/usr/share/octave/packages/splines-1.3.2/doc-cache is in octave-splines 1.3.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 | # doc-cache created by Octave 4.2.1
# name: cache
# type: cell
# rows: 3
# columns: 13
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
bin_values
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1022
-- Function File: [X_BIN Y_BIN W_BIN N_BIN] = bin_values(X, Y, K)
Average values over ranges of one variable
Given X (size N*1) and Y (N*M), this function splits the range of X
into up to K intervals (bins) containing approximately equal
numbers of elements, and for each part of the range computes the
mean of y.
Any NaN values are removed.
Useful for detecting possible nonlinear dependence of Y on X and as
a preprocessor for spline fitting. E.g., to make a plot of the
average behavior of y versus x: 'errorbar(x_bin, y_bin, 1 ./
sqrt(w_bin)); grid on'
Inputs:
X: N*1 real array
Y: N*M array of values at the coordinates X
K: Desired number of bins, 'floor(sqrt(n))' by default
Outputs:
X_BIN, Y_BIN: Mean values by bin (ordered by increasing X)
W_BIN: Weights (inverse standard error of each element in Y_BIN;
note: will be NaN or Inf where N_BIN = 1)
N_BIN: Number of elements of X per bin
See also: csaps, dedup.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Average values over ranges of one variable
Given X (size N*1) and Y (N*M), this
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
catmullrom
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 489
-- Function File: PP = catmullrom( X, F, V)
Returns the piecewise polynomial form of the Catmull-Rom cubic
spline interpolating F at the points X. If the input V is supplied
it will be interpreted as the values of the tangents at the
extremals, if it is missing, the values will be computed from the
data via one-sided finite difference formulas. See the wikipedia
page for "Cubic Hermite spline" for a description of the algorithm.
See also: ppval.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Returns the piecewise polynomial form of the Catmull-Rom cubic spline
interpolat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
csape
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 987
-- Function File: PP = csape (X, Y, COND, VALC)
cubic spline interpolation with various end conditions. creates
the pp-form of the cubic spline.
X should be N by 1, Y should be N by M, VALC should be 2 by M or 2
by 1
The following end conditions as given in COND are possible:
'complete'
match slopes at first and last point as given in VALC
(default; if VALC is not given, the slopes matched are those
of the cubic polynomials that interpolate the first and last
four points)
'not-a-knot'
third derivatives are continuous at the second and second last
point
'periodic'
match first and second derivative of first and last point
'second'
match second derivative at first and last point as given in
VALC
'variational'
set second derivative at first and last point to zero (natural
cubic spline)
See also: ppval, spline.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
cubic spline interpolation with various end conditions.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
csapi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 147
-- Function File: PP = csapi (X, Y)
-- Function File: YI = csapi (X, Y, XI)
cubic spline interpolation
See also: ppval, spline, csape.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
cubic spline interpolation
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
csaps
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1815
-- Function File: [YI P SIGMA2 UNC_YI DF] = csaps(X, Y, P, XI, W=[])
-- Function File: [PP P SIGMA2] = csaps(X, Y, P, [], W=[])
Cubic spline approximation (smoothing)
approximate [X,Y], weighted by W (inverse variance of the Y values;
if not given, equal weighting is assumed), at XI
The chosen cubic spline with natural boundary conditions PP(X)
minimizes P * Sum_i W_i*(Y_i - PP(X_i))^2 + (1-P) * Int PP"(X) dX
Outside the range of X, the cubic spline is a straight line
X and W should be n by 1 in size; Y should be n by m; XI should be
k by 1; the values in X should be distinct and in ascending order;
the values in W should be nonzero
P=0
maximum smoothing: straight line
P=1
no smoothing: interpolation
P<0 or not given
an intermediate amount of smoothing is chosen
and the corresponding P between 0 and 1 is returned
(such that the smoothing term and the interpolation term are
of the same magnitude)
(csaps_sel provides other methods for automatically selecting
the smoothing parameter P.)
SIGMA2 is an estimate of the data error variance, assuming the
smoothing parameter P is realistic
UNC_YI is an estimate of the standard error of the fitted curve(s)
at the XI. Empty if XI is not provided.
DF is an estimate of the degrees of freedom used in the spline fit
(2 for P=0, n for P=1)
References:
Carl de Boor (1978), A Practical Guide to Splines, Springer,
Chapter XIV
Grace Wahba (1983), Bayesian "confidence intervals" for the
cross-validated smoothing spline, Journal of the Royal Statistical
Society, 45B(1):133-150
See also: spline, splinefit, csapi, ppval, dedup, bin_values, csaps_sel.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Cubic spline approximation (smoothing)
approximate [X,Y], weighted by W (inverse
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
csaps_sel
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3284
-- Function File: [YI P SIGMA2,UNC_Y] = csaps_sel(X, Y, XI, W=[],
CRIT=[])
-- Function File: [PP P SIGMA2,UNC_Y] = csaps_sel(X, Y, [], W=[],
CRIT=[])
Cubic spline approximation with smoothing parameter estimation
Approximately interpolates [X,Y], weighted by W (inverse variance;
if not given, equal weighting is assumed), at XI.
The chosen cubic spline with natural boundary conditions PP(X)
minimizes P Sum_i W_i*(Y_i - PP(X_i))^2 + (1-P) Int PP"(X) dX.
A selection criterion CRIT is used to find a suitable value for P
(between 0 and 1); possible values for CRIT are 'vm' (Vapnik's
measure [Cherkassky and Mulier 2007] from statistical learning
theory); 'aicc' (corrected Akaike information criterion, the
default); 'aic' (original Akaike information criterion); 'gcv'
(generalized cross validation).
If CRIT is a nonnegative scalar instead of a string, then P is
chosen to so that the mean square scaled residual Mean_i (W_i*(Y_i
- PP(X_i))^2) is approximately equal to CRIT. If CRIT is a
negative scalar, then P is chosen so that the effective number of
degrees of freedom in the spline fit (which ranges from 2 when P =
0 to N when P = 1) is approximately equal to -CRIT.
X and W should be N by 1 in size; Y should be N by M; XI should be
K by 1; the values in X should be distinct and in ascending order;
the values in W should be nonzero.
Returns the smoothing spline PP or its values YI at the desired XI;
the selected P; the estimated data scatter (variance from the
smooth trend) SIGMA2; the estimated uncertainty (SD) of the
smoothing spline fit at each X value, UNC_Y; and the estimated
number of degrees of freedom DF (out of N) used in the fit.
For small N, the optimization uses singular value decomposition of
an N by N matrix in order to quickly compute the residual size and
model degrees of freedom for many P values for the optimization
(Craven and Wahba 1979). For large N (currently >300), an
asymptotically more computation and storage efficient method that
takes advantage of the sparsity of the problem's coefficient
matrices is used (Hutchinson and de Hoog 1985).
References:
Vladimir Cherkassky and Filip Mulier (2007), Learning from Data:
Concepts, Theory, and Methods. Wiley, Chapter 4
Carl de Boor (1978), A Practical Guide to Splines, Springer,
Chapter XIV
Clifford M. Hurvich, Jeffrey S. Simonoff, Chih-Ling Tsai (1998),
Smoothing parameter selection in nonparametric regression using an
improved Akaike information criterion, J. Royal Statistical
Society, 60B:271-293
M. F. Hutchinson and F. R. de Hoog (1985), Smoothing noisy data
with spline functions, Numerische Mathematik, 47:99-106
M. F. Hutchinson (1986), Algorithm 642: A fast procedure for
calculating minimum cross-validation cubic smoothing splines, ACM
Transactions on Mathematical Software, 12:150-153
Grace Wahba (1983), Bayesian "confidence intervals" for the
cross-validated smoothing spline, J Royal Statistical Society,
45B:133-150
See also: csaps, spline, csapi, ppval, dedup, bin_values, gcvspl.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Cubic spline approximation with smoothing parameter estimation
Approximately int
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
dedup
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 806
-- Function File: [X_NEW Y_NEW W_NEW] = dedup(X, Y, W, TOL,
NAN_REMOVE=true)
De-duplication and sorting to facilitate spline smoothing
Points are sorted in ascending order of X, with each set of
duplicates (values with the same X, within TOL) replaced by a
weighted average. Any NaN values are removed (if the flag
NAN_REMOVE is set).
Useful, for example, as a preprocessor to spline smoothing
Inputs:
X: N*1 real array
Y: N*M array of values at the coordinates X
W: N*1 array of positive weights (inverse error variances);
'ones(size(x))' by default
TOL: if the difference between two X values is no more than this
scalar, merge them; 0 by default
Outputs: De-duplicated and sorted X, Y, W
See also: csaps, bin_values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
De-duplication and sorting to facilitate spline smoothing
Points are sorted in a
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fnder
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
-- Function File: fnder (PP, ORDER)
differentiate the spline in pp-form
See also: ppval.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
differentiate the spline in pp-form
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fnplt
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 92
-- Function File: fnplt (PP, 'PLT')
plots spline
See also: ppval, spline, csape.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
plots spline
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fnval
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 100
r = fnval(pp,x) or r = fnval(x,pp)
Compute the value of the piece-wise polynomial pp at points x.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
r = fnval(pp,x) or r = fnval(x,pp)
Compute the value of the piece-wise polynom
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
tpaps
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1872
-- Function File: [YI P] = tpaps(X, Y, P, XI)
-- Function File: [COEFS P] = tpaps(X, Y, P, [])
Thin plate smoothing of scattered values in multi-D
approximately interpolate [X,Y] at XI
The chosen thin plate spline minimizes the sum of squared
deviations from the given points plus a penalty term proportional
to the curvature of the spline function
X should be N by D in size, where N is the number of points and D
the number of dimensions; Y and W should be N by 1; XI should be K
by D; the points in X should be distinct
P=0
maximum smoothing: flat surface
P=1
no smoothing: interpolation
P<0 or not given
an intermediate amount of smoothing is chosen (such that the
smoothing term and the interpolation term are of the same
magnitude)
If XI is not specified, returns a vector COEFS of the N + D + 1
fitted thin plate spline coefficients. Given COEFS, the value of
the thin-plate spline at any XI can be determined with 'tps_val'
Note: Computes the pseudoinverse of an N by N matrix, so not
recommended for very large N
Example usages:
x = ([1:10 10.5 11.3])'; y = sin(x); xi = (0:0.1:12)';
yi = tpaps(x, y, 0.5, xi);
plot(x, y, xi, yi)
x = rand(100, 2)*2 - 1;
y = x(:, 1) .^ 2 + x(:, 2) .^ 2;
scatter(x(:, 1), x(:, 2), 10, y, "filled")
[x1 y1] = meshgrid((-1:0.2:1)', (-1:0.2:1)');
xi = [x1(:) y1(:)];
yi = tpaps(x, y, 1, xi);
contourf(x1, y1, reshape(yi, 11, 11))
Reference: David Eberly (2011), Thin-Plate Splines,
www.geometrictools.com/Documentation/ThinPlateSplines.pdf
Bouhamidi, A. (2005) Weighted thin plate splines, Analysis and
Applications, 3: 297-324
See also: csaps, tps_val, tps_val_der.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Thin plate smoothing of scattered values in multi-D
approximately interpolate [X
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tps_val
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 701
-- Function File: [YI] = tps_val(X, COEFS, XI, VECTORIZE=true)
Evaluates a thin plate spline at given points
XI
COEFS should be the vector of fitted coefficients returned from
'tpaps(x, y, [p])'
X should be N by D in size, where N is the number of points and D
the number of dimensions; COEFS should be N + D + 1 by 1; XI should
be K by D
The logical argument VECTORIZE controls whether an K by N by D
intermediate array is formed to speed up computation (the default)
or whether looping is used to economize on memory
The returned YI will be K by 1
See the documentation to 'tpaps' for more information
See also: tpaps, tps_val_der.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Evaluates a thin plate spline at given points
XI
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
tps_val_der
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1942
-- Function File: [DYI] = tps_val_der(X, COEFS, XI, VECTORIZE=true )
Evaluates the first derivative of a thin plate spline at given
points
XI
COEFS should be the vector of fitted coefficients returned from
'tpaps(x, y, [p])'
X should be N by D in size, where N is the number of points and D
the number of dimensions; COEFS should be (N + D + 1) by 1; XI
should be K by D
The logical argument VECTORIZE controls whether K by N by D
intermediate arrays are formed to speed up computation (the
default) or whether looping is used to economize on memory
The returned DYI will be K by D, containing the first partial
derivatives of the thin plate spline at XI
Example usages:
x = ([1:10 10.5 11.3])'; y = sin(x); dy = cos(x); xi = (0:0.1:12)';
coefs = tpaps(x, y, 0.5);
[dyi] = tps_val_der(x,coefs,xi);
subplot(1, 1, 1)
plot(x, dy, 's', xi, dyi)
legend('original', 'tps')
x = rand(100, 2)*2 - 1;
y = x(:, 1) .^ 2 + x(:, 2) .^ 2;
[x1 y1] = meshgrid((-1:0.2:1)', (-1:0.2:1)');
xi = [x1(:) y1(:)];
coefs = tpaps(x, y, 1);
dyio = [2*x1(:) 2*y1(:)];
[dyi] = tps_val_der(x,coefs,xi);
subplot(2, 2, 1)
contourf(x1, y1, reshape(dyio(:, 1), 11, 11)); colorbar
title('original x1 partial derivative')
subplot(2, 2, 2)
contourf(x1, y1, reshape(dyi(:, 1), 11, 11)); colorbar
title('tps x1 partial derivative')
subplot(2, 2, 3)
contourf(x1, y1, reshape(dyio(:, 2), 11, 11)); colorbar
title('original x2 partial derivative')
subplot(2, 2, 4)
contourf(x1, y1, reshape(dyi(:, 2), 11, 11)); colorbar
title('tps x2 partial derivative')
See the documentation to 'tpaps' for more information
See also: tpaps, tpaps_val, tps_val_der.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Evaluates the first derivative of a thin plate spline at given points
XI
|