/usr/share/doc/octave/octave.html/Orthogonal-Collocation.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Orthogonal Collocation (GNU Octave)</title>
<meta name="description" content="Orthogonal Collocation (GNU Octave)">
<meta name="keywords" content="Orthogonal Collocation (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Numerical-Integration.html#Numerical-Integration" rel="up" title="Numerical Integration">
<link href="Functions-of-Multiple-Variables.html#Functions-of-Multiple-Variables" rel="next" title="Functions of Multiple Variables">
<link href="Functions-of-One-Variable.html#Functions-of-One-Variable" rel="prev" title="Functions of One Variable">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Orthogonal-Collocation"></a>
<div class="header">
<p>
Next: <a href="Functions-of-Multiple-Variables.html#Functions-of-Multiple-Variables" accesskey="n" rel="next">Functions of Multiple Variables</a>, Previous: <a href="Functions-of-One-Variable.html#Functions-of-One-Variable" accesskey="p" rel="prev">Functions of One Variable</a>, Up: <a href="Numerical-Integration.html#Numerical-Integration" accesskey="u" rel="up">Numerical Integration</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Orthogonal-Collocation-1"></a>
<h3 class="section">23.2 Orthogonal Collocation</h3>
<a name="XREFcolloc"></a><dl>
<dt><a name="index-colloc"></a>: <em>[<var>r</var>, <var>amat</var>, <var>bmat</var>, <var>q</var>] =</em> <strong>colloc</strong> <em>(<var>n</var>, "left", "right")</em></dt>
<dd><p>Compute derivative and integral weight matrices for orthogonal collocation.
</p>
<p>Reference: J. Villadsen, M. L. Michelsen,
<cite>Solution of Differential Equation Models by Polynomial Approximation</cite>.
</p></dd></dl>
<p>Here is an example of using <code>colloc</code> to generate weight matrices
for solving the second order differential equation
<var>u</var>’ - <var>alpha</var> * <var>u</var>” = 0 with the boundary conditions
<var>u</var>(0) = 0 and <var>u</var>(1) = 1.
</p>
<p>First, we can generate the weight matrices for <var>n</var> points (including
the endpoints of the interval), and incorporate the boundary conditions
in the right hand side (for a specific value of
<var>alpha</var>).
</p>
<div class="example">
<pre class="example">n = 7;
alpha = 0.1;
[r, a, b] = colloc (n-2, "left", "right");
at = a(2:n-1,2:n-1);
bt = b(2:n-1,2:n-1);
rhs = alpha * b(2:n-1,n) - a(2:n-1,n);
</pre></div>
<p>Then the solution at the roots <var>r</var> is
</p>
<div class="example">
<pre class="example">u = [ 0; (at - alpha * bt) \ rhs; 1]
⇒ [ 0.00; 0.004; 0.01 0.00; 0.12; 0.62; 1.00 ]
</pre></div>
</body>
</html>
|