/usr/share/octave/packages/splines-1.3.2/csaps.m is in octave-splines 1.3.2-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | ## Copyright (C) 2012-2015 Nir Krakauer
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File}{[@var{yi} @var{p} @var{sigma2} @var{unc_yi} @var{df}] =} csaps(@var{x}, @var{y}, @var{p}, @var{xi}, @var{w}=[])
## @deftypefnx{Function File}{[@var{pp} @var{p} @var{sigma2}] =} csaps(@var{x}, @var{y}, @var{p}, [], @var{w}=[])
##
## Cubic spline approximation (smoothing)@*
## approximate [@var{x},@var{y}], weighted by @var{w} (inverse variance of the @var{y} values; if not given, equal weighting is assumed), at @var{xi}
##
## The chosen cubic spline with natural boundary conditions @var{pp}(@var{x}) minimizes @var{p} * Sum_i @var{w}_i*(@var{y}_i - @var{pp}(@var{x}_i))^2 + (1-@var{p}) * Int @var{pp}''(@var{x}) d@var{x}
##
## Outside the range of @var{x}, the cubic spline is a straight line
##
## @var{x} and @var{w} should be n by 1 in size; @var{y} should be n by m; @var{xi} should be k by 1; the values in @var{x} should be distinct and in ascending order; the values in @var{w} should be nonzero
##
## @table @asis
## @item @var{p}=0
## maximum smoothing: straight line
## @item @var{p}=1
## no smoothing: interpolation
## @item @var{p}<0 or not given
## an intermediate amount of smoothing is chosen @*
## and the corresponding @var{p} between 0 and 1 is returned @*
## (such that the smoothing term and the interpolation term are of the same magnitude) @*
## (csaps_sel provides other methods for automatically selecting the smoothing parameter @var{p}.)
## @end table
##
## @var{sigma2} is an estimate of the data error variance, assuming the smoothing parameter @var{p} is realistic
##
## @var{unc_yi} is an estimate of the standard error of the fitted curve(s) at the @var{xi}.
## Empty if @var{xi} is not provided.
##
## @var{df} is an estimate of the degrees of freedom used in the spline fit (2 for @var{p}=0, n for @var{p}=1)
##
##
## References: @*
## Carl de Boor (1978), A Practical Guide to Splines, Springer, Chapter XIV @*
## Grace Wahba (1983), Bayesian ``confidence intervals'' for the cross-validated smoothing spline, Journal of the Royal Statistical Society, 45B(1):133-150
##
## @end deftypefn
## @seealso{spline, splinefit, csapi, ppval, dedup, bin_values, csaps_sel}
## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>
function [ret,p,sigma2,unc_yi,df]=csaps(x,y,p,xi,w)
warning ("off", "Octave:broadcast", "local");
if(nargin < 5)
w = [];
if(nargin < 4)
xi = [];
if(nargin < 3)
p = [];
endif
endif
endif
if(columns(x) > 1)
x = x';
y = y';
w = w';
endif
if any (isnan ([x y w](:)) )
error('NaN values in inputs; pre-process to remove them')
endif
h = diff(x);
if !all(h > 0) && !all(h < 0)
error('x must be strictly monotone; pre-process to achieve this')
endif
[n m] = size(y); #should also be that n = numel(x);
if isempty(w)
w = ones(n, 1);
end
R = spdiags([h(2:end) 2*(h(1:end-1) + h(2:end)) h(1:end-1)], [-1 0 1], n-2, n-2);
QT = spdiags([1 ./ h(1:end-1) -(1 ./ h(1:end-1) + 1 ./ h(2:end)) 1 ./ h(2:end)], [0 1 2], n-2, n);
## if not given, choose p so that trace(6*(1-p)*QT*diag(1 ./ w)*QT') = trace(p*R)
if isempty(p) || (p < 0)
r = full(6*trace(QT*diag(1 ./ w)*QT') / trace(R));
p = r ./ (1 + r);
endif
## solve for the scaled second derivatives u and for the function values a at the knots
## (if p = 1, a = y; if p = 0, cc(:) = dd(:) = 0)
## QT*y can also be written as (y(3:n, :) - y(2:(n-1), :)) ./ h(2:end) - (y(2:(n-1), :) - y(1:(n-2), :)) ./ h(1:(end-1))
u = (6*(1-p)*QT*diag(1 ./ w)*QT' + p*R) \ (QT*y);
a = y - 6*(1-p)*diag(1 ./ w)*QT'*u;
## derivatives for the piecewise cubic spline
aa = bb = cc = dd = zeros (n+1, m);
aa(2:end, :) = a;
cc(3:n, :) = 6*p*u; #second derivative at endpoints is 0 [natural spline]
dd(2:n, :) = diff(cc(2:(n+1), :)) ./ h;
bb(2:n, :) = diff(a) ./ h - (h/3) .* (cc(2:n, :) + cc(3:(n+1), :)/2);
## add knots to either end of spline pp-form to ensure linear extrapolation
dx_minus = eps(x(1));
dx_plus = eps(x(end));
xminus = x(1) - dx_minus;
xplus = x(end) + dx_plus;
x = [xminus; x; xplus];
slope_minus = bb(2, :);
slope_plus = bb(n, :) + cc(n, :)*h(n-1) + (dd(n, :)/2)*h(n-1)^2;
bb(1, :) = slope_minus; #linear extension of splines
bb(n + 1, :) = slope_plus;
aa(1, :) = a(1, :) - dx_minus*bb(1, :);
ret = mkpp (x, cat (2, dd'(:)/6, cc'(:)/2, bb'(:), aa'(:)), m);
clear a aa bb cc dd slope_minus slope_plus u #these values are no longer needed
if ~isempty (xi)
ret = ppval (ret, xi);
endif
if (isargout (4) && isempty (xi))
unc_yi = [];
endif
if isargout (3) || (isargout (4) && ~isempty (xi)) || isargout (5)
if p == 1 #interpolation assumes no error in the given data
sigma2 = 0;
if isargout (4) && ~isempty (xi)
unc_yi = zeros(numel(xi), 1);
endif
df = n;
return
endif
[U D V] = svd (diag(1 ./ sqrt(w))*QT'*sqrtm(inv(R)), 0); D = diag(D).^2;
#influence matrix for given p
A = speye(n) - U * diag(D ./ (D + (p / (6*(1-p))))) * U';
A = diag (1 ./ sqrt(w)) * A * diag(sqrt(w)); #rescale to original units; a = A*y
MSR = mean (w .* (y - (A*y)) .^ 2); #mean square residual
df = trace (A);
sigma2 = mean (MSR(:)) * (n / (n-df)); #estimated data error variance (wahba83)
if isargout (4) && ~isempty (xi)
ni = numel (xi);
#dependence of spline values on each given point (to compute uncertainty)
C = 6 * p * full ((6*(1-p)*QT*diag(1 ./ w)*QT' + p*R) \ QT); #cc(3:n, :) = C*y [sparsity is lost]
D = diff ([zeros(n, 1) C' zeros(n, 1)]') ./ h; #dd(2:n, :) = D*y
B = diff (A) ./ h - (h/3) .* ([zeros(n, 1) C']' + [C' zeros(n, 1)]' / 2); #bb(2:n, :) = B*y
#add end-points
C = [zeros(n, 2) C' zeros(n, 1)]';
D = [zeros(n, 1) D' zeros(n, 1)]';
B = [B(1, :)' B' B(end, :)' + C(n, :)'*h(n-1) + (D(n, :)'/2)*h(n-1)^2]';
A = [A(1, :)'-eps(x(1))*B(1, :)' A']';
#sum the squared dependence on each data value y at each requested point xi
unc_yi = zeros (ni, 1);
for i = 1:n
unc_yi += (ppval (mkpp (x, cat (2, D(:, i)/6, C(:, i)/2, B(:, i), A(:, i))), xi(:))) .^ 2;
endfor
unc_yi = sqrt (sigma2 * unc_yi); #not exactly the same as unc_y as calculated in csaps_sel even if xi = x, but fairly close
endif
endif
endfunction
%!shared x,y,xi,yi,p,sigma2,unc_yi,df
%! x = ([1:10 10.5 11.3])'; y = sin(x); xi = linspace(min(x), max(x), 30)';
%!assert (csaps(x,y,1,x), y, 10*eps);
%!assert (csaps(x,y,1,x'), y', 10*eps);
%!assert (csaps(x',y',1,x'), y', 10*eps);
%!assert (csaps(x',y',1,x), y, 10*eps);
%!assert (csaps(x,[y 2*y],1,x)', [y 2*y], 10*eps);
%! [yi,p,sigma2,unc_yi,df] = csaps(x,y,1,xi);
%!assert (yi, ppval(csape(x, y, "variational"), xi), eps);
%!assert (p, 1);
%!assert (unc_yi, zeros(size(xi)));
%!assert (sigma2, 0);
%!assert (df, numel(x));
%! [yi,p,~,~,df] = csaps(x,y,0,xi);
%!assert (yi, polyval(polyfit(x, y, 1), xi), 10*eps);
%!assert (p, 0);
%!assert (df, 2, 100*eps);
%{
test weighted smoothing:
n = 500;
a = 0; b = pi;
f = @(x) sin(x);
x = a + (b-a)*sort(rand(n, 1));
w = rand(n, 1);
y = f(x) + randn(n, 1) ./ sqrt(w);
xi = linspace(a, b, n)';
yi_target = f(xi);
[~,p_sel] = csaps_sel(x, y, xi, w, 1);
[yi,~,sigma2,unc_yi] = csaps(x,y,p_sel,xi,w);
rmse = rms((yi - yi_target));
rmse_weighted = rms((yi - yi_target) ./ unc_yi);
#worse results without the (correct) weighting:
[~,p_sel] = csaps_sel(x, y, xi, []);
[yi,~,sigma2,unc_yi] = csaps(x,y,p_sel,xi,[]);
rmse_u = rms((yi - yi_target));
rmse_u_weighted = rms((yi - yi_target) ./ unc_yi);
%}
|