This file is indexed.

/usr/share/doc/octave/octave.html/Rearranging-Matrices.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Rearranging Matrices (GNU Octave)</title>

<meta name="description" content="Rearranging Matrices (GNU Octave)">
<meta name="keywords" content="Rearranging Matrices (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Matrix-Manipulation.html#Matrix-Manipulation" rel="up" title="Matrix Manipulation">
<link href="Special-Utility-Matrices.html#Special-Utility-Matrices" rel="next" title="Special Utility Matrices">
<link href="Finding-Elements-and-Checking-Conditions.html#Finding-Elements-and-Checking-Conditions" rel="prev" title="Finding Elements and Checking Conditions">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Rearranging-Matrices"></a>
<div class="header">
<p>
Next: <a href="Special-Utility-Matrices.html#Special-Utility-Matrices" accesskey="n" rel="next">Special Utility Matrices</a>, Previous: <a href="Finding-Elements-and-Checking-Conditions.html#Finding-Elements-and-Checking-Conditions" accesskey="p" rel="prev">Finding Elements and Checking Conditions</a>, Up: <a href="Matrix-Manipulation.html#Matrix-Manipulation" accesskey="u" rel="up">Matrix Manipulation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Rearranging-Matrices-1"></a>
<h3 class="section">16.2 Rearranging Matrices</h3>

<a name="XREFfliplr"></a><dl>
<dt><a name="index-fliplr"></a>: <em></em> <strong>fliplr</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Flip array left to right.
</p>
<p>Return a copy of <var>x</var> with the order of the columns reversed.  In other
words, <var>x</var> is flipped left-to-right about a vertical axis.  For example:
</p>
<div class="example">
<pre class="example">fliplr ([1, 2; 3, 4])
     &rArr;  2  1
         4  3
</pre></div>


<p><strong>See also:</strong> <a href="#XREFflipud">flipud</a>, <a href="#XREFflip">flip</a>, <a href="#XREFrot90">rot90</a>, <a href="#XREFrotdim">rotdim</a>.
</p></dd></dl>


<a name="XREFflipud"></a><dl>
<dt><a name="index-flipud"></a>: <em></em> <strong>flipud</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Flip array upside down.
</p>
<p>Return a copy of <var>x</var> with the order of the rows reversed.  In other
words, <var>x</var> is flipped upside-down about a horizontal axis.  For example:
</p>
<div class="example">
<pre class="example">flipud ([1, 2; 3, 4])
     &rArr;  3  4
         1  2
</pre></div>


<p><strong>See also:</strong> <a href="#XREFfliplr">fliplr</a>, <a href="#XREFflip">flip</a>, <a href="#XREFrot90">rot90</a>, <a href="#XREFrotdim">rotdim</a>.
</p></dd></dl>


<a name="XREFflip"></a><dl>
<dt><a name="index-flip"></a>: <em></em> <strong>flip</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-flip-1"></a>: <em></em> <strong>flip</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Flip array across dimension <var>dim</var>.
</p>
<p>Return a copy of <var>x</var> flipped about the dimension <var>dim</var>.
<var>dim</var> defaults to the first non-singleton dimension.
For example:
</p>
<div class="example">
<pre class="example">flip ([1  2  3  4])
      &rArr;  4  3  2  1

flip ([1; 2; 3; 4])
      &rArr;  4
          3
          2
          1

flip ([1 2; 3 4])
      &rArr;  3  4
          1  2

flip ([1 2; 3 4], 2)
      &rArr;  2  1
          4  3
</pre></div>


<p><strong>See also:</strong> <a href="#XREFfliplr">fliplr</a>, <a href="#XREFflipud">flipud</a>, <a href="#XREFrot90">rot90</a>, <a href="#XREFrotdim">rotdim</a>, <a href="#XREFpermute">permute</a>, <a href="Arithmetic-Ops.html#XREFtranspose">transpose</a>.
</p></dd></dl>


<a name="XREFrot90"></a><dl>
<dt><a name="index-rot90"></a>: <em></em> <strong>rot90</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-rot90-1"></a>: <em></em> <strong>rot90</strong> <em>(<var>A</var>, <var>k</var>)</em></dt>
<dd><p>Rotate array by 90 degree increments.
</p>
<p>Return a copy of <var>A</var> with the elements rotated counterclockwise in
90-degree increments.
</p>
<p>The second argument is optional, and specifies how many 90-degree rotations
are to be applied (the default value is 1).  Negative values of <var>k</var>
rotate the matrix in a clockwise direction.
For example,
</p>
<div class="example">
<pre class="example">rot90 ([1, 2; 3, 4], -1)
    &rArr;  3  1
        4  2
</pre></div>

<p>rotates the given matrix clockwise by 90 degrees.  The following are all
equivalent statements:
</p>
<div class="example">
<pre class="example">rot90 ([1, 2; 3, 4], -1)
rot90 ([1, 2; 3, 4], 3)
rot90 ([1, 2; 3, 4], 7)
</pre></div>

<p>The rotation is always performed on the plane of the first two dimensions,
i.e., rows and columns.  To perform a rotation on any other plane, use
<code>rotdim</code>.
</p>

<p><strong>See also:</strong> <a href="#XREFrotdim">rotdim</a>, <a href="#XREFfliplr">fliplr</a>, <a href="#XREFflipud">flipud</a>, <a href="#XREFflip">flip</a>.
</p></dd></dl>


<a name="XREFrotdim"></a><dl>
<dt><a name="index-rotdim"></a>: <em></em> <strong>rotdim</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-rotdim-1"></a>: <em></em> <strong>rotdim</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dt><a name="index-rotdim-2"></a>: <em></em> <strong>rotdim</strong> <em>(<var>x</var>, <var>n</var>, <var>plane</var>)</em></dt>
<dd><p>Return a copy of <var>x</var> with the elements rotated counterclockwise in
90-degree increments.
</p>
<p>The second argument <var>n</var> is optional, and specifies how many 90-degree
rotations are to be applied (the default value is 1).  Negative values of
<var>n</var> rotate the matrix in a clockwise direction.
</p>
<p>The third argument is also optional and defines the plane of the rotation.
If present, <var>plane</var> is a two element vector containing two different
valid dimensions of the matrix.  When <var>plane</var> is not given the first two
non-singleton dimensions are used.
</p>
<p>For example,
</p>
<div class="example">
<pre class="example">rotdim ([1, 2; 3, 4], -1, [1, 2])
     &rArr;  3  1
         4  2
</pre></div>

<p>rotates the given matrix clockwise by 90 degrees.  The following are all
equivalent statements:
</p>
<div class="example">
<pre class="example">rotdim ([1, 2; 3, 4], -1, [1, 2])
rotdim ([1, 2; 3, 4], 3, [1, 2])
rotdim ([1, 2; 3, 4], 7, [1, 2])
</pre></div>

<p><strong>See also:</strong> <a href="#XREFrot90">rot90</a>, <a href="#XREFfliplr">fliplr</a>, <a href="#XREFflipud">flipud</a>, <a href="#XREFflip">flip</a>.
</p></dd></dl>


<a name="XREFcat"></a><dl>
<dt><a name="index-cat"></a>: <em></em> <strong>cat</strong> <em>(<var>dim</var>, <var>array1</var>, <var>array2</var>, &hellip;, <var>arrayN</var>)</em></dt>
<dd><p>Return the concatenation of N-D array objects, <var>array1</var>,
<var>array2</var>, &hellip;, <var>arrayN</var> along dimension <var>dim</var>.
</p>
<div class="example">
<pre class="example">A = ones (2, 2);
B = zeros (2, 2);
cat (2, A, B)
  &rArr; 1 1 0 0
     1 1 0 0
</pre></div>

<p>Alternatively, we can concatenate <var>A</var> and <var>B</var> along the
second dimension in the following way:
</p>
<div class="example">
<pre class="example">[A, B]
</pre></div>

<p><var>dim</var> can be larger than the dimensions of the N-D array objects
and the result will thus have <var>dim</var> dimensions as the
following example shows:
</p>
<div class="example">
<pre class="example">cat (4, ones (2, 2), zeros (2, 2))
  &rArr; ans(:,:,1,1) =

       1 1
       1 1

     ans(:,:,1,2) =

       0 0
       0 0
</pre></div>

<p><strong>See also:</strong> <a href="#XREFhorzcat">horzcat</a>, <a href="#XREFvertcat">vertcat</a>.
</p></dd></dl>


<a name="XREFhorzcat"></a><dl>
<dt><a name="index-horzcat"></a>: <em></em> <strong>horzcat</strong> <em>(<var>array1</var>, <var>array2</var>, &hellip;, <var>arrayN</var>)</em></dt>
<dd><p>Return the horizontal concatenation of N-D array objects, <var>array1</var>,
<var>array2</var>, &hellip;, <var>arrayN</var> along dimension 2.
</p>
<p>Arrays may also be concatenated horizontally using the syntax for creating
new matrices.  For example:
</p>
<div class="example">
<pre class="example"><var>hcat</var> = [ <var>array1</var>, <var>array2</var>, &hellip; ]
</pre></div>

<p><strong>See also:</strong> <a href="#XREFcat">cat</a>, <a href="#XREFvertcat">vertcat</a>.
</p></dd></dl>


<a name="XREFvertcat"></a><dl>
<dt><a name="index-vertcat"></a>: <em></em> <strong>vertcat</strong> <em>(<var>array1</var>, <var>array2</var>, &hellip;, <var>arrayN</var>)</em></dt>
<dd><p>Return the vertical concatenation of N-D array objects, <var>array1</var>,
<var>array2</var>, &hellip;, <var>arrayN</var> along dimension 1.
</p>
<p>Arrays may also be concatenated vertically using the syntax for creating
new matrices.  For example:
</p>
<div class="example">
<pre class="example"><var>vcat</var> = [ <var>array1</var>; <var>array2</var>; &hellip; ]
</pre></div>

<p><strong>See also:</strong> <a href="#XREFcat">cat</a>, <a href="#XREFhorzcat">horzcat</a>.
</p></dd></dl>


<a name="XREFpermute"></a><dl>
<dt><a name="index-permute"></a>: <em></em> <strong>permute</strong> <em>(<var>A</var>, <var>perm</var>)</em></dt>
<dd><p>Return the generalized transpose for an N-D array object <var>A</var>.
</p>
<p>The permutation vector <var>perm</var> must contain the elements
<code>1:ndims&nbsp;(A)</code><!-- /@w --> (in any order, but each element must appear only
once).  The <var>N</var>th dimension of <var>A</var> gets remapped to dimension
<code><var>PERM</var>(<var>N</var>)</code>.  For example:
</p>
<div class="example">
<pre class="example"><var>x</var> = zeros ([2, 3, 5, 7]);
size (<var>x</var>)
   &rArr;  2   3   5   7

size (permute (<var>x</var>, [2, 1, 3, 4]))
   &rArr;  3   2   5   7

size (permute (<var>x</var>, [1, 3, 4, 2]))
   &rArr;  2   5   7   3

## The identity permutation
size (permute (<var>x</var>, [1, 2, 3, 4]))
   &rArr;  2   3   5   7
</pre></div>

<p><strong>See also:</strong> <a href="#XREFipermute">ipermute</a>.
</p></dd></dl>


<a name="XREFipermute"></a><dl>
<dt><a name="index-ipermute"></a>: <em></em> <strong>ipermute</strong> <em>(<var>A</var>, <var>iperm</var>)</em></dt>
<dd><p>The inverse of the <code>permute</code> function.
</p>
<p>The expression
</p>
<div class="example">
<pre class="example">ipermute (permute (A, perm), perm)
</pre></div>

<p>returns the original array <var>A</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFpermute">permute</a>.
</p></dd></dl>


<a name="XREFreshape"></a><dl>
<dt><a name="index-reshape"></a>: <em></em> <strong>reshape</strong> <em>(<var>A</var>, <var>m</var>, <var>n</var>, &hellip;)</em></dt>
<dt><a name="index-reshape-1"></a>: <em></em> <strong>reshape</strong> <em>(<var>A</var>, [<var>m</var> <var>n</var> &hellip;])</em></dt>
<dt><a name="index-reshape-2"></a>: <em></em> <strong>reshape</strong> <em>(<var>A</var>, &hellip;, [], &hellip;)</em></dt>
<dt><a name="index-reshape-3"></a>: <em></em> <strong>reshape</strong> <em>(<var>A</var>, <var>size</var>)</em></dt>
<dd><p>Return a matrix with the specified dimensions (<var>m</var>, <var>n</var>, &hellip;)
whose elements are taken from the matrix <var>A</var>.
</p>
<p>The elements of the matrix are accessed in column-major order (like Fortran
arrays are stored).
</p>
<p>The following code demonstrates reshaping a 1x4 row vector into a 2x2 square
matrix.
</p>
<div class="example">
<pre class="example">reshape ([1, 2, 3, 4], 2, 2)
      &rArr;  1  3
          2  4
</pre></div>

<p>Note that the total number of elements in the original matrix
(<code>prod (size (<var>A</var>))</code>) must match the total number of elements
in the new matrix (<code>prod ([<var>m</var> <var>n</var> &hellip;])</code>).
</p>
<p>A single dimension of the return matrix may be left unspecified and Octave
will determine its size automatically.  An empty matrix ([]) is used to flag
the unspecified dimension.
</p>
<p><strong>See also:</strong> <a href="#XREFresize">resize</a>, <a href="#XREFvec">vec</a>, <a href="#XREFpostpad">postpad</a>, <a href="#XREFcat">cat</a>, <a href="Object-Sizes.html#XREFsqueeze">squeeze</a>.
</p></dd></dl>


<a name="XREFresize"></a><dl>
<dt><a name="index-resize"></a>: <em></em> <strong>resize</strong> <em>(<var>x</var>, <var>m</var>)</em></dt>
<dt><a name="index-resize-1"></a>: <em></em> <strong>resize</strong> <em>(<var>x</var>, <var>m</var>, <var>n</var>, &hellip;)</em></dt>
<dt><a name="index-resize-2"></a>: <em></em> <strong>resize</strong> <em>(<var>x</var>, [<var>m</var> <var>n</var> &hellip;])</em></dt>
<dd><p>Resize <var>x</var> cutting off elements as necessary.
</p>
<p>In the result, element with certain indices is equal to the corresponding
element of <var>x</var> if the indices are within the bounds of <var>x</var>;
otherwise, the element is set to zero.
</p>
<p>In other words, the statement
</p>
<div class="example">
<pre class="example">y = resize (x, dv)
</pre></div>

<p>is equivalent to the following code:
</p>
<div class="example">
<pre class="example">y = zeros (dv, class (x));
sz = min (dv, size (x));
for i = 1:length (sz)
  idx{i} = 1:sz(i);
endfor
y(idx{:}) = x(idx{:});
</pre></div>

<p>but is performed more efficiently.
</p>
<p>If only <var>m</var> is supplied, and it is a scalar, the dimension of the
result is <var>m</var>-by-<var>m</var>.
If <var>m</var>, <var>n</var>, &hellip; are all scalars, then the dimensions of
the result are <var>m</var>-by-<var>n</var>-by-&hellip;.
If given a vector as input, then the
dimensions of the result are given by the elements of that vector.
</p>
<p>An object can be resized to more dimensions than it has;
in such case the missing dimensions are assumed to be 1.
Resizing an object to fewer dimensions is not possible.
</p>
<p><strong>See also:</strong> <a href="#XREFreshape">reshape</a>, <a href="#XREFpostpad">postpad</a>, <a href="#XREFprepad">prepad</a>, <a href="#XREFcat">cat</a>.
</p></dd></dl>


<a name="XREFcircshift"></a><dl>
<dt><a name="index-circshift"></a>: <em><var>y</var> =</em> <strong>circshift</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dt><a name="index-circshift-1"></a>: <em><var>y</var> =</em> <strong>circshift</strong> <em>(<var>x</var>, <var>n</var>, <var>dim</var>)</em></dt>
<dd><p>Circularly shift the values of the array <var>x</var>.
</p>
<p><var>n</var> must be a vector of integers no longer than the number of dimensions
in <var>x</var>.  The values of <var>n</var> can be either positive or negative, which
determines the direction in which the values of <var>x</var> are shifted.  If an
element of <var>n</var> is zero, then the corresponding dimension of <var>x</var> will
not be shifted.
</p>
<p>If a scalar <var>dim</var> is given then operate along the specified dimension.
In this case <var>n</var> must be a scalar as well.
</p>
<p>Examples:
</p>
<div class="example">
<pre class="example">x = [1, 2, 3; 4, 5, 6; 7, 8, 9];
circshift (x, 1)
&rArr;  7, 8, 9
    1, 2, 3
    4, 5, 6
circshift (x, -2)
&rArr;  7, 8, 9
    1, 2, 3
    4, 5, 6
circshift (x, [0,1])
&rArr;  3, 1, 2
    6, 4, 5
    9, 7, 8
</pre></div>

<p><strong>See also:</strong> <a href="#XREFpermute">permute</a>, <a href="#XREFipermute">ipermute</a>, <a href="#XREFshiftdim">shiftdim</a>.
</p></dd></dl>


<a name="XREFshift"></a><dl>
<dt><a name="index-shift"></a>: <em></em> <strong>shift</strong> <em>(<var>x</var>, <var>b</var>)</em></dt>
<dt><a name="index-shift-1"></a>: <em></em> <strong>shift</strong> <em>(<var>x</var>, <var>b</var>, <var>dim</var>)</em></dt>
<dd><p>If <var>x</var> is a vector, perform a circular shift of length <var>b</var> of
the elements of <var>x</var>.
</p>
<p>If <var>x</var> is a matrix, do the same for each column of <var>x</var>.
</p>
<p>If the optional <var>dim</var> argument is given, operate along this dimension.
</p></dd></dl>


<a name="XREFshiftdim"></a><dl>
<dt><a name="index-shiftdim"></a>: <em><var>y</var> =</em> <strong>shiftdim</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dt><a name="index-shiftdim-1"></a>: <em>[<var>y</var>, <var>ns</var>] =</em> <strong>shiftdim</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Shift the dimensions of <var>x</var> by <var>n</var>, where <var>n</var> must be
an integer scalar.
</p>
<p>When <var>n</var> is positive, the dimensions of <var>x</var> are shifted to the left,
with the leading dimensions circulated to the end.  If <var>n</var> is negative,
then the dimensions of <var>x</var> are shifted to the right, with <var>n</var>
leading singleton dimensions added.
</p>
<p>Called with a single argument, <code>shiftdim</code>, removes the leading
singleton dimensions, returning the number of dimensions removed in the
second output argument <var>ns</var>.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">x = ones (1, 2, 3);
size (shiftdim (x, -1))
   &rArr; [1, 1, 2, 3]
size (shiftdim (x, 1))
   &rArr; [2, 3]
[b, ns] = shiftdim (x)
   &rArr; b = [1, 1, 1; 1, 1, 1]
   &rArr; ns = 1
</pre></div>

<p><strong>See also:</strong> <a href="#XREFreshape">reshape</a>, <a href="#XREFpermute">permute</a>, <a href="#XREFipermute">ipermute</a>, <a href="#XREFcircshift">circshift</a>, <a href="Object-Sizes.html#XREFsqueeze">squeeze</a>.
</p></dd></dl>


<a name="XREFsort"></a><dl>
<dt><a name="index-sort"></a>: <em>[<var>s</var>, <var>i</var>] =</em> <strong>sort</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-sort-1"></a>: <em>[<var>s</var>, <var>i</var>] =</em> <strong>sort</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dt><a name="index-sort-2"></a>: <em>[<var>s</var>, <var>i</var>] =</em> <strong>sort</strong> <em>(<var>x</var>, <var>mode</var>)</em></dt>
<dt><a name="index-sort-3"></a>: <em>[<var>s</var>, <var>i</var>] =</em> <strong>sort</strong> <em>(<var>x</var>, <var>dim</var>, <var>mode</var>)</em></dt>
<dd><p>Return a copy of <var>x</var> with the elements arranged in increasing order.
</p>
<p>For matrices, <code>sort</code> orders the elements within columns
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">sort ([1, 2; 2, 3; 3, 1])
   &rArr;  1  1
       2  2
       3  3
</pre></div>

<p>If the optional argument <var>dim</var> is given, then the matrix is sorted
along the dimension defined by <var>dim</var>.  The optional argument <code>mode</code>
defines the order in which the values will be sorted.  Valid values of
<code>mode</code> are <code>&quot;ascend&quot;</code> or <code>&quot;descend&quot;</code>.
</p>
<p>The <code>sort</code> function may also be used to produce a matrix
containing the original row indices of the elements in the sorted
matrix.  For example:
</p>
<div class="example">
<pre class="example">[s, i] = sort ([1, 2; 2, 3; 3, 1])
  &rArr; s = 1  1
         2  2
         3  3
  &rArr; i = 1  3
         2  1
         3  2
</pre></div>

<p>For equal elements, the indices are such that equal elements are listed
in the order in which they appeared in the original list.
</p>
<p>Sorting of complex entries is done first by magnitude
(<code>abs&nbsp;(<var>z</var>)</code><!-- /@w -->) and for any ties by phase angle
(<code>angle&nbsp;(z)</code><!-- /@w -->).  For example:
</p>
<div class="example">
<pre class="example">sort ([1+i; 1; 1-i])
    &rArr; 1 + 0i
       1 - 1i
       1 + 1i
</pre></div>

<p>NaN values are treated as being greater than any other value and are sorted
to the end of the list.
</p>
<p>The <code>sort</code> function may also be used to sort strings and cell arrays
of strings, in which case ASCII dictionary order (uppercase &rsquo;A&rsquo; precedes
lowercase &rsquo;a&rsquo;) of the strings is used.
</p>
<p>The algorithm used in <code>sort</code> is optimized for the sorting of partially
ordered lists.
</p>
<p><strong>See also:</strong> <a href="#XREFsortrows">sortrows</a>, <a href="#XREFissorted">issorted</a>.
</p></dd></dl>


<a name="XREFsortrows"></a><dl>
<dt><a name="index-sortrows"></a>: <em>[<var>s</var>, <var>i</var>] =</em> <strong>sortrows</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-sortrows-1"></a>: <em>[<var>s</var>, <var>i</var>] =</em> <strong>sortrows</strong> <em>(<var>A</var>, <var>c</var>)</em></dt>
<dd><p>Sort the rows of the matrix <var>A</var> according to the order of the columns
specified in <var>c</var>.
</p>
<p>By default (<var>c</var> omitted, or a particular column unspecified in <var>c</var>)
an ascending sort order is used.  However, if elements of <var>c</var> are
negative then the corresponding column is sorted in descending order.  If
the elements of <var>A</var> are strings then a lexicographical sort is used.
</p>
<p>Example: sort by column 2 in descending order, then 3 in ascending order
</p>
<div class="example">
<pre class="example">x = [ 7, 1, 4;
      8, 3, 5;
      9, 3, 6 ];
sortrows (x, [-2, 3])
   &rArr; 8  3  5
      9  3  6
      7  1  4
</pre></div>


<p><strong>See also:</strong> <a href="#XREFsort">sort</a>.
</p></dd></dl>


<a name="XREFissorted"></a><dl>
<dt><a name="index-issorted"></a>: <em></em> <strong>issorted</strong> <em>(<var>a</var>)</em></dt>
<dt><a name="index-issorted-1"></a>: <em></em> <strong>issorted</strong> <em>(<var>a</var>, <var>mode</var>)</em></dt>
<dt><a name="index-issorted-2"></a>: <em></em> <strong>issorted</strong> <em>(<var>a</var>, &quot;rows&quot;, <var>mode</var>)</em></dt>
<dd><p>Return true if the array is sorted according to <var>mode</var>, which
may be either <code>&quot;ascending&quot;</code>, <code>&quot;descending&quot;</code>, or
<code>&quot;either&quot;</code>.
</p>
<p>By default,  <var>mode</var> is <code>&quot;ascending&quot;</code>.  NaNs are treated in the
same manner as <code>sort</code>.
</p>
<p>If the optional argument <code>&quot;rows&quot;</code> is supplied, check whether
the array is sorted by rows as output by the function <code>sortrows</code>
(with no options).
</p>
<p>This function does not support sparse matrices.
</p>
<p><strong>See also:</strong> <a href="#XREFsort">sort</a>, <a href="#XREFsortrows">sortrows</a>.
</p></dd></dl>


<a name="XREFnth_005felement"></a><dl>
<dt><a name="index-nth_005felement"></a>: <em></em> <strong>nth_element</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dt><a name="index-nth_005felement-1"></a>: <em></em> <strong>nth_element</strong> <em>(<var>x</var>, <var>n</var>, <var>dim</var>)</em></dt>
<dd><p>Select the n-th smallest element of a vector, using the ordering defined by
<code>sort</code>.
</p>
<p>The result is equivalent to <code>sort(<var>x</var>)(<var>n</var>)</code>.
</p>
<p><var>n</var> can also be a contiguous range, either ascending <code>l:u</code>
or descending <code>u:-1:l</code>, in which case a range of elements is returned.
</p>
<p>If <var>x</var> is an array, <code>nth_element</code> operates along the dimension
defined by <var>dim</var>, or the first non-singleton dimension if <var>dim</var> is
not given.
</p>
<p>Programming Note: nth_element encapsulates the C++ standard library
algorithms nth_element and partial_sort.  On average, the complexity of the
operation is O(M*log(K)), where <code>M&nbsp;=&nbsp;size&nbsp;(<var>x</var>,&nbsp;<var>dim</var>)</code><!-- /@w --> and
<code>K&nbsp;=&nbsp;length&nbsp;(<var>n</var>)</code><!-- /@w -->.  This function is intended for cases where
the ratio K/M is small; otherwise, it may be better to use <code>sort</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFsort">sort</a>, <a href="Utility-Functions.html#XREFmin">min</a>, <a href="Utility-Functions.html#XREFmax">max</a>.
</p></dd></dl>


<a name="XREFtriu"></a><a name="XREFtril"></a><dl>
<dt><a name="index-tril"></a>: <em></em> <strong>tril</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-tril-1"></a>: <em></em> <strong>tril</strong> <em>(<var>A</var>, <var>k</var>)</em></dt>
<dt><a name="index-tril-2"></a>: <em></em> <strong>tril</strong> <em>(<var>A</var>, <var>k</var>, <var>pack</var>)</em></dt>
<dt><a name="index-triu"></a>: <em></em> <strong>triu</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-triu-1"></a>: <em></em> <strong>triu</strong> <em>(<var>A</var>, <var>k</var>)</em></dt>
<dt><a name="index-triu-2"></a>: <em></em> <strong>triu</strong> <em>(<var>A</var>, <var>k</var>, <var>pack</var>)</em></dt>
<dd><p>Return a new matrix formed by extracting the lower (<code>tril</code>)
or upper (<code>triu</code>) triangular part of the matrix <var>A</var>, and
setting all other elements to zero.
</p>
<p>The second argument is optional, and specifies how many diagonals above or
below the main diagonal should also be set to zero.
</p>
<p>The default value of <var>k</var> is zero, so that <code>triu</code> and <code>tril</code>
normally include the main diagonal as part of the result.
</p>
<p>If the value of <var>k</var> is nonzero integer, the selection of elements starts
at an offset of <var>k</var> diagonals above or below the main diagonal; above
for positive <var>k</var> and below for negative <var>k</var>.
</p>
<p>The absolute value of <var>k</var> must not be greater than the number of
subdiagonals or superdiagonals.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">tril (ones (3), -1)
     &rArr;  0  0  0
         1  0  0
         1  1  0
</pre></div>

<p>and
</p>
<div class="example">
<pre class="example">tril (ones (3), 1)
     &rArr;  1  1  0
         1  1  1
         1  1  1
</pre></div>

<p>If the option <code>&quot;pack&quot;</code> is given as third argument, the extracted
elements are not inserted into a matrix, but rather stacked column-wise one
above other.
</p>
<p><strong>See also:</strong> <a href="#XREFdiag">diag</a>.
</p></dd></dl>


<a name="XREFvec"></a><dl>
<dt><a name="index-vec"></a>: <em><var>v</var> =</em> <strong>vec</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-vec-1"></a>: <em><var>v</var> =</em> <strong>vec</strong> <em>(<var>x</var>, <var>dim</var>)</em></dt>
<dd><p>Return the vector obtained by stacking the columns of the matrix <var>x</var>
one above the other.
</p>
<p>Without <var>dim</var> this is equivalent to <code><var>x</var>(:)</code>.
</p>
<p>If <var>dim</var> is supplied, the dimensions of <var>v</var> are set to <var>dim</var>
with all elements along the last dimension.  This is equivalent to
<code>shiftdim (<var>x</var>(:), 1-<var>dim</var>)</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFvech">vech</a>, <a href="#XREFresize">resize</a>, <a href="#XREFcat">cat</a>.
</p></dd></dl>


<a name="XREFvech"></a><dl>
<dt><a name="index-vech"></a>: <em></em> <strong>vech</strong> <em>(<var>x</var>)</em></dt>
<dd><p>Return the vector obtained by eliminating all superdiagonal elements of
the square matrix <var>x</var> and stacking the result one column above the
other.
</p>
<p>This has uses in matrix calculus where the underlying matrix is symmetric
and it would be pointless to keep values above the main diagonal.
</p>
<p><strong>See also:</strong> <a href="#XREFvec">vec</a>.
</p></dd></dl>


<a name="XREFprepad"></a><dl>
<dt><a name="index-prepad"></a>: <em></em> <strong>prepad</strong> <em>(<var>x</var>, <var>l</var>)</em></dt>
<dt><a name="index-prepad-1"></a>: <em></em> <strong>prepad</strong> <em>(<var>x</var>, <var>l</var>, <var>c</var>)</em></dt>
<dt><a name="index-prepad-2"></a>: <em></em> <strong>prepad</strong> <em>(<var>x</var>, <var>l</var>, <var>c</var>, <var>dim</var>)</em></dt>
<dd><p>Prepend the scalar value <var>c</var> to the vector <var>x</var> until it is of length
<var>l</var>.  If <var>c</var> is not given, a value of 0 is used.
</p>
<p>If <code>length (<var>x</var>) &gt; <var>l</var></code>, elements from the beginning of <var>x</var>
are removed until a vector of length <var>l</var> is obtained.
</p>
<p>If <var>x</var> is a matrix, elements are prepended or removed from each row.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p>If <var>dim</var> is larger than the dimensions of <var>x</var>, the result will have
<var>dim</var> dimensions.
</p>
<p><strong>See also:</strong> <a href="#XREFpostpad">postpad</a>, <a href="#XREFcat">cat</a>, <a href="#XREFresize">resize</a>.
</p></dd></dl>


<a name="XREFpostpad"></a><dl>
<dt><a name="index-postpad"></a>: <em></em> <strong>postpad</strong> <em>(<var>x</var>, <var>l</var>)</em></dt>
<dt><a name="index-postpad-1"></a>: <em></em> <strong>postpad</strong> <em>(<var>x</var>, <var>l</var>, <var>c</var>)</em></dt>
<dt><a name="index-postpad-2"></a>: <em></em> <strong>postpad</strong> <em>(<var>x</var>, <var>l</var>, <var>c</var>, <var>dim</var>)</em></dt>
<dd><p>Append the scalar value <var>c</var> to the vector <var>x</var> until it is of length
<var>l</var>.  If <var>c</var> is not given, a value of 0 is used.
</p>
<p>If <code>length (<var>x</var>) &gt; <var>l</var></code>, elements from the end of <var>x</var> are
removed until a vector of length <var>l</var> is obtained.
</p>
<p>If <var>x</var> is a matrix, elements are appended or removed from each row.
</p>
<p>If the optional argument <var>dim</var> is given, operate along this dimension.
</p>
<p>If <var>dim</var> is larger than the dimensions of <var>x</var>, the result will have
<var>dim</var> dimensions.
</p>
<p><strong>See also:</strong> <a href="#XREFprepad">prepad</a>, <a href="#XREFcat">cat</a>, <a href="#XREFresize">resize</a>.
</p></dd></dl>


<a name="XREFdiag"></a><dl>
<dt><a name="index-diag"></a>: <em><var>M</var> =</em> <strong>diag</strong> <em>(<var>v</var>)</em></dt>
<dt><a name="index-diag-1"></a>: <em><var>M</var> =</em> <strong>diag</strong> <em>(<var>v</var>, <var>k</var>)</em></dt>
<dt><a name="index-diag-2"></a>: <em><var>M</var> =</em> <strong>diag</strong> <em>(<var>v</var>, <var>m</var>, <var>n</var>)</em></dt>
<dt><a name="index-diag-3"></a>: <em><var>v</var> =</em> <strong>diag</strong> <em>(<var>M</var>)</em></dt>
<dt><a name="index-diag-4"></a>: <em><var>v</var> =</em> <strong>diag</strong> <em>(<var>M</var>, <var>k</var>)</em></dt>
<dd><p>Return a diagonal matrix with vector <var>v</var> on diagonal <var>k</var>.
</p>
<p>The second argument is optional.  If it is positive, the vector is placed on
the <var>k</var>-th superdiagonal.  If it is negative, it is placed on the
<var>-k</var>-th subdiagonal.  The default value of <var>k</var> is 0, and the vector
is placed on the main diagonal.  For example:
</p>
<div class="example">
<pre class="example">diag ([1, 2, 3], 1)
   &rArr;  0  1  0  0
       0  0  2  0
       0  0  0  3
       0  0  0  0
</pre></div>

<p>The 3-input form returns a diagonal matrix with vector <var>v</var> on the main
diagonal and the resulting matrix being of size <var>m</var> rows x <var>n</var>
columns.
</p>
<p>Given a matrix argument, instead of a vector, <code>diag</code> extracts the
<var>k</var>-th diagonal of the matrix.
</p></dd></dl>


<a name="XREFblkdiag"></a><dl>
<dt><a name="index-blkdiag"></a>: <em></em> <strong>blkdiag</strong> <em>(<var>A</var>, <var>B</var>, <var>C</var>, &hellip;)</em></dt>
<dd><p>Build a block diagonal matrix from <var>A</var>, <var>B</var>, <var>C</var>, &hellip;
</p>
<p>All arguments must be numeric and either two-dimensional matrices or
scalars.  If any argument is of type sparse, the output will also be sparse.
</p>
<p><strong>See also:</strong> <a href="#XREFdiag">diag</a>, <a href="#XREFhorzcat">horzcat</a>, <a href="#XREFvertcat">vertcat</a>, <a href="Creating-Sparse-Matrices.html#XREFsparse">sparse</a>.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Special-Utility-Matrices.html#Special-Utility-Matrices" accesskey="n" rel="next">Special Utility Matrices</a>, Previous: <a href="Finding-Elements-and-Checking-Conditions.html#Finding-Elements-and-Checking-Conditions" accesskey="p" rel="prev">Finding Elements and Checking Conditions</a>, Up: <a href="Matrix-Manipulation.html#Matrix-Manipulation" accesskey="u" rel="up">Matrix Manipulation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>