/usr/share/doc/octave/octave.html/Functions-of-a-Matrix.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Functions of a Matrix (GNU Octave)</title>
<meta name="description" content="Functions of a Matrix (GNU Octave)">
<meta name="keywords" content="Functions of a Matrix (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Linear-Algebra.html#Linear-Algebra" rel="up" title="Linear Algebra">
<link href="Specialized-Solvers.html#Specialized-Solvers" rel="next" title="Specialized Solvers">
<link href="Matrix-Factorizations.html#Matrix-Factorizations" rel="prev" title="Matrix Factorizations">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Functions-of-a-Matrix"></a>
<div class="header">
<p>
Next: <a href="Specialized-Solvers.html#Specialized-Solvers" accesskey="n" rel="next">Specialized Solvers</a>, Previous: <a href="Matrix-Factorizations.html#Matrix-Factorizations" accesskey="p" rel="prev">Matrix Factorizations</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Functions-of-a-Matrix-1"></a>
<h3 class="section">18.4 Functions of a Matrix</h3>
<a name="index-matrix_002c-functions-of"></a>
<a name="XREFexpm"></a><dl>
<dt><a name="index-expm"></a>: <em></em> <strong>expm</strong> <em>(<var>A</var>)</em></dt>
<dd><p>Return the exponential of a matrix.
</p>
<p>The matrix exponential is defined as the infinite Taylor series
</p>
<div class="example">
<pre class="example">expm (A) = I + A + A^2/2! + A^3/3! + …
</pre></div>
<p>However, the Taylor series is <em>not</em> the way to compute the matrix
exponential; see Moler and Van Loan, <cite>Nineteen Dubious Ways
to Compute the Exponential of a Matrix</cite>, SIAM Review, 1978. This routine
uses Ward’s diagonal Padé approximation method with three step
preconditioning (SIAM Journal on Numerical Analysis, 1977). Diagonal
Padé approximations are rational polynomials of matrices
</p>
<div class="example">
<pre class="example"> -1
D (A) N (A)
</pre></div>
<p>whose Taylor series matches the first
<code>2q+1</code>
terms of the Taylor series above; direct evaluation of the Taylor series
(with the same preconditioning steps) may be desirable in lieu of the
Padé approximation when
<code>Dq(A)</code>
is ill-conditioned.
</p>
<p><strong>See also:</strong> <a href="#XREFlogm">logm</a>, <a href="#XREFsqrtm">sqrtm</a>.
</p></dd></dl>
<a name="XREFlogm"></a><dl>
<dt><a name="index-logm"></a>: <em><var>s</var> =</em> <strong>logm</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-logm-1"></a>: <em><var>s</var> =</em> <strong>logm</strong> <em>(<var>A</var>, <var>opt_iters</var>)</em></dt>
<dt><a name="index-logm-2"></a>: <em>[<var>s</var>, <var>iters</var>] =</em> <strong>logm</strong> <em>(…)</em></dt>
<dd><p>Compute the matrix logarithm of the square matrix <var>A</var>.
</p>
<p>The implementation utilizes a Padé approximant and the identity
</p>
<div class="example">
<pre class="example">logm (<var>A</var>) = 2^k * logm (<var>A</var>^(1 / 2^k))
</pre></div>
<p>The optional input <var>opt_iters</var> is the maximum number of square roots
to compute and defaults to 100.
</p>
<p>The optional output <var>iters</var> is the number of square roots actually
computed.
</p>
<p><strong>See also:</strong> <a href="#XREFexpm">expm</a>, <a href="#XREFsqrtm">sqrtm</a>.
</p></dd></dl>
<a name="XREFsqrtm"></a><dl>
<dt><a name="index-sqrtm"></a>: <em><var>s</var> =</em> <strong>sqrtm</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-sqrtm-1"></a>: <em>[<var>s</var>, <var>error_estimate</var>] =</em> <strong>sqrtm</strong> <em>(<var>A</var>)</em></dt>
<dd><p>Compute the matrix square root of the square matrix <var>A</var>.
</p>
<p>Ref: N.J. Higham. <cite>A New sqrtm for <small>MATLAB</small></cite>. Numerical
Analysis Report No. 336, Manchester Centre for Computational
Mathematics, Manchester, England, January 1999.
</p>
<p><strong>See also:</strong> <a href="#XREFexpm">expm</a>, <a href="#XREFlogm">logm</a>.
</p></dd></dl>
<a name="XREFkron"></a><dl>
<dt><a name="index-kron"></a>: <em></em> <strong>kron</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dt><a name="index-kron-1"></a>: <em></em> <strong>kron</strong> <em>(<var>A1</var>, <var>A2</var>, …)</em></dt>
<dd><p>Form the Kronecker product of two or more matrices.
</p>
<p>This is defined block by block as
</p>
<div class="example">
<pre class="example">x = [ a(i,j)*b ]
</pre></div>
<p>For example:
</p>
<div class="example">
<pre class="example">kron (1:4, ones (3, 1))
⇒ 1 2 3 4
1 2 3 4
1 2 3 4
</pre></div>
<p>If there are more than two input arguments <var>A1</var>, <var>A2</var>, …,
<var>An</var> the Kronecker product is computed as
</p>
<div class="example">
<pre class="example">kron (kron (<var>A1</var>, <var>A2</var>), …, <var>An</var>)
</pre></div>
<p>Since the Kronecker product is associative, this is well-defined.
</p></dd></dl>
<a name="XREFblkmm"></a><dl>
<dt><a name="index-blkmm"></a>: <em></em> <strong>blkmm</strong> <em>(<var>A</var>, <var>B</var>)</em></dt>
<dd><p>Compute products of matrix blocks.
</p>
<p>The blocks are given as 2-dimensional subarrays of the arrays <var>A</var>,
<var>B</var>. The size of <var>A</var> must have the form <code>[m,k,…]</code> and
size of <var>B</var> must be <code>[k,n,…]</code>. The result is then of size
<code>[m,n,…]</code> and is computed as follows:
</p>
<div class="example">
<pre class="example">for i = 1:prod (size (<var>A</var>)(3:end))
<var>C</var>(:,:,i) = <var>A</var>(:,:,i) * <var>B</var>(:,:,i)
endfor
</pre></div>
</dd></dl>
<a name="XREFsylvester"></a><dl>
<dt><a name="index-sylvester"></a>: <em><var>X</var> =</em> <strong>sylvester</strong> <em>(<var>A</var>, <var>B</var>, <var>C</var>)</em></dt>
<dd><p>Solve the Sylvester equation
</p>
<div class="example">
<pre class="example">A X + X B = C
</pre></div>
<p>using standard <small>LAPACK</small> subroutines.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">sylvester ([1, 2; 3, 4], [5, 6; 7, 8], [9, 10; 11, 12])
⇒ [ 0.50000, 0.66667; 0.66667, 0.50000 ]
</pre></div>
</dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Specialized-Solvers.html#Specialized-Solvers" accesskey="n" rel="next">Specialized Solvers</a>, Previous: <a href="Matrix-Factorizations.html#Matrix-Factorizations" accesskey="p" rel="prev">Matrix Factorizations</a>, Up: <a href="Linear-Algebra.html#Linear-Algebra" accesskey="u" rel="up">Linear Algebra</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|