/usr/share/doc/octave/octave.html/Sparse-Linear-Algebra.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Sparse Linear Algebra (GNU Octave)</title>
<meta name="description" content="Sparse Linear Algebra (GNU Octave)">
<meta name="keywords" content="Sparse Linear Algebra (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Sparse-Matrices.html#Sparse-Matrices" rel="up" title="Sparse Matrices">
<link href="Iterative-Techniques.html#Iterative-Techniques" rel="next" title="Iterative Techniques">
<link href="Mathematical-Considerations.html#Mathematical-Considerations" rel="prev" title="Mathematical Considerations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Sparse-Linear-Algebra"></a>
<div class="header">
<p>
Next: <a href="Iterative-Techniques.html#Iterative-Techniques" accesskey="n" rel="next">Iterative Techniques</a>, Previous: <a href="Basics.html#Basics" accesskey="p" rel="prev">Basics</a>, Up: <a href="Sparse-Matrices.html#Sparse-Matrices" accesskey="u" rel="up">Sparse Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Linear-Algebra-on-Sparse-Matrices"></a>
<h3 class="section">22.2 Linear Algebra on Sparse Matrices</h3>
<p>Octave includes a polymorphic solver for sparse matrices, where
the exact solver used to factorize the matrix, depends on the properties
of the sparse matrix itself. Generally, the cost of determining the matrix
type is small relative to the cost of factorizing the matrix itself, but in
any case the matrix type is cached once it is calculated, so that it is not
re-determined each time it is used in a linear equation.
</p>
<p>The selection tree for how the linear equation is solve is
</p>
<ol>
<li> If the matrix is diagonal, solve directly and goto 8
</li><li> If the matrix is a permuted diagonal, solve directly taking into
account the permutations. Goto 8
</li><li> If the matrix is square, banded and if the band density is less
than that given by <code>spparms ("bandden")</code> continue, else goto 4.
<ol type="a" start="1">
<li> If the matrix is tridiagonal and the right-hand side is not sparse
continue, else goto 3b.
<ol>
<li> If the matrix is Hermitian, with a positive real diagonal, attempt
Cholesky factorization using <small>LAPACK</small> xPTSV.
</li><li> If the above failed or the matrix is not Hermitian with a positive
real diagonal use Gaussian elimination with pivoting using
<small>LAPACK</small> xGTSV, and goto 8.
</li></ol>
</li><li> If the matrix is Hermitian with a positive real diagonal, attempt
Cholesky factorization using <small>LAPACK</small> xPBTRF.
</li><li> if the above failed or the matrix is not Hermitian with a positive
real diagonal use Gaussian elimination with pivoting using
<small>LAPACK</small> xGBTRF, and goto 8.
</li></ol>
</li><li> If the matrix is upper or lower triangular perform a sparse forward
or backward substitution, and goto 8
</li><li> If the matrix is an upper triangular matrix with column permutations
or lower triangular matrix with row permutations, perform a sparse forward
or backward substitution, and goto 8
</li><li> If the matrix is square, Hermitian with a real positive diagonal, attempt
sparse Cholesky factorization using <small>CHOLMOD</small>.
</li><li> If the sparse Cholesky factorization failed or the matrix is not
Hermitian with a real positive diagonal, and the matrix is square, factorize
using <small>UMFPACK</small>.
</li><li> If the matrix is not square, or any of the previous solvers flags
a singular or near singular matrix, find a minimum norm solution using
<small>CXSPARSE</small><a name="DOCF10" href="#FOOT10"><sup>10</sup></a>.
</li></ol>
<p>The band density is defined as the number of nonzero values in the band
divided by the total number of values in the full band. The banded
matrix solvers can be entirely disabled by using <em>spparms</em> to set
<code>bandden</code> to 1 (i.e., <code>spparms ("bandden", 1)</code>).
</p>
<p>The QR solver factorizes the problem with a Dulmage-Mendelsohn
decomposition, to separate the problem into blocks that can be treated
as over-determined, multiple well determined blocks, and a final
over-determined block. For matrices with blocks of strongly connected
nodes this is a big win as LU decomposition can be used for many
blocks. It also significantly improves the chance of finding a solution
to over-determined problems rather than just returning a vector of
<em>NaN</em>’s.
</p>
<p>All of the solvers above, can calculate an estimate of the condition
number. This can be used to detect numerical stability problems in the
solution and force a minimum norm solution to be used. However, for
narrow banded, triangular or diagonal matrices, the cost of
calculating the condition number is significant, and can in fact
exceed the cost of factoring the matrix. Therefore the condition
number is not calculated in these cases, and Octave relies on simpler
techniques to detect singular matrices or the underlying <small>LAPACK</small> code in
the case of banded matrices.
</p>
<p>The user can force the type of the matrix with the <code>matrix_type</code>
function. This overcomes the cost of discovering the type of the matrix.
However, it should be noted that identifying the type of the matrix incorrectly
will lead to unpredictable results, and so <code>matrix_type</code> should be
used with care.
</p>
<a name="XREFnormest"></a><dl>
<dt><a name="index-normest"></a>: <em><var>nest</var> =</em> <strong>normest</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-normest-1"></a>: <em><var>nest</var> =</em> <strong>normest</strong> <em>(<var>A</var>, <var>tol</var>)</em></dt>
<dt><a name="index-normest-2"></a>: <em>[<var>nest</var>, <var>iter</var>] =</em> <strong>normest</strong> <em>(…)</em></dt>
<dd><p>Estimate the 2-norm of the matrix <var>A</var> using a power series analysis.
</p>
<p>This is typically used for large matrices, where the cost of calculating
<code>norm (<var>A</var>)</code> is prohibitive and an approximation to the 2-norm is
acceptable.
</p>
<p><var>tol</var> is the tolerance to which the 2-norm is calculated. By default
<var>tol</var> is 1e-6.
</p>
<p>The optional output <var>iter</var> returns the number of iterations that were
required for <code>normest</code> to converge.
</p>
<p><strong>See also:</strong> <a href="#XREFnormest1">normest1</a>, <a href="Basic-Matrix-Functions.html#XREFnorm">norm</a>, <a href="Basic-Matrix-Functions.html#XREFcond">cond</a>, <a href="#XREFcondest">condest</a>.
</p></dd></dl>
<a name="XREFnormest1"></a><dl>
<dt><a name="index-normest1"></a>: <em><var>nest</var> =</em> <strong>normest1</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-normest1-1"></a>: <em><var>nest</var> =</em> <strong>normest1</strong> <em>(<var>A</var>, <var>t</var>)</em></dt>
<dt><a name="index-normest1-2"></a>: <em><var>nest</var> =</em> <strong>normest1</strong> <em>(<var>A</var>, <var>t</var>, <var>x0</var>)</em></dt>
<dt><a name="index-normest1-3"></a>: <em><var>nest</var> =</em> <strong>normest1</strong> <em>(<var>Afun</var>, <var>t</var>, <var>x0</var>, <var>p1</var>, <var>p2</var>, …)</em></dt>
<dt><a name="index-normest1-4"></a>: <em>[<var>nest</var>, <var>v</var>] =</em> <strong>normest1</strong> <em>(<var>A</var>, …)</em></dt>
<dt><a name="index-normest1-5"></a>: <em>[<var>nest</var>, <var>v</var>, <var>w</var>] =</em> <strong>normest1</strong> <em>(<var>A</var>, …)</em></dt>
<dt><a name="index-normest1-6"></a>: <em>[<var>nest</var>, <var>v</var>, <var>w</var>, <var>iter</var>] =</em> <strong>normest1</strong> <em>(<var>A</var>, …)</em></dt>
<dd><p>Estimate the 1-norm of the matrix <var>A</var> using a block algorithm.
</p>
<p><code>normest1</code> is best for large sparse matrices where only an estimate of
the norm is required. For small to medium sized matrices, consider using
<code>norm (<var>A</var>, 1)</code>. In addition, <code>normest1</code> can be used for the
estimate of the 1-norm of a linear operator <var>A</var> when matrix-vector
products <code><var>A</var> * <var>x</var></code> and <code><var>A</var>' * <var>x</var></code> can be
cheaply computed. In this case, instead of the matrix <var>A</var>, a function
<code><var>Afun</var> (<var>flag</var>, <var>x</var>)</code> is used; it must return:
</p>
<ul>
<li> the dimension <var>n</var> of <var>A</var>, if <var>flag</var> is <code>"dim"</code>
</li><li> true if <var>A</var> is a real operator, if <var>flag</var> is <code>"real"</code>
</li><li> the result <code><var>A</var> * <var>x</var></code>, if <var>flag</var> is <code>"notransp"</code>
</li><li> the result <code><var>A</var>' * <var>x</var></code>, if <var>flag</var> is <code>"transp"</code>
</li></ul>
<p>A typical case is <var>A</var> defined by <code><var>b</var> ^ <var>m</var></code>, in which the
result <code><var>A</var> * <var>x</var></code> can be computed without even forming
explicitly <code><var>b</var> ^ <var>m</var></code> by:
</p>
<div class="example">
<pre class="example"><var>y</var> = <var>x</var>;
for <var>i</var> = 1:<var>m</var>
<var>y</var> = <var>b</var> * <var>y</var>;
endfor
</pre></div>
<p>The parameters <var>p1</var>, <var>p2</var>, … are arguments of
<code><var>Afun</var> (<var>flag</var>, <var>x</var>, <var>p1</var>, <var>p2</var>, …)</code>.
</p>
<p>The default value for <var>t</var> is 2. The algorithm requires matrix-matrix
products with sizes <var>n</var> x <var>n</var> and <var>n</var> x <var>t</var>.
</p>
<p>The initial matrix <var>x0</var> should have columns of unit 1-norm. The default
initial matrix <var>x0</var> has the first column
<code>ones (<var>n</var>, 1) / <var>n</var></code> and, if <var>t</var> > 1, the remaining
columns with random elements <code>-1 / <var>n</var></code>, <code>1 / <var>n</var></code>,
divided by <var>n</var>.
</p>
<p>On output, <var>nest</var> is the desired estimate, <var>v</var> and <var>w</var>
are vectors such that <code><var>w</var> = <var>A</var> * <var>v</var></code>, with
<code>norm (<var>w</var>, 1)</code> = <code><var>c</var> * norm (<var>v</var>, 1)</code>. <var>iter</var>
contains in <code><var>iter</var>(1)</code> the number of iterations (the maximum is
hardcoded to 5) and in <code><var>iter</var>(2)</code> the total number of products
<code><var>A</var> * <var>x</var></code> or <code><var>A</var>' * <var>x</var></code> performed by the
algorithm.
</p>
<p>Algorithm Note: <code>normest1</code> uses random numbers during evaluation.
Therefore, if consistent results are required, the <code>"state"</code> of the
random generator should be fixed before invoking <code>normest1</code>.
</p>
<p>Reference: N. J. Higham and F. Tisseur,
<cite>A block algorithm for matrix 1-norm estimation, with and
application to 1-norm pseudospectra</cite>,
SIAM J. Matrix Anal. Appl.,
pp. 1185–1201, Vol 21, No. 4, 2000.
</p>
<p><strong>See also:</strong> <a href="#XREFnormest">normest</a>, <a href="Basic-Matrix-Functions.html#XREFnorm">norm</a>, <a href="Basic-Matrix-Functions.html#XREFcond">cond</a>, <a href="#XREFcondest">condest</a>.
</p></dd></dl>
<a name="XREFcondest"></a><dl>
<dt><a name="index-condest"></a>: <em><var>cest</var> =</em> <strong>condest</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-condest-1"></a>: <em><var>cest</var> =</em> <strong>condest</strong> <em>(<var>A</var>, <var>t</var>)</em></dt>
<dt><a name="index-condest-2"></a>: <em><var>cest</var> =</em> <strong>condest</strong> <em>(<var>A</var>, <var>solvefun</var>, <var>t</var>, <var>p1</var>, <var>p2</var>, …)</em></dt>
<dt><a name="index-condest-3"></a>: <em><var>cest</var> =</em> <strong>condest</strong> <em>(<var>Afcn</var>, <var>solvefun</var>, <var>t</var>, <var>p1</var>, <var>p2</var>, …)</em></dt>
<dt><a name="index-condest-4"></a>: <em>[<var>cest</var>, <var>v</var>] =</em> <strong>condest</strong> <em>(…)</em></dt>
<dd>
<p>Estimate the 1-norm condition number of a square matrix <var>A</var> using
<var>t</var> test vectors and a randomized 1-norm estimator.
</p>
<p>The optional input <var>t</var> specifies the number of test vectors (default 5).
</p>
<p>If the matrix is not explicit, e.g., when estimating the condition number of
<var>A</var> given an LU factorization, <code>condest</code> uses the following
functions:
</p>
<ul class="no-bullet">
<li>- <var>Afcn</var> which must return
<ul>
<li> the dimension <var>n</var> of <var>a</var>, if <var>flag</var> is <code>"dim"</code>
</li><li> true if <var>a</var> is a real operator, if <var>flag</var> is <code>"real"</code>
</li><li> the result <code><var>a</var> * <var>x</var></code>, if <var>flag</var> is "notransp"
</li><li> the result <code><var>a</var>' * <var>x</var></code>, if <var>flag</var> is "transp"
</li></ul>
</li><li>- <var>solvefun</var> which must return
<ul>
<li> the dimension <var>n</var> of <var>a</var>, if <var>flag</var> is <code>"dim"</code>
</li><li> true if <var>a</var> is a real operator, if <var>flag</var> is <code>"real"</code>
</li><li> the result <code><var>a</var> \ <var>x</var></code>, if <var>flag</var> is "notransp"
</li><li> the result <code><var>a</var>' \ <var>x</var></code>, if <var>flag</var> is "transp"
</li></ul>
</li></ul>
<p>The parameters <var>p1</var>, <var>p2</var>, … are arguments of
<code><var>Afcn</var> (<var>flag</var>, <var>x</var>, <var>p1</var>, <var>p2</var>, …)</code>
and <code><var>solvefcn</var> (<var>flag</var>, <var>x</var>, <var>p1</var>, <var>p2</var>,
…)</code>.
</p>
<p>The principal output is the 1-norm condition number estimate <var>cest</var>.
</p>
<p>The optional second output is an approximate null vector when <var>cest</var> is
large; it satisfies the equation
<code>norm (A*v, 1) == norm (A, 1) * norm (<var>v</var>, 1) / <var>est</var></code>.
</p>
<p>Algorithm Note: <code>condest</code> uses a randomized algorithm to approximate
the 1-norms. Therefore, if consistent results are required, the
<code>"state"</code> of the random generator should be fixed before invoking
<code>condest</code>.
</p>
<p>References:
</p>
<ul>
<li> N.J. Higham and F. Tisseur, <cite>A Block Algorithm
for Matrix 1-Norm Estimation, with an Application to 1-Norm
Pseudospectra</cite>. SIMAX vol 21, no 4, pp 1185-1201.
<a href="http://dx.doi.org/10.1137/S0895479899356080">http://dx.doi.org/10.1137/S0895479899356080</a>
</li><li> N.J. Higham and F. Tisseur, <cite>A Block Algorithm
for Matrix 1-Norm Estimation, with an Application to 1-Norm
Pseudospectra</cite>. <a href="http://citeseer.ist.psu.edu/223007.html">http://citeseer.ist.psu.edu/223007.html</a>
</li></ul>
<p><strong>See also:</strong> <a href="Basic-Matrix-Functions.html#XREFcond">cond</a>, <a href="Basic-Matrix-Functions.html#XREFnorm">norm</a>, <a href="#XREFnormest1">normest1</a>, <a href="#XREFnormest">normest</a>.
</p></dd></dl>
<a name="XREFspparms"></a><dl>
<dt><a name="index-spparms"></a>: <em></em> <strong>spparms</strong> <em>()</em></dt>
<dt><a name="index-spparms-1"></a>: <em><var>vals</var> =</em> <strong>spparms</strong> <em>()</em></dt>
<dt><a name="index-spparms-2"></a>: <em>[<var>keys</var>, <var>vals</var>] =</em> <strong>spparms</strong> <em>()</em></dt>
<dt><a name="index-spparms-3"></a>: <em><var>val</var> =</em> <strong>spparms</strong> <em>(<var>key</var>)</em></dt>
<dt><a name="index-spparms-4"></a>: <em></em> <strong>spparms</strong> <em>(<var>vals</var>)</em></dt>
<dt><a name="index-spparms-5"></a>: <em></em> <strong>spparms</strong> <em>("default")</em></dt>
<dt><a name="index-spparms-6"></a>: <em></em> <strong>spparms</strong> <em>("tight")</em></dt>
<dt><a name="index-spparms-7"></a>: <em></em> <strong>spparms</strong> <em>(<var>key</var>, <var>val</var>)</em></dt>
<dd><p>Query or set the parameters used by the sparse solvers and factorization
functions.
</p>
<p>The first four calls above get information about the current settings, while
the others change the current settings. The parameters are stored as pairs
of keys and values, where the values are all floats and the keys are one of
the following strings:
</p>
<dl compact="compact">
<dt>‘<samp>spumoni</samp>’</dt>
<dd><p>Printing level of debugging information of the solvers (default 0)
</p>
</dd>
<dt>‘<samp>ths_rel</samp>’</dt>
<dd><p>Included for compatibility. Not used. (default 1)
</p>
</dd>
<dt>‘<samp>ths_abs</samp>’</dt>
<dd><p>Included for compatibility. Not used. (default 1)
</p>
</dd>
<dt>‘<samp>exact_d</samp>’</dt>
<dd><p>Included for compatibility. Not used. (default 0)
</p>
</dd>
<dt>‘<samp>supernd</samp>’</dt>
<dd><p>Included for compatibility. Not used. (default 3)
</p>
</dd>
<dt>‘<samp>rreduce</samp>’</dt>
<dd><p>Included for compatibility. Not used. (default 3)
</p>
</dd>
<dt>‘<samp>wh_frac</samp>’</dt>
<dd><p>Included for compatibility. Not used. (default 0.5)
</p>
</dd>
<dt>‘<samp>autommd</samp>’</dt>
<dd><p>Flag whether the LU/QR and the ’\’ and ’/’ operators will automatically
use the sparsity preserving mmd functions (default 1)
</p>
</dd>
<dt>‘<samp>autoamd</samp>’</dt>
<dd><p>Flag whether the LU and the ’\’ and ’/’ operators will automatically
use the sparsity preserving amd functions (default 1)
</p>
</dd>
<dt>‘<samp>piv_tol</samp>’</dt>
<dd><p>The pivot tolerance of the <small>UMFPACK</small> solvers (default 0.1)
</p>
</dd>
<dt>‘<samp>sym_tol</samp>’</dt>
<dd><p>The pivot tolerance of the <small>UMFPACK</small> symmetric solvers (default 0.001)
</p>
</dd>
<dt>‘<samp>bandden</samp>’</dt>
<dd><p>The density of nonzero elements in a banded matrix before it is treated
by the <small>LAPACK</small> banded solvers (default 0.5)
</p>
</dd>
<dt>‘<samp>umfpack</samp>’</dt>
<dd><p>Flag whether the <small>UMFPACK</small> or mmd solvers are used for the LU, ’\’ and
’/’ operations (default 1)
</p></dd>
</dl>
<p>The value of individual keys can be set with
<code>spparms (<var>key</var>, <var>val</var>)</code>.
The default values can be restored with the special keyword
<code>"default"</code>. The special keyword <code>"tight"</code> can be used to
set the mmd solvers to attempt a sparser solution at the potential cost of
longer running time.
</p>
<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFchol">chol</a>, <a href="Mathematical-Considerations.html#XREFcolamd">colamd</a>, <a href="Matrix-Factorizations.html#XREFlu">lu</a>, <a href="Matrix-Factorizations.html#XREFqr">qr</a>, <a href="Mathematical-Considerations.html#XREFsymamd">symamd</a>.
</p></dd></dl>
<a name="XREFsprank"></a><dl>
<dt><a name="index-sprank"></a>: <em><var>p</var> =</em> <strong>sprank</strong> <em>(<var>S</var>)</em></dt>
<dd><a name="index-structural-rank"></a>
<p>Calculate the structural rank of the sparse matrix <var>S</var>.
</p>
<p>Note that only the structure of the matrix is used in this calculation based
on a Dulmage-Mendelsohn permutation to block triangular form. As
such the numerical rank of the matrix <var>S</var> is bounded by
<code>sprank (<var>S</var>) >= rank (<var>S</var>)</code>. Ignoring floating point errors
<code>sprank (<var>S</var>) == rank (<var>S</var>)</code>.
</p>
<p><strong>See also:</strong> <a href="Mathematical-Considerations.html#XREFdmperm">dmperm</a>.
</p></dd></dl>
<a name="XREFsymbfact"></a><dl>
<dt><a name="index-symbfact"></a>: <em>[<var>count</var>, <var>h</var>, <var>parent</var>, <var>post</var>, <var>R</var>] =</em> <strong>symbfact</strong> <em>(<var>S</var>)</em></dt>
<dt><a name="index-symbfact-1"></a>: <em>[…] =</em> <strong>symbfact</strong> <em>(<var>S</var>, <var>typ</var>)</em></dt>
<dt><a name="index-symbfact-2"></a>: <em>[…] =</em> <strong>symbfact</strong> <em>(<var>S</var>, <var>typ</var>, <var>mode</var>)</em></dt>
<dd>
<p>Perform a symbolic factorization analysis of the sparse matrix <var>S</var>.
</p>
<p>The input variables are
</p>
<dl compact="compact">
<dt><var>S</var></dt>
<dd><p><var>S</var> is a real or complex sparse matrix.
</p>
</dd>
<dt><var>typ</var></dt>
<dd><p>Is the type of the factorization and can be one of
</p>
<dl compact="compact">
<dt><code>"sym"</code> (default)</dt>
<dd><p>Factorize <var>S</var>. Assumes <var>S</var> is symmetric and uses the upper
triangular portion of the matrix.
</p>
</dd>
<dt><code>"col"</code></dt>
<dd><p>Factorize <code><var>S</var>' * <var>S</var></code>.
</p>
</dd>
<dt><code>"row"</code></dt>
<dd><p>Factorize <code><var>S</var> * <var>S</var>'</code>.
</p>
</dd>
<dt><code>"lo"</code></dt>
<dd><p>Factorize <code><var>S</var>'</code>. Assumes <var>S</var> is symmetric and uses the lower
triangular portion of the matrix.
</p></dd>
</dl>
</dd>
<dt><var>mode</var></dt>
<dd><p>When <var>mode</var> is unspecified return the Cholesky factorization for
<var>R</var>. If <var>mode</var> is <code>"lower"</code> or <code>"L"</code> then return
the conjugate transpose <code><var>R</var>'</code> which is a lower triangular factor.
The conjugate transpose version is faster and uses less memory, but still
returns the same values for all other outputs: <var>count</var>, <var>h</var>,
<var>parent</var>, and <var>post</var>.
</p></dd>
</dl>
<p>The output variables are:
</p>
<dl compact="compact">
<dt><var>count</var></dt>
<dd><p>The row counts of the Cholesky factorization as determined by
<var>typ</var>. The computational difficulty of performing the true
factorization using <code>chol</code> is <code>sum (<var>count</var> .^ 2)</code>.
</p>
</dd>
<dt><var>h</var></dt>
<dd><p>The height of the elimination tree.
</p>
</dd>
<dt><var>parent</var></dt>
<dd><p>The elimination tree itself.
</p>
</dd>
<dt><var>post</var></dt>
<dd><p>A sparse boolean matrix whose structure is that of the
Cholesky factorization as determined by <var>typ</var>.
</p></dd>
</dl>
<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFchol">chol</a>, <a href="Information.html#XREFetree">etree</a>, <a href="Information.html#XREFtreelayout">treelayout</a>.
</p></dd></dl>
<p>For non square matrices, the user can also utilize the <code>spaugment</code>
function to find a least squares solution to a linear equation.
</p>
<a name="XREFspaugment"></a><dl>
<dt><a name="index-spaugment"></a>: <em><var>s</var> =</em> <strong>spaugment</strong> <em>(<var>A</var>, <var>c</var>)</em></dt>
<dd><p>Create the augmented matrix of <var>A</var>.
</p>
<p>This is given by
</p>
<div class="example">
<pre class="example">[<var>c</var> * eye(<var>m</var>, <var>m</var>), <var>A</var>;
<var>A</var>', zeros(<var>n</var>, <var>n</var>)]
</pre></div>
<p>This is related to the least squares solution of
<code><var>A</var> \ <var>b</var></code>, by
</p>
<div class="example">
<pre class="example"><var>s</var> * [ <var>r</var> / <var>c</var>; x] = [ <var>b</var>, zeros(<var>n</var>, columns(<var>b</var>)) ]
</pre></div>
<p>where <var>r</var> is the residual error
</p>
<div class="example">
<pre class="example"><var>r</var> = <var>b</var> - <var>A</var> * <var>x</var>
</pre></div>
<p>As the matrix <var>s</var> is symmetric indefinite it can be factorized with
<code>lu</code>, and the minimum norm solution can therefore be found without the
need for a <code>qr</code> factorization. As the residual error will be
<code>zeros (<var>m</var>, <var>m</var>)</code> for underdetermined problems, and example
can be
</p>
<div class="example">
<pre class="example">m = 11; n = 10; mn = max (m, n);
A = spdiags ([ones(mn,1), 10*ones(mn,1), -ones(mn,1)],
[-1, 0, 1], m, n);
x0 = A \ ones (m,1);
s = spaugment (A);
[L, U, P, Q] = lu (s);
x1 = Q * (U \ (L \ (P * [ones(m,1); zeros(n,1)])));
x1 = x1(end - n + 1 : end);
</pre></div>
<p>To find the solution of an overdetermined problem needs an estimate of the
residual error <var>r</var> and so it is more complex to formulate a minimum norm
solution using the <code>spaugment</code> function.
</p>
<p>In general the left division operator is more stable and faster than using
the <code>spaugment</code> function.
</p>
<p><strong>See also:</strong> <a href="Arithmetic-Ops.html#XREFmldivide">mldivide</a>.
</p></dd></dl>
<p>Finally, the function <code>eigs</code> can be used to calculate a limited
number of eigenvalues and eigenvectors based on a selection criteria
and likewise for <code>svds</code> which calculates a limited number of
singular values and vectors.
</p>
<a name="XREFeigs"></a><dl>
<dt><a name="index-eigs"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-eigs-1"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>, <var>k</var>)</em></dt>
<dt><a name="index-eigs-2"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>, <var>k</var>, <var>sigma</var>)</em></dt>
<dt><a name="index-eigs-3"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>, <var>k</var>, <var>sigma</var>, <var>opts</var>)</em></dt>
<dt><a name="index-eigs-4"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dt><a name="index-eigs-5"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>, <var>B</var>, <var>k</var>)</em></dt>
<dt><a name="index-eigs-6"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>, <var>B</var>, <var>k</var>, <var>sigma</var>)</em></dt>
<dt><a name="index-eigs-7"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>A</var>, <var>B</var>, <var>k</var>, <var>sigma</var>, <var>opts</var>)</em></dt>
<dt><a name="index-eigs-8"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>)</em></dt>
<dt><a name="index-eigs-9"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, <var>B</var>)</em></dt>
<dt><a name="index-eigs-10"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, <var>k</var>)</em></dt>
<dt><a name="index-eigs-11"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, <var>B</var>, <var>k</var>)</em></dt>
<dt><a name="index-eigs-12"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, <var>k</var>, <var>sigma</var>)</em></dt>
<dt><a name="index-eigs-13"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, <var>B</var>, <var>k</var>, <var>sigma</var>)</em></dt>
<dt><a name="index-eigs-14"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, <var>k</var>, <var>sigma</var>, <var>opts</var>)</em></dt>
<dt><a name="index-eigs-15"></a>: <em><var>d</var> =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, <var>B</var>, <var>k</var>, <var>sigma</var>, <var>opts</var>)</em></dt>
<dt><a name="index-eigs-16"></a>: <em>[<var>V</var>, <var>d</var>] =</em> <strong>eigs</strong> <em>(<var>A</var>, …)</em></dt>
<dt><a name="index-eigs-17"></a>: <em>[<var>V</var>, <var>d</var>] =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, …)</em></dt>
<dt><a name="index-eigs-18"></a>: <em>[<var>V</var>, <var>d</var>, <var>flag</var>] =</em> <strong>eigs</strong> <em>(<var>A</var>, …)</em></dt>
<dt><a name="index-eigs-19"></a>: <em>[<var>V</var>, <var>d</var>, <var>flag</var>] =</em> <strong>eigs</strong> <em>(<var>af</var>, <var>n</var>, …)</em></dt>
<dd><p>Calculate a limited number of eigenvalues and eigenvectors of <var>A</var>,
based on a selection criteria.
</p>
<p>The number of eigenvalues and eigenvectors to calculate is given by
<var>k</var> and defaults to 6.
</p>
<p>By default, <code>eigs</code> solve the equation
where
is the corresponding eigenvector. If given the positive definite matrix
<var>B</var> then <code>eigs</code> solves the general eigenvalue equation
</p>
<p>The argument <var>sigma</var> determines which eigenvalues are returned.
<var>sigma</var> can be either a scalar or a string. When <var>sigma</var> is a
scalar, the <var>k</var> eigenvalues closest to <var>sigma</var> are returned. If
<var>sigma</var> is a string, it must have one of the following values.
</p>
<dl compact="compact">
<dt><code>"lm"</code></dt>
<dd><p>Largest Magnitude (default).
</p>
</dd>
<dt><code>"sm"</code></dt>
<dd><p>Smallest Magnitude.
</p>
</dd>
<dt><code>"la"</code></dt>
<dd><p>Largest Algebraic (valid only for real symmetric problems).
</p>
</dd>
<dt><code>"sa"</code></dt>
<dd><p>Smallest Algebraic (valid only for real symmetric problems).
</p>
</dd>
<dt><code>"be"</code></dt>
<dd><p>Both Ends, with one more from the high-end if <var>k</var> is odd (valid only for
real symmetric problems).
</p>
</dd>
<dt><code>"lr"</code></dt>
<dd><p>Largest Real part (valid only for complex or unsymmetric problems).
</p>
</dd>
<dt><code>"sr"</code></dt>
<dd><p>Smallest Real part (valid only for complex or unsymmetric problems).
</p>
</dd>
<dt><code>"li"</code></dt>
<dd><p>Largest Imaginary part (valid only for complex or unsymmetric problems).
</p>
</dd>
<dt><code>"si"</code></dt>
<dd><p>Smallest Imaginary part (valid only for complex or unsymmetric problems).
</p></dd>
</dl>
<p>If <var>opts</var> is given, it is a structure defining possible options that
<code>eigs</code> should use. The fields of the <var>opts</var> structure are:
</p>
<dl compact="compact">
<dt><code>issym</code></dt>
<dd><p>If <var>af</var> is given, then flags whether the function <var>af</var> defines a
symmetric problem. It is ignored if <var>A</var> is given. The default is
false.
</p>
</dd>
<dt><code>isreal</code></dt>
<dd><p>If <var>af</var> is given, then flags whether the function <var>af</var> defines a
real problem. It is ignored if <var>A</var> is given. The default is true.
</p>
</dd>
<dt><code>tol</code></dt>
<dd><p>Defines the required convergence tolerance, calculated as
<code>tol * norm (A)</code>. The default is <code>eps</code>.
</p>
</dd>
<dt><code>maxit</code></dt>
<dd><p>The maximum number of iterations. The default is 300.
</p>
</dd>
<dt><code>p</code></dt>
<dd><p>The number of Lanzcos basis vectors to use. More vectors will result in
faster convergence, but a greater use of memory. The optimal value of
<code>p</code> is problem dependent and should be in the range <var>k</var> to <var>n</var>.
The default value is <code>2 * <var>k</var></code>.
</p>
</dd>
<dt><code>v0</code></dt>
<dd><p>The starting vector for the algorithm. An initial vector close to the
final vector will speed up convergence. The default is for <small>ARPACK</small>
to randomly generate a starting vector. If specified, <code>v0</code> must be
an <var>n</var>-by-1 vector where <code><var>n</var> = rows (<var>A</var>)</code>
</p>
</dd>
<dt><code>disp</code></dt>
<dd><p>The level of diagnostic printout (0|1|2). If <code>disp</code> is 0 then
diagnostics are disabled. The default value is 0.
</p>
</dd>
<dt><code>cholB</code></dt>
<dd><p>Flag if <code>chol (<var>B</var>)</code> is passed rather than <var>B</var>. The default is
false.
</p>
</dd>
<dt><code>permB</code></dt>
<dd><p>The permutation vector of the Cholesky factorization of <var>B</var> if
<code>cholB</code> is true. It is obtained by <code>[R, ~, permB] =
chol (<var>B</var>, <code>"vector"</code>)</code>. The default is <code>1:<var>n</var></code>.
</p>
</dd>
</dl>
<p>It is also possible to represent <var>A</var> by a function denoted <var>af</var>.
<var>af</var> must be followed by a scalar argument <var>n</var> defining the length
of the vector argument accepted by <var>af</var>. <var>af</var> can be a function
handle, an inline function, or a string. When <var>af</var> is a string it
holds the name of the function to use.
</p>
<p><var>af</var> is a function of the form <code>y = af (x)</code> where the required
return value of <var>af</var> is determined by the value of <var>sigma</var>. The
four possible forms are
</p>
<dl compact="compact">
<dt><code>A * x</code></dt>
<dd><p>if <var>sigma</var> is not given or is a string other than "sm".
</p>
</dd>
<dt><code>A \ x</code></dt>
<dd><p>if <var>sigma</var> is 0 or "sm".
</p>
</dd>
<dt><code>(A - sigma * I) \ x</code></dt>
<dd><p>for the standard eigenvalue problem, where <code>I</code> is the identity matrix
of the same size as <var>A</var>.
</p>
</dd>
<dt><code>(A - sigma * B) \ x</code></dt>
<dd><p>for the general eigenvalue problem.
</p></dd>
</dl>
<p>The return arguments of <code>eigs</code> depend on the number of return arguments
requested. With a single return argument, a vector <var>d</var> of length
<var>k</var> is returned containing the <var>k</var> eigenvalues that have been
found. With two return arguments, <var>V</var> is a <var>n</var>-by-<var>k</var> matrix
whose columns are the <var>k</var> eigenvectors corresponding to the returned
eigenvalues. The eigenvalues themselves are returned in <var>d</var> in the
form of a <var>n</var>-by-<var>k</var> matrix, where the elements on the diagonal
are the eigenvalues.
</p>
<p>Given a third return argument <var>flag</var>, <code>eigs</code> returns the status
of the convergence. If <var>flag</var> is 0 then all eigenvalues have converged.
Any other value indicates a failure to converge.
</p>
<p>This function is based on the <small>ARPACK</small> package, written by
R. Lehoucq, K. Maschhoff, D. Sorensen, and C. Yang. For more
information see <a href="http://www.caam.rice.edu/software/ARPACK/">http://www.caam.rice.edu/software/ARPACK/</a>.
</p>
<p><strong>See also:</strong> <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a href="#XREFsvds">svds</a>.
</p></dd></dl>
<a name="XREFsvds"></a><dl>
<dt><a name="index-svds"></a>: <em><var>s</var> =</em> <strong>svds</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-svds-1"></a>: <em><var>s</var> =</em> <strong>svds</strong> <em>(<var>A</var>, <var>k</var>)</em></dt>
<dt><a name="index-svds-2"></a>: <em><var>s</var> =</em> <strong>svds</strong> <em>(<var>A</var>, <var>k</var>, <var>sigma</var>)</em></dt>
<dt><a name="index-svds-3"></a>: <em><var>s</var> =</em> <strong>svds</strong> <em>(<var>A</var>, <var>k</var>, <var>sigma</var>, <var>opts</var>)</em></dt>
<dt><a name="index-svds-4"></a>: <em>[<var>u</var>, <var>s</var>, <var>v</var>] =</em> <strong>svds</strong> <em>(…)</em></dt>
<dt><a name="index-svds-5"></a>: <em>[<var>u</var>, <var>s</var>, <var>v</var>, <var>flag</var>] =</em> <strong>svds</strong> <em>(…)</em></dt>
<dd>
<p>Find a few singular values of the matrix <var>A</var>.
</p>
<p>The singular values are calculated using
</p>
<div class="example">
<pre class="example">[<var>m</var>, <var>n</var>] = size (<var>A</var>);
<var>s</var> = eigs ([sparse(<var>m</var>, <var>m</var>), <var>A</var>;
<var>A</var>', sparse(<var>n</var>, <var>n</var>)])
</pre></div>
<p>The eigenvalues returned by <code>eigs</code> correspond to the singular values
of <var>A</var>. The number of singular values to calculate is given by <var>k</var>
and defaults to 6.
</p>
<p>The argument <var>sigma</var> specifies which singular values to find. When
<var>sigma</var> is the string <code>'L'</code>, the default, the largest singular
values of <var>A</var> are found. Otherwise, <var>sigma</var> must be a real scalar
and the singular values closest to <var>sigma</var> are found. As a corollary,
<code><var>sigma</var> = 0</code> finds the smallest singular values. Note that for
relatively small values of <var>sigma</var>, there is a chance that the
requested number of singular values will not be found. In that case
<var>sigma</var> should be increased.
</p>
<p><var>opts</var> is a structure defining options that <code>svds</code> will pass
to <code>eigs</code>. The possible fields of this structure are documented in
<code>eigs</code>. By default, <code>svds</code> sets the following three fields:
</p>
<dl compact="compact">
<dt><code>tol</code></dt>
<dd><p>The required convergence tolerance for the singular values. The default
value is 1e-10. <code>eigs</code> is passed <code><var>tol</var> / sqrt(2)</code>.
</p>
</dd>
<dt><code>maxit</code></dt>
<dd><p>The maximum number of iterations. The default is 300.
</p>
</dd>
<dt><code>disp</code></dt>
<dd><p>The level of diagnostic printout (0|1|2). If <code>disp</code> is 0 then
diagnostics are disabled. The default value is 0.
</p></dd>
</dl>
<p>If more than one output is requested then <code>svds</code> will return an
approximation of the singular value decomposition of <var>A</var>
</p>
<div class="example">
<pre class="example"><var>A</var>_approx = <var>u</var>*<var>s</var>*<var>v</var>'
</pre></div>
<p>where <var>A</var>_approx is a matrix of size <var>A</var> but only rank <var>k</var>.
</p>
<p><var>flag</var> returns 0 if the algorithm has succesfully converged, and 1
otherwise. The test for convergence is
</p>
<div class="example">
<pre class="example">norm (<var>A</var>*<var>v</var> - <var>u</var>*<var>s</var>, 1) <= <var>tol</var> * norm (<var>A</var>, 1)
</pre></div>
<p><code>svds</code> is best for finding only a few singular values from a large
sparse matrix. Otherwise, <code>svd (full (<var>A</var>))</code> will likely be more
efficient.
</p></dd></dl>
<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFsvd">svd</a>, <a href="#XREFeigs">eigs</a>.
</p>
<div class="footnote">
<hr>
<h4 class="footnotes-heading">Footnotes</h4>
<h3><a name="FOOT10" href="#DOCF10">(10)</a></h3>
<p>The <small>CHOLMOD</small>, <small>UMFPACK</small> and <small>CXSPARSE</small>
packages were written by Tim Davis and are available at
<a href="http://www.cise.ufl.edu/research/sparse/">http://www.cise.ufl.edu/research/sparse/</a></p>
</div>
<hr>
<div class="header">
<p>
Next: <a href="Iterative-Techniques.html#Iterative-Techniques" accesskey="n" rel="next">Iterative Techniques</a>, Previous: <a href="Basics.html#Basics" accesskey="p" rel="prev">Basics</a>, Up: <a href="Sparse-Matrices.html#Sparse-Matrices" accesskey="u" rel="up">Sparse Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|