This file is indexed.

/usr/share/doc/octave/octave.html/Solvers.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Solvers (GNU Octave)</title>

<meta name="description" content="Solvers (GNU Octave)">
<meta name="keywords" content="Solvers (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Nonlinear-Equations.html#Nonlinear-Equations" rel="up" title="Nonlinear Equations">
<link href="Minimizers.html#Minimizers" rel="next" title="Minimizers">
<link href="Nonlinear-Equations.html#Nonlinear-Equations" rel="prev" title="Nonlinear Equations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Solvers"></a>
<div class="header">
<p>
Next: <a href="Minimizers.html#Minimizers" accesskey="n" rel="next">Minimizers</a>, Up: <a href="Nonlinear-Equations.html#Nonlinear-Equations" accesskey="u" rel="up">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Solvers-1"></a>
<h3 class="section">20.1 Solvers</h3>

<p>Octave can solve sets of nonlinear equations of the form
</p>
<div class="example">
<pre class="example">F (x) = 0
</pre></div>


<p>using the function <code>fsolve</code>, which is based on the <small>MINPACK</small>
subroutine <code>hybrd</code>.  This is an iterative technique so a starting
point must be provided.  This also has the consequence that
convergence is not guaranteed even if a solution exists.
</p>
<a name="XREFfsolve"></a><dl>
<dt><a name="index-fsolve"></a>: <em></em> <strong>fsolve</strong> <em>(<var>fcn</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt><a name="index-fsolve-1"></a>: <em>[<var>x</var>, <var>fvec</var>, <var>info</var>, <var>output</var>, <var>fjac</var>] =</em> <strong>fsolve</strong> <em>(<var>fcn</var>, &hellip;)</em></dt>
<dd><p>Solve a system of nonlinear equations defined by the function <var>fcn</var>.
</p>
<p><var>fcn</var> should accept a vector (array) defining the unknown variables,
and return a vector of left-hand sides of the equations.  Right-hand sides
are defined to be zeros.  In other words, this function attempts to
determine a vector <var>x</var> such that <code><var>fcn</var> (<var>x</var>)</code> gives
(approximately) all zeros.
</p>
<p><var>x0</var> determines a starting guess.  The shape of <var>x0</var> is preserved
in all calls to <var>fcn</var>, but otherwise it is treated as a column vector.
</p>
<p><var>options</var> is a structure specifying additional options.  Currently,
<code>fsolve</code> recognizes these options:
<code>&quot;FunValCheck&quot;</code>, <code>&quot;OutputFcn&quot;</code>, <code>&quot;TolX&quot;</code>,
<code>&quot;TolFun&quot;</code>, <code>&quot;MaxIter&quot;</code>, <code>&quot;MaxFunEvals&quot;</code>,
<code>&quot;Jacobian&quot;</code>, <code>&quot;Updating&quot;</code>, <code>&quot;ComplexEqn&quot;</code>
<code>&quot;TypicalX&quot;</code>, <code>&quot;AutoScaling&quot;</code> and <code>&quot;FinDiffType&quot;</code>.
</p>
<p>If <code>&quot;Jacobian&quot;</code> is <code>&quot;on&quot;</code>, it specifies that <var>fcn</var>, called
with 2 output arguments also returns the Jacobian matrix of right-hand sides
at the requested point.  <code>&quot;TolX&quot;</code> specifies the termination tolerance
in the unknown variables, while <code>&quot;TolFun&quot;</code> is a tolerance for
equations.  Default is <code>1e-7</code> for both <code>&quot;TolX&quot;</code> and
<code>&quot;TolFun&quot;</code>.
</p>
<p>If <code>&quot;AutoScaling&quot;</code> is on, the variables will be automatically scaled
according to the column norms of the (estimated) Jacobian.  As a result,
TolF becomes scaling-independent.  By default, this option is off because
it may sometimes deliver unexpected (though mathematically correct) results.
</p>
<p>If <code>&quot;Updating&quot;</code> is <code>&quot;on&quot;</code>, the function will attempt to use
Broyden updates to update the Jacobian, in order to reduce the
amount of Jacobian calculations.  If your user function always calculates
the Jacobian (regardless of number of output arguments) then this option
provides no advantage and should be set to false.
</p>
<p><code>&quot;ComplexEqn&quot;</code> is <code>&quot;on&quot;</code>, <code>fsolve</code> will attempt to solve
complex equations in complex variables, assuming that the equations possess
a complex derivative (i.e., are holomorphic).  If this is not what you want,
you should unpack the real and imaginary parts of the system to get a real
system.
</p>
<p>For description of the other options, see <code>optimset</code>.
</p>
<p>On return, <var>fval</var> contains the value of the function <var>fcn</var>
evaluated at <var>x</var>.
</p>
<p><var>info</var> may be one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Converged to a solution point.  Relative residual error is less than
specified by TolFun.
</p>
</dd>
<dt>2</dt>
<dd><p>Last relative step size was less that TolX.
</p>
</dd>
<dt>3</dt>
<dd><p>Last relative decrease in residual was less than TolF.
</p>
</dd>
<dt>0</dt>
<dd><p>Iteration limit exceeded.
</p>
</dd>
<dt>-3</dt>
<dd><p>The trust region radius became excessively small.
</p></dd>
</dl>

<p>Note: If you only have a single nonlinear equation of one variable, using
<code>fzero</code> is usually a much better idea.
</p>
<p>Note about user-supplied Jacobians:
As an inherent property of the algorithm, a Jacobian is always requested for
a solution vector whose residual vector is already known, and it is the last
accepted successful step.  Often this will be one of the last two calls, but
not always.  If the savings by reusing intermediate results from residual
calculation in Jacobian calculation are significant, the best strategy is to
employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is
called with that vector, then the intermediate results should be saved for
future Jacobian evaluation, and should be kept until a Jacobian evaluation
is requested or until OutputFcn is called with a different vector, in which
case they should be dropped in favor of this most recent vector.  A short
example how this can be achieved follows:
</p>
<div class="example">
<pre class="example">function [fvec, fjac] = user_func (x, optimvalues, state)
persistent sav = [], sav0 = [];
if (nargin == 1)
  ## evaluation call
  if (nargout == 1)
    sav0.x = x; # mark saved vector
    ## calculate fvec, save results to sav0.
  elseif (nargout == 2)
    ## calculate fjac using sav.
  endif
else
  ## outputfcn call.
  if (all (x == sav0.x))
    sav = sav0;
  endif
  ## maybe output iteration status, etc.
endif
endfunction

## &hellip;

fsolve (@user_func, x0, optimset (&quot;OutputFcn&quot;, @user_func, &hellip;))
</pre></div>

<p><strong>See also:</strong> <a href="#XREFfzero">fzero</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>


<p>The following is a complete example.  To solve the set of equations
</p>
<div class="example">
<pre class="example">-2x^2 + 3xy   + 4 sin(y) = 6
 3x^2 - 2xy^2 + 3 cos(x) = -4
</pre></div>


<p>you first need to write a function to compute the value of the given
function.  For example:
</p>
<div class="example">
<pre class="example">function y = f (x)
  y = zeros (2, 1);
  y(1) = -2*x(1)^2 + 3*x(1)*x(2)   + 4*sin(x(2)) - 6;
  y(2) =  3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
endfunction
</pre></div>

<p>Then, call <code>fsolve</code> with a specified initial condition to find the
roots of the system of equations.  For example, given the function
<code>f</code> defined above,
</p>
<div class="example">
<pre class="example">[x, fval, info] = fsolve (@f, [1; 2])
</pre></div>

<p>results in the solution
</p>
<div class="example">
<pre class="example">x =

  0.57983
  2.54621

fval =

  -5.7184e-10
   5.5460e-10

info = 1
</pre></div>

<p>A value of <code>info = 1</code> indicates that the solution has converged.
</p>
<p>When no Jacobian is supplied (as in the example above) it is approximated
numerically.  This requires more function evaluations, and hence is
less efficient.  In the example above we could compute the Jacobian
analytically as
</p>

<div class="example">
<pre class="example">function [y, jac] = f (x)
  y = zeros (2, 1);
  y(1) = -2*x(1)^2 + 3*x(1)*x(2)   + 4*sin(x(2)) - 6;
  y(2) =  3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
  if (nargout == 2)
    jac = zeros (2, 2);
    jac(1,1) =  3*x(2) - 4*x(1);
    jac(1,2) =  4*cos(x(2)) + 3*x(1);
    jac(2,1) = -2*x(2)^2 - 3*sin(x(1)) + 6*x(1);
    jac(2,2) = -4*x(1)*x(2);
  endif
endfunction
</pre></div>

<p>The Jacobian can then be used with the following call to <code>fsolve</code>:
</p>
<div class="example">
<pre class="example">[x, fval, info] = fsolve (@f, [1; 2], optimset (&quot;jacobian&quot;, &quot;on&quot;));
</pre></div>

<p>which gives the same solution as before.
</p>
<a name="XREFfzero"></a><dl>
<dt><a name="index-fzero"></a>: <em></em> <strong>fzero</strong> <em>(<var>fun</var>, <var>x0</var>)</em></dt>
<dt><a name="index-fzero-1"></a>: <em></em> <strong>fzero</strong> <em>(<var>fun</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt><a name="index-fzero-2"></a>: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>] =</em> <strong>fzero</strong> <em>(&hellip;)</em></dt>
<dd><p>Find a zero of a univariate function.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p><var>x0</var> should be a two-element vector specifying two points which
bracket a zero.  In other words, there must be a change in sign of the
function between <var>x0</var>(1) and <var>x0</var>(2).  More mathematically, the
following must hold
</p>
<div class="example">
<pre class="example">sign (<var>fun</var>(<var>x0</var>(1))) * sign (<var>fun</var>(<var>x0</var>(2))) &lt;= 0
</pre></div>

<p>If <var>x0</var> is a single scalar then several nearby and distant values are
probed in an attempt to obtain a valid bracketing.  If this is not
successful, the function fails.
</p>
<p><var>options</var> is a structure specifying additional options.  Currently,
<code>fzero</code> recognizes these options:
<code>&quot;FunValCheck&quot;</code>, <code>&quot;OutputFcn&quot;</code>, <code>&quot;TolX&quot;</code>,
<code>&quot;MaxIter&quot;</code>, <code>&quot;MaxFunEvals&quot;</code>.
For a description of these options, see <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p>
<p>On exit, the function returns <var>x</var>, the approximate zero point and
<var>fval</var>, the function value thereof.
</p>
<p><var>info</var> is an exit flag that can have these values:
</p>
<ul>
<li> 1
 The algorithm converged to a solution.

</li><li> 0
 Maximum number of iterations or function evaluations has been reached.

</li><li> -1
The algorithm has been terminated from user output function.

</li><li> -5
The algorithm may have converged to a singular point.
</li></ul>

<p><var>output</var> is a structure containing runtime information about the
<code>fzero</code> algorithm.  Fields in the structure are:
</p>
<ul>
<li> iterations
 Number of iterations through loop.

</li><li> nfev
 Number of function evaluations.

</li><li> bracketx
 A two-element vector with the final bracketing of the zero along the
x-axis.

</li><li> brackety
 A two-element vector with the final bracketing of the zero along the
y-axis.
</li></ul>

<p><strong>See also:</strong> <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>, <a href="#XREFfsolve">fsolve</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Minimizers.html#Minimizers" accesskey="n" rel="next">Minimizers</a>, Up: <a href="Nonlinear-Equations.html#Nonlinear-Equations" accesskey="u" rel="up">Nonlinear Equations</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>