/usr/share/doc/octave/octave.html/Iterative-Techniques.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Iterative Techniques (GNU Octave)</title>
<meta name="description" content="Iterative Techniques (GNU Octave)">
<meta name="keywords" content="Iterative Techniques (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Sparse-Matrices.html#Sparse-Matrices" rel="up" title="Sparse Matrices">
<link href="Real-Life-Example.html#Real-Life-Example" rel="next" title="Real Life Example">
<link href="Sparse-Linear-Algebra.html#Sparse-Linear-Algebra" rel="prev" title="Sparse Linear Algebra">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Iterative-Techniques"></a>
<div class="header">
<p>
Next: <a href="Real-Life-Example.html#Real-Life-Example" accesskey="n" rel="next">Real Life Example</a>, Previous: <a href="Sparse-Linear-Algebra.html#Sparse-Linear-Algebra" accesskey="p" rel="prev">Sparse Linear Algebra</a>, Up: <a href="Sparse-Matrices.html#Sparse-Matrices" accesskey="u" rel="up">Sparse Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Iterative-Techniques-Applied-to-Sparse-Matrices"></a>
<h3 class="section">22.3 Iterative Techniques Applied to Sparse Matrices</h3>
<p>The left division <code>\</code> and right division <code>/</code> operators,
discussed in the previous section, use direct solvers to resolve a
linear equation of the form <code><var>x</var> = <var>A</var> \ <var>b</var></code> or
<code><var>x</var> = <var>b</var> / <var>A</var></code>. Octave also includes a number of
functions to solve sparse linear equations using iterative techniques.
</p>
<a name="XREFpcg"></a><dl>
<dt><a name="index-pcg"></a>: <em><var>x</var> =</em> <strong>pcg</strong> <em>(<var>A</var>, <var>b</var>, <var>tol</var>, <var>maxit</var>, <var>m1</var>, <var>m2</var>, <var>x0</var>, …)</em></dt>
<dt><a name="index-pcg-1"></a>: <em>[<var>x</var>, <var>flag</var>, <var>relres</var>, <var>iter</var>, <var>resvec</var>, <var>eigest</var>] =</em> <strong>pcg</strong> <em>(…)</em></dt>
<dd>
<p>Solve the linear system of equations <code><var>A</var> * <var>x</var> = <var>b</var></code><!-- /@w -->
by means of the Preconditioned Conjugate Gradient iterative method.
</p>
<p>The input arguments are
</p>
<ul>
<li> <var>A</var> can be either a square (preferably sparse) matrix or a function
handle, inline function or string containing the name of a function which
computes <code><var>A</var> * <var>x</var></code><!-- /@w -->. In principle, <var>A</var> should be
symmetric and positive definite; if <code>pcg</code> finds <var>A</var> not to be
positive definite, a warning is printed and the <var>flag</var> output will be
set.
</li><li> <var>b</var> is the right-hand side vector.
</li><li> <var>tol</var> is the required relative tolerance for the residual error,
<code><var>b</var> <span class="nolinebreak">-</span> <var>A</var> * <var>x</var></code><!-- /@w -->. The iteration stops if
<code>norm (<var>b</var> <span class="nolinebreak">-</span> <var>A</var> * <var>x</var>)</code> ≤ <var>tol</var> * norm (<var>b</var>)<!-- /@w --><!-- /@w -->.
If <var>tol</var> is omitted or empty then a tolerance of 1e-6 is used.
</li><li> <var>maxit</var> is the maximum allowable number of iterations; if <var>maxit</var>
is omitted or empty then a value of 20 is used.
</li><li> <var>m</var> = <var>m1</var> * <var>m2</var> is the (left) preconditioning matrix, so that
the iteration is (theoretically) equivalent to solving by <code>pcg</code>
<code><var>P</var> * <var>x</var> = <var>m</var> \ <var>b</var></code><!-- /@w -->, with
<code><var>P</var> = <var>m</var> \ <var>A</var></code><!-- /@w -->.
Note that a proper choice of the preconditioner may dramatically improve
the overall performance of the method. Instead of matrices <var>m1</var> and
<var>m2</var>, the user may pass two functions which return the results of
applying the inverse of <var>m1</var> and <var>m2</var> to a vector (usually this is
the preferred way of using the preconditioner). If <var>m1</var> is omitted or
empty <code>[]</code> then no preconditioning is applied. If <var>m2</var> is
omitted, <var>m</var> = <var>m1</var> will be used as a preconditioner.
</li><li> <var>x0</var> is the initial guess. If <var>x0</var> is omitted or empty then the
function sets <var>x0</var> to a zero vector by default.
</li></ul>
<p>The arguments which follow <var>x0</var> are treated as parameters, and passed in
a proper way to any of the functions (<var>A</var> or <var>m</var>) which are passed
to <code>pcg</code>. See the examples below for further details. The output
arguments are
</p>
<ul>
<li> <var>x</var> is the computed approximation to the solution of
<code><var>A</var> * <var>x</var> = <var>b</var></code><!-- /@w -->.
</li><li> <var>flag</var> reports on the convergence. A value of 0 means the solution
converged and the tolerance criterion given by <var>tol</var> is satisfied.
A value of 1 means that the <var>maxit</var> limit for the iteration count was
reached. A value of 3 indicates that the (preconditioned) matrix was found
not to be positive definite.
</li><li> <var>relres</var> is the ratio of the final residual to its initial value,
measured in the Euclidean norm.
</li><li> <var>iter</var> is the actual number of iterations performed.
</li><li> <var>resvec</var> describes the convergence history of the method.
<code><var>resvec</var>(i,1)</code> is the Euclidean norm of the residual, and
<code><var>resvec</var>(i,2)</code> is the preconditioned residual norm, after the
(<var>i</var>-1)-th iteration, <code><var>i</var> = 1, 2, …, <var>iter</var>+1</code>.
The preconditioned residual norm is defined as
<code>norm (<var>r</var>) ^ 2 = <var>r</var>' * (<var>m</var> \ <var>r</var>)</code> where
<code><var>r</var> = <var>b</var> - <var>A</var> * <var>x</var></code>, see also the
description of <var>m</var>. If <var>eigest</var> is not required, only
<code><var>resvec</var>(:,1)</code> is returned.
</li><li> <var>eigest</var> returns the estimate for the smallest <code><var>eigest</var>(1)</code>
and largest <code><var>eigest</var>(2)</code> eigenvalues of the preconditioned matrix
<code><var>P</var> = <var>m</var> \ <var>A</var></code><!-- /@w -->. In particular, if no
preconditioning is used, the estimates for the extreme eigenvalues of
<var>A</var> are returned. <code><var>eigest</var>(1)</code> is an overestimate and
<code><var>eigest</var>(2)</code> is an underestimate, so that
<code><var>eigest</var>(2) / <var>eigest</var>(1)</code> is a lower bound for
<code>cond (<var>P</var>, 2)</code>, which nevertheless in the limit should
theoretically be equal to the actual value of the condition number.
The method which computes <var>eigest</var> works only for symmetric positive
definite <var>A</var> and <var>m</var>, and the user is responsible for verifying this
assumption.
</li></ul>
<p>Let us consider a trivial problem with a diagonal matrix (we exploit the
sparsity of A)
</p>
<div class="example">
<pre class="example">n = 10;
A = diag (sparse (1:n));
b = rand (n, 1);
[l, u, p] = ilu (A, struct ("droptol", 1.e-3));
</pre></div>
<p><small>EXAMPLE 1:</small> Simplest use of <code>pcg</code>
</p>
<div class="example">
<pre class="example">x = pcg (A, b)
</pre></div>
<p><small>EXAMPLE 2:</small> <code>pcg</code> with a function which computes
<code><var>A</var> * <var>x</var></code>
</p>
<div class="example">
<pre class="example">function y = apply_a (x)
y = [1:N]' .* x;
endfunction
x = pcg ("apply_a", b)
</pre></div>
<p><small>EXAMPLE 3:</small> <code>pcg</code> with a preconditioner: <var>l</var> * <var>u</var>
</p>
<div class="example">
<pre class="example">x = pcg (A, b, 1.e-6, 500, l*u)
</pre></div>
<p><small>EXAMPLE 4:</small> <code>pcg</code> with a preconditioner: <var>l</var> * <var>u</var>.
Faster than <small>EXAMPLE 3</small> since lower and upper triangular matrices are
easier to invert
</p>
<div class="example">
<pre class="example">x = pcg (A, b, 1.e-6, 500, l, u)
</pre></div>
<p><small>EXAMPLE 5:</small> Preconditioned iteration, with full diagnostics. The
preconditioner (quite strange, because even the original matrix <var>A</var> is
trivial) is defined as a function
</p>
<div class="example">
<pre class="example">function y = apply_m (x)
k = floor (length (x) - 2);
y = x;
y(1:k) = x(1:k) ./ [1:k]';
endfunction
[x, flag, relres, iter, resvec, eigest] = ...
pcg (A, b, [], [], "apply_m");
semilogy (1:iter+1, resvec);
</pre></div>
<p><small>EXAMPLE 6:</small> Finally, a preconditioner which depends on a parameter
<var>k</var>.
</p>
<div class="example">
<pre class="example">function y = apply_M (x, varargin)
K = varargin{1};
y = x;
y(1:K) = x(1:K) ./ [1:K]';
endfunction
[x, flag, relres, iter, resvec, eigest] = ...
pcg (A, b, [], [], "apply_m", [], [], 3)
</pre></div>
<p>References:
</p>
<ol>
<li> C.T. Kelley, <cite>Iterative Methods for Linear and Nonlinear Equations</cite>,
SIAM, 1995. (the base PCG algorithm)
</li><li> Y. Saad, <cite>Iterative Methods for Sparse Linear Systems</cite>,
PWS 1996. (condition number estimate from PCG)
Revised version of this book is available online at
<a href="http://www-users.cs.umn.edu/~saad/books.html">http://www-users.cs.umn.edu/~saad/books.html</a>
</li></ol>
<p><strong>See also:</strong> <a href="Creating-Sparse-Matrices.html#XREFsparse">sparse</a>, <a href="#XREFpcr">pcr</a>.
</p></dd></dl>
<a name="XREFpcr"></a><dl>
<dt><a name="index-pcr"></a>: <em><var>x</var> =</em> <strong>pcr</strong> <em>(<var>A</var>, <var>b</var>, <var>tol</var>, <var>maxit</var>, <var>m</var>, <var>x0</var>, …)</em></dt>
<dt><a name="index-pcr-1"></a>: <em>[<var>x</var>, <var>flag</var>, <var>relres</var>, <var>iter</var>, <var>resvec</var>] =</em> <strong>pcr</strong> <em>(…)</em></dt>
<dd>
<p>Solve the linear system of equations <code><var>A</var> * <var>x</var> = <var>b</var></code> by
means of the Preconditioned Conjugate Residuals iterative method.
</p>
<p>The input arguments are
</p>
<ul>
<li> <var>A</var> can be either a square (preferably sparse) matrix or a function
handle, inline function or string containing the name of a function which
computes <code><var>A</var> * <var>x</var></code>. In principle <var>A</var> should be
symmetric and non-singular; if <code>pcr</code> finds <var>A</var> to be numerically
singular, you will get a warning message and the <var>flag</var> output
parameter will be set.
</li><li> <var>b</var> is the right hand side vector.
</li><li> <var>tol</var> is the required relative tolerance for the residual error,
<code><var>b</var> - <var>A</var> * <var>x</var></code>. The iteration stops if
<code>norm (<var>b</var> - <var>A</var> * <var>x</var>) <=
<var>tol</var> * norm (<var>b</var> - <var>A</var> * <var>x0</var>)</code>.
If <var>tol</var> is empty or is omitted, the function sets
<code><var>tol</var> = 1e-6</code> by default.
</li><li> <var>maxit</var> is the maximum allowable number of iterations; if <code>[]</code> is
supplied for <code>maxit</code>, or <code>pcr</code> has less arguments, a default
value equal to 20 is used.
</li><li> <var>m</var> is the (left) preconditioning matrix, so that the iteration is
(theoretically) equivalent to solving by
<code>pcr</code> <code><var>P</var> * <var>x</var> = <var>m</var> \ <var>b</var></code>, with
<code><var>P</var> = <var>m</var> \ <var>A</var></code>. Note that a proper choice of the
preconditioner may dramatically improve the overall performance of the
method. Instead of matrix <var>m</var>, the user may pass a function which
returns the results of applying the inverse of <var>m</var> to a vector
(usually this is the preferred way of using the preconditioner). If
<code>[]</code> is supplied for <var>m</var>, or <var>m</var> is omitted, no
preconditioning is applied.
</li><li> <var>x0</var> is the initial guess. If <var>x0</var> is empty or omitted, the
function sets <var>x0</var> to a zero vector by default.
</li></ul>
<p>The arguments which follow <var>x0</var> are treated as parameters, and passed
in a proper way to any of the functions (<var>A</var> or <var>m</var>) which are
passed to <code>pcr</code>. See the examples below for further details.
</p>
<p>The output arguments are
</p>
<ul>
<li> <var>x</var> is the computed approximation to the solution of
<code><var>A</var> * <var>x</var> = <var>b</var></code>.
</li><li> <var>flag</var> reports on the convergence. <code><var>flag</var> = 0</code> means the
solution converged and the tolerance criterion given by <var>tol</var> is
satisfied. <code><var>flag</var> = 1</code> means that the <var>maxit</var> limit for the
iteration count was reached. <code><var>flag</var> = 3</code> reports a <code>pcr</code>
breakdown, see [1] for details.
</li><li> <var>relres</var> is the ratio of the final residual to its initial value,
measured in the Euclidean norm.
</li><li> <var>iter</var> is the actual number of iterations performed.
</li><li> <var>resvec</var> describes the convergence history of the method, so that
<code><var>resvec</var> (i)</code> contains the Euclidean norms of the residual after
the (<var>i</var>-1)-th iteration, <code><var>i</var> = 1,2, …, <var>iter</var>+1</code>.
</li></ul>
<p>Let us consider a trivial problem with a diagonal matrix (we exploit the
sparsity of A)
</p>
<div class="example">
<pre class="example">n = 10;
A = sparse (diag (1:n));
b = rand (N, 1);
</pre></div>
<p><small>EXAMPLE 1:</small> Simplest use of <code>pcr</code>
</p>
<div class="example">
<pre class="example">x = pcr (A, b)
</pre></div>
<p><small>EXAMPLE 2:</small> <code>pcr</code> with a function which computes
<code><var>A</var> * <var>x</var></code>.
</p>
<div class="example">
<pre class="example">function y = apply_a (x)
y = [1:10]' .* x;
endfunction
x = pcr ("apply_a", b)
</pre></div>
<p><small>EXAMPLE 3:</small> Preconditioned iteration, with full diagnostics. The
preconditioner (quite strange, because even the original matrix
<var>A</var> is trivial) is defined as a function
</p>
<div class="example">
<pre class="example">function y = apply_m (x)
k = floor (length (x) - 2);
y = x;
y(1:k) = x(1:k) ./ [1:k]';
endfunction
[x, flag, relres, iter, resvec] = ...
pcr (A, b, [], [], "apply_m")
semilogy ([1:iter+1], resvec);
</pre></div>
<p><small>EXAMPLE 4:</small> Finally, a preconditioner which depends on a
parameter <var>k</var>.
</p>
<div class="example">
<pre class="example">function y = apply_m (x, varargin)
k = varargin{1};
y = x;
y(1:k) = x(1:k) ./ [1:k]';
endfunction
[x, flag, relres, iter, resvec] = ...
pcr (A, b, [], [], "apply_m"', [], 3)
</pre></div>
<p>References:
</p>
<p>[1] W. Hackbusch, <cite>Iterative Solution of Large Sparse
Systems of Equations</cite>, section 9.5.4; Springer, 1994
</p>
<p><strong>See also:</strong> <a href="Creating-Sparse-Matrices.html#XREFsparse">sparse</a>, <a href="#XREFpcg">pcg</a>.
</p></dd></dl>
<p>The speed with which an iterative solver converges to a solution can be
accelerated with the use of a pre-conditioning matrix <var>M</var>. In this
case the linear equation <code><var>M</var>^-1 * <var>x</var> = <var>M</var>^-1 *
<var>A</var> \ <var>b</var></code> is solved instead. Typical pre-conditioning matrices
are partial factorizations of the original matrix.
</p>
<a name="XREFichol"></a><dl>
<dt><a name="index-ichol"></a>: <em><var>L</var> =</em> <strong>ichol</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-ichol-1"></a>: <em><var>L</var> =</em> <strong>ichol</strong> <em>(<var>A</var>, <var>opts</var>)</em></dt>
<dd>
<p>Compute the incomplete Cholesky factorization of the sparse square matrix
<var>A</var>.
</p>
<p>By default, <code>ichol</code> uses only the lower triangle of <var>A</var> and
produces a lower triangular factor <var>L</var> such that <code>L*L'</code>
approximates <var>A</var>.
</p>
<p>The factor given by this routine may be useful as a preconditioner for a
system of linear equations being solved by iterative methods such as
PCG (Preconditioned Conjugate Gradient).
</p>
<p>The factorization may be modified by passing options in a structure
<var>opts</var>. The option name is a field of the structure and the setting
is the value of field. Names and specifiers are case sensitive.
</p>
<dl compact="compact">
<dt>type</dt>
<dd><p>Type of factorization.
</p>
<dl compact="compact">
<dt><code>"nofill"</code> (default)</dt>
<dd><p>Incomplete Cholesky factorization with no fill-in (IC(0)).
</p>
</dd>
<dt><code>"ict"</code></dt>
<dd><p>Incomplete Cholesky factorization with threshold dropping (ICT).
</p></dd>
</dl>
</dd>
<dt>diagcomp</dt>
<dd><p>A non-negative scalar <var>alpha</var> for incomplete Cholesky factorization of
<code><var>A</var> + <var>alpha</var> * diag (diag (<var>A</var>))</code> instead of <var>A</var>.
This can be useful when <var>A</var> is not positive definite. The default value
is 0.
</p>
</dd>
<dt>droptol</dt>
<dd><p>A non-negative scalar specifying the drop tolerance for factorization if
performing ICT. The default value is 0 which produces the
complete Cholesky factorization.
</p>
<p>Non-diagonal entries of <var>L</var> are set to 0 unless
</p>
<p><code>abs (<var>L</var>(i,j)) >= droptol * norm (<var>A</var>(j:end, j), 1)</code>.
</p>
</dd>
<dt>michol</dt>
<dd><p>Modified incomplete Cholesky factorization:
</p>
<dl compact="compact">
<dt><code>"off"</code> (default)</dt>
<dd><p>Row and column sums are not necessarily preserved.
</p>
</dd>
<dt><code>"on"</code></dt>
<dd><p>The diagonal of <var>L</var> is modified so that row (and column) sums are
preserved even when elements have been dropped during the factorization.
The relationship preserved is: <code><var>A</var> * e = <var>L</var> * <var>L</var>' * e</code>,
where e is a vector of ones.
</p></dd>
</dl>
</dd>
<dt>shape</dt>
<dd>
<dl compact="compact">
<dt><code>"lower"</code> (default)</dt>
<dd><p>Use only the lower triangle of <var>A</var> and return a lower triangular factor
<var>L</var> such that <code>L*L'</code> approximates <var>A</var>.
</p>
</dd>
<dt><code>"upper"</code></dt>
<dd><p>Use only the upper triangle of <var>A</var> and return an upper triangular factor
<var>U</var> such that <code>U'*U</code> approximates <var>A</var>.
</p></dd>
</dl>
</dd>
</dl>
<p>EXAMPLES
</p>
<p>The following problem demonstrates how to factorize a sample symmetric
positive definite matrix with the full Cholesky decomposition and with the
incomplete one.
</p>
<div class="example">
<pre class="example">A = [ 0.37, -0.05, -0.05, -0.07;
-0.05, 0.116, 0.0, -0.05;
-0.05, 0.0, 0.116, -0.05;
-0.07, -0.05, -0.05, 0.202];
A = sparse (A);
nnz (tril (A))
ans = 9
L = chol (A, "lower");
nnz (L)
ans = 10
norm (A - L * L', "fro") / norm (A, "fro")
ans = 1.1993e-16
opts.type = "nofill";
L = ichol (A, opts);
nnz (L)
ans = 9
norm (A - L * L', "fro") / norm (A, "fro")
ans = 0.019736
</pre></div>
<p>Another example for decomposition is a finite difference matrix used to
solve a boundary value problem on the unit square.
</p>
<div class="example">
<pre class="example">nx = 400; ny = 200;
hx = 1 / (nx + 1); hy = 1 / (ny + 1);
Dxx = spdiags ([ones(nx, 1), -2*ones(nx, 1), ones(nx, 1)],
[-1 0 1 ], nx, nx) / (hx ^ 2);
Dyy = spdiags ([ones(ny, 1), -2*ones(ny, 1), ones(ny, 1)],
[-1 0 1 ], ny, ny) / (hy ^ 2);
A = -kron (Dxx, speye (ny)) - kron (speye (nx), Dyy);
nnz (tril (A))
ans = 239400
opts.type = "nofill";
L = ichol (A, opts);
nnz (tril (A))
ans = 239400
norm (A - L * L', "fro") / norm (A, "fro")
ans = 0.062327
</pre></div>
<p>References for implemented algorithms:
</p>
<p>[1] Y. Saad. "Preconditioning Techniques." <cite>Iterative
Methods for Sparse Linear Systems</cite>, PWS Publishing Company, 1996.
</p>
<p>[2] M. Jones, P. Plassmann: <cite>An Improved Incomplete
Cholesky Factorization</cite>, 1992.
</p>
<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFchol">chol</a>, <a href="#XREFilu">ilu</a>, <a href="#XREFpcg">pcg</a>.
</p></dd></dl>
<a name="XREFilu"></a><dl>
<dt><a name="index-ilu"></a>: <em></em> <strong>ilu</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-ilu-1"></a>: <em></em> <strong>ilu</strong> <em>(<var>A</var>, <var>opts</var>)</em></dt>
<dt><a name="index-ilu-2"></a>: <em>[<var>L</var>, <var>U</var>] =</em> <strong>ilu</strong> <em>(…)</em></dt>
<dt><a name="index-ilu-3"></a>: <em>[<var>L</var>, <var>U</var>, <var>P</var>] =</em> <strong>ilu</strong> <em>(…)</em></dt>
<dd>
<p>Compute the incomplete LU factorization of the sparse square matrix <var>A</var>.
</p>
<p><code>ilu</code> returns a unit lower triangular matrix <var>L</var>, an upper
triangular matrix <var>U</var>, and optionally a permutation matrix <var>P</var>, such
that <code><var>L</var>*<var>U</var></code> approximates <code><var>P</var>*<var>A</var></code>.
</p>
<p>The factors given by this routine may be useful as preconditioners for a
system of linear equations being solved by iterative methods such as BICG
(BiConjugate Gradients) or GMRES (Generalized Minimum Residual Method).
</p>
<p>The factorization may be modified by passing options in a structure
<var>opts</var>. The option name is a field of the structure and the setting
is the value of field. Names and specifiers are case sensitive.
</p>
<dl compact="compact">
<dt><code>type</code></dt>
<dd><p>Type of factorization.
</p>
<dl compact="compact">
<dt><code>"nofill"</code></dt>
<dd><p>ILU factorization with no fill-in (ILU(0)).
</p>
<p>Additional supported options: <code>milu</code>.
</p>
</dd>
<dt><code>"crout"</code></dt>
<dd><p>Crout version of ILU factorization (ILUC).
</p>
<p>Additional supported options: <code>milu</code>, <code>droptol</code>.
</p>
</dd>
<dt><code>"ilutp"</code> (default)</dt>
<dd><p>ILU factorization with threshold and pivoting.
</p>
<p>Additional supported options: <code>milu</code>, <code>droptol</code>, <code>udiag</code>,
<code>thresh</code>.
</p></dd>
</dl>
</dd>
<dt><code>droptol</code></dt>
<dd><p>A non-negative scalar specifying the drop tolerance for factorization. The
default value is 0 which produces the complete LU factorization.
</p>
<p>Non-diagonal entries of <var>U</var> are set to 0 unless
</p>
<p><code>abs (<var>U</var>(i,j)) >= droptol * norm (<var>A</var>(:,j))</code>.
</p>
<p>Non-diagonal entries of <var>L</var> are set to 0 unless
</p>
<p><code>abs (<var>L</var>(i,j)) >= droptol * norm (<var>A</var>(:,j))/<var>U</var>(j,j)</code>.
</p>
</dd>
<dt><code>milu</code></dt>
<dd><p>Modified incomplete LU factorization:
</p>
<dl compact="compact">
<dt><code>"row"</code></dt>
<dd><p>Row-sum modified incomplete LU factorization.
The factorization preserves row sums:
<code><var>A</var> * e = <var>L</var> * <var>U</var> * e</code>, where e is a vector of ones.
</p>
</dd>
<dt><code>"col"</code></dt>
<dd><p>Column-sum modified incomplete LU factorization.
The factorization preserves column sums:
<code>e' * <var>A</var> = e' * <var>L</var> * <var>U</var></code>.
</p>
</dd>
<dt><code>"off"</code> (default)</dt>
<dd><p>Row and column sums are not necessarily preserved.
</p></dd>
</dl>
</dd>
<dt><code>udiag</code></dt>
<dd><p>If true, any zeros on the diagonal of the upper triangular factor are
replaced by the local drop tolerance
<code>droptol * norm (<var>A</var>(:,j))/<var>U</var>(j,j)</code>. The default is false.
</p>
</dd>
<dt><code>thresh</code></dt>
<dd><p>Pivot threshold for factorization. It can range between 0 (diagonal
pivoting) and 1 (default), where the maximum magnitude entry in the column
is chosen to be the pivot.
</p></dd>
</dl>
<p>If <code>ilu</code> is called with just one output, the returned matrix is
<code><var>L</var> + <var>U</var> - speye (size (<var>A</var>))</code>, where <var>L</var> is unit
lower triangular and <var>U</var> is upper triangular.
</p>
<p>With two outputs, <code>ilu</code> returns a unit lower triangular matrix <var>L</var>
and an upper triangular matrix <var>U</var>. For <var>opts</var>.type ==
<code>"ilutp"</code>, one of the factors is permuted based on the value of
<var>opts</var>.milu. When <var>opts</var>.milu == <code>"row"</code>, <var>U</var> is a
column permuted upper triangular factor. Otherwise, <var>L</var> is a
row-permuted unit lower triangular factor.
</p>
<p>If there are three named outputs and <var>opts</var>.milu != <code>"row"</code>,
<var>P</var> is returned such that <var>L</var> and <var>U</var> are incomplete factors
of <code><var>P</var>*<var>A</var></code>. When <var>opts</var>.milu == <code>"row"</code>, <var>P</var>
is returned such that <var>L</var> and <var>U</var> are incomplete factors of
<code><var>A</var>*<var>P</var></code>.
</p>
<p>EXAMPLES
</p>
<div class="example">
<pre class="example">A = gallery ("neumann", 1600) + speye (1600);
opts.type = "nofill";
nnz (A)
ans = 7840
nnz (lu (A))
ans = 126478
nnz (ilu (A, opts))
ans = 7840
</pre></div>
<p>This shows that <var>A</var> has 7,840 nonzeros, the complete LU factorization
has 126,478 nonzeros, and the incomplete LU factorization, with 0 level of
fill-in, has 7,840 nonzeros, the same amount as <var>A</var>. Taken from:
http://www.mathworks.com/help/matlab/ref/ilu.html
</p>
<div class="example">
<pre class="example">A = gallery ("wathen", 10, 10);
b = sum (A, 2);
tol = 1e-8;
maxit = 50;
opts.type = "crout";
opts.droptol = 1e-4;
[L, U] = ilu (A, opts);
x = bicg (A, b, tol, maxit, L, U);
norm (A * x - b, inf)
</pre></div>
<p>This example uses ILU as preconditioner for a random FEM-Matrix, which has a
large condition number. Without <var>L</var> and <var>U</var> BICG would not
converge.
</p>
<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFlu">lu</a>, <a href="#XREFichol">ichol</a>, <a href="Specialized-Solvers.html#XREFbicg">bicg</a>, <a href="Specialized-Solvers.html#XREFgmres">gmres</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Real-Life-Example.html#Real-Life-Example" accesskey="n" rel="next">Real Life Example</a>, Previous: <a href="Sparse-Linear-Algebra.html#Sparse-Linear-Algebra" accesskey="p" rel="prev">Sparse Linear Algebra</a>, Up: <a href="Sparse-Matrices.html#Sparse-Matrices" accesskey="u" rel="up">Sparse Matrices</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|