/usr/share/doc/octave/octave.html/Quadratic-Programming.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Quadratic Programming (GNU Octave)</title>
<meta name="description" content="Quadratic Programming (GNU Octave)">
<meta name="keywords" content="Quadratic Programming (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Optimization.html#Optimization" rel="up" title="Optimization">
<link href="Nonlinear-Programming.html#Nonlinear-Programming" rel="next" title="Nonlinear Programming">
<link href="Linear-Programming.html#Linear-Programming" rel="prev" title="Linear Programming">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Quadratic-Programming"></a>
<div class="header">
<p>
Next: <a href="Nonlinear-Programming.html#Nonlinear-Programming" accesskey="n" rel="next">Nonlinear Programming</a>, Previous: <a href="Linear-Programming.html#Linear-Programming" accesskey="p" rel="prev">Linear Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Quadratic-Programming-1"></a>
<h3 class="section">25.2 Quadratic Programming</h3>
<p>Octave can also solve Quadratic Programming problems, this is
</p>
<div class="example">
<pre class="example">min 0.5 x'*H*x + x'*q
</pre></div>
<p>subject to
</p>
<div class="example">
<pre class="example"> A*x = b
lb <= x <= ub
A_lb <= A_in*x <= A_ub
</pre></div>
<a name="XREFqp"></a><dl>
<dt><a name="index-qp"></a>: <em>[<var>x</var>, <var>obj</var>, <var>info</var>, <var>lambda</var>] =</em> <strong>qp</strong> <em>(<var>x0</var>, <var>H</var>)</em></dt>
<dt><a name="index-qp-1"></a>: <em>[<var>x</var>, <var>obj</var>, <var>info</var>, <var>lambda</var>] =</em> <strong>qp</strong> <em>(<var>x0</var>, <var>H</var>, <var>q</var>)</em></dt>
<dt><a name="index-qp-2"></a>: <em>[<var>x</var>, <var>obj</var>, <var>info</var>, <var>lambda</var>] =</em> <strong>qp</strong> <em>(<var>x0</var>, <var>H</var>, <var>q</var>, <var>A</var>, <var>b</var>)</em></dt>
<dt><a name="index-qp-3"></a>: <em>[<var>x</var>, <var>obj</var>, <var>info</var>, <var>lambda</var>] =</em> <strong>qp</strong> <em>(<var>x0</var>, <var>H</var>, <var>q</var>, <var>A</var>, <var>b</var>, <var>lb</var>, <var>ub</var>)</em></dt>
<dt><a name="index-qp-4"></a>: <em>[<var>x</var>, <var>obj</var>, <var>info</var>, <var>lambda</var>] =</em> <strong>qp</strong> <em>(<var>x0</var>, <var>H</var>, <var>q</var>, <var>A</var>, <var>b</var>, <var>lb</var>, <var>ub</var>, <var>A_lb</var>, <var>A_in</var>, <var>A_ub</var>)</em></dt>
<dt><a name="index-qp-5"></a>: <em>[<var>x</var>, <var>obj</var>, <var>info</var>, <var>lambda</var>] =</em> <strong>qp</strong> <em>(…, <var>options</var>)</em></dt>
<dd><p>Solve a quadratic program (QP).
</p>
<p>Solve the quadratic program defined by
</p>
<div class="example">
<pre class="example">min 0.5 x'*H*x + x'*q
x
</pre></div>
<p>subject to
</p>
<div class="example">
<pre class="example">A*x = b
lb <= x <= ub
A_lb <= A_in*x <= A_ub
</pre></div>
<p>using a null-space active-set method.
</p>
<p>Any bound (<var>A</var>, <var>b</var>, <var>lb</var>, <var>ub</var>, <var>A_in</var>, <var>A_lb</var>,
<var>A_ub</var>) may be set to the empty matrix (<code>[]</code>) if not present. The
constraints <var>A</var> and <var>A_in</var> are matrices with each row representing
a single constraint. The other bounds are scalars or vectors depending on
the number of constraints. The algorithm is faster if the initial guess is
feasible.
</p>
<dl compact="compact">
<dt><var>options</var></dt>
<dd><p>An optional structure containing the following parameter(s) used to define
the behavior of the solver. Missing elements in the structure take on
default values, so you only need to set the elements that you wish to
change from the default.
</p>
<dl compact="compact">
<dt><code>MaxIter (default: 200)</code></dt>
<dd><p>Maximum number of iterations.
</p></dd>
</dl>
</dd>
</dl>
<dl compact="compact">
<dt><var>info</var></dt>
<dd><p>Structure containing run-time information about the algorithm. The
following fields are defined:
</p>
<dl compact="compact">
<dt><code>solveiter</code></dt>
<dd><p>The number of iterations required to find the solution.
</p>
</dd>
<dt><code>info</code></dt>
<dd><p>An integer indicating the status of the solution.
</p>
<dl compact="compact">
<dt>0</dt>
<dd><p>The problem is feasible and convex. Global solution found.
</p>
</dd>
<dt>1</dt>
<dd><p>The problem is not convex. Local solution found.
</p>
</dd>
<dt>2</dt>
<dd><p>The problem is not convex and unbounded.
</p>
</dd>
<dt>3</dt>
<dd><p>Maximum number of iterations reached.
</p>
</dd>
<dt>6</dt>
<dd><p>The problem is infeasible.
</p></dd>
</dl>
</dd>
</dl>
</dd>
</dl>
</dd></dl>
<a name="XREFpqpnonneg"></a><dl>
<dt><a name="index-pqpnonneg"></a>: <em><var>x</var> =</em> <strong>pqpnonneg</strong> <em>(<var>c</var>, <var>d</var>)</em></dt>
<dt><a name="index-pqpnonneg-1"></a>: <em><var>x</var> =</em> <strong>pqpnonneg</strong> <em>(<var>c</var>, <var>d</var>, <var>x0</var>)</em></dt>
<dt><a name="index-pqpnonneg-2"></a>: <em>[<var>x</var>, <var>minval</var>] =</em> <strong>pqpnonneg</strong> <em>(…)</em></dt>
<dt><a name="index-pqpnonneg-3"></a>: <em>[<var>x</var>, <var>minval</var>, <var>exitflag</var>] =</em> <strong>pqpnonneg</strong> <em>(…)</em></dt>
<dt><a name="index-pqpnonneg-4"></a>: <em>[<var>x</var>, <var>minval</var>, <var>exitflag</var>, <var>output</var>] =</em> <strong>pqpnonneg</strong> <em>(…)</em></dt>
<dt><a name="index-pqpnonneg-5"></a>: <em>[<var>x</var>, <var>minval</var>, <var>exitflag</var>, <var>output</var>, <var>lambda</var>] =</em> <strong>pqpnonneg</strong> <em>(…)</em></dt>
<dd><p>Minimize <code>1/2*x'*c*x + d'*x</code> subject to <code><var>x</var> >= 0</code>.
</p>
<p><var>c</var> and <var>d</var> must be real, and <var>c</var> must be symmetric and
positive definite.
</p>
<p><var>x0</var> is an optional initial guess for <var>x</var>.
</p>
<p>Outputs:
</p>
<ul>
<li> minval
<p>The minimum attained model value, 1/2*xmin’*c*xmin + d’*xmin
</p>
</li><li> exitflag
<p>An indicator of convergence. 0 indicates that the iteration count was
exceeded, and therefore convergence was not reached; >0 indicates that the
algorithm converged. (The algorithm is stable and will converge given
enough iterations.)
</p>
</li><li> output
<p>A structure with two fields:
</p>
<ul>
<li> <code>"algorithm"</code>: The algorithm used (<code>"nnls"</code>)
</li><li> <code>"iterations"</code>: The number of iterations taken.
</li></ul>
</li><li> lambda
<p>Not implemented.
</p></li></ul>
<p><strong>See also:</strong> <a href="Linear-Least-Squares.html#XREFoptimset">optimset</a>, <a href="Linear-Least-Squares.html#XREFlsqnonneg">lsqnonneg</a>, <a href="#XREFqp">qp</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Nonlinear-Programming.html#Nonlinear-Programming" accesskey="n" rel="next">Nonlinear Programming</a>, Previous: <a href="Linear-Programming.html#Linear-Programming" accesskey="p" rel="prev">Linear Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|