrey labelling}
\li{Conrey label $m\in (\ZZ/q\ZZ)^* \to\;$ character}{znconreychar$(G,m)$}
\li{character $\to$ Conrey label}{znconreyexp$(G,\chi)$}
\li{log on Conrey generators}{znconreylog$(G, m)$}
\li{conductor of $\chi$ ($\chi_0$ primitive)}
   {znconreyconductor$(G,\chi, \{\chi_0\})$}

\section{True-False Tests}
\li{is $x$ the disc. of a quadratic field?}{isfundamental$(x)$}
\li{is $x$ a prime?}{isprime$(x)$}
\li{is $x$ a strong pseudo-prime?}{ispseudoprime$(x)$}
\li{is $x$ square-free?}{issquarefree$(x)$}
\li{is $x$ a square?}{issquare$(x,\{\&n\})$}
\li{is $x$ a perfect power?}{ispower$(x,\{k\},\{\&n\})$}
\li{is $x$ a perfect power of a prime? ($x=p^n$)}{isprimepower$(x,\&n\})$}
\li{\dots of a pseudoprime?}{ispseudoprimepower$(x,\&n\})$}
\li{is $x$ powerful?}{ispowerful$(x)$}
\li{is $x$ a totient? ($x=\varphi(n)$)}{istotient$(x,\{\&n\})$}
\li{is $x$ a polygonal number? ($x = P(s,n)$)}{ispolygonal$(x, s, \{\&n\})$}

\li{is \var{pol}\ irreducible?}{polisirreducible$(\var{pol})$}

\section{Graphic Functions}
\li{crude graph of \expr\ between $a$ and $b$}{plot$(X=a,b,expr)$}
\subsec{High-resolution plot {\rm (immediate plot)}}
\li{plot \expr\ between $a$ and $b$}{ploth$(X=a,b,expr,\{\fl\},\{n\})$}
\li{plot points given by lists $lx$, $ly$}{plothraw$(lx,ly,\{\fl\})$}
\li{terminal dimensions}{plothsizes$()$}
%
\subsec{Rectwindow functions}
\li{init window $w$, with size $x$,$y$}{plotinit$(w,x,y)$}
\li{erase window $w$}{plotkill$(w)$}
\li{copy $w$ to $w_2$ with offset $(dx,dy)$}{plotcopy$(w,w_2,dx,dy)$}
\li{clips contents of $w$}{plotclip$(w)$}
\li{scale coordinates in $w$}{plotscale$(w,x_1,x_2,y_1,y_2)$}
\li{\kbd{ploth} in $w$}{plotrecth$(w,X=a,b,expr,\{\fl\},\{n\})$}
\li{\kbd{plothraw} in $w$}{plotrecthraw$(w,data,\{\fl\})$}
\li{draw window $w_1$ at $(x_1,y_1)$, \dots} {plotdraw$($[[$w_1,x_1,y_1$]$,\dots$]$)$}
%
\subsec{Low-level Rectwindow Functions}
%\li{}{plotlinetype$(w,)$}
%\li{}{plotpointtype$(w,)$}
%\li{}{plotterm$(w,)$}
\li{set current drawing color in $w$ to $c$}{plotcolor$(w,c)$}
\li{current position of cursor in $w$}{plotcursor$(w)$}
%
\li{write $s$ at cursor's position}{plotstring$(w,s)$}
\li{move cursor to $(x,y)$}{plotmove$(w,x,y)$}
\li{move cursor to $(x+dx,y+dy)$}{plotrmove$(w,dx,dy)$}
\li{draw a box to $(x_2,y_2)$}{plotbox$(w,x_2,y_2)$}
\li{draw a box to $(x+dx,y+dy)$}{plotrbox$(w,dx,dy)$}
\li{draw polygon}{plotlines$(w,lx,ly,\{\fl\})$}
\li{draw points}{plotpoints$(w,lx,ly)$}
\li{draw line to $(x+dx,y+dy)$}{plotrline$(w,dx,dy)$}
\li{draw point $(x+dx,y+dy)$}{plotrpoint$(w,dx,dy)$}
\li{draw point $(x+dx,y+dy)$}{plotrpoint$(w,dx,dy)$}
%
\subsec{Postscript Functions}
\li{as {\tt ploth}}{psploth$(X=a,b,expr,\{\fl\},\{n\})$}
\li{as {\tt plothraw}}{psplothraw$(lx,ly,\{\fl\})$}
\li{as {\tt plotdraw}}{psdraw$($[[$w_1,x_1,y_1$]$,\dots$]$)$}

% This goes at the bottom of the second page (column 6)
\copyrightnotice
\bye