This file is indexed.

/usr/share/doc/octave/octave.html/Signal-Processing.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Signal Processing (GNU Octave)</title>

<meta name="description" content="Signal Processing (GNU Octave)">
<meta name="keywords" content="Signal Processing (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="index.html#Top" rel="up" title="Top">
<link href="Image-Processing.html#Image-Processing" rel="next" title="Image Processing">
<link href="Interpolation-on-Scattered-Data.html#Interpolation-on-Scattered-Data" rel="prev" title="Interpolation on Scattered Data">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Signal-Processing"></a>
<div class="header">
<p>
Next: <a href="Image-Processing.html#Image-Processing" accesskey="n" rel="next">Image Processing</a>, Previous: <a href="Geometry.html#Geometry" accesskey="p" rel="prev">Geometry</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Signal-Processing-1"></a>
<h2 class="chapter">31 Signal Processing</h2>

<p>This chapter describes the signal processing and fast Fourier
transform functions available in Octave.  Fast Fourier transforms are
computed with the <small>FFTW</small> or <small>FFTPACK</small> libraries depending on how
Octave is built.
</p>
<a name="XREFfft"></a><dl>
<dt><a name="index-fft"></a>: <em></em> <strong>fft</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-fft-1"></a>: <em></em> <strong>fft</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dt><a name="index-fft-2"></a>: <em></em> <strong>fft</strong> <em>(<var>x</var>, <var>n</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the discrete Fourier transform of <var>x</var> using
a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The FFT is calculated along the first non-singleton dimension of the
array.  Thus if <var>x</var> is a matrix, <code>fft (<var>x</var>)</code> computes the
FFT for each column of <var>x</var>.
</p>
<p>If called with two arguments, <var>n</var> is expected to be an integer
specifying the number of elements of <var>x</var> to use, or an empty
matrix to specify that its value should be ignored.  If <var>n</var> is
larger than the dimension along which the FFT is calculated, then
<var>x</var> is resized and padded with zeros.  Otherwise, if <var>n</var> is
smaller than the dimension along which the FFT is calculated, then
<var>x</var> is truncated.
</p>
<p>If called with three arguments, <var>dim</var> is an integer specifying the
dimension of the matrix along which the FFT is performed.
</p>
<p><strong>See also:</strong> <a href="#XREFifft">ifft</a>, <a href="#XREFfft2">fft2</a>, <a href="#XREFfftn">fftn</a>, <a href="#XREFfftw">fftw</a>.
</p></dd></dl>


<a name="XREFifft"></a><dl>
<dt><a name="index-ifft"></a>: <em></em> <strong>ifft</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-ifft-1"></a>: <em></em> <strong>ifft</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dt><a name="index-ifft-2"></a>: <em></em> <strong>ifft</strong> <em>(<var>x</var>, <var>n</var>, <var>dim</var>)</em></dt>
<dd><p>Compute the inverse discrete Fourier transform of <var>x</var>
using a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The inverse FFT is calculated along the first non-singleton dimension
of the array.  Thus if <var>x</var> is a matrix, <code>fft (<var>x</var>)</code> computes
the inverse FFT for each column of <var>x</var>.
</p>
<p>If called with two arguments, <var>n</var> is expected to be an integer
specifying the number of elements of <var>x</var> to use, or an empty
matrix to specify that its value should be ignored.  If <var>n</var> is
larger than the dimension along which the inverse FFT is calculated, then
<var>x</var> is resized and padded with zeros.  Otherwise, if <var>n</var> is
smaller than the dimension along which the inverse FFT is calculated,
then <var>x</var> is truncated.
</p>
<p>If called with three arguments, <var>dim</var> is an integer specifying the
dimension of the matrix along which the inverse FFT is performed.
</p>
<p><strong>See also:</strong> <a href="#XREFfft">fft</a>, <a href="#XREFifft2">ifft2</a>, <a href="#XREFifftn">ifftn</a>, <a href="#XREFfftw">fftw</a>.
</p></dd></dl>


<a name="XREFfft2"></a><dl>
<dt><a name="index-fft2"></a>: <em></em> <strong>fft2</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-fft2-1"></a>: <em></em> <strong>fft2</strong> <em>(<var>A</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>Compute the two-dimensional discrete Fourier transform of <var>A</var> using
a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional arguments <var>m</var> and <var>n</var> may be used specify the number of
rows and columns of <var>A</var> to use.  If either of these is larger than the
size of <var>A</var>, <var>A</var> is resized and padded with zeros.
</p>
<p>If <var>A</var> is a multi-dimensional matrix, each two-dimensional sub-matrix
of <var>A</var> is treated separately.
</p>
<p><strong>See also:</strong> <a href="#XREFifft2">ifft2</a>, <a href="#XREFfft">fft</a>, <a href="#XREFfftn">fftn</a>, <a href="#XREFfftw">fftw</a>.
</p></dd></dl>


<a name="XREFifft2"></a><dl>
<dt><a name="index-ifft2"></a>: <em></em> <strong>ifft2</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-ifft2-1"></a>: <em></em> <strong>ifft2</strong> <em>(<var>A</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>Compute the inverse two-dimensional discrete Fourier transform of <var>A</var>
using a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional arguments <var>m</var> and <var>n</var> may be used specify the number of
rows and columns of <var>A</var> to use.  If either of these is larger than the
size of <var>A</var>, <var>A</var> is resized and padded with zeros.
</p>
<p>If <var>A</var> is a multi-dimensional matrix, each two-dimensional sub-matrix
of <var>A</var> is treated separately.
</p>
<p><strong>See also:</strong> <a href="#XREFfft2">fft2</a>, <a href="#XREFifft">ifft</a>, <a href="#XREFifftn">ifftn</a>, <a href="#XREFfftw">fftw</a>.
</p></dd></dl>


<a name="XREFfftn"></a><dl>
<dt><a name="index-fftn"></a>: <em></em> <strong>fftn</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-fftn-1"></a>: <em></em> <strong>fftn</strong> <em>(<var>A</var>, <var>size</var>)</em></dt>
<dd><p>Compute the N-dimensional discrete Fourier transform of <var>A</var> using
a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional vector argument <var>size</var> may be used specify the dimensions
of the array to be used.  If an element of <var>size</var> is smaller than the
corresponding dimension of <var>A</var>, then the dimension of <var>A</var> is
truncated prior to performing the FFT.  Otherwise, if an element of
<var>size</var> is larger than the corresponding dimension then <var>A</var> is
resized and padded with zeros.
</p>
<p><strong>See also:</strong> <a href="#XREFifftn">ifftn</a>, <a href="#XREFfft">fft</a>, <a href="#XREFfft2">fft2</a>, <a href="#XREFfftw">fftw</a>.
</p></dd></dl>


<a name="XREFifftn"></a><dl>
<dt><a name="index-ifftn"></a>: <em></em> <strong>ifftn</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-ifftn-1"></a>: <em></em> <strong>ifftn</strong> <em>(<var>A</var>, <var>size</var>)</em></dt>
<dd><p>Compute the inverse N-dimensional discrete Fourier transform of <var>A</var>
using a Fast Fourier Transform (FFT) algorithm.
</p>
<p>The optional vector argument <var>size</var> may be used specify the dimensions
of the array to be used.  If an element of <var>size</var> is smaller than the
corresponding dimension of <var>A</var>, then the dimension of <var>A</var> is
truncated prior to performing the inverse FFT.  Otherwise, if an element of
<var>size</var> is larger than the corresponding dimension then <var>A</var> is
resized and padded with zeros.
</p>
<p><strong>See also:</strong> <a href="#XREFfftn">fftn</a>, <a href="#XREFifft">ifft</a>, <a href="#XREFifft2">ifft2</a>, <a href="#XREFfftw">fftw</a>.
</p></dd></dl>


<p>Octave uses the <small>FFTW</small> libraries to perform FFT computations.  When Octave
starts up and initializes the <small>FFTW</small> libraries, they read a system wide
file (on a Unix system, it is typically <samp>/etc/fftw/wisdom</samp>) that
contains information useful to speed up FFT computations.  This
information is called the <em>wisdom</em>.  The system-wide file allows
wisdom to be shared between all applications using the <small>FFTW</small> libraries.
</p>
<p>Use the <code>fftw</code> function to generate and save wisdom.  Using the
utilities provided together with the <small>FFTW</small> libraries
(<code>fftw-wisdom</code> on Unix systems), you can even add wisdom
generated by Octave to the system-wide wisdom file.
</p>
<a name="XREFfftw"></a><dl>
<dt><a name="index-fftw"></a>: <em><var>method</var> =</em> <strong>fftw</strong> <em>(&quot;planner&quot;)</em></dt>
<dt><a name="index-fftw-1"></a>: <em></em> <strong>fftw</strong> <em>(&quot;planner&quot;, <var>method</var>)</em></dt>
<dt><a name="index-fftw-2"></a>: <em><var>wisdom</var> =</em> <strong>fftw</strong> <em>(&quot;dwisdom&quot;)</em></dt>
<dt><a name="index-fftw-3"></a>: <em></em> <strong>fftw</strong> <em>(&quot;dwisdom&quot;, <var>wisdom</var>)</em></dt>
<dt><a name="index-fftw-4"></a>: <em></em> <strong>fftw</strong> <em>(&quot;threads&quot;, <var>nthreads</var>)</em></dt>
<dt><a name="index-fftw-5"></a>: <em><var>nthreads</var> =</em> <strong>fftw</strong> <em>(&quot;threads&quot;)</em></dt>
<dd>
<p>Manage <small>FFTW</small> wisdom data.
</p>
<p>Wisdom data can be used to significantly accelerate the calculation of the
FFTs, but implies an initial cost in its calculation.  When the <small>FFTW</small>
libraries are initialized, they read a system wide wisdom file (typically in
<samp>/etc/fftw/wisdom</samp>), allowing wisdom to be shared between applications
other than Octave.  Alternatively, the <code>fftw</code> function can be used to
import wisdom.  For example,
</p>
<div class="example">
<pre class="example"><var>wisdom</var> = fftw (&quot;dwisdom&quot;)
</pre></div>

<p>will save the existing wisdom used by Octave to the string <var>wisdom</var>.
This string can then be saved to a file and restored using the <code>save</code>
and <code>load</code> commands respectively.  This existing wisdom can be
re-imported as follows
</p>
<div class="example">
<pre class="example">fftw (&quot;dwisdom&quot;, <var>wisdom</var>)
</pre></div>

<p>If <var>wisdom</var> is an empty string, then the wisdom used is cleared.
</p>
<p>During the calculation of Fourier transforms further wisdom is generated.
The fashion in which this wisdom is generated is also controlled by
the <code>fftw</code> function.  There are five different manners in which the
wisdom can be treated:
</p>
<dl compact="compact">
<dt><code>&quot;estimate&quot;</code></dt>
<dd><p>Specifies that no run-time measurement of the optimal means of
calculating a particular is performed, and a simple heuristic is used
to pick a (probably sub-optimal) plan.  The advantage of this method is
that there is little or no overhead in the generation of the plan, which
is appropriate for a Fourier transform that will be calculated once.
</p>
</dd>
<dt><code>&quot;measure&quot;</code></dt>
<dd><p>In this case a range of algorithms to perform the transform is considered
and the best is selected based on their execution time.
</p>
</dd>
<dt><code>&quot;patient&quot;</code></dt>
<dd><p>Similar to <code>&quot;measure&quot;</code>, but a wider range of algorithms is
considered.
</p>
</dd>
<dt><code>&quot;exhaustive&quot;</code></dt>
<dd><p>Like <code>&quot;measure&quot;</code>, but all possible algorithms that may be used to
treat the transform are considered.
</p>
</dd>
<dt><code>&quot;hybrid&quot;</code></dt>
<dd><p>As run-time measurement of the algorithm can be expensive, this is a
compromise where <code>&quot;measure&quot;</code> is used for transforms up to the size
of 8192 and beyond that the <code>&quot;estimate&quot;</code> method is used.
</p></dd>
</dl>

<p>The default method is <code>&quot;estimate&quot;</code>.  The current method can
be queried with
</p>
<div class="example">
<pre class="example"><var>method</var> = fftw (&quot;planner&quot;)
</pre></div>

<p>or set by using
</p>
<div class="example">
<pre class="example">fftw (&quot;planner&quot;, <var>method</var>)
</pre></div>

<p>Note that calculated wisdom will be lost when restarting Octave.  However,
the wisdom data can be reloaded if it is saved to a file as described
above.  Saved wisdom files should not be used on different platforms since
they will not be efficient and the point of calculating the wisdom is lost.
</p>
<p>The number of threads used for computing the plans and executing the
transforms can be set with
</p>
<div class="example">
<pre class="example">fftw (&quot;threads&quot;, <var>NTHREADS</var>)
</pre></div>

<p>Note that octave must be compiled with multi-threaded <small>FFTW</small> support for
this feature.  The number of processors available to the current process is
used per default.
</p>

<p><strong>See also:</strong> <a href="#XREFfft">fft</a>, <a href="#XREFifft">ifft</a>, <a href="#XREFfft2">fft2</a>, <a href="#XREFifft2">ifft2</a>, <a href="#XREFfftn">fftn</a>, <a href="#XREFifftn">ifftn</a>.
</p></dd></dl>


<a name="XREFfftconv"></a><dl>
<dt><a name="index-fftconv"></a>: <em></em> <strong>fftconv</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-fftconv-1"></a>: <em></em> <strong>fftconv</strong> <em>(<var>x</var>, <var>y</var>, <var>n</var>)</em></dt>
<dd><p>Convolve two vectors using the FFT for computation.
</p>
<p><code>c = fftconv (<var>x</var>, <var>y</var>)</code> returns a vector of length equal to
<code>length (<var>x</var>) + length (<var>y</var>) - 1</code>.  If <var>x</var> and <var>y</var>
are the coefficient vectors of two polynomials, the returned value is the
coefficient vector of the product polynomial.
</p>
<p>The computation uses the FFT by calling the function <code>fftfilt</code>.  If
the optional argument <var>n</var> is specified, an N-point FFT is used.
</p>
<p><strong>See also:</strong> <a href="Products-of-Polynomials.html#XREFdeconv">deconv</a>, <a href="Products-of-Polynomials.html#XREFconv">conv</a>, <a href="Products-of-Polynomials.html#XREFconv2">conv2</a>.
</p></dd></dl>


<a name="XREFfftfilt"></a><dl>
<dt><a name="index-fftfilt"></a>: <em></em> <strong>fftfilt</strong> <em>(<var>b</var>, <var>x</var>)</em></dt>
<dt><a name="index-fftfilt-1"></a>: <em></em> <strong>fftfilt</strong> <em>(<var>b</var>, <var>x</var>, <var>n</var>)</em></dt>
<dd><p>Filter <var>x</var> with the FIR filter <var>b</var> using the FFT.
</p>
<p>If <var>x</var> is a matrix, filter each column of the matrix.
</p>
<p>Given the optional third argument, <var>n</var>, <code>fftfilt</code> uses the
overlap-add method to filter <var>x</var> with <var>b</var> using an N-point FFT.
The FFT size must be an even power of 2 and must be greater than or equal to
the length of <var>b</var>.  If the specified <var>n</var> does not meet these
criteria, it is automatically adjusted to the nearest value that does.
</p>

<p><strong>See also:</strong> <a href="#XREFfilter">filter</a>, <a href="#XREFfilter2">filter2</a>.
</p></dd></dl>


<a name="XREFfilter"></a><dl>
<dt><a name="index-filter"></a>: <em><var>y</var> =</em> <strong>filter</strong> <em>(<var>b</var>, <var>a</var>, <var>x</var>)</em></dt>
<dt><a name="index-filter-1"></a>: <em>[<var>y</var>, <var>sf</var>] =</em> <strong>filter</strong> <em>(<var>b</var>, <var>a</var>, <var>x</var>, <var>si</var>)</em></dt>
<dt><a name="index-filter-2"></a>: <em>[<var>y</var>, <var>sf</var>] =</em> <strong>filter</strong> <em>(<var>b</var>, <var>a</var>, <var>x</var>, [], <var>dim</var>)</em></dt>
<dt><a name="index-filter-3"></a>: <em>[<var>y</var>, <var>sf</var>] =</em> <strong>filter</strong> <em>(<var>b</var>, <var>a</var>, <var>x</var>, <var>si</var>, <var>dim</var>)</em></dt>
<dd><p>Apply a 1-D digital filter to the data <var>x</var>.
</p>
<p><code>filter</code> returns the solution to the following linear, time-invariant
difference equation:
</p>
<div class="smallexample">
<pre class="smallexample"> N                   M
SUM a(k+1) y(n-k) = SUM b(k+1) x(n-k)    for 1&lt;=n&lt;=length(x)
k=0                 k=0
</pre></div>


<p>where
N=length(a)-1 and M=length(b)-1.
The result is calculated over the first non-singleton dimension of <var>x</var>
or over <var>dim</var> if supplied.
</p>
<p>An equivalent form of the equation is:
</p>
<div class="smallexample">
<pre class="smallexample">          N                   M
y(n) = - SUM c(k+1) y(n-k) + SUM d(k+1) x(n-k)  for 1&lt;=n&lt;=length(x)
         k=1                 k=0
</pre></div>


<p>where
 c = a/a(1) and d = b/a(1).
</p>
<p>If the fourth argument <var>si</var> is provided, it is taken as the
initial state of the system and the final state is returned as
<var>sf</var>.  The state vector is a column vector whose length is
equal to the length of the longest coefficient vector minus one.
If <var>si</var> is not supplied, the initial state vector is set to all
zeros.
</p>
<p>In terms of the Z Transform, <var>y</var> is the result of passing the
discrete-time signal <var>x</var> through a system characterized by the following
rational system function:
</p>
<div class="example">
<pre class="example">          M
         SUM d(k+1) z^(-k)
         k=0
H(z) = ---------------------
            N
       1 + SUM c(k+1) z^(-k)
           k=1
</pre></div>


<p><strong>See also:</strong> <a href="#XREFfilter2">filter2</a>, <a href="#XREFfftfilt">fftfilt</a>, <a href="#XREFfreqz">freqz</a>.
</p></dd></dl>


<a name="XREFfilter2"></a><dl>
<dt><a name="index-filter2"></a>: <em><var>y</var> =</em> <strong>filter2</strong> <em>(<var>b</var>, <var>x</var>)</em></dt>
<dt><a name="index-filter2-1"></a>: <em><var>y</var> =</em> <strong>filter2</strong> <em>(<var>b</var>, <var>x</var>, <var>shape</var>)</em></dt>
<dd><p>Apply the 2-D FIR filter <var>b</var> to <var>x</var>.
</p>
<p>If the argument <var>shape</var> is specified, return an array of the desired
shape.  Possible values are:
</p>
<dl compact="compact">
<dt><code>&quot;full&quot;</code></dt>
<dd><p>pad <var>x</var> with zeros on all sides before filtering.
</p>
</dd>
<dt><code>&quot;same&quot;</code></dt>
<dd><p>unpadded <var>x</var> (default)
</p>
</dd>
<dt><code>&quot;valid&quot;</code></dt>
<dd><p>trim <var>x</var> after filtering so edge effects are no included.
</p></dd>
</dl>

<p>Note this is just a variation on convolution, with the parameters reversed
and <var>b</var> rotated 180 degrees.
</p>
<p><strong>See also:</strong> <a href="Products-of-Polynomials.html#XREFconv2">conv2</a>.
</p></dd></dl>


<a name="XREFfreqz"></a><dl>
<dt><a name="index-freqz"></a>: <em>[<var>h</var>, <var>w</var>] =</em> <strong>freqz</strong> <em>(<var>b</var>, <var>a</var>, <var>n</var>, &quot;whole&quot;)</em></dt>
<dt><a name="index-freqz-1"></a>: <em>[<var>h</var>, <var>w</var>] =</em> <strong>freqz</strong> <em>(<var>b</var>)</em></dt>
<dt><a name="index-freqz-2"></a>: <em>[<var>h</var>, <var>w</var>] =</em> <strong>freqz</strong> <em>(<var>b</var>, <var>a</var>)</em></dt>
<dt><a name="index-freqz-3"></a>: <em>[<var>h</var>, <var>w</var>] =</em> <strong>freqz</strong> <em>(<var>b</var>, <var>a</var>, <var>n</var>)</em></dt>
<dt><a name="index-freqz-4"></a>: <em><var>h</var> =</em> <strong>freqz</strong> <em>(<var>b</var>, <var>a</var>, <var>w</var>)</em></dt>
<dt><a name="index-freqz-5"></a>: <em>[<var>h</var>, <var>w</var>] =</em> <strong>freqz</strong> <em>(&hellip;, <var>Fs</var>)</em></dt>
<dt><a name="index-freqz-6"></a>: <em></em> <strong>freqz</strong> <em>(&hellip;)</em></dt>
<dd>
<p>Return the complex frequency response <var>h</var> of the rational IIR filter
whose numerator and denominator coefficients are <var>b</var> and <var>a</var>,
respectively.
</p>
<p>The response is evaluated at <var>n</var> angular frequencies between 0 and
2*pi.
</p>
<p>The output value <var>w</var> is a vector of the frequencies.
</p>
<p>If <var>a</var> is omitted, the denominator is assumed to be 1 (this
corresponds to a simple FIR filter).
</p>
<p>If <var>n</var> is omitted, a value of 512 is assumed.  For fastest computation,
<var>n</var> should factor into a small number of small primes.
</p>
<p>If the fourth argument, <code>&quot;whole&quot;</code>, is omitted the response is
evaluated at frequencies between 0 and
pi.
</p>
<p><code>freqz (<var>b</var>, <var>a</var>, <var>w</var>)</code>
</p>
<p>Evaluate the response at the specific frequencies in the vector <var>w</var>.
The values for <var>w</var> are measured in radians.
</p>
<p><code>[&hellip;] = freqz (&hellip;, <var>Fs</var>)</code>
</p>
<p>Return frequencies in Hz instead of radians assuming a sampling rate
<var>Fs</var>.  If you are evaluating the response at specific frequencies
<var>w</var>, those frequencies should be requested in Hz rather than radians.
</p>
<p><code>freqz (&hellip;)</code>
</p>
<p>Plot the magnitude and phase response of <var>h</var> rather than returning them.
</p>

<p><strong>See also:</strong> <a href="#XREFfreqz_005fplot">freqz_plot</a>.
</p></dd></dl>


<a name="XREFfreqz_005fplot"></a><dl>
<dt><a name="index-freqz_005fplot"></a>: <em></em> <strong>freqz_plot</strong> <em>(<var>w</var>, <var>h</var>)</em></dt>
<dt><a name="index-freqz_005fplot-1"></a>: <em></em> <strong>freqz_plot</strong> <em>(<var>w</var>, <var>h</var>, <var>freq_norm</var>)</em></dt>
<dd><p>Plot the magnitude and phase response of <var>h</var>.
</p>
<p>If the optional <var>freq_norm</var> argument is true, the frequency vector
<var>w</var> is in units of normalized radians.  If <var>freq_norm</var> is false, or
not given, then <var>w</var> is measured in Hertz.
</p>
<p><strong>See also:</strong> <a href="#XREFfreqz">freqz</a>.
</p></dd></dl>


<a name="XREFsinc"></a><dl>
<dt><a name="index-sinc"></a>: <em></em> <strong>sinc</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Compute the sinc function.
</p>
<p>Return
sin (pi*x) / (pi*x).
</p></dd></dl>


<a name="XREFunwrap"></a><dl>
<dt><a name="index-unwrap"></a>: <em><var>b</var> =</em> <strong>unwrap</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-unwrap-1"></a>: <em><var>b</var> =</em> <strong>unwrap</strong> <em>(<var>x</var>, <var>tol</var>)</em></dt>
<dt><a name="index-unwrap-2"></a>: <em><var>b</var> =</em> <strong>unwrap</strong> <em>(<var>x</var>, <var>tol</var>, <var>dim</var>)</em></dt>
<dd>
<p>Unwrap radian phases by adding or subtracting multiples of 2*pi as
appropriate to remove jumps greater than <var>tol</var>.
</p>
<p><var>tol</var> defaults to pi.
</p>
<p>Unwrap will work along the dimension <var>dim</var>.  If <var>dim</var>
is unspecified it defaults to the first non-singleton dimension.
</p></dd></dl>



<a name="XREFarch_005ffit"></a><dl>
<dt><a name="index-arch_005ffit"></a>: <em>[<var>a</var>, <var>b</var>] =</em> <strong>arch_fit</strong> <em>(<var>y</var>, <var>x</var>, <var>p</var>, <var>iter</var>, <var>gamma</var>, <var>a0</var>, <var>b0</var>)</em></dt>
<dd><p>Fit an ARCH regression model to the time series <var>y</var> using the scoring
algorithm in Engle&rsquo;s original ARCH paper.
</p>
<p>The model is
</p>
<div class="example">
<pre class="example">y(t) = b(1) * x(t,1) + &hellip; + b(k) * x(t,k) + e(t),
h(t) = a(1) + a(2) * e(t-1)^2 + &hellip; + a(p+1) * e(t-p)^2
</pre></div>

<p>in which <em>e(t)</em> is <em>N(0, h(t))</em>, given a time-series vector
<var>y</var> up to time <em>t-1</em> and a matrix of (ordinary) regressors <var>x</var>
up to <em>t</em>.  The order of the regression of the residual variance is
specified by <var>p</var>.
</p>
<p>If invoked as <code>arch_fit (<var>y</var>, <var>k</var>, <var>p</var>)</code> with a positive
integer <var>k</var>, fit an ARCH(<var>k</var>, <var>p</var>) process, i.e., do the above
with the <em>t</em>-th row of <var>x</var> given by
</p>
<div class="example">
<pre class="example">[1, y(t-1), &hellip;, y(t-k)]
</pre></div>

<p>Optionally, one can specify the number of iterations <var>iter</var>, the
updating factor <var>gamma</var>, and initial values <em>a0</em> and <em>b0</em>
for the scoring algorithm.
</p></dd></dl>


<a name="XREFarch_005frnd"></a><dl>
<dt><a name="index-arch_005frnd"></a>: <em></em> <strong>arch_rnd</strong> <em>(<var>a</var>, <var>b</var>, <var>t</var>)</em></dt>
<dd><p>Simulate an ARCH sequence of length <var>t</var> with AR coefficients <var>b</var> and
CH coefficients <var>a</var>.
</p>
<p>The result <em>y(t)</em> follows the model
</p>
<div class="smallexample">
<pre class="smallexample">y(t) = b(1) + b(2) * y(t-1) + &hellip; + b(lb) * y(t-lb+1) + e(t),
</pre></div>

<p>where <em>e(t)</em>, given <var>y</var> up to time <em>t-1</em>, is
<em>N(0, h(t))</em>, with
</p>
<div class="smallexample">
<pre class="smallexample">h(t) = a(1) + a(2) * e(t-1)^2 + &hellip; + a(la) * e(t-la+1)^2
</pre></div>
</dd></dl>


<a name="XREFarch_005ftest"></a><dl>
<dt><a name="index-arch_005ftest"></a>: <em>[<var>pval</var>, <var>lm</var>] =</em> <strong>arch_test</strong> <em>(<var>y</var>, <var>x</var>, <var>p</var>)</em></dt>
<dd><p>For a linear regression model
</p>
<div class="example">
<pre class="example">y = x * b + e
</pre></div>

<p>perform a Lagrange Multiplier (LM) test of the null hypothesis of no
conditional heteroscedascity against the alternative of CH(<var>p</var>).
</p>
<p>I.e., the model is
</p>
<div class="example">
<pre class="example">y(t) = b(1) * x(t,1) + &hellip; + b(k) * x(t,k) + e(t),
</pre></div>

<p>given <var>y</var> up to <em>t-1</em> and <var>x</var> up to <em>t</em>,
<em>e</em>(t) is <em>N(0, h(t))</em> with
</p>
<div class="example">
<pre class="example">h(t) = v + a(1) * e(t-1)^2 + &hellip; + a(p) * e(t-p)^2,
</pre></div>

<p>and the null is <em>a(1)</em> == &hellip; == <em>a(p)</em> == 0.
</p>
<p>If the second argument is a scalar integer, <em>k</em>, perform the same
test in a linear autoregression model of order <em>k</em>, i.e., with
</p>
<div class="example">
<pre class="example">[1, y(t-1), &hellip;, y(t-<var>k</var>)]
</pre></div>

<p>as the <em>t</em>-th row of <var>x</var>.
</p>
<p>Under the null, LM approximately has a chisquare distribution with
<var>p</var> degrees of freedom and <var>pval</var> is the <em>p</em>-value (1
minus the CDF of this distribution at LM) of the test.
</p>
<p>If no output argument is given, the <em>p</em>-value is displayed.
</p></dd></dl>


<a name="XREFarma_005frnd"></a><dl>
<dt><a name="index-arma_005frnd"></a>: <em></em> <strong>arma_rnd</strong> <em>(<var>a</var>, <var>b</var>, <var>v</var>, <var>t</var>, <var>n</var>)</em></dt>
<dd><p>Return a simulation of the ARMA model.
</p>
<p>The ARMA model is defined by
</p>
<div class="example">
<pre class="example">x(n) = a(1) * x(n-1) + &hellip; + a(k) * x(n-k)
     + e(n) + b(1) * e(n-1) + &hellip; + b(l) * e(n-l)
</pre></div>

<p>in which <var>k</var> is the length of vector <var>a</var>, <var>l</var> is the length of
vector <var>b</var> and <var>e</var> is Gaussian white noise with variance <var>v</var>.
The function returns a vector of length <var>t</var>.
</p>
<p>The optional parameter <var>n</var> gives the number of dummy <var>x</var>(<var>i</var>)
used for initialization, i.e., a sequence of length <var>t</var>+<var>n</var> is
generated and <var>x</var>(<var>n</var>+1:<var>t</var>+<var>n</var>) is returned.  If <var>n</var>
is omitted, <var>n</var> = 100 is used.
</p></dd></dl>


<a name="XREFautoreg_005fmatrix"></a><dl>
<dt><a name="index-autoreg_005fmatrix"></a>: <em></em> <strong>autoreg_matrix</strong> <em>(<var>y</var>, <var>k</var>)</em></dt>
<dd><p>Given a time series (vector) <var>y</var>, return a matrix with ones in the first
column and the first <var>k</var> lagged values of <var>y</var> in the other columns.
</p>
<p>In other words, for <var>t</var> &gt; <var>k</var>,
<code>[1, <var>y</var>(<var>t</var>-1), &hellip;, <var>y</var>(<var>t</var>-<var>k</var>)]</code> is the
t-th row of the result.
</p>
<p>The resulting matrix may be used as a regressor matrix in autoregressions.
</p></dd></dl>


<a name="XREFbartlett"></a><dl>
<dt><a name="index-bartlett"></a>: <em></em> <strong>bartlett</strong> <em>(<var>m</var>)</em></dt>
<dd><p>Return the filter coefficients of a Bartlett (triangular) window of length
<var>m</var>.
</p>
<p>For a definition of the Bartlett window see, e.g.,
A.V. Oppenheim &amp; R. W. Schafer,
<cite>Discrete-Time Signal Processing</cite>.
</p></dd></dl>


<a name="XREFblackman"></a><dl>
<dt><a name="index-blackman"></a>: <em></em> <strong>blackman</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-blackman-1"></a>: <em></em> <strong>blackman</strong> <em>(<var>m</var>, &quot;periodic&quot;)</em></dt>
<dt><a name="index-blackman-2"></a>: <em></em> <strong>blackman</strong> <em>(<var>m</var>, &quot;symmetric&quot;)</em></dt>
<dd><p>Return the filter coefficients of a Blackman window of length <var>m</var>.
</p>
<p>If the optional argument <code>&quot;periodic&quot;</code> is given, the periodic form
of the window is returned.  This is equivalent to the window of length
<var>m</var>+1 with the last coefficient removed.  The optional argument
<code>&quot;symmetric&quot;</code> is equivalent to not specifying a second argument.
</p>
<p>For a definition of the Blackman window, see, e.g.,
A.V. Oppenheim &amp; R. W. Schafer,
<cite>Discrete-Time Signal Processing</cite>.
</p></dd></dl>


<a name="XREFdetrend"></a><dl>
<dt><a name="index-detrend"></a>: <em></em> <strong>detrend</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dd><p>If <var>x</var> is a vector, <code>detrend (<var>x</var>, <var>p</var>)</code> removes the
best fit of a polynomial of order <var>p</var> from the data <var>x</var>.
</p>
<p>If <var>x</var> is a matrix, <code>detrend (<var>x</var>, <var>p</var>)</code> does the same
for each column in <var>x</var>.
</p>
<p>The second argument <var>p</var> is optional.  If it is not specified, a value of
1 is assumed.  This corresponds to removing a linear trend.
</p>
<p>The order of the polynomial can also be given as a string, in which case
<var>p</var> must be either <code>&quot;constant&quot;</code> (corresponds to <code><var>p</var>=0</code>)
or <code>&quot;linear&quot;</code> (corresponds to <code><var>p</var>=1</code>).
</p>
<p><strong>See also:</strong> <a href="Polynomial-Interpolation.html#XREFpolyfit">polyfit</a>.
</p></dd></dl>


<a name="XREFdiffpara"></a><dl>
<dt><a name="index-diffpara"></a>: <em>[<var>d</var>, <var>dd</var>] =</em> <strong>diffpara</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>Return the estimator <var>d</var> for the differencing parameter of an
integrated time series.
</p>
<p>The frequencies from <em>[2*pi*a/t, 2*pi*b/T]</em> are used for the
estimation.  If <var>b</var> is omitted, the interval
<em>[2*pi/T, 2*pi*a/T]</em> is used.  If both <var>b</var> and <var>a</var> are omitted
then <em>a = 0.5 * sqrt (T)</em> and <em>b = 1.5 * sqrt (T)</em> is used, where
<em>T</em> is the sample size.  If <var>x</var> is a matrix, the differencing
parameter of each column is estimated.
</p>
<p>The estimators for all frequencies in the intervals described above is
returned in <var>dd</var>.
</p>
<p>The value of <var>d</var> is simply the mean of <var>dd</var>.
</p>
<p>Reference: P.J. Brockwell &amp; R.A. Davis. <cite>Time Series:
Theory and Methods</cite>. Springer 1987.
</p></dd></dl>


<a name="XREFdurbinlevinson"></a><dl>
<dt><a name="index-durbinlevinson"></a>: <em></em> <strong>durbinlevinson</strong> <em>(<var>c</var>, <var>oldphi</var>, <var>oldv</var>)</em></dt>
<dd><p>Perform one step of the Durbin-Levinson algorithm.
</p>
<p>The vector <var>c</var> specifies the autocovariances
<code>[gamma_0, &hellip;, gamma_t]</code> from lag 0 to <var>t</var>, <var>oldphi</var>
specifies the coefficients based on <var>c</var>(<var>t</var>-1) and <var>oldv</var>
specifies the corresponding error.
</p>
<p>If <var>oldphi</var> and <var>oldv</var> are omitted, all steps from 1 to <var>t</var> of
the algorithm are performed.
</p></dd></dl>


<a name="XREFfftshift"></a><dl>
<dt><a name="index-fftshift"></a>: <em></em> <strong>fftshift</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-fftshift-1"></a>: <em></em> <strong>fftshift</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Perform a shift of the vector <var>x</var>, for use with the <code>fft</code> and
<code>ifft</code> functions, in order to move the frequency 0 to the center of
the vector or matrix.
</p>
<p>If <var>x</var> is a vector of <em>N</em> elements corresponding to <em>N</em> time
samples spaced by <em>dt</em>, then
<code>fftshift (fft (<var>x</var>))</code> corresponds to frequencies
</p>
<div class="example">
<pre class="example">f = [ -(ceil((N-1)/2):-1:1), 0, (1:floor((N-1)/2)) ] * df
</pre></div>

<p>where <em>df = 1 / (N * dt)</em>.
</p>
<p>If <var>x</var> is a matrix, the same holds for rows and columns.  If <var>x</var>
is an array, then the same holds along each dimension.
</p>
<p>The optional <var>dim</var> argument can be used to limit the dimension along
which the permutation occurs.
</p>
<p><strong>See also:</strong> <a href="#XREFifftshift">ifftshift</a>.
</p></dd></dl>


<a name="XREFifftshift"></a><dl>
<dt><a name="index-ifftshift"></a>: <em></em> <strong>ifftshift</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-ifftshift-1"></a>: <em></em> <strong>ifftshift</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Undo the action of the <code>fftshift</code> function.
</p>
<p>For even length <var>x</var>, <code>fftshift</code> is its own inverse, but odd lengths
differ slightly.
</p>
<p><strong>See also:</strong> <a href="#XREFfftshift">fftshift</a>.
</p></dd></dl>


<a name="XREFfractdiff"></a><dl>
<dt><a name="index-fractdiff"></a>: <em></em> <strong>fractdiff</strong> <em>(<var>x</var>, <var>d</var>)</em></dt>
<dd><p>Compute the fractional differences <em>(1-L)^d x</em> where <em>L</em>
denotes the lag-operator and <em>d</em> is greater than -1.
</p></dd></dl>


<a name="XREFhamming"></a><dl>
<dt><a name="index-hamming"></a>: <em></em> <strong>hamming</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-hamming-1"></a>: <em></em> <strong>hamming</strong> <em>(<var>m</var>, &quot;periodic&quot;)</em></dt>
<dt><a name="index-hamming-2"></a>: <em></em> <strong>hamming</strong> <em>(<var>m</var>, &quot;symmetric&quot;)</em></dt>
<dd><p>Return the filter coefficients of a Hamming window of length <var>m</var>.
</p>
<p>If the optional argument <code>&quot;periodic&quot;</code> is given, the periodic form
of the window is returned.  This is equivalent to the window of length
<var>m</var>+1 with the last coefficient removed.  The optional argument
<code>&quot;symmetric&quot;</code> is equivalent to not specifying a second argument.
</p>
<p>For a definition of the Hamming window see, e.g.,
A.V. Oppenheim &amp; R. W. Schafer,
<cite>Discrete-Time Signal Processing</cite>.
</p></dd></dl>


<a name="XREFhanning"></a><dl>
<dt><a name="index-hanning"></a>: <em></em> <strong>hanning</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-hanning-1"></a>: <em></em> <strong>hanning</strong> <em>(<var>m</var>, &quot;periodic&quot;)</em></dt>
<dt><a name="index-hanning-2"></a>: <em></em> <strong>hanning</strong> <em>(<var>m</var>, &quot;symmetric&quot;)</em></dt>
<dd><p>Return the filter coefficients of a Hanning window of length <var>m</var>.
</p>
<p>If the optional argument <code>&quot;periodic&quot;</code> is given, the periodic form
of the window is returned.  This is equivalent to the window of length
<var>m</var>+1 with the last coefficient removed.  The optional argument
<code>&quot;symmetric&quot;</code> is equivalent to not specifying a second argument.
</p>
<p>For a definition of the Hanning window see, e.g.,
A.V. Oppenheim &amp; R. W. Schafer,
<cite>Discrete-Time Signal Processing</cite>.
</p></dd></dl>


<a name="XREFhurst"></a><dl>
<dt><a name="index-hurst"></a>: <em></em> <strong>hurst</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Estimate the Hurst parameter of sample <var>x</var> via the rescaled range
statistic.
</p>
<p>If <var>x</var> is a matrix, the parameter is estimated for every column.
</p></dd></dl>


<a name="XREFpchip"></a><dl>
<dt><a name="index-pchip"></a>: <em><var>pp</var> =</em> <strong>pchip</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-pchip-1"></a>: <em><var>yi</var> =</em> <strong>pchip</strong> <em>(<var>x</var>, <var>y</var>, <var>xi</var>)</em></dt>
<dd><p>Return the Piecewise Cubic Hermite Interpolating Polynomial (pchip) of
points <var>x</var> and <var>y</var>.
</p>
<p>If called with two arguments, return the piecewise polynomial <var>pp</var>
that may be used with <code>ppval</code> to evaluate the polynomial at specific
points.
</p>
<p>When called with a third input argument, <code>pchip</code> evaluates the pchip
polynomial at the points <var>xi</var>.  The third calling form is equivalent to
<code>ppval (pchip (<var>x</var>, <var>y</var>), <var>xi</var>)</code>.
</p>
<p>The variable <var>x</var> must be a strictly monotonic vector (either increasing
or decreasing) of length <var>n</var>.
</p>
<p><var>y</var> can be either a vector or array.  If <var>y</var> is a vector then it
must be the same length <var>n</var> as <var>x</var>.  If <var>y</var> is an array then
the size of <var>y</var> must have the form
<code>[<var>s1</var>, <var>s2</var>, &hellip;, <var>sk</var>, <var>n</var>]</code>
The array is reshaped internally to a matrix where the leading dimension is
given by
<code><var>s1</var> * <var>s2</var> * &hellip; * <var>sk</var></code>
and each row of this matrix is then treated separately.  Note that this is
exactly opposite to <code>interp1</code> but is done for <small>MATLAB</small>
compatibility.
</p>

<p><strong>See also:</strong> <a href="One_002ddimensional-Interpolation.html#XREFspline">spline</a>, <a href="Polynomial-Interpolation.html#XREFppval">ppval</a>, <a href="Polynomial-Interpolation.html#XREFmkpp">mkpp</a>, <a href="Polynomial-Interpolation.html#XREFunmkpp">unmkpp</a>.
</p></dd></dl>


<a name="XREFperiodogram"></a><dl>
<dt><a name="index-periodogram"></a>: <em>[<var>Pxx</var>, <var>w</var>] =</em> <strong>periodogram</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-periodogram-1"></a>: <em>[<var>Pxx</var>, <var>w</var>] =</em> <strong>periodogram</strong> <em>(<var>x</var>, <var>win</var>)</em></dt>
<dt><a name="index-periodogram-2"></a>: <em>[<var>Pxx</var>, <var>w</var>] =</em> <strong>periodogram</strong> <em>(<var>x</var>, <var>win</var>, <var>nfft</var>)</em></dt>
<dt><a name="index-periodogram-3"></a>: <em>[<var>Pxx</var>, <var>f</var>] =</em> <strong>periodogram</strong> <em>(<var>x</var>, <var>win</var>, <var>nfft</var>, <var>Fs</var>)</em></dt>
<dt><a name="index-periodogram-4"></a>: <em>[<var>Pxx</var>, <var>f</var>] =</em> <strong>periodogram</strong> <em>(&hellip;, &quot;<var>range</var>&quot;)</em></dt>
<dt><a name="index-periodogram-5"></a>: <em></em> <strong>periodogram</strong> <em>(&hellip;)</em></dt>
<dd><p>Return the periodogram (Power Spectral Density) of <var>x</var>.
</p>
<p>The possible inputs are:
</p>
<dl compact="compact">
<dt><var>x</var></dt>
<dd>
<p>data vector.  If <var>x</var> is real-valued a one-sided spectrum is estimated.
If <var>x</var> is complex-valued, or <code>&quot;<var>range</var>&quot;</code> specifies
<code>&quot;twosided&quot;</code>, the full spectrum is estimated.
</p>
</dd>
<dt><var>win</var></dt>
<dd><p>window weight data.  If window is empty or unspecified a default rectangular
window is used.  Otherwise, the window is applied to the signal
(<code><var>x</var> .* <var>win</var></code>) before computing the periodogram.  The window
data must be a vector of the same length as <var>x</var>.
</p>
</dd>
<dt><var>nfft</var></dt>
<dd><p>number of frequency bins.  The default is 256 or the next higher power of
2 greater than the length of <var>x</var>
(<code>max (256, 2.^nextpow2 (length (x)))</code>).  If <var>nfft</var> is greater
than the length of the input then <var>x</var> will be zero-padded to the length
of <var>nfft</var>.
</p>
</dd>
<dt><var>Fs</var></dt>
<dd><p>sampling rate.  The default is 1.
</p>
</dd>
<dt><var>range</var></dt>
<dd><p>range of spectrum.  <code>&quot;onesided&quot;</code> computes spectrum from
[0:nfft/2+1].  <code>&quot;twosided&quot;</code> computes spectrum from
[0:nfft-1].
</p></dd>
</dl>

<p>The optional second output <var>w</var> are the normalized angular frequencies.
For a one-sided calculation <var>w</var> is in the range [0, pi] if <var>nfft</var>
is even and [0, pi) if <var>nfft</var> is odd.  Similarly, for a two-sided
calculation <var>w</var> is in the range [0, 2*pi] or [0, 2*pi) depending on
<var>nfft</var>.
</p>
<p>If a sampling frequency is specified, <var>Fs</var>, then the output frequencies
<var>f</var> will be in the range [0, <var>Fs</var>/2] or [0, <var>Fs</var>/2) for
one-sided calculations.  For two-sided calculations the range will be
[0, <var>Fs</var>).
</p>
<p>When called with no outputs the periodogram is immediately plotted in the
current figure window.
</p>
<p><strong>See also:</strong> <a href="#XREFfft">fft</a>.
</p></dd></dl>


<a name="XREFsinetone"></a><dl>
<dt><a name="index-sinetone"></a>: <em></em> <strong>sinetone</strong> <em>(<var>freq</var>, <var>rate</var>, <var>sec</var>, <var>ampl</var>)</em></dt>
<dd><p>Return a sinetone of frequency <var>freq</var> with a length of <var>sec</var>
seconds at sampling rate <var>rate</var> and with amplitude <var>ampl</var>.
</p>
<p>The arguments <var>freq</var> and <var>ampl</var> may be vectors of common size.
</p>
<p>The defaults are <var>rate</var> = 8000, <var>sec</var> = 1, and <var>ampl</var> = 64.
</p>
<p><strong>See also:</strong> <a href="#XREFsinewave">sinewave</a>.
</p></dd></dl>


<a name="XREFsinewave"></a><dl>
<dt><a name="index-sinewave"></a>: <em></em> <strong>sinewave</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>)</em></dt>
<dd><p>Return an <var>m</var>-element vector with <var>i</var>-th element given by
<code>sin (2 * pi * (<var>i</var>+<var>d</var>-1) / <var>n</var>)</code>.
</p>
<p>The default value for <var>d</var> is 0 and the default value for <var>n</var> is
<var>m</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFsinetone">sinetone</a>.
</p></dd></dl>


<a name="XREFspectral_005fadf"></a><dl>
<dt><a name="index-spectral_005fadf"></a>: <em></em> <strong>spectral_adf</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-spectral_005fadf-1"></a>: <em></em> <strong>spectral_adf</strong> <em>(<var>c</var>, <var>win</var>)</em></dt>
<dt><a name="index-spectral_005fadf-2"></a>: <em></em> <strong>spectral_adf</strong> <em>(<var>c</var>, <var>win</var>, <var>b</var>)</em></dt>
<dd><p>Return the spectral density estimator given a vector of autocovariances
<var>c</var>, window name <var>win</var>, and bandwidth, <var>b</var>.
</p>
<p>The window name, e.g., <code>&quot;triangle&quot;</code> or <code>&quot;rectangle&quot;</code> is
used to search for a function called <code><var>win</var>_lw</code>.
</p>
<p>If <var>win</var> is omitted, the triangle window is used.
</p>
<p>If <var>b</var> is omitted, <code>1 / sqrt (length (<var>x</var>))</code> is used.
</p>
<p><strong>See also:</strong> <a href="#XREFspectral_005fxdf">spectral_xdf</a>.
</p></dd></dl>


<a name="XREFspectral_005fxdf"></a><dl>
<dt><a name="index-spectral_005fxdf"></a>: <em></em> <strong>spectral_xdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-spectral_005fxdf-1"></a>: <em></em> <strong>spectral_xdf</strong> <em>(<var>x</var>, <var>win</var>)</em></dt>
<dt><a name="index-spectral_005fxdf-2"></a>: <em></em> <strong>spectral_xdf</strong> <em>(<var>x</var>, <var>win</var>, <var>b</var>)</em></dt>
<dd><p>Return the spectral density estimator given a data vector <var>x</var>, window
name <var>win</var>, and bandwidth, <var>b</var>.
</p>
<p>The window name, e.g., <code>&quot;triangle&quot;</code> or <code>&quot;rectangle&quot;</code> is used to
search for a function called <code><var>win</var>_sw</code>.
</p>
<p>If <var>win</var> is omitted, the triangle window is used.
</p>
<p>If <var>b</var> is omitted, <code>1 / sqrt (length (<var>x</var>))</code> is used.
</p>
<p><strong>See also:</strong> <a href="#XREFspectral_005fadf">spectral_adf</a>.
</p></dd></dl>


<a name="XREFspencer"></a><dl>
<dt><a name="index-spencer"></a>: <em></em> <strong>spencer</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return Spencer&rsquo;s 15 point moving average of each column of
<var>x</var>.
</p></dd></dl>


<a name="XREFstft"></a><dl>
<dt><a name="index-stft"></a>: <em><var>y</var> =</em> <strong>stft</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-stft-1"></a>: <em><var>y</var> =</em> <strong>stft</strong> <em>(<var>x</var>, <var>win_size</var>)</em></dt>
<dt><a name="index-stft-2"></a>: <em><var>y</var> =</em> <strong>stft</strong> <em>(<var>x</var>, <var>win_size</var>, <var>inc</var>)</em></dt>
<dt><a name="index-stft-3"></a>: <em><var>y</var> =</em> <strong>stft</strong> <em>(<var>x</var>, <var>win_size</var>, <var>inc</var>, <var>num_coef</var>)</em></dt>
<dt><a name="index-stft-4"></a>: <em><var>y</var> =</em> <strong>stft</strong> <em>(<var>x</var>, <var>win_size</var>, <var>inc</var>, <var>num_coef</var>, <var>win_type</var>)</em></dt>
<dt><a name="index-stft-5"></a>: <em>[<var>y</var>, <var>c</var>] =</em> <strong>stft</strong> <em>(&hellip;)</em></dt>
<dd><p>Compute the short-time Fourier transform of the vector <var>x</var> with
<var>num_coef</var> coefficients by applying a window of <var>win_size</var> data
points and an increment of <var>inc</var> points.
</p>
<p>Before computing the Fourier transform, one of the following windows
is applied:
</p>
<dl compact="compact">
<dt><code>&quot;hanning&quot;</code></dt>
<dd><p>win_type = 1
</p>
</dd>
<dt><code>&quot;hamming&quot;</code></dt>
<dd><p>win_type = 2
</p>
</dd>
<dt><code>&quot;rectangle&quot;</code></dt>
<dd><p>win_type = 3
</p></dd>
</dl>

<p>The window names can be passed as strings or by the <var>win_type</var> number.
</p>
<p>The following defaults are used for unspecified arguments:
<var>win_size</var> = 80, <var>inc</var> = 24, <var>num_coef</var> = 64, and
<var>win_type</var> = 1.
</p>
<p><code><var>y</var> = stft (<var>x</var>, &hellip;)</code> returns the absolute values of the
Fourier coefficients according to the <var>num_coef</var> positive frequencies.
</p>
<p><code>[<var>y</var>, <var>c</var>] = stft (<code>x</code>, &hellip;)</code> returns the entire
STFT-matrix <var>y</var> and a 3-element vector <var>c</var> containing the window
size, increment, and window type, which is needed by the <code>synthesis</code>
function.
</p>
<p><strong>See also:</strong> <a href="#XREFsynthesis">synthesis</a>.
</p></dd></dl>


<a name="XREFsynthesis"></a><dl>
<dt><a name="index-synthesis"></a>: <em><var>x</var> =</em> <strong>synthesis</strong> <em>(<var>y</var>, <var>c</var>)</em></dt>
<dd><p>Compute a signal from its short-time Fourier transform <var>y</var> and a
3-element vector <var>c</var> specifying window size, increment, and window type.
</p>
<p>The values <var>y</var> and <var>c</var> can be derived by
</p>
<div class="example">
<pre class="example">[<var>y</var>, <var>c</var>] = stft (<var>x</var> , &hellip;)
</pre></div>

<p><strong>See also:</strong> <a href="#XREFstft">stft</a>.
</p></dd></dl>


<a name="XREFyulewalker"></a><dl>
<dt><a name="index-yulewalker"></a>: <em>[<var>a</var>, <var>v</var>] =</em> <strong>yulewalker</strong> <em>(<var>c</var>)</em></dt>
<dd><p>Fit an AR (p)-model with Yule-Walker estimates given a vector <var>c</var> of
autocovariances <code>[gamma_0, &hellip;, gamma_p]</code>.
</p>
<p>Returns the AR coefficients, <var>a</var>, and the variance of white noise,
<var>v</var>.
</p></dd></dl>



<hr>
<div class="header">
<p>
Next: <a href="Image-Processing.html#Image-Processing" accesskey="n" rel="next">Image Processing</a>, Previous: <a href="Geometry.html#Geometry" accesskey="p" rel="prev">Geometry</a>, Up: <a href="index.html#Top" accesskey="u" rel="up">Top</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>