/usr/share/doc/octave/octave.html/Finding-Roots.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Finding Roots (GNU Octave)</title>
<meta name="description" content="Finding Roots (GNU Octave)">
<meta name="keywords" content="Finding Roots (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Polynomial-Manipulations.html#Polynomial-Manipulations" rel="up" title="Polynomial Manipulations">
<link href="Products-of-Polynomials.html#Products-of-Polynomials" rel="next" title="Products of Polynomials">
<link href="Evaluating-Polynomials.html#Evaluating-Polynomials" rel="prev" title="Evaluating Polynomials">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Finding-Roots"></a>
<div class="header">
<p>
Next: <a href="Products-of-Polynomials.html#Products-of-Polynomials" accesskey="n" rel="next">Products of Polynomials</a>, Previous: <a href="Evaluating-Polynomials.html#Evaluating-Polynomials" accesskey="p" rel="prev">Evaluating Polynomials</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Finding-Roots-1"></a>
<h3 class="section">28.2 Finding Roots</h3>
<p>Octave can find the roots of a given polynomial. This is done by computing
the companion matrix of the polynomial (see the <code>compan</code> function
for a definition), and then finding its eigenvalues.
</p>
<a name="XREFroots"></a><dl>
<dt><a name="index-roots"></a>: <em></em> <strong>roots</strong> <em>(<var>c</var>)</em></dt>
<dd>
<p>Compute the roots of the polynomial <var>c</var>.
</p>
<p>For a vector <var>c</var> with <em>N</em> components, return the roots of the
polynomial
</p>
<div class="example">
<pre class="example">c(1) * x^(N-1) + … + c(N-1) * x + c(N)
</pre></div>
<p>As an example, the following code finds the roots of the quadratic
polynomial
</p>
<div class="example">
<pre class="example">p(x) = x^2 - 5.
</pre></div>
<div class="example">
<pre class="example">c = [1, 0, -5];
roots (c)
⇒ 2.2361
⇒ -2.2361
</pre></div>
<p>Note that the true result is
<em>+/- sqrt(5)</em>
which is roughly
<em>+/- 2.2361</em>.
</p>
<p><strong>See also:</strong> <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a href="#XREFcompan">compan</a>, <a href="Solvers.html#XREFfzero">fzero</a>.
</p></dd></dl>
<a name="XREFpolyeig"></a><dl>
<dt><a name="index-polyeig"></a>: <em><var>z</var> =</em> <strong>polyeig</strong> <em>(<var>C0</var>, <var>C1</var>, …, <var>Cl</var>)</em></dt>
<dt><a name="index-polyeig-1"></a>: <em>[<var>v</var>, <var>z</var>] =</em> <strong>polyeig</strong> <em>(<var>C0</var>, <var>C1</var>, …, <var>Cl</var>)</em></dt>
<dd>
<p>Solve the polynomial eigenvalue problem of degree <var>l</var>.
</p>
<p>Given an <var>n*n</var> matrix polynomial
</p>
<p><code><var>C</var>(s) = <var>C0</var> + <var>C1</var> s + … + <var>Cl</var> s^l</code>
</p>
<p><code>polyeig</code> solves the eigenvalue problem
</p>
<p><code>(<var>C0</var> + <var>C1</var> + … + <var>Cl</var>)v = 0</code>.
</p>
<p>Note that the eigenvalues <var>z</var> are the zeros of the matrix polynomial.
<var>z</var> is a row vector with <var>n*l</var> elements. <var>v</var> is a matrix
(<var>n</var> x <var>n</var>*<var>l</var>) with columns that correspond to the
eigenvectors.
</p>
<p><strong>See also:</strong> <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>, <a href="Sparse-Linear-Algebra.html#XREFeigs">eigs</a>, <a href="#XREFcompan">compan</a>.
</p></dd></dl>
<a name="XREFcompan"></a><dl>
<dt><a name="index-compan"></a>: <em></em> <strong>compan</strong> <em>(<var>c</var>)</em></dt>
<dd><p>Compute the companion matrix corresponding to polynomial coefficient vector
<var>c</var>.
</p>
<p>The companion matrix is
</p>
<div class="smallexample">
<pre class="smallexample"> _ _
| -c(2)/c(1) -c(3)/c(1) … -c(N)/c(1) -c(N+1)/c(1) |
| 1 0 … 0 0 |
| 0 1 … 0 0 |
A = | . . . . . |
| . . . . . |
| . . . . . |
|_ 0 0 … 1 0 _|
</pre></div>
<p>The eigenvalues of the companion matrix are equal to the roots of the
polynomial.
</p>
<p><strong>See also:</strong> <a href="#XREFroots">roots</a>, <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>
<a name="XREFmpoles"></a><dl>
<dt><a name="index-mpoles"></a>: <em>[<var>multp</var>, <var>idxp</var>] =</em> <strong>mpoles</strong> <em>(<var>p</var>)</em></dt>
<dt><a name="index-mpoles-1"></a>: <em>[<var>multp</var>, <var>idxp</var>] =</em> <strong>mpoles</strong> <em>(<var>p</var>, <var>tol</var>)</em></dt>
<dt><a name="index-mpoles-2"></a>: <em>[<var>multp</var>, <var>idxp</var>] =</em> <strong>mpoles</strong> <em>(<var>p</var>, <var>tol</var>, <var>reorder</var>)</em></dt>
<dd><p>Identify unique poles in <var>p</var> and their associated multiplicity.
</p>
<p>The output is ordered from largest pole to smallest pole.
</p>
<p>If the relative difference of two poles is less than <var>tol</var> then they are
considered to be multiples. The default value for <var>tol</var> is 0.001.
</p>
<p>If the optional parameter <var>reorder</var> is zero, poles are not sorted.
</p>
<p>The output <var>multp</var> is a vector specifying the multiplicity of the poles.
<code><var>multp</var>(n)</code> refers to the multiplicity of the Nth pole
<code><var>p</var>(<var>idxp</var>(n))</code>.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">p = [2 3 1 1 2];
[m, n] = mpoles (p)
⇒ m = [1; 1; 2; 1; 2]
⇒ n = [2; 5; 1; 4; 3]
⇒ p(n) = [3, 2, 2, 1, 1]
</pre></div>
<p><strong>See also:</strong> <a href="Products-of-Polynomials.html#XREFresidue">residue</a>, <a href="Miscellaneous-Functions.html#XREFpoly">poly</a>, <a href="#XREFroots">roots</a>, <a href="Products-of-Polynomials.html#XREFconv">conv</a>, <a href="Products-of-Polynomials.html#XREFdeconv">deconv</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Next: <a href="Products-of-Polynomials.html#Products-of-Polynomials" accesskey="n" rel="next">Products of Polynomials</a>, Previous: <a href="Evaluating-Polynomials.html#Evaluating-Polynomials" accesskey="p" rel="prev">Evaluating Polynomials</a>, Up: <a href="Polynomial-Manipulations.html#Polynomial-Manipulations" accesskey="u" rel="up">Polynomial Manipulations</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|