This file is indexed.

/usr/share/octave/packages/splines-1.3.2/csaps.m is in octave-splines 1.3.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
## Copyright (C) 2012-2015 Nir Krakauer
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 2 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File}{[@var{yi} @var{p} @var{sigma2} @var{unc_yi} @var{df}] =} csaps(@var{x}, @var{y}, @var{p}, @var{xi}, @var{w}=[])
## @deftypefnx{Function File}{[@var{pp} @var{p} @var{sigma2}] =} csaps(@var{x}, @var{y}, @var{p}, [], @var{w}=[])
##
## Cubic spline approximation (smoothing)@*
## approximate [@var{x},@var{y}], weighted by @var{w} (inverse variance of the @var{y} values; if not given, equal weighting is assumed), at @var{xi}
##
## The chosen cubic spline with natural boundary conditions @var{pp}(@var{x}) minimizes @var{p} * Sum_i @var{w}_i*(@var{y}_i - @var{pp}(@var{x}_i))^2  +  (1-@var{p}) * Int @var{pp}''(@var{x}) d@var{x}
##
## Outside the range of @var{x}, the cubic spline is a straight line
##
## @var{x} and @var{w} should be n by 1 in size; @var{y} should be n by m; @var{xi} should be k by 1; the values in @var{x} should be distinct and in ascending order; the values in @var{w} should be nonzero
##
## @table @asis
## @item @var{p}=0
##       maximum smoothing: straight line
## @item @var{p}=1
##       no smoothing: interpolation
## @item @var{p}<0 or not given
##       an intermediate amount of smoothing is chosen @*
##       and the corresponding @var{p} between 0 and 1 is returned @*
##       (such that the smoothing term and the interpolation term are of the same magnitude) @*
##       (csaps_sel provides other methods for automatically selecting the smoothing parameter @var{p}.)
## @end table
##
## @var{sigma2} is an estimate of the data error variance, assuming the smoothing parameter @var{p} is realistic
##
## @var{unc_yi} is an estimate of the standard error of the fitted curve(s) at the @var{xi}.
## Empty if @var{xi} is not provided.
##
## @var{df} is an estimate of the degrees of freedom used in the spline fit (2 for @var{p}=0, n for @var{p}=1)
## 
##
## References:  @*
## Carl de Boor (1978), A Practical Guide to Splines, Springer, Chapter XIV  @*
## Grace Wahba (1983), Bayesian ``confidence intervals'' for the cross-validated smoothing spline, Journal of the Royal Statistical Society, 45B(1):133-150
##
## @end deftypefn
## @seealso{spline, splinefit, csapi, ppval, dedup, bin_values, csaps_sel}

## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>

function [ret,p,sigma2,unc_yi,df]=csaps(x,y,p,xi,w)

warning ("off", "Octave:broadcast", "local");

  if(nargin < 5)
    w = [];
    if(nargin < 4)
      xi = [];
      if(nargin < 3)
	      p = [];
      endif
    endif
  endif

  if(columns(x) > 1)
    x = x';
    y = y';
    w = w';
  endif

  if any (isnan ([x y w](:)) )
    error('NaN values in inputs; pre-process to remove them')
  endif

  h = diff(x);
  if !all(h > 0) && !all(h < 0)
	  error('x must be strictly monotone; pre-process to achieve this')
  endif


  [n m] = size(y); #should also be that n = numel(x);
  
  if isempty(w)
    w = ones(n, 1);
  end


  R = spdiags([h(2:end) 2*(h(1:end-1) + h(2:end)) h(1:end-1)], [-1 0 1], n-2, n-2);

  QT = spdiags([1 ./ h(1:end-1) -(1 ./ h(1:end-1) + 1 ./ h(2:end)) 1 ./ h(2:end)], [0 1 2], n-2, n);
  
## if not given, choose p so that trace(6*(1-p)*QT*diag(1 ./ w)*QT') = trace(p*R)
  if isempty(p) || (p < 0)
  	r = full(6*trace(QT*diag(1 ./ w)*QT') / trace(R));
  	p = r ./ (1 + r);
  endif

## solve for the scaled second derivatives u and for the function values a at the knots
## (if p = 1, a = y; if p = 0, cc(:) = dd(:) = 0)
## QT*y can also be written as (y(3:n, :) - y(2:(n-1), :)) ./ h(2:end) - (y(2:(n-1), :) - y(1:(n-2), :)) ./ h(1:(end-1))
  u = (6*(1-p)*QT*diag(1 ./ w)*QT' + p*R) \ (QT*y);
  a = y - 6*(1-p)*diag(1 ./ w)*QT'*u;
  
## derivatives for the piecewise cubic spline  
  aa = bb = cc = dd = zeros (n+1, m);
  aa(2:end, :) = a;
  cc(3:n, :) = 6*p*u; #second derivative at endpoints is 0 [natural spline]
  dd(2:n, :) = diff(cc(2:(n+1), :)) ./ h;
  bb(2:n, :) = diff(a) ./ h - (h/3) .* (cc(2:n, :) + cc(3:(n+1), :)/2);

## add knots to either end of spline pp-form to ensure linear extrapolation
  dx_minus = eps(x(1));
  dx_plus = eps(x(end));
  xminus = x(1) - dx_minus;
  xplus = x(end) + dx_plus;
  x = [xminus; x; xplus];  
  slope_minus = bb(2, :);
  slope_plus = bb(n, :) + cc(n, :)*h(n-1) + (dd(n, :)/2)*h(n-1)^2;
  bb(1, :) = slope_minus; #linear extension of splines
  bb(n + 1, :) = slope_plus;
  aa(1, :) = a(1, :) - dx_minus*bb(1, :);
  
  ret = mkpp (x, cat (2, dd'(:)/6, cc'(:)/2, bb'(:), aa'(:)), m);
  clear a aa bb cc dd slope_minus slope_plus u #these values are no longer needed
  
  if ~isempty (xi)
    ret = ppval (ret, xi);
  endif

  if (isargout (4) && isempty (xi))
    unc_yi = [];
  endif
    
  if isargout (3) || (isargout (4) && ~isempty (xi)) || isargout (5)

    if p == 1 #interpolation assumes no error in the given data
      sigma2 = 0;
      if isargout (4) && ~isempty (xi)
        unc_yi = zeros(numel(xi), 1);
      endif
      df = n;
      return
    endif

    [U D V] = svd (diag(1 ./ sqrt(w))*QT'*sqrtm(inv(R)), 0); D = diag(D).^2;
    #influence matrix for given p
    A = speye(n) - U * diag(D ./ (D + (p / (6*(1-p))))) * U';
    A = diag (1 ./ sqrt(w)) * A * diag(sqrt(w)); #rescale to original units; a = A*y
    MSR = mean (w .* (y - (A*y)) .^ 2); #mean square residual
    df = trace (A);
    sigma2 = mean (MSR(:)) * (n / (n-df)); #estimated data error variance (wahba83)
        
    if isargout (4) && ~isempty (xi)
      ni = numel (xi);
     #dependence of spline values on each given point (to compute uncertainty)
      C = 6 * p * full ((6*(1-p)*QT*diag(1 ./ w)*QT' + p*R) \ QT); #cc(3:n, :) = C*y [sparsity is lost]
      D = diff ([zeros(n, 1) C' zeros(n, 1)]') ./ h; #dd(2:n, :) = D*y
      B = diff (A) ./ h - (h/3) .* ([zeros(n, 1) C']' + [C' zeros(n, 1)]' / 2); #bb(2:n, :) = B*y
    #add end-points
      C = [zeros(n, 2) C' zeros(n, 1)]';
      D = [zeros(n, 1) D' zeros(n, 1)]';
      B = [B(1, :)' B' B(end, :)' + C(n, :)'*h(n-1) + (D(n, :)'/2)*h(n-1)^2]';
      A = [A(1, :)'-eps(x(1))*B(1, :)' A']';
    #sum the squared dependence on each data value y at each requested point xi
      unc_yi = zeros (ni, 1);
      for i = 1:n
        unc_yi += (ppval (mkpp (x, cat (2, D(:, i)/6, C(:, i)/2, B(:, i), A(:, i))), xi(:))) .^ 2;
      endfor
      unc_yi = sqrt (sigma2 * unc_yi); #not exactly the same as unc_y as calculated in csaps_sel even if xi = x, but fairly close
      endif  
  endif      


endfunction

%!shared x,y,xi,yi,p,sigma2,unc_yi,df
%! x = ([1:10 10.5 11.3])'; y = sin(x); xi = linspace(min(x), max(x), 30)';
%!assert (csaps(x,y,1,x), y, 10*eps);
%!assert (csaps(x,y,1,x'), y', 10*eps);
%!assert (csaps(x',y',1,x'), y', 10*eps);
%!assert (csaps(x',y',1,x), y, 10*eps);
%!assert (csaps(x,[y 2*y],1,x)', [y 2*y], 10*eps);
%! [yi,p,sigma2,unc_yi,df] = csaps(x,y,1,xi);
%!assert (yi, ppval(csape(x, y, "variational"), xi), eps);
%!assert (p, 1);
%!assert (unc_yi, zeros(size(xi)));
%!assert (sigma2, 0);
%!assert (df, numel(x));
%! [yi,p,~,~,df] = csaps(x,y,0,xi);
%!assert (yi, polyval(polyfit(x, y, 1), xi), 10*eps);
%!assert (p, 0);
%!assert (df, 2, 100*eps);

%{
test weighted smoothing:
n = 500;
a = 0; b = pi;
f = @(x) sin(x);
x = a + (b-a)*sort(rand(n, 1));
w = rand(n, 1);
y = f(x) + randn(n, 1) ./ sqrt(w);
xi = linspace(a, b, n)';
yi_target = f(xi);
[~,p_sel] = csaps_sel(x, y, xi, w, 1);
[yi,~,sigma2,unc_yi] = csaps(x,y,p_sel,xi,w);
rmse = rms((yi - yi_target));
rmse_weighted = rms((yi - yi_target) ./ unc_yi);
#worse results without the (correct) weighting:
[~,p_sel] = csaps_sel(x, y, xi, []);
[yi,~,sigma2,unc_yi] = csaps(x,y,p_sel,xi,[]);
rmse_u = rms((yi - yi_target));
rmse_u_weighted = rms((yi - yi_target) ./ unc_yi);
%}