This file is indexed.

/usr/share/doc/octave/octave.html/Plotting-the-Triangulation.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Plotting the Triangulation (GNU Octave)</title>

<meta name="description" content="Plotting the Triangulation (GNU Octave)">
<meta name="keywords" content="Plotting the Triangulation (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Delaunay-Triangulation.html#Delaunay-Triangulation" rel="up" title="Delaunay Triangulation">
<link href="Identifying-Points-in-Triangulation.html#Identifying-Points-in-Triangulation" rel="next" title="Identifying Points in Triangulation">
<link href="Delaunay-Triangulation.html#Delaunay-Triangulation" rel="prev" title="Delaunay Triangulation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Plotting-the-Triangulation"></a>
<div class="header">
<p>
Next: <a href="Identifying-Points-in-Triangulation.html#Identifying-Points-in-Triangulation" accesskey="n" rel="next">Identifying Points in Triangulation</a>, Up: <a href="Delaunay-Triangulation.html#Delaunay-Triangulation" accesskey="u" rel="up">Delaunay Triangulation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Plotting-the-Triangulation-1"></a>
<h4 class="subsection">30.1.1 Plotting the Triangulation</h4>

<p>Octave has the functions <code>triplot</code>, <code>trimesh</code>, and <code>trisurf</code>
to plot the Delaunay triangulation of a 2-dimensional set of points.
<code>tetramesh</code> will plot the triangulation of a 3-dimensional set of points.
</p>
<a name="XREFtriplot"></a><dl>
<dt><a name="index-triplot"></a>: <em></em> <strong>triplot</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-triplot-1"></a>: <em></em> <strong>triplot</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>linespec</var>)</em></dt>
<dt><a name="index-triplot-2"></a>: <em><var>h</var> =</em> <strong>triplot</strong> <em>(&hellip;)</em></dt>
<dd><p>Plot a 2-D triangular mesh.
</p>
<p><var>tri</var> is typically the output of a Delaunay triangulation over the
grid of <var>x</var>, <var>y</var>.  Every row of <var>tri</var> represents one triangle
and contains three indices into [<var>x</var>, <var>y</var>] which are the
vertices of the triangles in the x-y plane.
</p>
<p>The linestyle to use for the plot can be defined with the argument
<var>linespec</var> of the same format as the <code>plot</code> command.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
patch object.
</p>
<p><strong>See also:</strong> <a href="Two_002dDimensional-Plots.html#XREFplot">plot</a>, <a href="#XREFtrimesh">trimesh</a>, <a href="#XREFtrisurf">trisurf</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>.
</p></dd></dl>


<a name="XREFtrimesh"></a><dl>
<dt><a name="index-trimesh"></a>: <em></em> <strong>trimesh</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>, <var>c</var>)</em></dt>
<dt><a name="index-trimesh-1"></a>: <em></em> <strong>trimesh</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-trimesh-2"></a>: <em></em> <strong>trimesh</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-trimesh-3"></a>: <em></em> <strong>trimesh</strong> <em>(&hellip;, <var>prop</var>, <var>val</var>, &hellip;)</em></dt>
<dt><a name="index-trimesh-4"></a>: <em><var>h</var> =</em> <strong>trimesh</strong> <em>(&hellip;)</em></dt>
<dd><p>Plot a 3-D triangular wireframe mesh.
</p>
<p>In contrast to <code>mesh</code>, which plots a mesh using rectangles,
<code>trimesh</code> plots the mesh using triangles.
</p>
<p><var>tri</var> is typically the output of a Delaunay triangulation over the
grid of <var>x</var>, <var>y</var>.  Every row of <var>tri</var> represents one triangle
and contains three indices into [<var>x</var>, <var>y</var>] which are the
vertices of the triangles in the x-y plane.  <var>z</var> determines the
height above the plane of each vertex.  If no <var>z</var> input is given then
the triangles are plotted as a 2-D figure.
</p>
<p>The color of the trimesh is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap.  Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the mesh can be specified independently of <var>z</var>
by supplying <var>c</var>, which is a vector for colormap data, or a matrix with
three columns for RGB data.  The number of colors specified in <var>c</var> must
either equal the number of vertices in <var>z</var> or the number of triangles
in <var>tri</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying patch object.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created patch
object.
</p>
<p><strong>See also:</strong> <a href="Three_002dDimensional-Plots.html#XREFmesh">mesh</a>, <a href="#XREFtetramesh">tetramesh</a>, <a href="#XREFtriplot">triplot</a>, <a href="#XREFtrisurf">trisurf</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>, <a href="Three_002dDimensional-Plots.html#XREFhidden">hidden</a>.
</p></dd></dl>


<a name="XREFtrisurf"></a><dl>
<dt><a name="index-trisurf"></a>: <em></em> <strong>trisurf</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>, <var>c</var>)</em></dt>
<dt><a name="index-trisurf-1"></a>: <em></em> <strong>trisurf</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-trisurf-2"></a>: <em></em> <strong>trisurf</strong> <em>(&hellip;, <var>prop</var>, <var>val</var>, &hellip;)</em></dt>
<dt><a name="index-trisurf-3"></a>: <em><var>h</var> =</em> <strong>trisurf</strong> <em>(&hellip;)</em></dt>
<dd><p>Plot a 3-D triangular surface.
</p>
<p>In contrast to <code>surf</code>, which plots a surface mesh using rectangles,
<code>trisurf</code> plots the mesh using triangles.
</p>
<p><var>tri</var> is typically the output of a Delaunay triangulation over the
grid of <var>x</var>, <var>y</var>.  Every row of <var>tri</var> represents one triangle
and contains three indices into [<var>x</var>, <var>y</var>] which are the vertices of
the triangles in the x-y plane.  <var>z</var> determines the height above the
plane of each vertex.
</p>
<p>The color of the trisurf is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap.  Use <code>caxis</code> and/or change
the colormap to control the appearance.
</p>
<p>Optionally, the color of the mesh can be specified independently of <var>z</var>
by supplying <var>c</var>, which is a vector for colormap data, or a matrix with
three columns for RGB data.  The number of colors specified in <var>c</var> must
either equal the number of vertices in <var>z</var> or the number of triangles
in <var>tri</var>.  When specifying the color at each vertex the triangle will
be colored according to the color of the first vertex only (see patch
documentation and the <code>&quot;FaceColor&quot;</code> property when set to
<code>&quot;flat&quot;</code>).
</p>
<p>Any property/value pairs are passed directly to the underlying patch object.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created patch
object.
</p>
<p><strong>See also:</strong> <a href="Three_002dDimensional-Plots.html#XREFsurf">surf</a>, <a href="#XREFtriplot">triplot</a>, <a href="#XREFtrimesh">trimesh</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>, <a href="Three_002dDimensional-Plots.html#XREFshading">shading</a>.
</p></dd></dl>


<a name="XREFtetramesh"></a><dl>
<dt><a name="index-tetramesh"></a>: <em></em> <strong>tetramesh</strong> <em>(<var>T</var>, <var>X</var>)</em></dt>
<dt><a name="index-tetramesh-1"></a>: <em></em> <strong>tetramesh</strong> <em>(<var>T</var>, <var>X</var>, <var>C</var>)</em></dt>
<dt><a name="index-tetramesh-2"></a>: <em></em> <strong>tetramesh</strong> <em>(&hellip;, <var>property</var>, <var>val</var>, &hellip;)</em></dt>
<dt><a name="index-tetramesh-3"></a>: <em><var>h</var> =</em> <strong>tetramesh</strong> <em>(&hellip;)</em></dt>
<dd><p>Display the tetrahedrons defined in the m-by-4 matrix <var>T</var> as 3-D
patches.
</p>
<p><var>T</var> is typically the output of a Delaunay triangulation of a 3-D set
of points.  Every row of <var>T</var> contains four indices into the n-by-3
matrix <var>X</var> of the vertices of a tetrahedron.  Every row in <var>X</var>
represents one point in 3-D space.
</p>
<p>The vector <var>C</var> specifies the color of each tetrahedron as an index
into the current colormap.  The default value is 1:m where m is the number
of tetrahedrons; the indices are scaled to map to the full range of the
colormap.  If there are more tetrahedrons than colors in the colormap then
the values in <var>C</var> are cyclically repeated.
</p>
<p>Calling <code>tetramesh (&hellip;, &quot;property&quot;, &quot;value&quot;, &hellip;)</code> passes all
property/value pairs directly to the patch function as additional arguments.
</p>
<p>The optional return value <var>h</var> is a vector of patch handles where each
handle represents one tetrahedron in the order given by <var>T</var>.
A typical use case for <var>h</var> is to turn the respective patch
<code>&quot;visible&quot;</code> property <code>&quot;on&quot;</code> or <code>&quot;off&quot;</code>.
</p>
<p>Type <code>demo tetramesh</code> to see examples on using <code>tetramesh</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFtrimesh">trimesh</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>, <a href="Delaunay-Triangulation.html#XREFdelaunayn">delaunayn</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>


<p>The difference between <code>triplot</code>, and <code>trimesh</code> or <code>trisurf</code>,
is that the former only plots the 2-dimensional triangulation itself, whereas
the second two plot the value of a function <code>f (<var>x</var>, <var>y</var>)</code>.  An
example of the use of the <code>triplot</code> function is
</p>
<div class="example">
<pre class="example">rand (&quot;state&quot;, 2)
x = rand (20, 1);
y = rand (20, 1);
tri = delaunay (x, y);
triplot (tri, x, y);
</pre></div>

<p>which plots the Delaunay triangulation of a set of random points in
2-dimensions.
The output of the above can be seen in <a href="#fig_003atriplot">Figure 30.2</a>.
</p>
<div class="float"><a name="fig_003atriplot"></a>
<div align="center"><img src="triplot.png" alt="triplot">
</div>
<div class="float-caption"><p><strong>Figure 30.2: </strong>Delaunay triangulation of a random set of points</p></div></div>
<hr>
<div class="header">
<p>
Next: <a href="Identifying-Points-in-Triangulation.html#Identifying-Points-in-Triangulation" accesskey="n" rel="next">Identifying Points in Triangulation</a>, Up: <a href="Delaunay-Triangulation.html#Delaunay-Triangulation" accesskey="u" rel="up">Delaunay Triangulation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>