/usr/share/doc/octave/octave.html/Linear-Programming.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Linear Programming (GNU Octave)</title>
<meta name="description" content="Linear Programming (GNU Octave)">
<meta name="keywords" content="Linear Programming (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Optimization.html#Optimization" rel="up" title="Optimization">
<link href="Quadratic-Programming.html#Quadratic-Programming" rel="next" title="Quadratic Programming">
<link href="Optimization.html#Optimization" rel="prev" title="Optimization">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Linear-Programming"></a>
<div class="header">
<p>
Next: <a href="Quadratic-Programming.html#Quadratic-Programming" accesskey="n" rel="next">Quadratic Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Linear-Programming-1"></a>
<h3 class="section">25.1 Linear Programming</h3>
<p>Octave can solve Linear Programming problems using the <code>glpk</code>
function. That is, Octave can solve
</p>
<div class="example">
<pre class="example">min C'*x
</pre></div>
<p>subject to the linear constraints
<em>A*x = b</em> where <em>x ≥ 0</em>.
</p>
<p>The <code>glpk</code> function also supports variations of this problem.
</p>
<a name="XREFglpk"></a><dl>
<dt><a name="index-glpk"></a>: <em>[<var>xopt</var>, <var>fmin</var>, <var>errnum</var>, <var>extra</var>] =</em> <strong>glpk</strong> <em>(<var>c</var>, <var>A</var>, <var>b</var>, <var>lb</var>, <var>ub</var>, <var>ctype</var>, <var>vartype</var>, <var>sense</var>, <var>param</var>)</em></dt>
<dd><p>Solve a linear program using the GNU <small>GLPK</small> library.
</p>
<p>Given three arguments, <code>glpk</code> solves the following standard LP:
</p>
<div class="example">
<pre class="example">min C'*x
</pre></div>
<p>subject to
</p>
<div class="example">
<pre class="example">A*x = b
x >= 0
</pre></div>
<p>but may also solve problems of the form
</p>
<div class="example">
<pre class="example">[ min | max ] C'*x
</pre></div>
<p>subject to
</p>
<div class="example">
<pre class="example">A*x [ "=" | "<=" | ">=" ] b
x >= LB
x <= UB
</pre></div>
<p>Input arguments:
</p>
<dl compact="compact">
<dt><var>c</var></dt>
<dd><p>A column array containing the objective function coefficients.
</p>
</dd>
<dt><var>A</var></dt>
<dd><p>A matrix containing the constraints coefficients.
</p>
</dd>
<dt><var>b</var></dt>
<dd><p>A column array containing the right-hand side value for each constraint in
the constraint matrix.
</p>
</dd>
<dt><var>lb</var></dt>
<dd><p>An array containing the lower bound on each of the variables. If <var>lb</var>
is not supplied, the default lower bound for the variables is zero.
</p>
</dd>
<dt><var>ub</var></dt>
<dd><p>An array containing the upper bound on each of the variables. If <var>ub</var>
is not supplied, the default upper bound is assumed to be infinite.
</p>
</dd>
<dt><var>ctype</var></dt>
<dd><p>An array of characters containing the sense of each constraint in the
constraint matrix. Each element of the array may be one of the following
values
</p>
<dl compact="compact">
<dt><code>"F"</code></dt>
<dd><p>A free (unbounded) constraint (the constraint is ignored).
</p>
</dd>
<dt><code>"U"</code></dt>
<dd><p>An inequality constraint with an upper bound (<code>A(i,:)*x <= b(i)</code>).
</p>
</dd>
<dt><code>"S"</code></dt>
<dd><p>An equality constraint (<code>A(i,:)*x = b(i)</code>).
</p>
</dd>
<dt><code>"L"</code></dt>
<dd><p>An inequality with a lower bound (<code>A(i,:)*x >= b(i)</code>).
</p>
</dd>
<dt><code>"D"</code></dt>
<dd><p>An inequality constraint with both upper and lower bounds
(<code>A(i,:)*x >= -b(i)</code>) <em>and</em> (<code>A(i,:)*x <= b(i)</code>).
</p></dd>
</dl>
</dd>
<dt><var>vartype</var></dt>
<dd><p>A column array containing the types of the variables.
</p>
<dl compact="compact">
<dt><code>"C"</code></dt>
<dd><p>A continuous variable.
</p>
</dd>
<dt><code>"I"</code></dt>
<dd><p>An integer variable.
</p></dd>
</dl>
</dd>
<dt><var>sense</var></dt>
<dd><p>If <var>sense</var> is 1, the problem is a minimization. If <var>sense</var> is -1,
the problem is a maximization. The default value is 1.
</p>
</dd>
<dt><var>param</var></dt>
<dd><p>A structure containing the following parameters used to define the
behavior of solver. Missing elements in the structure take on default
values, so you only need to set the elements that you wish to change from
the default.
</p>
<p>Integer parameters:
</p>
<dl compact="compact">
<dt><code>msglev (default: 1)</code></dt>
<dd><p>Level of messages output by solver routines:
</p>
<dl compact="compact">
<dt>0 (<code><span class="nolinebreak">GLP_MSG_OFF</span></code><!-- /@w -->)</dt>
<dd><p>No output.
</p>
</dd>
<dt>1 (<code><span class="nolinebreak">GLP_MSG_ERR</span></code><!-- /@w -->)</dt>
<dd><p>Error and warning messages only.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_MSG_ON</span></code><!-- /@w -->)</dt>
<dd><p>Normal output.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_MSG_ALL</span></code><!-- /@w -->)</dt>
<dd><p>Full output (includes informational messages).
</p></dd>
</dl>
</dd>
<dt><code>scale (default: 16)</code></dt>
<dd><p>Scaling option. The values can be combined with the bitwise OR operator and
may be the following:
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_SF_GM</span></code><!-- /@w -->)</dt>
<dd><p>Geometric mean scaling.
</p>
</dd>
<dt>16 (<code><span class="nolinebreak">GLP_SF_EQ</span></code><!-- /@w -->)</dt>
<dd><p>Equilibration scaling.
</p>
</dd>
<dt>32 (<code><span class="nolinebreak">GLP_SF_2N</span></code><!-- /@w -->)</dt>
<dd><p>Round scale factors to power of two.
</p>
</dd>
<dt>64 (<code><span class="nolinebreak">GLP_SF_SKIP</span></code><!-- /@w -->)</dt>
<dd><p>Skip if problem is well scaled.
</p></dd>
</dl>
<p>Alternatively, a value of 128 (<code><span class="nolinebreak">GLP_SF_AUTO</span></code><!-- /@w -->) may be also
specified, in which case the routine chooses the scaling options
automatically.
</p>
</dd>
<dt><code>dual (default: 1)</code></dt>
<dd><p>Simplex method option:
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_PRIMAL</span></code><!-- /@w -->)</dt>
<dd><p>Use two-phase primal simplex.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_DUALP</span></code><!-- /@w -->)</dt>
<dd><p>Use two-phase dual simplex, and if it fails, switch to the primal simplex.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_DUAL</span></code><!-- /@w -->)</dt>
<dd><p>Use two-phase dual simplex.
</p></dd>
</dl>
</dd>
<dt><code>price (default: 34)</code></dt>
<dd><p>Pricing option (for both primal and dual simplex):
</p>
<dl compact="compact">
<dt>17 (<code><span class="nolinebreak">GLP_PT_STD</span></code><!-- /@w -->)</dt>
<dd><p>Textbook pricing.
</p>
</dd>
<dt>34 (<code><span class="nolinebreak">GLP_PT_PSE</span></code><!-- /@w -->)</dt>
<dd><p>Steepest edge pricing.
</p></dd>
</dl>
</dd>
<dt><code>itlim (default: intmax)</code></dt>
<dd><p>Simplex iterations limit. It is decreased by one each time when one simplex
iteration has been performed, and reaching zero value signals the solver to
stop the search.
</p>
</dd>
<dt><code>outfrq (default: 200)</code></dt>
<dd><p>Output frequency, in iterations. This parameter specifies how frequently
the solver sends information about the solution to the standard output.
</p>
</dd>
<dt><code>branch (default: 4)</code></dt>
<dd><p>Branching technique option (for MIP only):
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_BR_FFV</span></code><!-- /@w -->)</dt>
<dd><p>First fractional variable.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_BR_LFV</span></code><!-- /@w -->)</dt>
<dd><p>Last fractional variable.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_BR_MFV</span></code><!-- /@w -->)</dt>
<dd><p>Most fractional variable.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_BR_DTH</span></code><!-- /@w -->)</dt>
<dd><p>Heuristic by Driebeck and Tomlin.
</p>
</dd>
<dt>5 (<code><span class="nolinebreak">GLP_BR_PCH</span></code><!-- /@w -->)</dt>
<dd><p>Hybrid pseudocost heuristic.
</p></dd>
</dl>
</dd>
<dt><code>btrack (default: 4)</code></dt>
<dd><p>Backtracking technique option (for MIP only):
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_BT_DFS</span></code><!-- /@w -->)</dt>
<dd><p>Depth first search.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_BT_BFS</span></code><!-- /@w -->)</dt>
<dd><p>Breadth first search.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_BT_BLB</span></code><!-- /@w -->)</dt>
<dd><p>Best local bound.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_BT_BPH</span></code><!-- /@w -->)</dt>
<dd><p>Best projection heuristic.
</p></dd>
</dl>
</dd>
<dt><code>presol (default: 1)</code></dt>
<dd><p>If this flag is set, the simplex solver uses the built-in LP presolver.
Otherwise the LP presolver is not used.
</p>
</dd>
<dt><code>lpsolver (default: 1)</code></dt>
<dd><p>Select which solver to use. If the problem is a MIP problem this flag
will be ignored.
</p>
<dl compact="compact">
<dt>1</dt>
<dd><p>Revised simplex method.
</p>
</dd>
<dt>2</dt>
<dd><p>Interior point method.
</p></dd>
</dl>
</dd>
<dt><code>rtest (default: 34)</code></dt>
<dd><p>Ratio test technique:
</p>
<dl compact="compact">
<dt>17 (<code><span class="nolinebreak">GLP_RT_STD</span></code><!-- /@w -->)</dt>
<dd><p>Standard ("textbook").
</p>
</dd>
<dt>34 (<code><span class="nolinebreak">GLP_RT_HAR</span></code><!-- /@w -->)</dt>
<dd><p>Harris’ two-pass ratio test.
</p></dd>
</dl>
</dd>
<dt><code>tmlim (default: intmax)</code></dt>
<dd><p>Searching time limit, in milliseconds.
</p>
</dd>
<dt><code>outdly (default: 0)</code></dt>
<dd><p>Output delay, in seconds. This parameter specifies how long the solver
should delay sending information about the solution to the standard output.
</p>
</dd>
<dt><code>save (default: 0)</code></dt>
<dd><p>If this parameter is nonzero, save a copy of the problem in CPLEX LP
format to the file <samp>"outpb.lp"</samp>. There is currently no way to change
the name of the output file.
</p></dd>
</dl>
<p>Real parameters:
</p>
<dl compact="compact">
<dt><code>tolbnd (default: 1e-7)</code></dt>
<dd><p>Relative tolerance used to check if the current basic solution is primal
feasible. It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code>toldj (default: 1e-7)</code></dt>
<dd><p>Absolute tolerance used to check if the current basic solution is dual
feasible. It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code>tolpiv (default: 1e-10)</code></dt>
<dd><p>Relative tolerance used to choose eligible pivotal elements of the simplex
table. It is not recommended that you change this parameter unless you have
a detailed understanding of its purpose.
</p>
</dd>
<dt><code>objll (default: -DBL_MAX)</code></dt>
<dd><p>Lower limit of the objective function. If the objective function reaches
this limit and continues decreasing, the solver stops the search. This
parameter is used in the dual simplex method only.
</p>
</dd>
<dt><code>objul (default: +DBL_MAX)</code></dt>
<dd><p>Upper limit of the objective function. If the objective function reaches
this limit and continues increasing, the solver stops the search. This
parameter is used in the dual simplex only.
</p>
</dd>
<dt><code>tolint (default: 1e-5)</code></dt>
<dd><p>Relative tolerance used to check if the current basic solution is integer
feasible. It is not recommended that you change this parameter unless you
have a detailed understanding of its purpose.
</p>
</dd>
<dt><code>tolobj (default: 1e-7)</code></dt>
<dd><p>Relative tolerance used to check if the value of the objective function is
not better than in the best known integer feasible solution. It is not
recommended that you change this parameter unless you have a detailed
understanding of its purpose.
</p></dd>
</dl>
</dd>
</dl>
<p>Output values:
</p>
<dl compact="compact">
<dt><var>xopt</var></dt>
<dd><p>The optimizer (the value of the decision variables at the optimum).
</p>
</dd>
<dt><var>fopt</var></dt>
<dd><p>The optimum value of the objective function.
</p>
</dd>
<dt><var>errnum</var></dt>
<dd><p>Error code.
</p>
<dl compact="compact">
<dt>0</dt>
<dd><p>No error.
</p>
</dd>
<dt>1 (<code><span class="nolinebreak">GLP_EBADB</span></code><!-- /@w -->)</dt>
<dd><p>Invalid basis.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_ESING</span></code><!-- /@w -->)</dt>
<dd><p>Singular matrix.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_ECOND</span></code><!-- /@w -->)</dt>
<dd><p>Ill-conditioned matrix.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_EBOUND</span></code><!-- /@w -->)</dt>
<dd><p>Invalid bounds.
</p>
</dd>
<dt>5 (<code><span class="nolinebreak">GLP_EFAIL</span></code><!-- /@w -->)</dt>
<dd><p>Solver failed.
</p>
</dd>
<dt>6 (<code><span class="nolinebreak">GLP_EOBJLL</span></code><!-- /@w -->)</dt>
<dd><p>Objective function lower limit reached.
</p>
</dd>
<dt>7 (<code><span class="nolinebreak">GLP_EOBJUL</span></code><!-- /@w -->)</dt>
<dd><p>Objective function upper limit reached.
</p>
</dd>
<dt>8 (<code><span class="nolinebreak">GLP_EITLIM</span></code><!-- /@w -->)</dt>
<dd><p>Iterations limit exhausted.
</p>
</dd>
<dt>9 (<code><span class="nolinebreak">GLP_ETMLIM</span></code><!-- /@w -->)</dt>
<dd><p>Time limit exhausted.
</p>
</dd>
<dt>10 (<code><span class="nolinebreak">GLP_ENOPFS</span></code><!-- /@w -->)</dt>
<dd><p>No primal feasible solution.
</p>
</dd>
<dt>11 (<code><span class="nolinebreak">GLP_ENODFS</span></code><!-- /@w -->)</dt>
<dd><p>No dual feasible solution.
</p>
</dd>
<dt>12 (<code><span class="nolinebreak">GLP_EROOT</span></code><!-- /@w -->)</dt>
<dd><p>Root LP optimum not provided.
</p>
</dd>
<dt>13 (<code><span class="nolinebreak">GLP_ESTOP</span></code><!-- /@w -->)</dt>
<dd><p>Search terminated by application.
</p>
</dd>
<dt>14 (<code><span class="nolinebreak">GLP_EMIPGAP</span></code><!-- /@w -->)</dt>
<dd><p>Relative MIP gap tolerance reached.
</p>
</dd>
<dt>15 (<code><span class="nolinebreak">GLP_ENOFEAS</span></code><!-- /@w -->)</dt>
<dd><p>No primal/dual feasible solution.
</p>
</dd>
<dt>16 (<code><span class="nolinebreak">GLP_ENOCVG</span></code><!-- /@w -->)</dt>
<dd><p>No convergence.
</p>
</dd>
<dt>17 (<code><span class="nolinebreak">GLP_EINSTAB</span></code><!-- /@w -->)</dt>
<dd><p>Numerical instability.
</p>
</dd>
<dt>18 (<code><span class="nolinebreak">GLP_EDATA</span></code><!-- /@w -->)</dt>
<dd><p>Invalid data.
</p>
</dd>
<dt>19 (<code><span class="nolinebreak">GLP_ERANGE</span></code><!-- /@w -->)</dt>
<dd><p>Result out of range.
</p></dd>
</dl>
</dd>
<dt><var>extra</var></dt>
<dd><p>A data structure containing the following fields:
</p>
<dl compact="compact">
<dt><code>lambda</code></dt>
<dd><p>Dual variables.
</p>
</dd>
<dt><code>redcosts</code></dt>
<dd><p>Reduced Costs.
</p>
</dd>
<dt><code>time</code></dt>
<dd><p>Time (in seconds) used for solving LP/MIP problem.
</p>
</dd>
<dt><code>status</code></dt>
<dd><p>Status of the optimization.
</p>
<dl compact="compact">
<dt>1 (<code><span class="nolinebreak">GLP_UNDEF</span></code><!-- /@w -->)</dt>
<dd><p>Solution status is undefined.
</p>
</dd>
<dt>2 (<code><span class="nolinebreak">GLP_FEAS</span></code><!-- /@w -->)</dt>
<dd><p>Solution is feasible.
</p>
</dd>
<dt>3 (<code><span class="nolinebreak">GLP_INFEAS</span></code><!-- /@w -->)</dt>
<dd><p>Solution is infeasible.
</p>
</dd>
<dt>4 (<code><span class="nolinebreak">GLP_NOFEAS</span></code><!-- /@w -->)</dt>
<dd><p>Problem has no feasible solution.
</p>
</dd>
<dt>5 (<code><span class="nolinebreak">GLP_OPT</span></code><!-- /@w -->)</dt>
<dd><p>Solution is optimal.
</p>
</dd>
<dt>6 (<code><span class="nolinebreak">GLP_UNBND</span></code><!-- /@w -->)</dt>
<dd><p>Problem has no unbounded solution.
</p></dd>
</dl>
</dd>
</dl>
</dd>
</dl>
<p>Example:
</p>
<div class="example">
<pre class="example">c = [10, 6, 4]';
A = [ 1, 1, 1;
10, 4, 5;
2, 2, 6];
b = [100, 600, 300]';
lb = [0, 0, 0]';
ub = [];
ctype = "UUU";
vartype = "CCC";
s = -1;
param.msglev = 1;
param.itlim = 100;
[xmin, fmin, status, extra] = ...
glpk (c, A, b, lb, ub, ctype, vartype, s, param);
</pre></div>
</dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Quadratic-Programming.html#Quadratic-Programming" accesskey="n" rel="next">Quadratic Programming</a>, Up: <a href="Optimization.html#Optimization" accesskey="u" rel="up">Optimization</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|