/usr/share/doc/octave/octave.html/Utility-Functions.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Utility Functions (GNU Octave)</title>
<meta name="description" content="Utility Functions (GNU Octave)">
<meta name="keywords" content="Utility Functions (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html#Arithmetic" rel="up" title="Arithmetic">
<link href="Special-Functions.html#Special-Functions" rel="next" title="Special Functions">
<link href="Sums-and-Products.html#Sums-and-Products" rel="prev" title="Sums and Products">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Utility-Functions"></a>
<div class="header">
<p>
Next: <a href="Special-Functions.html#Special-Functions" accesskey="n" rel="next">Special Functions</a>, Previous: <a href="Sums-and-Products.html#Sums-and-Products" accesskey="p" rel="prev">Sums and Products</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Utility-Functions-1"></a>
<h3 class="section">17.5 Utility Functions</h3>
<a name="XREFceil"></a><dl>
<dt><a name="index-ceil"></a>: <em></em> <strong>ceil</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the smallest integer not less than <var>x</var>.
</p>
<p>This is equivalent to rounding towards positive infinity.
</p>
<p>If <var>x</var> is complex, return
<code>ceil (real (<var>x</var>)) + ceil (imag (<var>x</var>)) * I</code>.
</p>
<div class="example">
<pre class="example">ceil ([-2.7, 2.7])
⇒ -2 3
</pre></div>
<p><strong>See also:</strong> <a href="#XREFfloor">floor</a>, <a href="#XREFround">round</a>, <a href="#XREFfix">fix</a>.
</p></dd></dl>
<a name="XREFfix"></a><dl>
<dt><a name="index-fix"></a>: <em></em> <strong>fix</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Truncate fractional portion of <var>x</var> and return the integer portion.
</p>
<p>This is equivalent to rounding towards zero. If <var>x</var> is complex, return
<code>fix (real (<var>x</var>)) + fix (imag (<var>x</var>)) * I</code>.
</p>
<div class="example">
<pre class="example">fix ([-2.7, 2.7])
⇒ -2 2
</pre></div>
<p><strong>See also:</strong> <a href="#XREFceil">ceil</a>, <a href="#XREFfloor">floor</a>, <a href="#XREFround">round</a>.
</p></dd></dl>
<a name="XREFfloor"></a><dl>
<dt><a name="index-floor"></a>: <em></em> <strong>floor</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the largest integer not greater than <var>x</var>.
</p>
<p>This is equivalent to rounding towards negative infinity. If <var>x</var> is
complex, return <code>floor (real (<var>x</var>)) + floor (imag (<var>x</var>)) * I</code>.
</p>
<div class="example">
<pre class="example">floor ([-2.7, 2.7])
⇒ -3 2
</pre></div>
<p><strong>See also:</strong> <a href="#XREFceil">ceil</a>, <a href="#XREFround">round</a>, <a href="#XREFfix">fix</a>.
</p></dd></dl>
<a name="XREFround"></a><dl>
<dt><a name="index-round"></a>: <em></em> <strong>round</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the integer nearest to <var>x</var>.
</p>
<p>If <var>x</var> is complex, return
<code>round (real (<var>x</var>)) + round (imag (<var>x</var>)) * I</code>. If there
are two nearest integers, return the one further away from zero.
</p>
<div class="example">
<pre class="example">round ([-2.7, 2.7])
⇒ -3 3
</pre></div>
<p><strong>See also:</strong> <a href="#XREFceil">ceil</a>, <a href="#XREFfloor">floor</a>, <a href="#XREFfix">fix</a>, <a href="#XREFroundb">roundb</a>.
</p></dd></dl>
<a name="XREFroundb"></a><dl>
<dt><a name="index-roundb"></a>: <em></em> <strong>roundb</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the integer nearest to <var>x</var>. If there are two nearest
integers, return the even one (banker’s rounding).
</p>
<p>If <var>x</var> is complex,
return <code>roundb (real (<var>x</var>)) + roundb (imag (<var>x</var>)) * I</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFround">round</a>.
</p></dd></dl>
<a name="XREFmax"></a><dl>
<dt><a name="index-max"></a>: <em></em> <strong>max</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-max-1"></a>: <em></em> <strong>max</strong> <em>(<var>x</var>, [], <var>dim</var>)</em></dt>
<dt><a name="index-max-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>max</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-max-3"></a>: <em></em> <strong>max</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Find maximum values in the array <var>x</var>.
</p>
<p>For a vector argument, return the maximum value. For a matrix argument,
return a row vector with the maximum value of each column. For a
multi-dimensional array, <code>max</code> operates along the first non-singleton
dimension.
</p>
<p>If the optional third argument <var>dim</var> is present then operate along
this dimension. In this case the second argument is ignored and should be
set to the empty matrix.
</p>
<p>For two matrices (or a matrix and a scalar), return the pairwise maximum.
</p>
<p>Thus,
</p>
<div class="example">
<pre class="example">max (max (<var>x</var>))
</pre></div>
<p>returns the largest element of the 2-D matrix <var>x</var>, and
</p>
<div class="example">
<pre class="example">max (2:5, pi)
⇒ 3.1416 3.1416 4.0000 5.0000
</pre></div>
<p>compares each element of the range <code>2:5</code> with <code>pi</code>, and returns a
row vector of the maximum values.
</p>
<p>For complex arguments, the magnitude of the elements are used for
comparison. If the magnitudes are identical, then the results are ordered
by phase angle in the range (-pi, pi]. Hence,
</p>
<div class="example">
<pre class="example">max ([-1 i 1 -i])
⇒ -1
</pre></div>
<p>because all entries have magnitude 1, but -1 has the largest phase angle
with value pi.
</p>
<p>If called with one input and two output arguments, <code>max</code> also returns
the first index of the maximum value(s). Thus,
</p>
<div class="example">
<pre class="example">[x, ix] = max ([1, 3, 5, 2, 5])
⇒ x = 5
ix = 3
</pre></div>
<p><strong>See also:</strong> <a href="#XREFmin">min</a>, <a href="#XREFcummax">cummax</a>, <a href="#XREFcummin">cummin</a>.
</p></dd></dl>
<a name="XREFmin"></a><dl>
<dt><a name="index-min"></a>: <em></em> <strong>min</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-min-1"></a>: <em></em> <strong>min</strong> <em>(<var>x</var>, [], <var>dim</var>)</em></dt>
<dt><a name="index-min-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>min</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-min-3"></a>: <em></em> <strong>min</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Find minimum values in the array <var>x</var>.
</p>
<p>For a vector argument, return the minimum value. For a matrix argument,
return a row vector with the minimum value of each column. For a
multi-dimensional array, <code>min</code> operates along the first non-singleton
dimension.
</p>
<p>If the optional third argument <var>dim</var> is present then operate along
this dimension. In this case the second argument is ignored and should be
set to the empty matrix.
</p>
<p>For two matrices (or a matrix and a scalar), return the pairwise minimum.
</p>
<p>Thus,
</p>
<div class="example">
<pre class="example">min (min (<var>x</var>))
</pre></div>
<p>returns the smallest element of the 2-D matrix <var>x</var>, and
</p>
<div class="example">
<pre class="example">min (2:5, pi)
⇒ 2.0000 3.0000 3.1416 3.1416
</pre></div>
<p>compares each element of the range <code>2:5</code> with <code>pi</code>, and returns a
row vector of the minimum values.
</p>
<p>For complex arguments, the magnitude of the elements are used for
comparison. If the magnitudes are identical, then the results are ordered
by phase angle in the range (-pi, pi]. Hence,
</p>
<div class="example">
<pre class="example">min ([-1 i 1 -i])
⇒ -i
</pre></div>
<p>because all entries have magnitude 1, but -i has the smallest phase angle
with value -pi/2.
</p>
<p>If called with one input and two output arguments, <code>min</code> also returns
the first index of the minimum value(s). Thus,
</p>
<div class="example">
<pre class="example">[x, ix] = min ([1, 3, 0, 2, 0])
⇒ x = 0
ix = 3
</pre></div>
<p><strong>See also:</strong> <a href="#XREFmax">max</a>, <a href="#XREFcummin">cummin</a>, <a href="#XREFcummax">cummax</a>.
</p></dd></dl>
<a name="XREFcummax"></a><dl>
<dt><a name="index-cummax"></a>: <em></em> <strong>cummax</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cummax-1"></a>: <em></em> <strong>cummax</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dt><a name="index-cummax-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>cummax</strong> <em>(…)</em></dt>
<dd><p>Return the cumulative maximum values along dimension <var>dim</var>.
</p>
<p>If <var>dim</var> is unspecified it defaults to column-wise operation. For
example:
</p>
<div class="example">
<pre class="example">cummax ([1 3 2 6 4 5])
⇒ 1 3 3 6 6 6
</pre></div>
<p>If called with two output arguments the index of the maximum value is also
returned.
</p>
<div class="example">
<pre class="example">[w, iw] = cummax ([1 3 2 6 4 5])
⇒
w = 1 3 3 6 6 6
iw = 1 2 2 4 4 4
</pre></div>
<p><strong>See also:</strong> <a href="#XREFcummin">cummin</a>, <a href="#XREFmax">max</a>, <a href="#XREFmin">min</a>.
</p></dd></dl>
<a name="XREFcummin"></a><dl>
<dt><a name="index-cummin"></a>: <em></em> <strong>cummin</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cummin-1"></a>: <em></em> <strong>cummin</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dt><a name="index-cummin-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>cummin</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the cumulative minimum values along dimension <var>dim</var>.
</p>
<p>If <var>dim</var> is unspecified it defaults to column-wise operation. For
example:
</p>
<div class="example">
<pre class="example">cummin ([5 4 6 2 3 1])
⇒ 5 4 4 2 2 1
</pre></div>
<p>If called with two output arguments the index of the minimum value is also
returned.
</p>
<div class="example">
<pre class="example">[w, iw] = cummin ([5 4 6 2 3 1])
⇒
w = 5 4 4 2 2 1
iw = 1 2 2 4 4 6
</pre></div>
<p><strong>See also:</strong> <a href="#XREFcummax">cummax</a>, <a href="#XREFmin">min</a>, <a href="#XREFmax">max</a>.
</p></dd></dl>
<a name="XREFhypot"></a><dl>
<dt><a name="index-hypot"></a>: <em></em> <strong>hypot</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-hypot-1"></a>: <em></em> <strong>hypot</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, …)</em></dt>
<dd><p>Compute the element-by-element square root of the sum of the squares of
<var>x</var> and <var>y</var>.
</p>
<p>This is equivalent to
<code>sqrt (<var>x</var>.^2 + <var>y</var>.^2)</code>, but is calculated in a manner that
avoids overflows for large values of <var>x</var> or <var>y</var>.
</p>
<p><code>hypot</code> can also be called with more than 2 arguments; in this case,
the arguments are accumulated from left to right:
</p>
<div class="example">
<pre class="example">hypot (hypot (<var>x</var>, <var>y</var>), <var>z</var>)
hypot (hypot (hypot (<var>x</var>, <var>y</var>), <var>z</var>), <var>w</var>), etc.
</pre></div>
</dd></dl>
<a name="XREFgradient"></a><dl>
<dt><a name="index-gradient"></a>: <em><var>dx</var> =</em> <strong>gradient</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-gradient-1"></a>: <em>[<var>dx</var>, <var>dy</var>, <var>dz</var>, …] =</em> <strong>gradient</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-gradient-2"></a>: <em>[…] =</em> <strong>gradient</strong> <em>(<var>m</var>, <var>s</var>)</em></dt>
<dt><a name="index-gradient-3"></a>: <em>[…] =</em> <strong>gradient</strong> <em>(<var>m</var>, <var>x</var>, <var>y</var>, <var>z</var>, …)</em></dt>
<dt><a name="index-gradient-4"></a>: <em>[…] =</em> <strong>gradient</strong> <em>(<var>f</var>, <var>x0</var>)</em></dt>
<dt><a name="index-gradient-5"></a>: <em>[…] =</em> <strong>gradient</strong> <em>(<var>f</var>, <var>x0</var>, <var>s</var>)</em></dt>
<dt><a name="index-gradient-6"></a>: <em>[…] =</em> <strong>gradient</strong> <em>(<var>f</var>, <var>x0</var>, <var>x</var>, <var>y</var>, …)</em></dt>
<dd>
<p>Calculate the gradient of sampled data or a function.
</p>
<p>If <var>m</var> is a vector, calculate the one-dimensional gradient of <var>m</var>.
If <var>m</var> is a matrix the gradient is calculated for each dimension.
</p>
<p><code>[<var>dx</var>, <var>dy</var>] = gradient (<var>m</var>)</code> calculates the
one-dimensional gradient for <var>x</var> and <var>y</var> direction if <var>m</var> is a
matrix. Additional return arguments can be use for multi-dimensional
matrices.
</p>
<p>A constant spacing between two points can be provided by the <var>s</var>
parameter. If <var>s</var> is a scalar, it is assumed to be the spacing for all
dimensions. Otherwise, separate values of the spacing can be supplied by
the <var>x</var>, … arguments. Scalar values specify an equidistant
spacing. Vector values for the <var>x</var>, … arguments specify the
coordinate for that dimension. The length must match their respective
dimension of <var>m</var>.
</p>
<p>At boundary points a linear extrapolation is applied. Interior points
are calculated with the first approximation of the numerical gradient
</p>
<div class="example">
<pre class="example">y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
</pre></div>
<p>If the first argument <var>f</var> is a function handle, the gradient of the
function at the points in <var>x0</var> is approximated using central difference.
For example, <code>gradient (@cos, 0)</code> approximates the gradient of the
cosine function in the point <em>x0 = 0</em>. As with sampled data, the
spacing values between the points from which the gradient is estimated can
be set via the <var>s</var> or <var>dx</var>, <var>dy</var>, … arguments. By default
a spacing of 1 is used.
</p>
<p><strong>See also:</strong> <a href="Finding-Elements-and-Checking-Conditions.html#XREFdiff">diff</a>, <a href="#XREFdel2">del2</a>.
</p></dd></dl>
<a name="XREFdot"></a><dl>
<dt><a name="index-dot"></a>: <em></em> <strong>dot</strong> <em>(<var>x</var>, <var>y</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the dot product of two vectors.
</p>
<p>If <var>x</var> and <var>y</var> are matrices, calculate the dot products along the
first non-singleton dimension.
</p>
<p>If the optional argument <var>dim</var> is given, calculate the dot products
along this dimension.
</p>
<p>This is equivalent to
<code>sum (conj (<var>X</var>) .* <var>Y</var>, <var>dim</var>)</code>,
but avoids forming a temporary array and is faster. When <var>X</var> and
<var>Y</var> are column vectors, the result is equivalent to
<code><var>X</var>' * <var>Y</var></code>.
</p>
<p><strong>See also:</strong> <a href="#XREFcross">cross</a>, <a href="#XREFdivergence">divergence</a>.
</p></dd></dl>
<a name="XREFcross"></a><dl>
<dt><a name="index-cross"></a>: <em></em> <strong>cross</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-cross-1"></a>: <em></em> <strong>cross</strong> <em>(<var>x</var>, <var>y</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the vector cross product of two 3-dimensional vectors <var>x</var> and
<var>y</var>.
</p>
<p>If <var>x</var> and <var>y</var> are matrices, the cross product is applied along the
first dimension with three elements.
</p>
<p>The optional argument <var>dim</var> forces the cross product to be calculated
along the specified dimension.
</p>
<p>Example Code:
</p>
<div class="example">
<pre class="example">cross ([1,1,0], [0,1,1])
⇒ [ 1; -1; 1 ]
</pre></div>
<p><strong>See also:</strong> <a href="#XREFdot">dot</a>, <a href="#XREFcurl">curl</a>, <a href="#XREFdivergence">divergence</a>.
</p></dd></dl>
<a name="XREFdivergence"></a><dl>
<dt><a name="index-divergence"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-divergence-1"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-divergence-2"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>x</var>, <var>y</var>, <var>fx</var>, <var>fy</var>)</em></dt>
<dt><a name="index-divergence-3"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>fx</var>, <var>fy</var>)</em></dt>
<dd><p>Calculate divergence of a vector field given by the arrays <var>fx</var>,
<var>fy</var>, and <var>fz</var> or <var>fx</var>, <var>fy</var> respectively.
</p>
<div class="example">
<pre class="example"> d d d
div F(x,y,z) = -- F(x,y,z) + -- F(x,y,z) + -- F(x,y,z)
dx dy dz
</pre></div>
<p>The coordinates of the vector field can be given by the arguments <var>x</var>,
<var>y</var>, <var>z</var> or <var>x</var>, <var>y</var> respectively.
</p>
<p><strong>See also:</strong> <a href="#XREFcurl">curl</a>, <a href="#XREFgradient">gradient</a>, <a href="#XREFdel2">del2</a>, <a href="#XREFdot">dot</a>.
</p></dd></dl>
<a name="XREFcurl"></a><dl>
<dt><a name="index-curl"></a>: <em>[<var>cx</var>, <var>cy</var>, <var>cz</var>, <var>v</var>] =</em> <strong>curl</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-curl-1"></a>: <em>[<var>cz</var>, <var>v</var>] =</em> <strong>curl</strong> <em>(<var>x</var>, <var>y</var>, <var>fx</var>, <var>fy</var>)</em></dt>
<dt><a name="index-curl-2"></a>: <em>[…] =</em> <strong>curl</strong> <em>(<var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-curl-3"></a>: <em>[…] =</em> <strong>curl</strong> <em>(<var>fx</var>, <var>fy</var>)</em></dt>
<dt><a name="index-curl-4"></a>: <em><var>v</var> =</em> <strong>curl</strong> <em>(…)</em></dt>
<dd><p>Calculate curl of vector field given by the arrays <var>fx</var>, <var>fy</var>, and
<var>fz</var> or <var>fx</var>, <var>fy</var> respectively.
</p>
<div class="example">
<pre class="example"> / d d d d d d \
curl F(x,y,z) = | -- Fz - -- Fy, -- Fx - -- Fz, -- Fy - -- Fx |
\ dy dz dz dx dx dy /
</pre></div>
<p>The coordinates of the vector field can be given by the arguments <var>x</var>,
<var>y</var>, <var>z</var> or <var>x</var>, <var>y</var> respectively. <var>v</var> calculates the
scalar component of the angular velocity vector in direction of the z-axis
for two-dimensional input. For three-dimensional input the scalar
rotation is calculated at each grid point in direction of the vector field
at that point.
</p>
<p><strong>See also:</strong> <a href="#XREFdivergence">divergence</a>, <a href="#XREFgradient">gradient</a>, <a href="#XREFdel2">del2</a>, <a href="#XREFcross">cross</a>.
</p></dd></dl>
<a name="XREFdel2"></a><dl>
<dt><a name="index-del2"></a>: <em><var>d</var> =</em> <strong>del2</strong> <em>(<var>M</var>)</em></dt>
<dt><a name="index-del2-1"></a>: <em><var>d</var> =</em> <strong>del2</strong> <em>(<var>M</var>, <var>h</var>)</em></dt>
<dt><a name="index-del2-2"></a>: <em><var>d</var> =</em> <strong>del2</strong> <em>(<var>M</var>, <var>dx</var>, <var>dy</var>, …)</em></dt>
<dd>
<p>Calculate the discrete Laplace
operator.
</p>
<p>For a 2-dimensional matrix <var>M</var> this is defined as
</p>
<div class="example">
<pre class="example"> 1 / d^2 d^2 \
D = --- * | --- M(x,y) + --- M(x,y) |
4 \ dx^2 dy^2 /
</pre></div>
<p>For N-dimensional arrays the sum in parentheses is expanded to include
second derivatives over the additional higher dimensions.
</p>
<p>The spacing between evaluation points may be defined by <var>h</var>, which is a
scalar defining the equidistant spacing in all dimensions. Alternatively,
the spacing in each dimension may be defined separately by <var>dx</var>,
<var>dy</var>, etc. A scalar spacing argument defines equidistant spacing,
whereas a vector argument can be used to specify variable spacing. The
length of the spacing vectors must match the respective dimension of
<var>M</var>. The default spacing value is 1.
</p>
<p>At least 3 data points are needed for each dimension. Boundary points are
calculated from the linear extrapolation of interior points.
</p>
<p><strong>See also:</strong> <a href="#XREFgradient">gradient</a>, <a href="Finding-Elements-and-Checking-Conditions.html#XREFdiff">diff</a>.
</p></dd></dl>
<a name="XREFfactorial"></a><dl>
<dt><a name="index-factorial"></a>: <em></em> <strong>factorial</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the factorial of <var>n</var> where <var>n</var> is a real non-negative
integer.
</p>
<p>If <var>n</var> is a scalar, this is equivalent to <code>prod (1:<var>n</var>)</code>. For
vector or matrix arguments, return the factorial of each element in the
array.
</p>
<p>For non-integers see the generalized factorial function <code>gamma</code>.
Note that the factorial function grows large quite quickly, and even
with double precision values overflow will occur if <var>n</var> > 171. For
such cases consider <code>gammaln</code>.
</p>
<p><strong>See also:</strong> <a href="Sums-and-Products.html#XREFprod">prod</a>, <a href="Special-Functions.html#XREFgamma">gamma</a>, <a href="Special-Functions.html#XREFgammaln">gammaln</a>.
</p></dd></dl>
<a name="XREFfactor"></a><dl>
<dt><a name="index-factor"></a>: <em><var>pf</var> =</em> <strong>factor</strong> <em>(<var>q</var>)</em></dt>
<dt><a name="index-factor-1"></a>: <em>[<var>pf</var>, <var>n</var>] =</em> <strong>factor</strong> <em>(<var>q</var>)</em></dt>
<dd><p>Return the prime factorization of <var>q</var>.
</p>
<p>The prime factorization is defined as <code>prod (<var>pf</var>) == <var>q</var></code>
where every element of <var>pf</var> is a prime number. If <code><var>q</var> == 1</code>,
return 1.
</p>
<p>With two output arguments, return the unique prime factors <var>pf</var> and
their multiplicities. That is,
<code>prod (<var>pf</var> .^ <var>n</var>) == <var>q</var></code>.
</p>
<p>Implementation Note: The input <var>q</var> must be less than
<code>flintmax</code> (9.0072e+15) in order to factor correctly.
</p>
<p><strong>See also:</strong> <a href="#XREFgcd">gcd</a>, <a href="#XREFlcm">lcm</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>, <a href="#XREFprimes">primes</a>.
</p></dd></dl>
<a name="XREFgcd"></a><dl>
<dt><a name="index-gcd"></a>: <em><var>g</var> =</em> <strong>gcd</strong> <em>(<var>a1</var>, <var>a2</var>, …)</em></dt>
<dt><a name="index-gcd-1"></a>: <em>[<var>g</var>, <var>v1</var>, …] =</em> <strong>gcd</strong> <em>(<var>a1</var>, <var>a2</var>, …)</em></dt>
<dd><p>Compute the greatest common divisor of <var>a1</var>, <var>a2</var>, ….
</p>
<p>If more than one argument is given then all arguments must be the same size
or scalar. In this case the greatest common divisor is calculated for each
element individually. All elements must be ordinary or Gaussian (complex)
integers. Note that for Gaussian integers, the gcd is only unique up to a
phase factor (multiplication by 1, -1, i, or -i), so an arbitrary greatest
common divisor among the four possible is returned.
</p>
<p>Optional return arguments <var>v1</var>, …, contain integer vectors such
that,
</p>
<div class="example">
<pre class="example"><var>g</var> = <var>v1</var> .* <var>a1</var> + <var>v2</var> .* <var>a2</var> + …
</pre></div>
<p>Example code:
</p>
<div class="example">
<pre class="example">gcd ([15, 9], [20, 18])
⇒ 5 9
</pre></div>
<p><strong>See also:</strong> <a href="#XREFlcm">lcm</a>, <a href="#XREFfactor">factor</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>
<a name="XREFlcm"></a><dl>
<dt><a name="index-lcm"></a>: <em></em> <strong>lcm</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-lcm-1"></a>: <em></em> <strong>lcm</strong> <em>(<var>x</var>, <var>y</var>, …)</em></dt>
<dd><p>Compute the least common multiple of <var>x</var> and <var>y</var>, or of the list of
all arguments.
</p>
<p>All elements must be numeric and of the same size or scalar.
</p>
<p><strong>See also:</strong> <a href="#XREFfactor">factor</a>, <a href="#XREFgcd">gcd</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>
<a name="XREFchop"></a><dl>
<dt><a name="index-chop"></a>: <em></em> <strong>chop</strong> <em>(<var>x</var>, <var>ndigits</var>, <var>base</var>)</em></dt>
<dd><p>Truncate elements of <var>x</var> to a length of <var>ndigits</var> such that the
resulting numbers are exactly divisible by <var>base</var>.
</p>
<p>If <var>base</var> is not specified it defaults to 10.
</p>
<div class="example">
<pre class="example">format long
chop (-pi, 5, 10)
⇒ -3.14200000000000
chop (-pi, 5, 5)
⇒ -3.14150000000000
</pre></div>
</dd></dl>
<a name="XREFrem"></a><dl>
<dt><a name="index-rem"></a>: <em></em> <strong>rem</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Return the remainder of the division <code><var>x</var> / <var>y</var></code>.
</p>
<p>The remainder is computed using the expression
</p>
<div class="example">
<pre class="example">x - y .* fix (x ./ y)
</pre></div>
<p>An error message is printed if the dimensions of the arguments do not agree,
or if either argument is complex.
</p>
<p>Programming Notes: Floating point numbers within a few eps of an integer
will be rounded to an integer before computation for compatibility with
<small>MATLAB</small>.
</p>
<p>By convention,
</p>
<div class="example">
<pre class="example">rem (<var>x</var>, 0) = NaN if <var>x</var> is a floating point variable
rem (<var>x</var>, 0) = 0 if <var>x</var> is an integer variable
rem (<var>x</var>, <var>y</var>) returns a value with the signbit from <var>x</var>
</pre></div>
<p>For the opposite conventions see the <code>mod</code> function. In general,
<code>rem</code> is best when computing the remainder after division of two
<em>positive</em> numbers. For negative numbers, or when the values are
periodic, <code>mod</code> is a better choice.
</p>
<p><strong>See also:</strong> <a href="#XREFmod">mod</a>.
</p></dd></dl>
<a name="XREFmod"></a><dl>
<dt><a name="index-mod"></a>: <em></em> <strong>mod</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Compute the modulo of <var>x</var> and <var>y</var>.
</p>
<p>Conceptually this is given by
</p>
<div class="example">
<pre class="example">x - y .* floor (x ./ y)
</pre></div>
<p>and is written such that the correct modulus is returned for integer types.
This function handles negative values correctly. That is,
<code>mod <span class="nolinebreak">(-1,</span> 3)</code><!-- /@w --> is 2, not -1, as <code>rem <span class="nolinebreak">(-1,</span> 3)</code><!-- /@w --> returns.
</p>
<p>An error results if the dimensions of the arguments do not agree, or if
either of the arguments is complex.
</p>
<p>Programming Notes: Floating point numbers within a few eps of an integer
will be rounded to an integer before computation for compatibility with
<small>MATLAB</small>.
</p>
<p>By convention,
</p>
<div class="example">
<pre class="example">mod (<var>x</var>, 0) = <var>x</var>
mod (<var>x</var>, <var>y</var>) returns a value with the signbit from <var>y</var>
</pre></div>
<p>For the opposite conventions see the <code>rem</code> function. In general,
<code>mod</code> is a better choice than <code>rem</code> when any of the inputs are
negative numbers or when the values are periodic.
</p>
<p><strong>See also:</strong> <a href="#XREFrem">rem</a>.
</p></dd></dl>
<a name="XREFprimes"></a><dl>
<dt><a name="index-primes"></a>: <em></em> <strong>primes</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return all primes up to <var>n</var>.
</p>
<p>The output data class (double, single, uint32, etc.) is the same as the
input class of <var>n</var>. The algorithm used is the Sieve of Eratosthenes.
</p>
<p>Notes: If you need a specific number of primes you can use the fact that the
distance from one prime to the next is, on average, proportional to the
logarithm of the prime. Integrating, one finds that there are about
<em>k</em> primes less than
k*log (5*k).
</p>
<p>See also <code>list_primes</code> if you need a specific number <var>n</var> of primes.
</p>
<p><strong>See also:</strong> <a href="#XREFlist_005fprimes">list_primes</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>
<a name="XREFlist_005fprimes"></a><dl>
<dt><a name="index-list_005fprimes"></a>: <em></em> <strong>list_primes</strong> <em>()</em></dt>
<dt><a name="index-list_005fprimes-1"></a>: <em></em> <strong>list_primes</strong> <em>(<var>n</var>)</em></dt>
<dd><p>List the first <var>n</var> primes.
</p>
<p>If <var>n</var> is unspecified, the first 25 primes are listed.
</p>
<p><strong>See also:</strong> <a href="#XREFprimes">primes</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>
<a name="XREFsign"></a><dl>
<dt><a name="index-sign"></a>: <em></em> <strong>sign</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the <em>signum</em> function.
</p>
<p>This is defined as
</p>
<div class="example">
<pre class="example"> -1, x < 0;
sign (x) = 0, x = 0;
1, x > 0.
</pre></div>
<p>For complex arguments, <code>sign</code> returns <code>x ./ abs (<var>x</var>)</code>.
</p>
<p>Note that <code>sign (-0.0)</code> is 0. Although IEEE 754 floating point
allows zero to be signed, 0.0 and -0.0 compare equal. If you must test
whether zero is signed, use the <code>signbit</code> function.
</p>
<p><strong>See also:</strong> <a href="#XREFsignbit">signbit</a>.
</p></dd></dl>
<a name="XREFsignbit"></a><dl>
<dt><a name="index-signbit"></a>: <em></em> <strong>signbit</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return logical true if the value of <var>x</var> has its sign bit set and false
otherwise.
</p>
<p>This behavior is consistent with the other logical functions.
See <a href="Logical-Values.html#Logical-Values">Logical Values</a>. The behavior differs from the C language function
which returns nonzero if the sign bit is set.
</p>
<p>This is not the same as <code>x < 0.0</code>, because IEEE 754 floating point
allows zero to be signed. The comparison <code>-0.0 < 0.0</code> is false,
but <code>signbit (-0.0)</code> will return a nonzero value.
</p>
<p><strong>See also:</strong> <a href="#XREFsign">sign</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Special-Functions.html#Special-Functions" accesskey="n" rel="next">Special Functions</a>, Previous: <a href="Sums-and-Products.html#Sums-and-Products" accesskey="p" rel="prev">Sums and Products</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|