This file is indexed.

/usr/share/doc/octave/octave.html/Utility-Functions.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Utility Functions (GNU Octave)</title>

<meta name="description" content="Utility Functions (GNU Octave)">
<meta name="keywords" content="Utility Functions (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html#Arithmetic" rel="up" title="Arithmetic">
<link href="Special-Functions.html#Special-Functions" rel="next" title="Special Functions">
<link href="Sums-and-Products.html#Sums-and-Products" rel="prev" title="Sums and Products">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Utility-Functions"></a>
<div class="header">
<p>
Next: <a href="Special-Functions.html#Special-Functions" accesskey="n" rel="next">Special Functions</a>, Previous: <a href="Sums-and-Products.html#Sums-and-Products" accesskey="p" rel="prev">Sums and Products</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Utility-Functions-1"></a>
<h3 class="section">17.5 Utility Functions</h3>

<a name="XREFceil"></a><dl>
<dt><a name="index-ceil"></a>: <em></em> <strong>ceil</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the smallest integer not less than <var>x</var>.
</p>
<p>This is equivalent to rounding towards positive infinity.
</p>
<p>If <var>x</var> is complex, return
<code>ceil (real (<var>x</var>)) + ceil (imag (<var>x</var>)) * I</code>.
</p>
<div class="example">
<pre class="example">ceil ([-2.7, 2.7])
    &rArr; -2    3
</pre></div>

<p><strong>See also:</strong> <a href="#XREFfloor">floor</a>, <a href="#XREFround">round</a>, <a href="#XREFfix">fix</a>.
</p></dd></dl>


<a name="XREFfix"></a><dl>
<dt><a name="index-fix"></a>: <em></em> <strong>fix</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Truncate fractional portion of <var>x</var> and return the integer portion.
</p>
<p>This is equivalent to rounding towards zero.  If <var>x</var> is complex, return
<code>fix (real (<var>x</var>)) + fix (imag (<var>x</var>)) * I</code>.
</p>
<div class="example">
<pre class="example">fix ([-2.7, 2.7])
   &rArr; -2    2
</pre></div>

<p><strong>See also:</strong> <a href="#XREFceil">ceil</a>, <a href="#XREFfloor">floor</a>, <a href="#XREFround">round</a>.
</p></dd></dl>


<a name="XREFfloor"></a><dl>
<dt><a name="index-floor"></a>: <em></em> <strong>floor</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the largest integer not greater than <var>x</var>.
</p>
<p>This is equivalent to rounding towards negative infinity.  If <var>x</var> is
complex, return <code>floor (real (<var>x</var>)) + floor (imag (<var>x</var>)) * I</code>.
</p>
<div class="example">
<pre class="example">floor ([-2.7, 2.7])
     &rArr; -3    2
</pre></div>

<p><strong>See also:</strong> <a href="#XREFceil">ceil</a>, <a href="#XREFround">round</a>, <a href="#XREFfix">fix</a>.
</p></dd></dl>


<a name="XREFround"></a><dl>
<dt><a name="index-round"></a>: <em></em> <strong>round</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the integer nearest to <var>x</var>.
</p>
<p>If <var>x</var> is complex, return
<code>round (real (<var>x</var>)) + round (imag (<var>x</var>)) * I</code>.  If there
are two nearest integers, return the one further away from zero.
</p>
<div class="example">
<pre class="example">round ([-2.7, 2.7])
     &rArr; -3    3
</pre></div>

<p><strong>See also:</strong> <a href="#XREFceil">ceil</a>, <a href="#XREFfloor">floor</a>, <a href="#XREFfix">fix</a>, <a href="#XREFroundb">roundb</a>.
</p></dd></dl>


<a name="XREFroundb"></a><dl>
<dt><a name="index-roundb"></a>: <em></em> <strong>roundb</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the integer nearest to <var>x</var>.  If there are two nearest
integers, return the even one (banker&rsquo;s rounding).
</p>
<p>If <var>x</var> is complex,
return <code>roundb (real (<var>x</var>)) + roundb (imag (<var>x</var>)) * I</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFround">round</a>.
</p></dd></dl>


<a name="XREFmax"></a><dl>
<dt><a name="index-max"></a>: <em></em> <strong>max</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-max-1"></a>: <em></em> <strong>max</strong> <em>(<var>x</var>, [], <var>dim</var>)</em></dt>
<dt><a name="index-max-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>max</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-max-3"></a>: <em></em> <strong>max</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Find maximum values in the array <var>x</var>.
</p>
<p>For a vector argument, return the maximum value.  For a matrix argument,
return a row vector with the maximum value of each column.  For a
multi-dimensional array, <code>max</code> operates along the first non-singleton
dimension.
</p>
<p>If the optional third argument <var>dim</var> is present then operate along
this dimension.  In this case the second argument is ignored and should be
set to the empty matrix.
</p>
<p>For two matrices (or a matrix and a scalar), return the pairwise maximum.
</p>
<p>Thus,
</p>
<div class="example">
<pre class="example">max (max (<var>x</var>))
</pre></div>

<p>returns the largest element of the 2-D matrix <var>x</var>, and
</p>
<div class="example">
<pre class="example">max (2:5, pi)
    &rArr;  3.1416  3.1416  4.0000  5.0000
</pre></div>

<p>compares each element of the range <code>2:5</code> with <code>pi</code>, and returns a
row vector of the maximum values.
</p>
<p>For complex arguments, the magnitude of the elements are used for
comparison.  If the magnitudes are identical, then the results are ordered
by phase angle in the range (-pi, pi].  Hence,
</p>
<div class="example">
<pre class="example">max ([-1 i 1 -i])
    &rArr; -1
</pre></div>

<p>because all entries have magnitude 1, but -1 has the largest phase angle
with value pi.
</p>
<p>If called with one input and two output arguments, <code>max</code> also returns
the first index of the maximum value(s).  Thus,
</p>
<div class="example">
<pre class="example">[x, ix] = max ([1, 3, 5, 2, 5])
    &rArr;  x = 5
        ix = 3
</pre></div>

<p><strong>See also:</strong> <a href="#XREFmin">min</a>, <a href="#XREFcummax">cummax</a>, <a href="#XREFcummin">cummin</a>.
</p></dd></dl>


<a name="XREFmin"></a><dl>
<dt><a name="index-min"></a>: <em></em> <strong>min</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-min-1"></a>: <em></em> <strong>min</strong> <em>(<var>x</var>, [], <var>dim</var>)</em></dt>
<dt><a name="index-min-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>min</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-min-3"></a>: <em></em> <strong>min</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Find minimum values in the array <var>x</var>.
</p>
<p>For a vector argument, return the minimum value.  For a matrix argument,
return a row vector with the minimum value of each column.  For a
multi-dimensional array, <code>min</code> operates along the first non-singleton
dimension.
</p>
<p>If the optional third argument <var>dim</var> is present then operate along
this dimension.  In this case the second argument is ignored and should be
set to the empty matrix.
</p>
<p>For two matrices (or a matrix and a scalar), return the pairwise minimum.
</p>
<p>Thus,
</p>
<div class="example">
<pre class="example">min (min (<var>x</var>))
</pre></div>

<p>returns the smallest element of the 2-D matrix <var>x</var>, and
</p>
<div class="example">
<pre class="example">min (2:5, pi)
    &rArr;  2.0000  3.0000  3.1416  3.1416
</pre></div>

<p>compares each element of the range <code>2:5</code> with <code>pi</code>, and returns a
row vector of the minimum values.
</p>
<p>For complex arguments, the magnitude of the elements are used for
comparison.  If the magnitudes are identical, then the results are ordered
by phase angle in the range (-pi, pi].  Hence,
</p>
<div class="example">
<pre class="example">min ([-1 i 1 -i])
    &rArr; -i
</pre></div>

<p>because all entries have magnitude 1, but -i has the smallest phase angle
with value -pi/2.
</p>
<p>If called with one input and two output arguments, <code>min</code> also returns
the first index of the minimum value(s).  Thus,
</p>
<div class="example">
<pre class="example">[x, ix] = min ([1, 3, 0, 2, 0])
    &rArr;  x = 0
        ix = 3
</pre></div>

<p><strong>See also:</strong> <a href="#XREFmax">max</a>, <a href="#XREFcummin">cummin</a>, <a href="#XREFcummax">cummax</a>.
</p></dd></dl>


<a name="XREFcummax"></a><dl>
<dt><a name="index-cummax"></a>: <em></em> <strong>cummax</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cummax-1"></a>: <em></em> <strong>cummax</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dt><a name="index-cummax-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>cummax</strong> <em>(&hellip;)</em></dt>
<dd><p>Return the cumulative maximum values along dimension <var>dim</var>.
</p>
<p>If <var>dim</var> is unspecified it defaults to column-wise operation.  For
example:
</p>
<div class="example">
<pre class="example">cummax ([1 3 2 6 4 5])
   &rArr;  1  3  3  6  6  6
</pre></div>

<p>If called with two output arguments the index of the maximum value is also
returned.
</p>
<div class="example">
<pre class="example">[w, iw] = cummax ([1 3 2 6 4 5])
&rArr;
w =  1  3  3  6  6  6
iw = 1  2  2  4  4  4
</pre></div>


<p><strong>See also:</strong> <a href="#XREFcummin">cummin</a>, <a href="#XREFmax">max</a>, <a href="#XREFmin">min</a>.
</p></dd></dl>


<a name="XREFcummin"></a><dl>
<dt><a name="index-cummin"></a>: <em></em> <strong>cummin</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cummin-1"></a>: <em></em> <strong>cummin</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dt><a name="index-cummin-2"></a>: <em>[<var>w</var>, <var>iw</var>] =</em> <strong>cummin</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the cumulative minimum values along dimension <var>dim</var>.
</p>
<p>If <var>dim</var> is unspecified it defaults to column-wise operation.  For
example:
</p>
<div class="example">
<pre class="example">cummin ([5 4 6 2 3 1])
   &rArr;  5  4  4  2  2  1
</pre></div>

<p>If called with two output arguments the index of the minimum value is also
returned.
</p>
<div class="example">
<pre class="example">[w, iw] = cummin ([5 4 6 2 3 1])
&rArr;
w =  5  4  4  2  2  1
iw = 1  2  2  4  4  6
</pre></div>


<p><strong>See also:</strong> <a href="#XREFcummax">cummax</a>, <a href="#XREFmin">min</a>, <a href="#XREFmax">max</a>.
</p></dd></dl>


<a name="XREFhypot"></a><dl>
<dt><a name="index-hypot"></a>: <em></em> <strong>hypot</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-hypot-1"></a>: <em></em> <strong>hypot</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, &hellip;)</em></dt>
<dd><p>Compute the element-by-element square root of the sum of the squares of
<var>x</var> and <var>y</var>.
</p>
<p>This is equivalent to
<code>sqrt (<var>x</var>.^2 + <var>y</var>.^2)</code>, but is calculated in a manner that
avoids overflows for large values of <var>x</var> or <var>y</var>.
</p>
<p><code>hypot</code> can also be called with more than 2 arguments; in this case,
the arguments are accumulated from left to right:
</p>
<div class="example">
<pre class="example">hypot (hypot (<var>x</var>, <var>y</var>), <var>z</var>)
hypot (hypot (hypot (<var>x</var>, <var>y</var>), <var>z</var>), <var>w</var>), etc.
</pre></div>
</dd></dl>


<a name="XREFgradient"></a><dl>
<dt><a name="index-gradient"></a>: <em><var>dx</var> =</em> <strong>gradient</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-gradient-1"></a>: <em>[<var>dx</var>, <var>dy</var>, <var>dz</var>, &hellip;] =</em> <strong>gradient</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-gradient-2"></a>: <em>[&hellip;] =</em> <strong>gradient</strong> <em>(<var>m</var>, <var>s</var>)</em></dt>
<dt><a name="index-gradient-3"></a>: <em>[&hellip;] =</em> <strong>gradient</strong> <em>(<var>m</var>, <var>x</var>, <var>y</var>, <var>z</var>, &hellip;)</em></dt>
<dt><a name="index-gradient-4"></a>: <em>[&hellip;] =</em> <strong>gradient</strong> <em>(<var>f</var>, <var>x0</var>)</em></dt>
<dt><a name="index-gradient-5"></a>: <em>[&hellip;] =</em> <strong>gradient</strong> <em>(<var>f</var>, <var>x0</var>, <var>s</var>)</em></dt>
<dt><a name="index-gradient-6"></a>: <em>[&hellip;] =</em> <strong>gradient</strong> <em>(<var>f</var>, <var>x0</var>, <var>x</var>, <var>y</var>, &hellip;)</em></dt>
<dd>
<p>Calculate the gradient of sampled data or a function.
</p>
<p>If <var>m</var> is a vector, calculate the one-dimensional gradient of <var>m</var>.
If <var>m</var> is a matrix the gradient is calculated for each dimension.
</p>
<p><code>[<var>dx</var>, <var>dy</var>] = gradient (<var>m</var>)</code> calculates the
one-dimensional gradient for <var>x</var> and <var>y</var> direction if <var>m</var> is a
matrix.  Additional return arguments can be use for multi-dimensional
matrices.
</p>
<p>A constant spacing between two points can be provided by the <var>s</var>
parameter.  If <var>s</var> is a scalar, it is assumed to be the spacing for all
dimensions.  Otherwise, separate values of the spacing can be supplied by
the <var>x</var>, &hellip; arguments.  Scalar values specify an equidistant
spacing.  Vector values for the <var>x</var>, &hellip; arguments specify the
coordinate for that dimension.  The length must match their respective
dimension of <var>m</var>.
</p>
<p>At boundary points a linear extrapolation is applied.  Interior points
are calculated with the first approximation of the numerical gradient
</p>
<div class="example">
<pre class="example">y'(i) = 1/(x(i+1)-x(i-1)) * (y(i-1)-y(i+1)).
</pre></div>

<p>If the first argument <var>f</var> is a function handle, the gradient of the
function at the points in <var>x0</var> is approximated using central difference.
For example, <code>gradient (@cos, 0)</code> approximates the gradient of the
cosine function in the point <em>x0 = 0</em>.  As with sampled data, the
spacing values between the points from which the gradient is estimated can
be set via the <var>s</var> or <var>dx</var>, <var>dy</var>, &hellip; arguments.  By default
a spacing of 1 is used.
</p>
<p><strong>See also:</strong> <a href="Finding-Elements-and-Checking-Conditions.html#XREFdiff">diff</a>, <a href="#XREFdel2">del2</a>.
</p></dd></dl>


<a name="XREFdot"></a><dl>
<dt><a name="index-dot"></a>: <em></em> <strong>dot</strong> <em>(<var>x</var>, <var>y</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the dot product of two vectors.
</p>
<p>If <var>x</var> and <var>y</var> are matrices, calculate the dot products along the
first non-singleton dimension.
</p>
<p>If the optional argument <var>dim</var> is given, calculate the dot products
along this dimension.
</p>
<p>This is equivalent to
<code>sum (conj (<var>X</var>) .* <var>Y</var>, <var>dim</var>)</code>,
but avoids forming a temporary array and is faster.  When <var>X</var> and
<var>Y</var> are column vectors, the result is equivalent to
<code><var>X</var>' * <var>Y</var></code>.
</p>
<p><strong>See also:</strong> <a href="#XREFcross">cross</a>, <a href="#XREFdivergence">divergence</a>.
</p></dd></dl>


<a name="XREFcross"></a><dl>
<dt><a name="index-cross"></a>: <em></em> <strong>cross</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-cross-1"></a>: <em></em> <strong>cross</strong> <em>(<var>x</var>, <var>y</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the vector cross product of two 3-dimensional vectors <var>x</var> and
<var>y</var>.
</p>
<p>If <var>x</var> and <var>y</var> are matrices, the cross product is applied along the
first dimension with three elements.
</p>
<p>The optional argument  <var>dim</var> forces the cross product to be calculated
along the specified dimension.
</p>
<p>Example Code:
</p>
<div class="example">
<pre class="example">cross ([1,1,0], [0,1,1])
     &rArr; [ 1; -1; 1 ]
</pre></div>


<p><strong>See also:</strong> <a href="#XREFdot">dot</a>, <a href="#XREFcurl">curl</a>, <a href="#XREFdivergence">divergence</a>.
</p></dd></dl>


<a name="XREFdivergence"></a><dl>
<dt><a name="index-divergence"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-divergence-1"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-divergence-2"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>x</var>, <var>y</var>, <var>fx</var>, <var>fy</var>)</em></dt>
<dt><a name="index-divergence-3"></a>: <em><var>div</var> =</em> <strong>divergence</strong> <em>(<var>fx</var>, <var>fy</var>)</em></dt>
<dd><p>Calculate divergence of a vector field given by the arrays <var>fx</var>,
<var>fy</var>, and <var>fz</var> or <var>fx</var>, <var>fy</var> respectively.
</p>

<div class="example">
<pre class="example">                  d               d               d
div F(x,y,z)  =   -- F(x,y,z)  +  -- F(x,y,z)  +  -- F(x,y,z)
                  dx              dy              dz
</pre></div>

<p>The coordinates of the vector field can be given by the arguments <var>x</var>,
<var>y</var>, <var>z</var> or <var>x</var>, <var>y</var> respectively.
</p>

<p><strong>See also:</strong> <a href="#XREFcurl">curl</a>, <a href="#XREFgradient">gradient</a>, <a href="#XREFdel2">del2</a>, <a href="#XREFdot">dot</a>.
</p></dd></dl>


<a name="XREFcurl"></a><dl>
<dt><a name="index-curl"></a>: <em>[<var>cx</var>, <var>cy</var>, <var>cz</var>, <var>v</var>] =</em> <strong>curl</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>, <var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-curl-1"></a>: <em>[<var>cz</var>, <var>v</var>] =</em> <strong>curl</strong> <em>(<var>x</var>, <var>y</var>, <var>fx</var>, <var>fy</var>)</em></dt>
<dt><a name="index-curl-2"></a>: <em>[&hellip;] =</em> <strong>curl</strong> <em>(<var>fx</var>, <var>fy</var>, <var>fz</var>)</em></dt>
<dt><a name="index-curl-3"></a>: <em>[&hellip;] =</em> <strong>curl</strong> <em>(<var>fx</var>, <var>fy</var>)</em></dt>
<dt><a name="index-curl-4"></a>: <em><var>v</var> =</em> <strong>curl</strong> <em>(&hellip;)</em></dt>
<dd><p>Calculate curl of vector field given by the arrays <var>fx</var>, <var>fy</var>, and
<var>fz</var> or <var>fx</var>, <var>fy</var> respectively.
</p>
<div class="example">
<pre class="example">                  / d         d       d         d       d         d     \
curl F(x,y,z)  =  | -- Fz  -  -- Fy,  -- Fx  -  -- Fz,  -- Fy  -  -- Fx |
                  \ dy        dz      dz        dx      dx        dy    /
</pre></div>

<p>The coordinates of the vector field can be given by the arguments <var>x</var>,
<var>y</var>, <var>z</var> or <var>x</var>, <var>y</var> respectively.  <var>v</var> calculates the
scalar component of the angular velocity vector in direction of the z-axis
for two-dimensional input.  For three-dimensional input the scalar
rotation is calculated at each grid point in direction of the vector field
at that point.
</p>
<p><strong>See also:</strong> <a href="#XREFdivergence">divergence</a>, <a href="#XREFgradient">gradient</a>, <a href="#XREFdel2">del2</a>, <a href="#XREFcross">cross</a>.
</p></dd></dl>


<a name="XREFdel2"></a><dl>
<dt><a name="index-del2"></a>: <em><var>d</var> =</em> <strong>del2</strong> <em>(<var>M</var>)</em></dt>
<dt><a name="index-del2-1"></a>: <em><var>d</var> =</em> <strong>del2</strong> <em>(<var>M</var>, <var>h</var>)</em></dt>
<dt><a name="index-del2-2"></a>: <em><var>d</var> =</em> <strong>del2</strong> <em>(<var>M</var>, <var>dx</var>, <var>dy</var>, &hellip;)</em></dt>
<dd>
<p>Calculate the discrete Laplace
operator.
</p>
<p>For a 2-dimensional matrix <var>M</var> this is defined as
</p>
<div class="example">
<pre class="example">      1    / d^2            d^2         \
D  = --- * | ---  M(x,y) +  ---  M(x,y) |
      4    \ dx^2           dy^2        /
</pre></div>

<p>For N-dimensional arrays the sum in parentheses is expanded to include
second derivatives over the additional higher dimensions.
</p>
<p>The spacing between evaluation points may be defined by <var>h</var>, which is a
scalar defining the equidistant spacing in all dimensions.  Alternatively,
the spacing in each dimension may be defined separately by <var>dx</var>,
<var>dy</var>, etc.  A scalar spacing argument defines equidistant spacing,
whereas a vector argument can be used to specify variable spacing.  The
length of the spacing vectors must match the respective dimension of
<var>M</var>.  The default spacing value is 1.
</p>
<p>At least 3 data points are needed for each dimension.  Boundary points are
calculated from the linear extrapolation of interior points.
</p>

<p><strong>See also:</strong> <a href="#XREFgradient">gradient</a>, <a href="Finding-Elements-and-Checking-Conditions.html#XREFdiff">diff</a>.
</p></dd></dl>


<a name="XREFfactorial"></a><dl>
<dt><a name="index-factorial"></a>: <em></em> <strong>factorial</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the factorial of <var>n</var> where <var>n</var> is a real non-negative
integer.
</p>
<p>If <var>n</var> is a scalar, this is equivalent to <code>prod (1:<var>n</var>)</code>.  For
vector or matrix arguments, return the factorial of each element in the
array.
</p>
<p>For non-integers see the generalized factorial function <code>gamma</code>.
Note that the factorial function grows large quite quickly, and even
with double precision values overflow will occur if <var>n</var> &gt; 171.  For
such cases consider <code>gammaln</code>.
</p>
<p><strong>See also:</strong> <a href="Sums-and-Products.html#XREFprod">prod</a>, <a href="Special-Functions.html#XREFgamma">gamma</a>, <a href="Special-Functions.html#XREFgammaln">gammaln</a>.
</p></dd></dl>


<a name="XREFfactor"></a><dl>
<dt><a name="index-factor"></a>: <em><var>pf</var> =</em> <strong>factor</strong> <em>(<var>q</var>)</em></dt>
<dt><a name="index-factor-1"></a>: <em>[<var>pf</var>, <var>n</var>] =</em> <strong>factor</strong> <em>(<var>q</var>)</em></dt>
<dd><p>Return the prime factorization of <var>q</var>.
</p>
<p>The prime factorization is defined as <code>prod (<var>pf</var>) == <var>q</var></code>
where every element of <var>pf</var> is a prime number.  If <code><var>q</var> == 1</code>,
return 1.
</p>
<p>With two output arguments, return the unique prime factors <var>pf</var> and
their multiplicities.  That is,
<code>prod (<var>pf</var> .^ <var>n</var>) == <var>q</var></code>.
</p>
<p>Implementation Note: The input <var>q</var> must be less than
<code>flintmax</code> (9.0072e+15) in order to factor correctly.
</p>
<p><strong>See also:</strong> <a href="#XREFgcd">gcd</a>, <a href="#XREFlcm">lcm</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>, <a href="#XREFprimes">primes</a>.
</p></dd></dl>


<a name="XREFgcd"></a><dl>
<dt><a name="index-gcd"></a>: <em><var>g</var> =</em> <strong>gcd</strong> <em>(<var>a1</var>, <var>a2</var>, &hellip;)</em></dt>
<dt><a name="index-gcd-1"></a>: <em>[<var>g</var>, <var>v1</var>, &hellip;] =</em> <strong>gcd</strong> <em>(<var>a1</var>, <var>a2</var>, &hellip;)</em></dt>
<dd><p>Compute the greatest common divisor of <var>a1</var>, <var>a2</var>, &hellip;.
</p>
<p>If more than one argument is given then all arguments must be the same size
or scalar.  In this case the greatest common divisor is calculated for each
element individually.  All elements must be ordinary or Gaussian (complex)
integers.  Note that for Gaussian integers, the gcd is only unique up to a
phase factor (multiplication by 1, -1, i, or -i), so an arbitrary greatest
common divisor among the four possible is returned.
</p>
<p>Optional return arguments <var>v1</var>, &hellip;, contain integer vectors such
that,
</p>

<div class="example">
<pre class="example"><var>g</var> = <var>v1</var> .* <var>a1</var> + <var>v2</var> .* <var>a2</var> + &hellip;
</pre></div>


<p>Example code:
</p>
<div class="example">
<pre class="example">gcd ([15, 9], [20, 18])
   &rArr;  5  9
</pre></div>


<p><strong>See also:</strong> <a href="#XREFlcm">lcm</a>, <a href="#XREFfactor">factor</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>


<a name="XREFlcm"></a><dl>
<dt><a name="index-lcm"></a>: <em></em> <strong>lcm</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-lcm-1"></a>: <em></em> <strong>lcm</strong> <em>(<var>x</var>, <var>y</var>, &hellip;)</em></dt>
<dd><p>Compute the least common multiple of <var>x</var> and <var>y</var>, or of the list of
all arguments.
</p>
<p>All elements must be numeric and of the same size or scalar.
</p>
<p><strong>See also:</strong> <a href="#XREFfactor">factor</a>, <a href="#XREFgcd">gcd</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>


<a name="XREFchop"></a><dl>
<dt><a name="index-chop"></a>: <em></em> <strong>chop</strong> <em>(<var>x</var>, <var>ndigits</var>, <var>base</var>)</em></dt>
<dd><p>Truncate elements of <var>x</var> to a length of <var>ndigits</var> such that the
resulting numbers are exactly divisible by <var>base</var>.
</p>
<p>If <var>base</var> is not specified it defaults to 10.
</p>
<div class="example">
<pre class="example">format long
chop (-pi, 5, 10)
   &rArr; -3.14200000000000
chop (-pi, 5, 5)
   &rArr; -3.14150000000000
</pre></div>
</dd></dl>


<a name="XREFrem"></a><dl>
<dt><a name="index-rem"></a>: <em></em> <strong>rem</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Return the remainder of the division <code><var>x</var> / <var>y</var></code>.
</p>
<p>The remainder is computed using the expression
</p>
<div class="example">
<pre class="example">x - y .* fix (x ./ y)
</pre></div>

<p>An error message is printed if the dimensions of the arguments do not agree,
or if either argument is complex.
</p>
<p>Programming Notes: Floating point numbers within a few eps of an integer
will be rounded to an integer before computation for compatibility with
<small>MATLAB</small>.
</p>
<p>By convention,
</p>
<div class="example">
<pre class="example">rem (<var>x</var>, 0) = NaN  if <var>x</var> is a floating point variable
rem (<var>x</var>, 0) = 0    if <var>x</var> is an integer variable
rem (<var>x</var>, <var>y</var>)        returns a value with the signbit from <var>x</var>
</pre></div>

<p>For the opposite conventions see the <code>mod</code> function.  In general,
<code>rem</code> is best when computing the remainder after division of two
<em>positive</em> numbers.  For negative numbers, or when the values are
periodic, <code>mod</code> is a better choice.
</p>
<p><strong>See also:</strong> <a href="#XREFmod">mod</a>.
</p></dd></dl>


<a name="XREFmod"></a><dl>
<dt><a name="index-mod"></a>: <em></em> <strong>mod</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dd><p>Compute the modulo of <var>x</var> and <var>y</var>.
</p>
<p>Conceptually this is given by
</p>
<div class="example">
<pre class="example">x - y .* floor (x ./ y)
</pre></div>

<p>and is written such that the correct modulus is returned for integer types.
This function handles negative values correctly.  That is,
<code>mod&nbsp;<span class="nolinebreak">(-1,</span>&nbsp;3)</code><!-- /@w --> is 2, not -1, as <code>rem&nbsp;<span class="nolinebreak">(-1,</span>&nbsp;3)</code><!-- /@w --> returns.
</p>
<p>An error results if the dimensions of the arguments do not agree, or if
either of the arguments is complex.
</p>
<p>Programming Notes: Floating point numbers within a few eps of an integer
will be rounded to an integer before computation for compatibility with
<small>MATLAB</small>.
</p>
<p>By convention,
</p>
<div class="example">
<pre class="example">mod (<var>x</var>, 0) = <var>x</var>
mod (<var>x</var>, <var>y</var>)      returns a value with the signbit from <var>y</var>
</pre></div>

<p>For the opposite conventions see the <code>rem</code> function.  In general,
<code>mod</code> is a better choice than <code>rem</code> when any of the inputs are
negative numbers or when the values are periodic.
</p>
<p><strong>See also:</strong> <a href="#XREFrem">rem</a>.
</p></dd></dl>


<a name="XREFprimes"></a><dl>
<dt><a name="index-primes"></a>: <em></em> <strong>primes</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return all primes up to <var>n</var>.
</p>
<p>The output data class (double, single, uint32, etc.) is the same as the
input class of <var>n</var>.  The algorithm used is the Sieve of Eratosthenes.
</p>
<p>Notes: If you need a specific number of primes you can use the fact that the
distance from one prime to the next is, on average, proportional to the
logarithm of the prime.  Integrating, one finds that there are about
<em>k</em> primes less than
k*log (5*k).
</p>
<p>See also <code>list_primes</code> if you need a specific number <var>n</var> of primes.
</p>
<p><strong>See also:</strong> <a href="#XREFlist_005fprimes">list_primes</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>


<a name="XREFlist_005fprimes"></a><dl>
<dt><a name="index-list_005fprimes"></a>: <em></em> <strong>list_primes</strong> <em>()</em></dt>
<dt><a name="index-list_005fprimes-1"></a>: <em></em> <strong>list_primes</strong> <em>(<var>n</var>)</em></dt>
<dd><p>List the first <var>n</var> primes.
</p>
<p>If <var>n</var> is unspecified, the first 25 primes are listed.
</p>
<p><strong>See also:</strong> <a href="#XREFprimes">primes</a>, <a href="Predicates-for-Numeric-Objects.html#XREFisprime">isprime</a>.
</p></dd></dl>


<a name="XREFsign"></a><dl>
<dt><a name="index-sign"></a>: <em></em> <strong>sign</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the <em>signum</em> function.
</p>
<p>This is defined as
</p>
<div class="example">
<pre class="example">           -1, x &lt; 0;
sign (x) =  0, x = 0;
            1, x &gt; 0.
</pre></div>


<p>For complex arguments, <code>sign</code> returns <code>x ./ abs (<var>x</var>)</code>.
</p>
<p>Note that <code>sign (-0.0)</code> is 0.  Although IEEE 754 floating point
allows zero to be signed, 0.0 and -0.0 compare equal.  If you must test
whether zero is signed, use the <code>signbit</code> function.
</p>
<p><strong>See also:</strong> <a href="#XREFsignbit">signbit</a>.
</p></dd></dl>


<a name="XREFsignbit"></a><dl>
<dt><a name="index-signbit"></a>: <em></em> <strong>signbit</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return logical true if the value of <var>x</var> has its sign bit set and false
otherwise.
</p>
<p>This behavior is consistent with the other logical functions.
See <a href="Logical-Values.html#Logical-Values">Logical Values</a>.  The behavior differs from the C language function
which returns nonzero if the sign bit is set.
</p>
<p>This is not the same as <code>x &lt; 0.0</code>, because IEEE 754 floating point
allows zero to be signed.  The comparison <code>-0.0 &lt; 0.0</code> is false,
but <code>signbit (-0.0)</code> will return a nonzero value.
</p>
<p><strong>See also:</strong> <a href="#XREFsign">sign</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Special-Functions.html#Special-Functions" accesskey="n" rel="next">Special Functions</a>, Previous: <a href="Sums-and-Products.html#Sums-and-Products" accesskey="p" rel="prev">Sums and Products</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>