/usr/share/doc/octave/octave.html/Miscellaneous-Functions.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Miscellaneous Functions (GNU Octave)</title>
<meta name="description" content="Miscellaneous Functions (GNU Octave)">
<meta name="keywords" content="Miscellaneous Functions (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="up" title="Polynomial Manipulations">
<link href="Interpolation.html#Interpolation" rel="next" title="Interpolation">
<link href="Polynomial-Interpolation.html#Polynomial-Interpolation" rel="prev" title="Polynomial Interpolation">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Miscellaneous-Functions"></a>
<div class="header">
<p>
Previous: <a href="Polynomial-Interpolation.html#Polynomial-Interpolation" accesskey="p" rel="prev">Polynomial Interpolation</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Miscellaneous-Functions-1"></a>
<h3 class="section">28.6 Miscellaneous Functions</h3>
<a name="XREFpoly"></a><dl>
<dt><a name="index-poly"></a>: <em></em> <strong>poly</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-poly-1"></a>: <em></em> <strong>poly</strong> <em>(<var>x</var>)</em></dt>
<dd><p>If <var>A</var> is a square <em>N</em>-by-<em>N</em> matrix, <code>poly (<var>A</var>)</code>
is the row vector of the coefficients of <code>det (z * eye (N) - A)</code>,
the characteristic polynomial of <var>A</var>.
</p>
<p>For example, the following code finds the eigenvalues of <var>A</var> which are
the roots of <code>poly (<var>A</var>)</code>.
</p>
<div class="example">
<pre class="example">roots (poly (eye (3)))
⇒ 1.00001 + 0.00001i
1.00001 - 0.00001i
0.99999 + 0.00000i
</pre></div>
<p>In fact, all three eigenvalues are exactly 1 which emphasizes that for
numerical performance the <code>eig</code> function should be used to compute
eigenvalues.
</p>
<p>If <var>x</var> is a vector, <code>poly (<var>x</var>)</code> is a vector of the
coefficients of the polynomial whose roots are the elements of <var>x</var>.
That is, if <var>c</var> is a polynomial, then the elements of
<code><var>d</var> = roots (poly (<var>c</var>))</code> are contained in <var>c</var>. The
vectors <var>c</var> and <var>d</var> are not identical, however, due to sorting and
numerical errors.
</p>
<p><strong>See also:</strong> <a href="Finding-Roots.html#XREFroots">roots</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>
<a name="XREFpolyout"></a><dl>
<dt><a name="index-polyout"></a>: <em></em> <strong>polyout</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-polyout-1"></a>: <em></em> <strong>polyout</strong> <em>(<var>c</var>, <var>x</var>)</em></dt>
<dt><a name="index-polyout-2"></a>: <em><var>str</var> =</em> <strong>polyout</strong> <em>(…)</em></dt>
<dd><p>Display a formatted version of the polynomial <var>c</var>.
</p>
<p>The formatted polynomial
</p>
<div class="example">
<pre class="example">c(x) = c(1) * x^n + … + c(n) x + c(n+1)
</pre></div>
<p>is returned as a string or written to the screen if <code>nargout</code> is zero.
</p>
<p>The second argument <var>x</var> specifies the variable name to use for each term
and defaults to the string <code>"s"</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyreduce">polyreduce</a>.
</p></dd></dl>
<a name="XREFpolyreduce"></a><dl>
<dt><a name="index-polyreduce"></a>: <em></em> <strong>polyreduce</strong> <em>(<var>c</var>)</em></dt>
<dd><p>Reduce a polynomial coefficient vector to a minimum number of terms by
stripping off any leading zeros.
</p>
<p><strong>See also:</strong> <a href="#XREFpolyout">polyout</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="Polynomial-Interpolation.html#Polynomial-Interpolation" accesskey="p" rel="prev">Polynomial Interpolation</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|