/usr/share/doc/octave/octave.html/Solvers.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Solvers (GNU Octave)</title>
<meta name="description" content="Solvers (GNU Octave)">
<meta name="keywords" content="Solvers (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Nonlinear-Equations.html#Nonlinear-Equations" rel="up" title="Nonlinear Equations">
<link href="Minimizers.html#Minimizers" rel="next" title="Minimizers">
<link href="Nonlinear-Equations.html#Nonlinear-Equations" rel="prev" title="Nonlinear Equations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Solvers"></a>
<div class="header">
<p>
Next: <a href="Minimizers.html#Minimizers" accesskey="n" rel="next">Minimizers</a>, Up: <a href="Nonlinear-Equations.html#Nonlinear-Equations" accesskey="u" rel="up">Nonlinear Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Solvers-1"></a>
<h3 class="section">20.1 Solvers</h3>
<p>Octave can solve sets of nonlinear equations of the form
</p>
<div class="example">
<pre class="example">F (x) = 0
</pre></div>
<p>using the function <code>fsolve</code>, which is based on the <small>MINPACK</small>
subroutine <code>hybrd</code>. This is an iterative technique so a starting
point must be provided. This also has the consequence that
convergence is not guaranteed even if a solution exists.
</p>
<a name="XREFfsolve"></a><dl>
<dt><a name="index-fsolve"></a>: <em></em> <strong>fsolve</strong> <em>(<var>fcn</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt><a name="index-fsolve-1"></a>: <em>[<var>x</var>, <var>fvec</var>, <var>info</var>, <var>output</var>, <var>fjac</var>] =</em> <strong>fsolve</strong> <em>(<var>fcn</var>, …)</em></dt>
<dd><p>Solve a system of nonlinear equations defined by the function <var>fcn</var>.
</p>
<p><var>fcn</var> should accept a vector (array) defining the unknown variables,
and return a vector of left-hand sides of the equations. Right-hand sides
are defined to be zeros. In other words, this function attempts to
determine a vector <var>x</var> such that <code><var>fcn</var> (<var>x</var>)</code> gives
(approximately) all zeros.
</p>
<p><var>x0</var> determines a starting guess. The shape of <var>x0</var> is preserved
in all calls to <var>fcn</var>, but otherwise it is treated as a column vector.
</p>
<p><var>options</var> is a structure specifying additional options. Currently,
<code>fsolve</code> recognizes these options:
<code>"FunValCheck"</code>, <code>"OutputFcn"</code>, <code>"TolX"</code>,
<code>"TolFun"</code>, <code>"MaxIter"</code>, <code>"MaxFunEvals"</code>,
<code>"Jacobian"</code>, <code>"Updating"</code>, <code>"ComplexEqn"</code>
<code>"TypicalX"</code>, <code>"AutoScaling"</code> and <code>"FinDiffType"</code>.
</p>
<p>If <code>"Jacobian"</code> is <code>"on"</code>, it specifies that <var>fcn</var>, called
with 2 output arguments also returns the Jacobian matrix of right-hand sides
at the requested point. <code>"TolX"</code> specifies the termination tolerance
in the unknown variables, while <code>"TolFun"</code> is a tolerance for
equations. Default is <code>1e-7</code> for both <code>"TolX"</code> and
<code>"TolFun"</code>.
</p>
<p>If <code>"AutoScaling"</code> is on, the variables will be automatically scaled
according to the column norms of the (estimated) Jacobian. As a result,
TolF becomes scaling-independent. By default, this option is off because
it may sometimes deliver unexpected (though mathematically correct) results.
</p>
<p>If <code>"Updating"</code> is <code>"on"</code>, the function will attempt to use
Broyden updates to update the Jacobian, in order to reduce the
amount of Jacobian calculations. If your user function always calculates
the Jacobian (regardless of number of output arguments) then this option
provides no advantage and should be set to false.
</p>
<p><code>"ComplexEqn"</code> is <code>"on"</code>, <code>fsolve</code> will attempt to solve
complex equations in complex variables, assuming that the equations possess
a complex derivative (i.e., are holomorphic). If this is not what you want,
you should unpack the real and imaginary parts of the system to get a real
system.
</p>
<p>For description of the other options, see <code>optimset</code>.
</p>
<p>On return, <var>fval</var> contains the value of the function <var>fcn</var>
evaluated at <var>x</var>.
</p>
<p><var>info</var> may be one of the following values:
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Converged to a solution point. Relative residual error is less than
specified by TolFun.
</p>
</dd>
<dt>2</dt>
<dd><p>Last relative step size was less that TolX.
</p>
</dd>
<dt>3</dt>
<dd><p>Last relative decrease in residual was less than TolF.
</p>
</dd>
<dt>0</dt>
<dd><p>Iteration limit exceeded.
</p>
</dd>
<dt>-3</dt>
<dd><p>The trust region radius became excessively small.
</p></dd>
</dl>
<p>Note: If you only have a single nonlinear equation of one variable, using
<code>fzero</code> is usually a much better idea.
</p>
<p>Note about user-supplied Jacobians:
As an inherent property of the algorithm, a Jacobian is always requested for
a solution vector whose residual vector is already known, and it is the last
accepted successful step. Often this will be one of the last two calls, but
not always. If the savings by reusing intermediate results from residual
calculation in Jacobian calculation are significant, the best strategy is to
employ OutputFcn: After a vector is evaluated for residuals, if OutputFcn is
called with that vector, then the intermediate results should be saved for
future Jacobian evaluation, and should be kept until a Jacobian evaluation
is requested or until OutputFcn is called with a different vector, in which
case they should be dropped in favor of this most recent vector. A short
example how this can be achieved follows:
</p>
<div class="example">
<pre class="example">function [fvec, fjac] = user_func (x, optimvalues, state)
persistent sav = [], sav0 = [];
if (nargin == 1)
## evaluation call
if (nargout == 1)
sav0.x = x; # mark saved vector
## calculate fvec, save results to sav0.
elseif (nargout == 2)
## calculate fjac using sav.
endif
else
## outputfcn call.
if (all (x == sav0.x))
sav = sav0;
endif
## maybe output iteration status, etc.
endif
endfunction
## …
fsolve (@user_func, x0, optimset ("OutputFcn", @user_func, …))
</pre></div>
<p><strong>See also:</strong> <a href="#XREFfzero">fzero</a>, <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p></dd></dl>
<p>The following is a complete example. To solve the set of equations
</p>
<div class="example">
<pre class="example">-2x^2 + 3xy + 4 sin(y) = 6
3x^2 - 2xy^2 + 3 cos(x) = -4
</pre></div>
<p>you first need to write a function to compute the value of the given
function. For example:
</p>
<div class="example">
<pre class="example">function y = f (x)
y = zeros (2, 1);
y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;
y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
endfunction
</pre></div>
<p>Then, call <code>fsolve</code> with a specified initial condition to find the
roots of the system of equations. For example, given the function
<code>f</code> defined above,
</p>
<div class="example">
<pre class="example">[x, fval, info] = fsolve (@f, [1; 2])
</pre></div>
<p>results in the solution
</p>
<div class="example">
<pre class="example">x =
0.57983
2.54621
fval =
-5.7184e-10
5.5460e-10
info = 1
</pre></div>
<p>A value of <code>info = 1</code> indicates that the solution has converged.
</p>
<p>When no Jacobian is supplied (as in the example above) it is approximated
numerically. This requires more function evaluations, and hence is
less efficient. In the example above we could compute the Jacobian
analytically as
</p>
<div class="example">
<pre class="example">function [y, jac] = f (x)
y = zeros (2, 1);
y(1) = -2*x(1)^2 + 3*x(1)*x(2) + 4*sin(x(2)) - 6;
y(2) = 3*x(1)^2 - 2*x(1)*x(2)^2 + 3*cos(x(1)) + 4;
if (nargout == 2)
jac = zeros (2, 2);
jac(1,1) = 3*x(2) - 4*x(1);
jac(1,2) = 4*cos(x(2)) + 3*x(1);
jac(2,1) = -2*x(2)^2 - 3*sin(x(1)) + 6*x(1);
jac(2,2) = -4*x(1)*x(2);
endif
endfunction
</pre></div>
<p>The Jacobian can then be used with the following call to <code>fsolve</code>:
</p>
<div class="example">
<pre class="example">[x, fval, info] = fsolve (@f, [1; 2], optimset ("jacobian", "on"));
</pre></div>
<p>which gives the same solution as before.
</p>
<a name="XREFfzero"></a><dl>
<dt><a name="index-fzero"></a>: <em></em> <strong>fzero</strong> <em>(<var>fun</var>, <var>x0</var>)</em></dt>
<dt><a name="index-fzero-1"></a>: <em></em> <strong>fzero</strong> <em>(<var>fun</var>, <var>x0</var>, <var>options</var>)</em></dt>
<dt><a name="index-fzero-2"></a>: <em>[<var>x</var>, <var>fval</var>, <var>info</var>, <var>output</var>] =</em> <strong>fzero</strong> <em>(…)</em></dt>
<dd><p>Find a zero of a univariate function.
</p>
<p><var>fun</var> is a function handle, inline function, or string containing the
name of the function to evaluate.
</p>
<p><var>x0</var> should be a two-element vector specifying two points which
bracket a zero. In other words, there must be a change in sign of the
function between <var>x0</var>(1) and <var>x0</var>(2). More mathematically, the
following must hold
</p>
<div class="example">
<pre class="example">sign (<var>fun</var>(<var>x0</var>(1))) * sign (<var>fun</var>(<var>x0</var>(2))) <= 0
</pre></div>
<p>If <var>x0</var> is a single scalar then several nearby and distant values are
probed in an attempt to obtain a valid bracketing. If this is not
successful, the function fails.
</p>
<p><var>options</var> is a structure specifying additional options. Currently,
<code>fzero</code> recognizes these options:
<code>"FunValCheck"</code>, <code>"OutputFcn"</code>, <code>"TolX"</code>,
<code>"MaxIter"</code>, <code>"MaxFunEvals"</code>.
For a description of these options, see <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>.
</p>
<p>On exit, the function returns <var>x</var>, the approximate zero point and
<var>fval</var>, the function value thereof.
</p>
<p><var>info</var> is an exit flag that can have these values:
</p>
<ul>
<li> 1
The algorithm converged to a solution.
</li><li> 0
Maximum number of iterations or function evaluations has been reached.
</li><li> -1
The algorithm has been terminated from user output function.
</li><li> -5
The algorithm may have converged to a singular point.
</li></ul>
<p><var>output</var> is a structure containing runtime information about the
<code>fzero</code> algorithm. Fields in the structure are:
</p>
<ul>
<li> iterations
Number of iterations through loop.
</li><li> nfev
Number of function evaluations.
</li><li> bracketx
A two-element vector with the final bracketing of the zero along the
x-axis.
</li><li> brackety
A two-element vector with the final bracketing of the zero along the
y-axis.
</li></ul>
<p><strong>See also:</strong> <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>, <a href="#XREFfsolve">fsolve</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Minimizers.html#Minimizers" accesskey="n" rel="next">Minimizers</a>, Up: <a href="Nonlinear-Equations.html#Nonlinear-Equations" accesskey="u" rel="up">Nonlinear Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|