/usr/share/doc/octave/octave.html/Plotting-the-Triangulation.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Plotting the Triangulation (GNU Octave)</title>
<meta name="description" content="Plotting the Triangulation (GNU Octave)">
<meta name="keywords" content="Plotting the Triangulation (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Delaunay-Triangulation.html#Delaunay-Triangulation" rel="up" title="Delaunay Triangulation">
<link href="Identifying-Points-in-Triangulation.html#Identifying-Points-in-Triangulation" rel="next" title="Identifying Points in Triangulation">
<link href="Delaunay-Triangulation.html#Delaunay-Triangulation" rel="prev" title="Delaunay Triangulation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Plotting-the-Triangulation"></a>
<div class="header">
<p>
Next: <a href="Identifying-Points-in-Triangulation.html#Identifying-Points-in-Triangulation" accesskey="n" rel="next">Identifying Points in Triangulation</a>, Up: <a href="Delaunay-Triangulation.html#Delaunay-Triangulation" accesskey="u" rel="up">Delaunay Triangulation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Plotting-the-Triangulation-1"></a>
<h4 class="subsection">30.1.1 Plotting the Triangulation</h4>
<p>Octave has the functions <code>triplot</code>, <code>trimesh</code>, and <code>trisurf</code>
to plot the Delaunay triangulation of a 2-dimensional set of points.
<code>tetramesh</code> will plot the triangulation of a 3-dimensional set of points.
</p>
<a name="XREFtriplot"></a><dl>
<dt><a name="index-triplot"></a>: <em></em> <strong>triplot</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-triplot-1"></a>: <em></em> <strong>triplot</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>linespec</var>)</em></dt>
<dt><a name="index-triplot-2"></a>: <em><var>h</var> =</em> <strong>triplot</strong> <em>(…)</em></dt>
<dd><p>Plot a 2-D triangular mesh.
</p>
<p><var>tri</var> is typically the output of a Delaunay triangulation over the
grid of <var>x</var>, <var>y</var>. Every row of <var>tri</var> represents one triangle
and contains three indices into [<var>x</var>, <var>y</var>] which are the
vertices of the triangles in the x-y plane.
</p>
<p>The linestyle to use for the plot can be defined with the argument
<var>linespec</var> of the same format as the <code>plot</code> command.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created
patch object.
</p>
<p><strong>See also:</strong> <a href="Two_002dDimensional-Plots.html#XREFplot">plot</a>, <a href="#XREFtrimesh">trimesh</a>, <a href="#XREFtrisurf">trisurf</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>.
</p></dd></dl>
<a name="XREFtrimesh"></a><dl>
<dt><a name="index-trimesh"></a>: <em></em> <strong>trimesh</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>, <var>c</var>)</em></dt>
<dt><a name="index-trimesh-1"></a>: <em></em> <strong>trimesh</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-trimesh-2"></a>: <em></em> <strong>trimesh</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-trimesh-3"></a>: <em></em> <strong>trimesh</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-trimesh-4"></a>: <em><var>h</var> =</em> <strong>trimesh</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D triangular wireframe mesh.
</p>
<p>In contrast to <code>mesh</code>, which plots a mesh using rectangles,
<code>trimesh</code> plots the mesh using triangles.
</p>
<p><var>tri</var> is typically the output of a Delaunay triangulation over the
grid of <var>x</var>, <var>y</var>. Every row of <var>tri</var> represents one triangle
and contains three indices into [<var>x</var>, <var>y</var>] which are the
vertices of the triangles in the x-y plane. <var>z</var> determines the
height above the plane of each vertex. If no <var>z</var> input is given then
the triangles are plotted as a 2-D figure.
</p>
<p>The color of the trimesh is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or
change the colormap to control the appearance.
</p>
<p>Optionally, the color of the mesh can be specified independently of <var>z</var>
by supplying <var>c</var>, which is a vector for colormap data, or a matrix with
three columns for RGB data. The number of colors specified in <var>c</var> must
either equal the number of vertices in <var>z</var> or the number of triangles
in <var>tri</var>.
</p>
<p>Any property/value pairs are passed directly to the underlying patch object.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created patch
object.
</p>
<p><strong>See also:</strong> <a href="Three_002dDimensional-Plots.html#XREFmesh">mesh</a>, <a href="#XREFtetramesh">tetramesh</a>, <a href="#XREFtriplot">triplot</a>, <a href="#XREFtrisurf">trisurf</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>, <a href="Three_002dDimensional-Plots.html#XREFhidden">hidden</a>.
</p></dd></dl>
<a name="XREFtrisurf"></a><dl>
<dt><a name="index-trisurf"></a>: <em></em> <strong>trisurf</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>, <var>c</var>)</em></dt>
<dt><a name="index-trisurf-1"></a>: <em></em> <strong>trisurf</strong> <em>(<var>tri</var>, <var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-trisurf-2"></a>: <em></em> <strong>trisurf</strong> <em>(…, <var>prop</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-trisurf-3"></a>: <em><var>h</var> =</em> <strong>trisurf</strong> <em>(…)</em></dt>
<dd><p>Plot a 3-D triangular surface.
</p>
<p>In contrast to <code>surf</code>, which plots a surface mesh using rectangles,
<code>trisurf</code> plots the mesh using triangles.
</p>
<p><var>tri</var> is typically the output of a Delaunay triangulation over the
grid of <var>x</var>, <var>y</var>. Every row of <var>tri</var> represents one triangle
and contains three indices into [<var>x</var>, <var>y</var>] which are the vertices of
the triangles in the x-y plane. <var>z</var> determines the height above the
plane of each vertex.
</p>
<p>The color of the trisurf is computed by linearly scaling the <var>z</var> values
to fit the range of the current colormap. Use <code>caxis</code> and/or change
the colormap to control the appearance.
</p>
<p>Optionally, the color of the mesh can be specified independently of <var>z</var>
by supplying <var>c</var>, which is a vector for colormap data, or a matrix with
three columns for RGB data. The number of colors specified in <var>c</var> must
either equal the number of vertices in <var>z</var> or the number of triangles
in <var>tri</var>. When specifying the color at each vertex the triangle will
be colored according to the color of the first vertex only (see patch
documentation and the <code>"FaceColor"</code> property when set to
<code>"flat"</code>).
</p>
<p>Any property/value pairs are passed directly to the underlying patch object.
</p>
<p>The optional return value <var>h</var> is a graphics handle to the created patch
object.
</p>
<p><strong>See also:</strong> <a href="Three_002dDimensional-Plots.html#XREFsurf">surf</a>, <a href="#XREFtriplot">triplot</a>, <a href="#XREFtrimesh">trimesh</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>, <a href="Three_002dDimensional-Plots.html#XREFshading">shading</a>.
</p></dd></dl>
<a name="XREFtetramesh"></a><dl>
<dt><a name="index-tetramesh"></a>: <em></em> <strong>tetramesh</strong> <em>(<var>T</var>, <var>X</var>)</em></dt>
<dt><a name="index-tetramesh-1"></a>: <em></em> <strong>tetramesh</strong> <em>(<var>T</var>, <var>X</var>, <var>C</var>)</em></dt>
<dt><a name="index-tetramesh-2"></a>: <em></em> <strong>tetramesh</strong> <em>(…, <var>property</var>, <var>val</var>, …)</em></dt>
<dt><a name="index-tetramesh-3"></a>: <em><var>h</var> =</em> <strong>tetramesh</strong> <em>(…)</em></dt>
<dd><p>Display the tetrahedrons defined in the m-by-4 matrix <var>T</var> as 3-D
patches.
</p>
<p><var>T</var> is typically the output of a Delaunay triangulation of a 3-D set
of points. Every row of <var>T</var> contains four indices into the n-by-3
matrix <var>X</var> of the vertices of a tetrahedron. Every row in <var>X</var>
represents one point in 3-D space.
</p>
<p>The vector <var>C</var> specifies the color of each tetrahedron as an index
into the current colormap. The default value is 1:m where m is the number
of tetrahedrons; the indices are scaled to map to the full range of the
colormap. If there are more tetrahedrons than colors in the colormap then
the values in <var>C</var> are cyclically repeated.
</p>
<p>Calling <code>tetramesh (…, "property", "value", …)</code> passes all
property/value pairs directly to the patch function as additional arguments.
</p>
<p>The optional return value <var>h</var> is a vector of patch handles where each
handle represents one tetrahedron in the order given by <var>T</var>.
A typical use case for <var>h</var> is to turn the respective patch
<code>"visible"</code> property <code>"on"</code> or <code>"off"</code>.
</p>
<p>Type <code>demo tetramesh</code> to see examples on using <code>tetramesh</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFtrimesh">trimesh</a>, <a href="Delaunay-Triangulation.html#XREFdelaunay">delaunay</a>, <a href="Delaunay-Triangulation.html#XREFdelaunayn">delaunayn</a>, <a href="Graphics-Objects.html#XREFpatch">patch</a>.
</p></dd></dl>
<p>The difference between <code>triplot</code>, and <code>trimesh</code> or <code>trisurf</code>,
is that the former only plots the 2-dimensional triangulation itself, whereas
the second two plot the value of a function <code>f (<var>x</var>, <var>y</var>)</code>. An
example of the use of the <code>triplot</code> function is
</p>
<div class="example">
<pre class="example">rand ("state", 2)
x = rand (20, 1);
y = rand (20, 1);
tri = delaunay (x, y);
triplot (tri, x, y);
</pre></div>
<p>which plots the Delaunay triangulation of a set of random points in
2-dimensions.
The output of the above can be seen in <a href="#fig_003atriplot">Figure 30.2</a>.
</p>
<div class="float"><a name="fig_003atriplot"></a>
<div align="center"><img src="triplot.png" alt="triplot">
</div>
<div class="float-caption"><p><strong>Figure 30.2: </strong>Delaunay triangulation of a random set of points</p></div></div>
<hr>
<div class="header">
<p>
Next: <a href="Identifying-Points-in-Triangulation.html#Identifying-Points-in-Triangulation" accesskey="n" rel="next">Identifying Points in Triangulation</a>, Up: <a href="Delaunay-Triangulation.html#Delaunay-Triangulation" accesskey="u" rel="up">Delaunay Triangulation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|