/usr/share/doc/octave/octave.html/Ordinary-Differential-Equations.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Ordinary Differential Equations (GNU Octave)</title>
<meta name="description" content="Ordinary Differential Equations (GNU Octave)">
<meta name="keywords" content="Ordinary Differential Equations (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Differential-Equations.html#Differential-Equations" rel="up" title="Differential Equations">
<link href="Matlab_002dcompatible-solvers.html#Matlab_002dcompatible-solvers" rel="next" title="Matlab-compatible solvers">
<link href="Differential-Equations.html#Differential-Equations" rel="prev" title="Differential Equations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Ordinary-Differential-Equations"></a>
<div class="header">
<p>
Next: <a href="Differential_002dAlgebraic-Equations.html#Differential_002dAlgebraic-Equations" accesskey="n" rel="next">Differential-Algebraic Equations</a>, Up: <a href="Differential-Equations.html#Differential-Equations" accesskey="u" rel="up">Differential Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Ordinary-Differential-Equations-1"></a>
<h3 class="section">24.1 Ordinary Differential Equations</h3>
<p>The function <code>lsode</code> can be used to solve ODEs of the form
</p>
<div class="example">
<pre class="example">dx
-- = f (x, t)
dt
</pre></div>
<p>using Hindmarsh’s ODE solver <small>LSODE</small>.
</p>
<a name="XREFlsode"></a><dl>
<dt><a name="index-lsode"></a>: <em>[<var>x</var>, <var>istate</var>, <var>msg</var>] =</em> <strong>lsode</strong> <em>(<var>fcn</var>, <var>x_0</var>, <var>t</var>)</em></dt>
<dt><a name="index-lsode-1"></a>: <em>[<var>x</var>, <var>istate</var>, <var>msg</var>] =</em> <strong>lsode</strong> <em>(<var>fcn</var>, <var>x_0</var>, <var>t</var>, <var>t_crit</var>)</em></dt>
<dd><p>Ordinary Differential Equation (ODE) solver.
</p>
<p>The set of differential equations to solve is
</p>
<div class="example">
<pre class="example">dx
-- = f (x, t)
dt
</pre></div>
<p>with
</p>
<div class="example">
<pre class="example">x(t_0) = x_0
</pre></div>
<p>The solution is returned in the matrix <var>x</var>, with each row
corresponding to an element of the vector <var>t</var>. The first element
of <var>t</var> should be <em>t_0</em> and should correspond to the initial
state of the system <var>x_0</var>, so that the first row of the output
is <var>x_0</var>.
</p>
<p>The first argument, <var>fcn</var>, is a string, inline, or function handle
that names the function <em>f</em> to call to compute the vector of right
hand sides for the set of equations. The function must have the form
</p>
<div class="example">
<pre class="example"><var>xdot</var> = f (<var>x</var>, <var>t</var>)
</pre></div>
<p>in which <var>xdot</var> and <var>x</var> are vectors and <var>t</var> is a scalar.
</p>
<p>If <var>fcn</var> is a two-element string array or a two-element cell array
of strings, inline functions, or function handles, the first element names
the function <em>f</em> described above, and the second element names a
function to compute the Jacobian of <em>f</em>. The Jacobian function
must have the form
</p>
<div class="example">
<pre class="example"><var>jac</var> = j (<var>x</var>, <var>t</var>)
</pre></div>
<p>in which <var>jac</var> is the matrix of partial derivatives
</p>
<div class="example">
<pre class="example"> | df_1 df_1 df_1 |
| ---- ---- ... ---- |
| dx_1 dx_2 dx_N |
| |
| df_2 df_2 df_2 |
| ---- ---- ... ---- |
df_i | dx_1 dx_2 dx_N |
jac = ---- = | |
dx_j | . . . . |
| . . . . |
| . . . . |
| |
| df_N df_N df_N |
| ---- ---- ... ---- |
| dx_1 dx_2 dx_N |
</pre></div>
<p>The second argument specifies the initial state of the system <em>x_0</em>. The
third argument is a vector, <var>t</var>, specifying the time values for which a
solution is sought.
</p>
<p>The fourth argument is optional, and may be used to specify a set of
times that the ODE solver should not integrate past. It is useful for
avoiding difficulties with singularities and points where there is a
discontinuity in the derivative.
</p>
<p>After a successful computation, the value of <var>istate</var> will be 2
(consistent with the Fortran version of <small>LSODE</small>).
</p>
<p>If the computation is not successful, <var>istate</var> will be something
other than 2 and <var>msg</var> will contain additional information.
</p>
<p>You can use the function <code>lsode_options</code> to set optional
parameters for <code>lsode</code>.
</p>
<p><strong>See also:</strong> <a href="Differential_002dAlgebraic-Equations.html#XREFdaspk">daspk</a>, <a href="Differential_002dAlgebraic-Equations.html#XREFdassl">dassl</a>, <a href="Differential_002dAlgebraic-Equations.html#XREFdasrt">dasrt</a>.
</p></dd></dl>
<a name="XREFlsode_005foptions"></a><dl>
<dt><a name="index-lsode_005foptions"></a>: <em></em> <strong>lsode_options</strong> <em>()</em></dt>
<dt><a name="index-lsode_005foptions-1"></a>: <em>val =</em> <strong>lsode_options</strong> <em>(<var>opt</var>)</em></dt>
<dt><a name="index-lsode_005foptions-2"></a>: <em></em> <strong>lsode_options</strong> <em>(<var>opt</var>, <var>val</var>)</em></dt>
<dd><p>Query or set options for the function <code>lsode</code>.
</p>
<p>When called with no arguments, the names of all available options and
their current values are displayed.
</p>
<p>Given one argument, return the value of the option <var>opt</var>.
</p>
<p>When called with two arguments, <code>lsode_options</code> sets the option
<var>opt</var> to value <var>val</var>.
</p>
<p>Options include
</p>
<dl compact="compact">
<dt><code>"absolute tolerance"</code></dt>
<dd><p>Absolute tolerance. May be either vector or scalar. If a vector, it
must match the dimension of the state vector.
</p>
</dd>
<dt><code>"relative tolerance"</code></dt>
<dd><p>Relative tolerance parameter. Unlike the absolute tolerance, this
parameter may only be a scalar.
</p>
<p>The local error test applied at each integration step is
</p>
<div class="example">
<pre class="example"> abs (local error in x(i)) <= ...
rtol * abs (y(i)) + atol(i)
</pre></div>
</dd>
<dt><code>"integration method"</code></dt>
<dd><p>A string specifying the method of integration to use to solve the ODE
system. Valid values are
</p>
<dl compact="compact">
<dt><code>"adams"</code></dt>
<dt><code>"non-stiff"</code></dt>
<dd><p>No Jacobian used (even if it is available).
</p>
</dd>
<dt><code>"bdf"</code></dt>
<dt><code>"stiff"</code></dt>
<dd><p>Use stiff backward differentiation formula (BDF) method. If a
function to compute the Jacobian is not supplied, <code>lsode</code> will
compute a finite difference approximation of the Jacobian matrix.
</p></dd>
</dl>
</dd>
<dt><code>"initial step size"</code></dt>
<dd><p>The step size to be attempted on the first step (default is determined
automatically).
</p>
</dd>
<dt><code>"maximum order"</code></dt>
<dd><p>Restrict the maximum order of the solution method. If using the Adams
method, this option must be between 1 and 12. Otherwise, it must be
between 1 and 5, inclusive.
</p>
</dd>
<dt><code>"maximum step size"</code></dt>
<dd><p>Setting the maximum stepsize will avoid passing over very large
regions (default is not specified).
</p>
</dd>
<dt><code>"minimum step size"</code></dt>
<dd><p>The minimum absolute step size allowed (default is 0).
</p>
</dd>
<dt><code>"step limit"</code></dt>
<dd><p>Maximum number of steps allowed (default is 100000).
</p></dd>
</dl>
</dd></dl>
<p>Here is an example of solving a set of three differential equations using
<code>lsode</code>. Given the function
</p>
<a name="index-oregonator"></a>
<div class="example">
<pre class="example">## oregonator differential equation
function xdot = f (x, t)
xdot = zeros (3,1);
xdot(1) = 77.27 * (x(2) - x(1)*x(2) + x(1) ...
- 8.375e-06*x(1)^2);
xdot(2) = (x(3) - x(1)*x(2) - x(2)) / 77.27;
xdot(3) = 0.161*(x(1) - x(3));
endfunction
</pre></div>
<p>and the initial condition <code>x0 = [ 4; 1.1; 4 ]</code>, the set of
equations can be integrated using the command
</p>
<div class="example">
<pre class="example">t = linspace (0, 500, 1000);
y = lsode ("f", x0, t);
</pre></div>
<p>If you try this, you will see that the value of the result changes
dramatically between <var>t</var> = 0 and 5, and again around <var>t</var> = 305.
A more efficient set of output points might be
</p>
<div class="example">
<pre class="example">t = [0, logspace(-1, log10(303), 150), ...
logspace(log10(304), log10(500), 150)];
</pre></div>
<p>See Alan C. Hindmarsh,
<cite>ODEPACK, A Systematized Collection of ODE Solvers</cite>,
in Scientific Computing, R. S. Stepleman, editor, (1983)
for more information about the inner workings of <code>lsode</code>.
</p>
<p>An m-file for the differential equation used above is included with the
Octave distribution in the examples directory under the name
<samp>oregonator.m</samp>.
</p>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Matlab_002dcompatible-solvers.html#Matlab_002dcompatible-solvers" accesskey="1">Matlab-compatible solvers</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="Differential_002dAlgebraic-Equations.html#Differential_002dAlgebraic-Equations" accesskey="n" rel="next">Differential-Algebraic Equations</a>, Up: <a href="Differential-Equations.html#Differential-Equations" accesskey="u" rel="up">Differential Equations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|