This file is indexed.

/usr/share/doc/octave/octave.html/Mathematical-Constants.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Mathematical Constants (GNU Octave)</title>

<meta name="description" content="Mathematical Constants (GNU Octave)">
<meta name="keywords" content="Mathematical Constants (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Arithmetic.html#Arithmetic" rel="up" title="Arithmetic">
<link href="Linear-Algebra.html#Linear-Algebra" rel="next" title="Linear Algebra">
<link href="Coordinate-Transformations.html#Coordinate-Transformations" rel="prev" title="Coordinate Transformations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Mathematical-Constants"></a>
<div class="header">
<p>
Previous: <a href="Coordinate-Transformations.html#Coordinate-Transformations" accesskey="p" rel="prev">Coordinate Transformations</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Mathematical-Constants-1"></a>
<h3 class="section">17.9 Mathematical Constants</h3>

<a name="XREFe"></a><dl>
<dt><a name="index-e"></a>: <em></em> <strong>e</strong></dt>
<dt><a name="index-e-1"></a>: <em></em> <strong>e</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-e-2"></a>: <em></em> <strong>e</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-e-3"></a>: <em></em> <strong>e</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-e-4"></a>: <em></em> <strong>e</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the base of natural logarithms.
</p>
<p>The constant
&lsquo;<samp>e</samp>&rsquo; satisfies the equation <code>log</code> (e) = 1.
</p>
<p>When called with no arguments, return a scalar with the value <em>e</em>.
</p>
<p>When called with a single argument, return a square matrix with the
dimension specified.
</p>
<p>When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
</p>
<p>The optional argument <var>class</var> specifies the return type and may be
either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="Exponents-and-Logarithms.html#XREFlog">log</a>, <a href="Exponents-and-Logarithms.html#XREFexp">exp</a>, <a href="#XREFpi">pi</a>, <a href="#XREFI">I</a>.
</p></dd></dl>


<a name="XREFpi"></a><dl>
<dt><a name="index-pi"></a>: <em></em> <strong>pi</strong></dt>
<dt><a name="index-pi-1"></a>: <em></em> <strong>pi</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-pi-2"></a>: <em></em> <strong>pi</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-pi-3"></a>: <em></em> <strong>pi</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-pi-4"></a>: <em></em> <strong>pi</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the ratio of the circumference of a circle to its
diameter.
</p>
<p>Internally, <code>pi</code> is computed as &lsquo;<samp>4.0 * atan (1.0)</samp>&rsquo;.
</p>
<p>When called with no arguments, return a scalar with the value of
pi.
</p>
<p>When called with a single argument, return a square matrix with the
dimension specified.
</p>
<p>When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
</p>
<p>The optional argument <var>class</var> specifies the return type and may be
either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFe">e</a>, <a href="#XREFI">I</a>.
</p></dd></dl>


<a name="XREFI"></a><a name="index-i"></a>
<a name="index-j"></a>
<a name="index-J"></a>

<dl>
<dt><a name="index-I"></a>: <em></em> <strong>I</strong></dt>
<dt><a name="index-I-1"></a>: <em></em> <strong>I</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-I-2"></a>: <em></em> <strong>I</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-I-3"></a>: <em></em> <strong>I</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-I-4"></a>: <em></em> <strong>I</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the pure imaginary unit, defined as
<code>sqrt&nbsp;<span class="nolinebreak">(-1)</span></code><!-- /@w -->.
</p>
<p>I, and its equivalents i, j, and J, are functions so any of the names may
be reused for other purposes (such as i for a counter variable).
</p>
<p>When called with no arguments, return a scalar with the value <em>i</em>.
</p>
<p>When called with a single argument, return a square matrix with the
dimension specified.
</p>
<p>When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
</p>
<p>The optional argument <var>class</var> specifies the return type and may be
either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFe">e</a>, <a href="#XREFpi">pi</a>, <a href="Exponents-and-Logarithms.html#XREFlog">log</a>, <a href="Exponents-and-Logarithms.html#XREFexp">exp</a>.
</p></dd></dl>


<a name="XREFInf"></a><a name="index-inf"></a>

<dl>
<dt><a name="index-Inf"></a>: <em></em> <strong>Inf</strong></dt>
<dt><a name="index-Inf-1"></a>: <em></em> <strong>Inf</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-Inf-2"></a>: <em></em> <strong>Inf</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-Inf-3"></a>: <em></em> <strong>Inf</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-Inf-4"></a>: <em></em> <strong>Inf</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix or N-dimensional array whose elements are all equal
to the IEEE representation for positive infinity.
</p>
<p>Infinity is produced when results are too large to be represented using the
IEEE floating point format for numbers.  Two common examples which produce
infinity are division by zero and overflow.
</p>
<div class="example">
<pre class="example">[ 1/0 e^800 ]
&rArr; Inf   Inf
</pre></div>

<p>When called with no arguments, return a scalar with the value &lsquo;<samp>Inf</samp>&rsquo;.
</p>
<p>When called with a single argument, return a square matrix with the
dimension specified.
</p>
<p>When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
</p>
<p>The optional argument <var>class</var> specifies the return type and may be
either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="Finding-Elements-and-Checking-Conditions.html#XREFisinf">isinf</a>, <a href="#XREFNaN">NaN</a>.
</p></dd></dl>


<a name="XREFNaN"></a><a name="index-nan"></a>

<dl>
<dt><a name="index-NaN"></a>: <em></em> <strong>NaN</strong></dt>
<dt><a name="index-NaN-1"></a>: <em></em> <strong>NaN</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-NaN-2"></a>: <em></em> <strong>NaN</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-NaN-3"></a>: <em></em> <strong>NaN</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-NaN-4"></a>: <em></em> <strong>NaN</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the IEEE symbol NaN (Not a Number).
</p>
<p>NaN is the result of operations which do not produce a well defined
numerical result.  Common operations which produce a NaN are arithmetic
with infinity
(Inf - Inf), zero divided by zero (0/0),
and any operation involving another NaN value (5 + NaN).
</p>
<p>Note that NaN always compares not equal to NaN (NaN != NaN).  This behavior
is specified by the IEEE standard for floating point arithmetic.  To find
NaN values, use the <code>isnan</code> function.
</p>
<p>When called with no arguments, return a scalar with the value &lsquo;<samp>NaN</samp>&rsquo;.
</p>
<p>When called with a single argument, return a square matrix with the
dimension specified.
</p>
<p>When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
</p>
<p>The optional argument <var>class</var> specifies the return type and may be
either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="Finding-Elements-and-Checking-Conditions.html#XREFisnan">isnan</a>, <a href="#XREFInf">Inf</a>.
</p></dd></dl>


<a name="XREFeps"></a><dl>
<dt><a name="index-eps"></a>: <em></em> <strong>eps</strong></dt>
<dt><a name="index-eps-1"></a>: <em></em> <strong>eps</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-eps-2"></a>: <em></em> <strong>eps</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-eps-3"></a>: <em></em> <strong>eps</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-eps-4"></a>: <em></em> <strong>eps</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix or N-dimensional array whose elements are all eps,
the machine precision.
</p>
<p>More precisely, <code>eps</code> is the relative spacing between any two adjacent
numbers in the machine&rsquo;s floating point system.  This number is obviously
system dependent.  On machines that support IEEE floating point arithmetic,
<code>eps</code> is approximately
2.2204e-16 for double precision and 1.1921e-07
for single precision.
</p>
<p>When called with no arguments, return a scalar with the value
<code>eps (1.0)</code>.
</p>
<p>Given a single argument <var>x</var>, return the distance between <var>x</var> and the
next largest value.
</p>
<p>When called with more than one argument the first two arguments are taken as
the number of rows and columns and any further arguments specify additional
matrix dimensions.  The optional argument <var>class</var> specifies the return
type and may be either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFrealmax">realmax</a>, <a href="#XREFrealmin">realmin</a>, <a href="Integer-Data-Types.html#XREFintmax">intmax</a>, <a href="Integer-Data-Types.html#XREFflintmax">flintmax</a>.
</p></dd></dl>


<a name="XREFrealmax"></a><dl>
<dt><a name="index-realmax"></a>: <em></em> <strong>realmax</strong></dt>
<dt><a name="index-realmax-1"></a>: <em></em> <strong>realmax</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-realmax-2"></a>: <em></em> <strong>realmax</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-realmax-3"></a>: <em></em> <strong>realmax</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-realmax-4"></a>: <em></em> <strong>realmax</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the largest floating point number that is representable.
</p>
<p>The actual value is system dependent.  On machines that support IEEE
floating point arithmetic, <code>realmax</code> is approximately
1.7977e+308 for double precision and 3.4028e+38
for single precision.
</p>
<p>When called with no arguments, return a scalar with the value
<code>realmax (<code>&quot;double&quot;</code>)</code>.
</p>
<p>When called with a single argument, return a square matrix with the
dimension specified.
</p>
<p>When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
</p>
<p>The optional argument <var>class</var> specifies the return type and may be
either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFrealmin">realmin</a>, <a href="Integer-Data-Types.html#XREFintmax">intmax</a>, <a href="Integer-Data-Types.html#XREFflintmax">flintmax</a>, <a href="#XREFeps">eps</a>.
</p></dd></dl>


<a name="XREFrealmin"></a><dl>
<dt><a name="index-realmin"></a>: <em></em> <strong>realmin</strong></dt>
<dt><a name="index-realmin-1"></a>: <em></em> <strong>realmin</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-realmin-2"></a>: <em></em> <strong>realmin</strong> <em>(<var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-realmin-3"></a>: <em></em> <strong>realmin</strong> <em>(<var>n</var>, <var>m</var>, <var>k</var>, &hellip;)</em></dt>
<dt><a name="index-realmin-4"></a>: <em></em> <strong>realmin</strong> <em>(&hellip;, <var>class</var>)</em></dt>
<dd><p>Return a scalar, matrix, or N-dimensional array whose elements are all equal
to the smallest normalized floating point number that is representable.
</p>
<p>The actual value is system dependent.  On machines that support
IEEE floating point arithmetic, <code>realmin</code> is approximately
2.2251e-308 for double precision and 1.1755e-38
for single precision.
</p>
<p>When called with no arguments, return a scalar with the value
<code>realmin (<code>&quot;double&quot;</code>)</code>.
</p>
<p>When called with a single argument, return a square matrix with the
dimension specified.
</p>
<p>When called with more than one scalar argument the first two arguments are
taken as the number of rows and columns and any further arguments specify
additional matrix dimensions.
</p>
<p>The optional argument <var>class</var> specifies the return type and may be
either <code>&quot;double&quot;</code> or <code>&quot;single&quot;</code>.
</p>
<p><strong>See also:</strong> <a href="#XREFrealmax">realmax</a>, <a href="Integer-Data-Types.html#XREFintmin">intmin</a>, <a href="#XREFeps">eps</a>.
</p></dd></dl>



<hr>
<div class="header">
<p>
Previous: <a href="Coordinate-Transformations.html#Coordinate-Transformations" accesskey="p" rel="prev">Coordinate Transformations</a>, Up: <a href="Arithmetic.html#Arithmetic" accesskey="u" rel="up">Arithmetic</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>