/usr/share/doc/octave/octave.html/Famous-Matrices.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Famous Matrices (GNU Octave)</title>
<meta name="description" content="Famous Matrices (GNU Octave)">
<meta name="keywords" content="Famous Matrices (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Matrix-Manipulation.html#Matrix-Manipulation" rel="up" title="Matrix Manipulation">
<link href="Arithmetic.html#Arithmetic" rel="next" title="Arithmetic">
<link href="Special-Utility-Matrices.html#Special-Utility-Matrices" rel="prev" title="Special Utility Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Famous-Matrices"></a>
<div class="header">
<p>
Previous: <a href="Special-Utility-Matrices.html#Special-Utility-Matrices" accesskey="p" rel="prev">Special Utility Matrices</a>, Up: <a href="Matrix-Manipulation.html#Matrix-Manipulation" accesskey="u" rel="up">Matrix Manipulation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Famous-Matrices-1"></a>
<h3 class="section">16.4 Famous Matrices</h3>
<p>The following functions return famous matrix forms.
</p>
<a name="XREFgallery"></a><dl>
<dt><a name="index-gallery"></a>: <em></em> <strong>gallery</strong> <em>(<var>name</var>)</em></dt>
<dt><a name="index-gallery-1"></a>: <em></em> <strong>gallery</strong> <em>(<var>name</var>, <var>args</var>)</em></dt>
<dd><p>Create interesting matrices for testing.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-2"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("cauchy", <var>x</var>)</em></dt>
<dt><a name="index-gallery-3"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("cauchy", <var>x</var>, <var>y</var>)</em></dt>
<dd><p>Create a Cauchy matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-4"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("chebspec", <var>n</var>)</em></dt>
<dt><a name="index-gallery-5"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("chebspec", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Chebyshev spectral differentiation matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-6"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("chebvand", <var>p</var>)</em></dt>
<dt><a name="index-gallery-7"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("chebvand", <var>m</var>, <var>p</var>)</em></dt>
<dd><p>Create a Vandermonde-like matrix for the Chebyshev polynomials.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-8"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("chow", <var>n</var>)</em></dt>
<dt><a name="index-gallery-9"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("chow", <var>n</var>, <var>alpha</var>)</em></dt>
<dt><a name="index-gallery-10"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("chow", <var>n</var>, <var>alpha</var>, <var>delta</var>)</em></dt>
<dd><p>Create a Chow matrix – a singular Toeplitz lower Hessenberg matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-11"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("circul", <var>v</var>)</em></dt>
<dd><p>Create a circulant matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-12"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("clement", <var>n</var>)</em></dt>
<dt><a name="index-gallery-13"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("clement", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a tridiagonal matrix with zero diagonal entries.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-14"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("compar", <var>a</var>)</em></dt>
<dt><a name="index-gallery-15"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("compar", <var>a</var>, <var>k</var>)</em></dt>
<dd><p>Create a comparison matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-16"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("condex", <var>n</var>)</em></dt>
<dt><a name="index-gallery-17"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("condex", <var>n</var>, <var>k</var>)</em></dt>
<dt><a name="index-gallery-18"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("condex", <var>n</var>, <var>k</var>, <var>theta</var>)</em></dt>
<dd><p>Create a ‘counterexample’ matrix to a condition estimator.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-19"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("cycol", [<var>m</var> <var>n</var>])</em></dt>
<dt><a name="index-gallery-20"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("cycol", <var>n</var>)</em></dt>
<dt><a name="index-gallery-21"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(…, <var>k</var>)</em></dt>
<dd><p>Create a matrix whose columns repeat cyclically.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-22"></a>: <em>[<var>c</var>, <var>d</var>, <var>e</var>] =</em> <strong>gallery</strong> <em>("dorr", <var>n</var>)</em></dt>
<dt><a name="index-gallery-23"></a>: <em>[<var>c</var>, <var>d</var>, <var>e</var>] =</em> <strong>gallery</strong> <em>("dorr", <var>n</var>, <var>theta</var>)</em></dt>
<dt><a name="index-gallery-24"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("dorr", …)</em></dt>
<dd><p>Create a diagonally dominant, ill-conditioned, tridiagonal matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-25"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("dramadah", <var>n</var>)</em></dt>
<dt><a name="index-gallery-26"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("dramadah", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a (0, 1) matrix whose inverse has large integer entries.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-27"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("fiedler", <var>c</var>)</em></dt>
<dd><p>Create a symmetric Fiedler matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-28"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("forsythe", <var>n</var>)</em></dt>
<dt><a name="index-gallery-29"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("forsythe", <var>n</var>, <var>alpha</var>)</em></dt>
<dt><a name="index-gallery-30"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("forsythe", <var>n</var>, <var>alpha</var>, <var>lambda</var>)</em></dt>
<dd><p>Create a Forsythe matrix (a perturbed Jordan block).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-31"></a>: <em><var>f</var> =</em> <strong>gallery</strong> <em>("frank", <var>n</var>)</em></dt>
<dt><a name="index-gallery-32"></a>: <em><var>f</var> =</em> <strong>gallery</strong> <em>("frank", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Frank matrix (ill-conditioned eigenvalues).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-33"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>("gcdmat", <var>n</var>)</em></dt>
<dd><p>Create a greatest common divisor matrix.
</p>
<p><var>c</var> is an <var>n</var>-by-<var>n</var> matrix whose values correspond to the
greatest common divisor of its coordinate values, i.e., <var>c</var>(i,j)
correspond <code>gcd (i, j)</code>.
</p></dd></dl>
<dl>
<dt><a name="index-gallery-34"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("gearmat", <var>n</var>)</em></dt>
<dt><a name="index-gallery-35"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("gearmat", <var>n</var>, <var>i</var>)</em></dt>
<dt><a name="index-gallery-36"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("gearmat", <var>n</var>, <var>i</var>, <var>j</var>)</em></dt>
<dd><p>Create a Gear matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-37"></a>: <em><var>g</var> =</em> <strong>gallery</strong> <em>("grcar", <var>n</var>)</em></dt>
<dt><a name="index-gallery-38"></a>: <em><var>g</var> =</em> <strong>gallery</strong> <em>("grcar", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Toeplitz matrix with sensitive eigenvalues.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-39"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("hanowa", <var>n</var>)</em></dt>
<dt><a name="index-gallery-40"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("hanowa", <var>n</var>, <var>d</var>)</em></dt>
<dd><p>Create a matrix whose eigenvalues lie on a vertical line in the complex
plane.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-41"></a>: <em><var>v</var> =</em> <strong>gallery</strong> <em>("house", <var>x</var>)</em></dt>
<dt><a name="index-gallery-42"></a>: <em>[<var>v</var>, <var>beta</var>] =</em> <strong>gallery</strong> <em>("house", <var>x</var>)</em></dt>
<dd><p>Create a householder matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-43"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("integerdata", <var>imax</var>, [<var>M</var> <var>N</var> …], <var>j</var>)</em></dt>
<dt><a name="index-gallery-44"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("integerdata", <var>imax</var>, <var>M</var>, <var>N</var>, …, <var>j</var>)</em></dt>
<dt><a name="index-gallery-45"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("integerdata", [<var>imin</var>, <var>imax</var>], [<var>M</var> <var>N</var> …], <var>j</var>)</em></dt>
<dt><a name="index-gallery-46"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("integerdata", [<var>imin</var>, <var>imax</var>], <var>M</var>, <var>N</var>, …, <var>j</var>)</em></dt>
<dt><a name="index-gallery-47"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("integerdata", …, "<var>class</var>")</em></dt>
<dd><p>Create a matrix with random integers in the range [1, <var>imax</var>].
If <var>imin</var> is given then the integers are in the range
[<var>imin</var>, <var>imax</var>].
</p>
<p>The second input is a matrix of dimensions describing the size of the
output. The dimensions can also be input as comma-separated arguments.
</p>
<p>The input <var>j</var> is an integer index in the range [0, 2^32-1]. The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and <var>j</var> index.
</p>
<p>The final optional argument determines the class of the resulting matrix.
Possible values for <var>class</var>: <code>"uint8"</code>, <code>"uint16"</code>,
<code>"uint32"</code>, <code>"int8"</code>, <code>"int16"</code>, int32", <code>"single"</code>,
<code>"double"</code>. The default is <code>"double"</code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-48"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("invhess", <var>x</var>)</em></dt>
<dt><a name="index-gallery-49"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("invhess", <var>x</var>, <var>y</var>)</em></dt>
<dd><p>Create the inverse of an upper Hessenberg matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-50"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("invol", <var>n</var>)</em></dt>
<dd><p>Create an involutory matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-51"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("ipjfact", <var>n</var>)</em></dt>
<dt><a name="index-gallery-52"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("ipjfact", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Hankel matrix with factorial elements.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-53"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("jordbloc", <var>n</var>)</em></dt>
<dt><a name="index-gallery-54"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("jordbloc", <var>n</var>, <var>lambda</var>)</em></dt>
<dd><p>Create a Jordan block.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-55"></a>: <em><var>u</var> =</em> <strong>gallery</strong> <em>("kahan", <var>n</var>)</em></dt>
<dt><a name="index-gallery-56"></a>: <em><var>u</var> =</em> <strong>gallery</strong> <em>("kahan", <var>n</var>, <var>theta</var>)</em></dt>
<dt><a name="index-gallery-57"></a>: <em><var>u</var> =</em> <strong>gallery</strong> <em>("kahan", <var>n</var>, <var>theta</var>, <var>pert</var>)</em></dt>
<dd><p>Create a Kahan matrix (upper trapezoidal).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-58"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("kms", <var>n</var>)</em></dt>
<dt><a name="index-gallery-59"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("kms", <var>n</var>, <var>rho</var>)</em></dt>
<dd><p>Create a Kac-Murdock-Szego Toeplitz matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-60"></a>: <em><var>b</var> =</em> <strong>gallery</strong> <em>("krylov", <var>a</var>)</em></dt>
<dt><a name="index-gallery-61"></a>: <em><var>b</var> =</em> <strong>gallery</strong> <em>("krylov", <var>a</var>, <var>x</var>)</em></dt>
<dt><a name="index-gallery-62"></a>: <em><var>b</var> =</em> <strong>gallery</strong> <em>("krylov", <var>a</var>, <var>x</var>, <var>j</var>)</em></dt>
<dd><p>Create a Krylov matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-63"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("lauchli", <var>n</var>)</em></dt>
<dt><a name="index-gallery-64"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("lauchli", <var>n</var>, <var>mu</var>)</em></dt>
<dd><p>Create a Lauchli matrix (rectangular).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-65"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("lehmer", <var>n</var>)</em></dt>
<dd><p>Create a Lehmer matrix (symmetric positive definite).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-66"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("lesp", <var>n</var>)</em></dt>
<dd><p>Create a tridiagonal matrix with real, sensitive eigenvalues.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-67"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("lotkin", <var>n</var>)</em></dt>
<dd><p>Create a Lotkin matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-68"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("minij", <var>n</var>)</em></dt>
<dd><p>Create a symmetric positive definite matrix MIN(i,j).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-69"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("moler", <var>n</var>)</em></dt>
<dt><a name="index-gallery-70"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("moler", <var>n</var>, <var>alpha</var>)</em></dt>
<dd><p>Create a Moler matrix (symmetric positive definite).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-71"></a>: <em>[<var>a</var>, <var>t</var>] =</em> <strong>gallery</strong> <em>("neumann", <var>n</var>)</em></dt>
<dd><p>Create a singular matrix from the discrete Neumann problem (sparse).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-72"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("normaldata", [<var>M</var> <var>N</var> …], <var>j</var>)</em></dt>
<dt><a name="index-gallery-73"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("normaldata", <var>M</var>, <var>N</var>, …, <var>j</var>)</em></dt>
<dt><a name="index-gallery-74"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("normaldata", …, "<var>class</var>")</em></dt>
<dd><p>Create a matrix with random samples from the standard normal distribution
(mean = 0, std = 1).
</p>
<p>The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.
</p>
<p>The input <var>j</var> is an integer index in the range [0, 2^32-1]. The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and <var>j</var> index.
</p>
<p>The final optional argument determines the class of the resulting matrix.
Possible values for <var>class</var>: <code>"single"</code>, <code>"double"</code>.
The default is <code>"double"</code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-75"></a>: <em><var>q</var> =</em> <strong>gallery</strong> <em>("orthog", <var>n</var>)</em></dt>
<dt><a name="index-gallery-76"></a>: <em><var>q</var> =</em> <strong>gallery</strong> <em>("orthog", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create orthogonal and nearly orthogonal matrices.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-77"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("parter", <var>n</var>)</em></dt>
<dd><p>Create a Parter matrix (a Toeplitz matrix with singular values
near pi).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-78"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("pei", <var>n</var>)</em></dt>
<dt><a name="index-gallery-79"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("pei", <var>n</var>, <var>alpha</var>)</em></dt>
<dd><p>Create a Pei matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-80"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("Poisson", <var>n</var>)</em></dt>
<dd><p>Create a block tridiagonal matrix from Poisson’s equation (sparse).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-81"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("prolate", <var>n</var>)</em></dt>
<dt><a name="index-gallery-82"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("prolate", <var>n</var>, <var>w</var>)</em></dt>
<dd><p>Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-83"></a>: <em><var>h</var> =</em> <strong>gallery</strong> <em>("randhess", <var>x</var>)</em></dt>
<dd><p>Create a random, orthogonal upper Hessenberg matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-84"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("rando", <var>n</var>)</em></dt>
<dt><a name="index-gallery-85"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("rando", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a random matrix with elements -1, 0 or 1.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-86"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("randsvd", <var>n</var>)</em></dt>
<dt><a name="index-gallery-87"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("randsvd", <var>n</var>, <var>kappa</var>)</em></dt>
<dt><a name="index-gallery-88"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("randsvd", <var>n</var>, <var>kappa</var>, <var>mode</var>)</em></dt>
<dt><a name="index-gallery-89"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("randsvd", <var>n</var>, <var>kappa</var>, <var>mode</var>, <var>kl</var>)</em></dt>
<dt><a name="index-gallery-90"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("randsvd", <var>n</var>, <var>kappa</var>, <var>mode</var>, <var>kl</var>, <var>ku</var>)</em></dt>
<dd><p>Create a random matrix with pre-assigned singular values.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-91"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("redheff", <var>n</var>)</em></dt>
<dd><p>Create a zero and ones matrix of Redheffer associated with the
Riemann hypothesis.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-92"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("riemann", <var>n</var>)</em></dt>
<dd><p>Create a matrix associated with the Riemann hypothesis.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-93"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("ris", <var>n</var>)</em></dt>
<dd><p>Create a symmetric Hankel matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-94"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("smoke", <var>n</var>)</em></dt>
<dt><a name="index-gallery-95"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("smoke", <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a complex matrix, with a ‘smoke ring’ pseudospectrum.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-96"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("toeppd", <var>n</var>)</em></dt>
<dt><a name="index-gallery-97"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("toeppd", <var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-gallery-98"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("toeppd", <var>n</var>, <var>m</var>, <var>w</var>)</em></dt>
<dt><a name="index-gallery-99"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("toeppd", <var>n</var>, <var>m</var>, <var>w</var>, <var>theta</var>)</em></dt>
<dd><p>Create a symmetric positive definite Toeplitz matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-100"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("toeppen", <var>n</var>)</em></dt>
<dt><a name="index-gallery-101"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("toeppen", <var>n</var>, <var>a</var>)</em></dt>
<dt><a name="index-gallery-102"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("toeppen", <var>n</var>, <var>a</var>, <var>b</var>)</em></dt>
<dt><a name="index-gallery-103"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("toeppen", <var>n</var>, <var>a</var>, <var>b</var>, <var>c</var>)</em></dt>
<dt><a name="index-gallery-104"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("toeppen", <var>n</var>, <var>a</var>, <var>b</var>, <var>c</var>, <var>d</var>)</em></dt>
<dt><a name="index-gallery-105"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>("toeppen", <var>n</var>, <var>a</var>, <var>b</var>, <var>c</var>, <var>d</var>, <var>e</var>)</em></dt>
<dd><p>Create a pentadiagonal Toeplitz matrix (sparse).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-106"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("tridiag", <var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-gallery-107"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("tridiag", <var>n</var>)</em></dt>
<dt><a name="index-gallery-108"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("tridiag", <var>n</var>, <var>c</var>, <var>d</var>, <var>e</var>)</em></dt>
<dd><p>Create a tridiagonal matrix (sparse).
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-109"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("triw", <var>n</var>)</em></dt>
<dt><a name="index-gallery-110"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("triw", <var>n</var>, <var>alpha</var>)</em></dt>
<dt><a name="index-gallery-111"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>("triw", <var>n</var>, <var>alpha</var>, <var>k</var>)</em></dt>
<dd><p>Create an upper triangular matrix discussed by
Kahan, Golub, and Wilkinson.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-112"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("uniformdata", [<var>M</var> <var>N</var> …], <var>j</var>)</em></dt>
<dt><a name="index-gallery-113"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("uniformdata", <var>M</var>, <var>N</var>, …, <var>j</var>)</em></dt>
<dt><a name="index-gallery-114"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("uniformdata", …, "<var>class</var>")</em></dt>
<dd><p>Create a matrix with random samples from the standard uniform distribution
(range [0,1]).
</p>
<p>The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.
</p>
<p>The input <var>j</var> is an integer index in the range [0, 2^32-1]. The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and <var>j</var> index.
</p>
<p>The final optional argument determines the class of the resulting matrix.
Possible values for <var>class</var>: <code>"single"</code>, <code>"double"</code>.
The default is <code>"double"</code>.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-115"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("wathen", <var>nx</var>, <var>ny</var>)</em></dt>
<dt><a name="index-gallery-116"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>("wathen", <var>nx</var>, <var>ny</var>, <var>k</var>)</em></dt>
<dd><p>Create the Wathen matrix.
</p>
</dd></dl>
<dl>
<dt><a name="index-gallery-117"></a>: <em>[<var>a</var>, <var>b</var>] =</em> <strong>gallery</strong> <em>("wilk", <var>n</var>)</em></dt>
<dd><p>Create various specific matrices devised/discussed by Wilkinson.
</p>
</dd></dl>
<a name="XREFhadamard"></a><dl>
<dt><a name="index-hadamard"></a>: <em></em> <strong>hadamard</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Construct a Hadamard matrix (Hn) of size <var>n</var>-by-<var>n</var>.
</p>
<p>The size <var>n</var> must be of the form <em>2^k * p</em> in which p is one of
1, 12, 20 or 28. The returned matrix is normalized, meaning
<code>Hn(:,1) == 1</code><!-- /@w --> and <code>Hn(1,:) == 1</code><!-- /@w -->.
</p>
<p>Some of the properties of Hadamard matrices are:
</p>
<ul>
<li> <code>kron (Hm, Hn)</code> is a Hadamard matrix of size <var>m</var>-by-<var>n</var>.
</li><li> <code>Hn * Hn' = <var>n</var> * eye (<var>n</var>)</code>.
</li><li> The rows of Hn are orthogonal.
</li><li> <code>det (<var>A</var>) <= abs (det (Hn))</code> for all <var>A</var> with
<code>abs (<var>A</var>(i, j)) <= 1</code><!-- /@w -->.
</li><li> Multiplying any row or column by -1 and the matrix will remain a Hadamard
matrix.
</li></ul>
<p><strong>See also:</strong> <a href="Finding-Roots.html#XREFcompan">compan</a>, <a href="#XREFhankel">hankel</a>, <a href="#XREFtoeplitz">toeplitz</a>.
</p></dd></dl>
<a name="XREFhankel"></a><dl>
<dt><a name="index-hankel"></a>: <em></em> <strong>hankel</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-hankel-1"></a>: <em></em> <strong>hankel</strong> <em>(<var>c</var>, <var>r</var>)</em></dt>
<dd><p>Return the Hankel matrix constructed from the first column <var>c</var>, and
(optionally) the last row <var>r</var>.
</p>
<p>If the last element of <var>c</var> is not the same as the first element of
<var>r</var>, the last element of <var>c</var> is used. If the second argument is
omitted, it is assumed to be a vector of zeros with the same size as
<var>c</var>.
</p>
<p>A Hankel matrix formed from an m-vector <var>c</var>, and an n-vector <var>r</var>,
has the elements
</p>
<div class="example">
<pre class="example">H(i,j) = c(i+j-1), i+j-1 <= m;
H(i,j) = r(i+j-m), otherwise
</pre></div>
<p><strong>See also:</strong> <a href="#XREFhadamard">hadamard</a>, <a href="#XREFtoeplitz">toeplitz</a>.
</p></dd></dl>
<a name="XREFhilb"></a><dl>
<dt><a name="index-hilb"></a>: <em></em> <strong>hilb</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the Hilbert matrix of order <var>n</var>.
</p>
<p>The <em>i,j</em> element of a Hilbert matrix is defined as
</p>
<div class="example">
<pre class="example">H(i, j) = 1 / (i + j - 1)
</pre></div>
<p>Hilbert matrices are close to being singular which make them difficult to
invert with numerical routines. Comparing the condition number of a random
matrix 5x5 matrix with that of a Hilbert matrix of order 5 reveals just how
difficult the problem is.
</p>
<div class="example">
<pre class="example">cond (rand (5))
⇒ 14.392
cond (hilb (5))
⇒ 4.7661e+05
</pre></div>
<p><strong>See also:</strong> <a href="#XREFinvhilb">invhilb</a>.
</p></dd></dl>
<a name="XREFinvhilb"></a><dl>
<dt><a name="index-invhilb"></a>: <em></em> <strong>invhilb</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the inverse of the Hilbert matrix of order <var>n</var>.
</p>
<p>This can be computed exactly using
</p>
<div class="example">
<pre class="example">
(i+j) /n+i-1\ /n+j-1\ /i+j-2\ 2
A(i,j) = -1 (i+j-1)( )( ) ( )
\ n-j / \ n-i / \ i-2 /
= p(i) p(j) / (i+j-1)
</pre></div>
<p>where
</p>
<div class="example">
<pre class="example"> k /k+n-1\ /n\
p(k) = -1 ( ) ( )
\ k-1 / \k/
</pre></div>
<p>The validity of this formula can easily be checked by expanding the binomial
coefficients in both formulas as factorials. It can be derived more
directly via the theory of Cauchy matrices. See J. W. Demmel,
<cite>Applied Numerical Linear Algebra</cite>, p. 92.
</p>
<p>Compare this with the numerical calculation of <code>inverse (hilb (n))</code>,
which suffers from the ill-conditioning of the Hilbert matrix, and the
finite precision of your computer’s floating point arithmetic.
</p>
<p><strong>See also:</strong> <a href="#XREFhilb">hilb</a>.
</p></dd></dl>
<a name="XREFmagic"></a><dl>
<dt><a name="index-magic"></a>: <em></em> <strong>magic</strong> <em>(<var>n</var>)</em></dt>
<dd>
<p>Create an <var>n</var>-by-<var>n</var> magic square.
</p>
<p>A magic square is an arrangement of the integers <code>1:n^2</code> such that the
row sums, column sums, and diagonal sums are all equal to the same value.
</p>
<p>Note: <var>n</var> must be a scalar greater than or equal to 3. If you supply
<var>n</var> less than 3, magic returns either a nonmagic square, or else the
degenerate magic squares 1 and [].
</p></dd></dl>
<a name="XREFpascal"></a><dl>
<dt><a name="index-pascal"></a>: <em></em> <strong>pascal</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-pascal-1"></a>: <em></em> <strong>pascal</strong> <em>(<var>n</var>, <var>t</var>)</em></dt>
<dd><p>Return the Pascal matrix of order <var>n</var> if <code><var>t</var> = 0</code>.
</p>
<p>The default value of <var>t</var> is 0.
</p>
<p>When <code><var>t</var> = 1</code>, return the pseudo-lower triangular
Cholesky factor of the Pascal matrix (The sign of some columns may be
negative). This matrix is its own inverse, that is
<code>pascal (<var>n</var>, 1) ^ 2 == eye (<var>n</var>)</code>.
</p>
<p>If <code><var>t</var> = -1</code>, return the true Cholesky factor with strictly
positive values on the diagonal.
</p>
<p>If <code><var>t</var> = 2</code>, return a transposed and permuted version of
<code>pascal (<var>n</var>, 1)</code>, which is the cube root of the identity matrix.
That is, <code>pascal (<var>n</var>, 2) ^ 3 == eye (<var>n</var>)</code>.
</p>
<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFchol">chol</a>.
</p></dd></dl>
<a name="XREFrosser"></a><dl>
<dt><a name="index-rosser"></a>: <em></em> <strong>rosser</strong> <em>()</em></dt>
<dd><p>Return the Rosser matrix.
</p>
<p>This is a difficult test case used to evaluate eigenvalue algorithms.
</p>
<p><strong>See also:</strong> <a href="#XREFwilkinson">wilkinson</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>
<a name="XREFtoeplitz"></a><dl>
<dt><a name="index-toeplitz"></a>: <em></em> <strong>toeplitz</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-toeplitz-1"></a>: <em></em> <strong>toeplitz</strong> <em>(<var>c</var>, <var>r</var>)</em></dt>
<dd><p>Return the Toeplitz matrix constructed from the first column <var>c</var>,
and (optionally) the first row <var>r</var>.
</p>
<p>If the first element of <var>r</var> is not the same as the first element of
<var>c</var>, the first element of <var>c</var> is used. If the second argument is
omitted, the first row is taken to be the same as the first column.
</p>
<p>A square Toeplitz matrix has the form:
</p>
<div class="example">
<pre class="example">c(0) r(1) r(2) … r(n)
c(1) c(0) r(1) … r(n-1)
c(2) c(1) c(0) … r(n-2)
. . . . .
. . . . .
. . . . .
c(n) c(n-1) c(n-2) … c(0)
</pre></div>
<p><strong>See also:</strong> <a href="#XREFhankel">hankel</a>.
</p></dd></dl>
<a name="XREFvander"></a><dl>
<dt><a name="index-vander"></a>: <em></em> <strong>vander</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-vander-1"></a>: <em></em> <strong>vander</strong> <em>(<var>c</var>, <var>n</var>)</em></dt>
<dd><p>Return the Vandermonde matrix whose next to last column is <var>c</var>.
</p>
<p>If <var>n</var> is specified, it determines the number of columns; otherwise,
<var>n</var> is taken to be equal to the length of <var>c</var>.
</p>
<p>A Vandermonde matrix has the form:
</p>
<div class="example">
<pre class="example">c(1)^(n-1) … c(1)^2 c(1) 1
c(2)^(n-1) … c(2)^2 c(2) 1
. . . . .
. . . . .
. . . . .
c(n)^(n-1) … c(n)^2 c(n) 1
</pre></div>
<p><strong>See also:</strong> <a href="Polynomial-Interpolation.html#XREFpolyfit">polyfit</a>.
</p></dd></dl>
<a name="XREFwilkinson"></a><dl>
<dt><a name="index-wilkinson"></a>: <em></em> <strong>wilkinson</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the Wilkinson matrix of order <var>n</var>.
</p>
<p>Wilkinson matrices are symmetric and tridiagonal with pairs of nearly, but
not exactly, equal eigenvalues. They are useful in testing the behavior and
performance of eigenvalue solvers.
</p>
<p><strong>See also:</strong> <a href="#XREFrosser">rosser</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>
<hr>
<div class="header">
<p>
Previous: <a href="Special-Utility-Matrices.html#Special-Utility-Matrices" accesskey="p" rel="prev">Special Utility Matrices</a>, Up: <a href="Matrix-Manipulation.html#Matrix-Manipulation" accesskey="u" rel="up">Matrix Manipulation</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|