This file is indexed.

/usr/share/doc/octave/octave.html/Famous-Matrices.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Famous Matrices (GNU Octave)</title>

<meta name="description" content="Famous Matrices (GNU Octave)">
<meta name="keywords" content="Famous Matrices (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Matrix-Manipulation.html#Matrix-Manipulation" rel="up" title="Matrix Manipulation">
<link href="Arithmetic.html#Arithmetic" rel="next" title="Arithmetic">
<link href="Special-Utility-Matrices.html#Special-Utility-Matrices" rel="prev" title="Special Utility Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Famous-Matrices"></a>
<div class="header">
<p>
Previous: <a href="Special-Utility-Matrices.html#Special-Utility-Matrices" accesskey="p" rel="prev">Special Utility Matrices</a>, Up: <a href="Matrix-Manipulation.html#Matrix-Manipulation" accesskey="u" rel="up">Matrix Manipulation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Famous-Matrices-1"></a>
<h3 class="section">16.4 Famous Matrices</h3>

<p>The following functions return famous matrix forms.
</p>
<a name="XREFgallery"></a><dl>
<dt><a name="index-gallery"></a>: <em></em> <strong>gallery</strong> <em>(<var>name</var>)</em></dt>
<dt><a name="index-gallery-1"></a>: <em></em> <strong>gallery</strong> <em>(<var>name</var>, <var>args</var>)</em></dt>
<dd><p>Create interesting matrices for testing.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-2"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;cauchy&quot;, <var>x</var>)</em></dt>
<dt><a name="index-gallery-3"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;cauchy&quot;, <var>x</var>, <var>y</var>)</em></dt>
<dd><p>Create a Cauchy matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-4"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;chebspec&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-5"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;chebspec&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Chebyshev spectral differentiation matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-6"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;chebvand&quot;, <var>p</var>)</em></dt>
<dt><a name="index-gallery-7"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;chebvand&quot;, <var>m</var>, <var>p</var>)</em></dt>
<dd><p>Create a Vandermonde-like matrix for the Chebyshev polynomials.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-8"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;chow&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-9"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;chow&quot;, <var>n</var>, <var>alpha</var>)</em></dt>
<dt><a name="index-gallery-10"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;chow&quot;, <var>n</var>, <var>alpha</var>, <var>delta</var>)</em></dt>
<dd><p>Create a Chow matrix &ndash; a singular Toeplitz lower Hessenberg matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-11"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;circul&quot;, <var>v</var>)</em></dt>
<dd><p>Create a circulant matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-12"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;clement&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-13"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;clement&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a tridiagonal matrix with zero diagonal entries.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-14"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;compar&quot;, <var>a</var>)</em></dt>
<dt><a name="index-gallery-15"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;compar&quot;, <var>a</var>, <var>k</var>)</em></dt>
<dd><p>Create a comparison matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-16"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;condex&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-17"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;condex&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dt><a name="index-gallery-18"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;condex&quot;, <var>n</var>, <var>k</var>, <var>theta</var>)</em></dt>
<dd><p>Create a &lsquo;counterexample&rsquo; matrix to a condition estimator.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-19"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;cycol&quot;, [<var>m</var> <var>n</var>])</em></dt>
<dt><a name="index-gallery-20"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;cycol&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-21"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&hellip;, <var>k</var>)</em></dt>
<dd><p>Create a matrix whose columns repeat cyclically.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-22"></a>: <em>[<var>c</var>, <var>d</var>, <var>e</var>] =</em> <strong>gallery</strong> <em>(&quot;dorr&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-23"></a>: <em>[<var>c</var>, <var>d</var>, <var>e</var>] =</em> <strong>gallery</strong> <em>(&quot;dorr&quot;, <var>n</var>, <var>theta</var>)</em></dt>
<dt><a name="index-gallery-24"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;dorr&quot;, &hellip;)</em></dt>
<dd><p>Create a diagonally dominant, ill-conditioned, tridiagonal matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-25"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;dramadah&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-26"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;dramadah&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a (0, 1) matrix whose inverse has large integer entries.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-27"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;fiedler&quot;, <var>c</var>)</em></dt>
<dd><p>Create a symmetric Fiedler matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-28"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;forsythe&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-29"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;forsythe&quot;, <var>n</var>, <var>alpha</var>)</em></dt>
<dt><a name="index-gallery-30"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;forsythe&quot;, <var>n</var>, <var>alpha</var>, <var>lambda</var>)</em></dt>
<dd><p>Create a Forsythe matrix (a perturbed Jordan block).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-31"></a>: <em><var>f</var> =</em> <strong>gallery</strong> <em>(&quot;frank&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-32"></a>: <em><var>f</var> =</em> <strong>gallery</strong> <em>(&quot;frank&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Frank matrix (ill-conditioned eigenvalues).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-33"></a>: <em><var>c</var> =</em> <strong>gallery</strong> <em>(&quot;gcdmat&quot;, <var>n</var>)</em></dt>
<dd><p>Create a greatest common divisor matrix.
</p>
<p><var>c</var> is an <var>n</var>-by-<var>n</var> matrix whose values correspond to the
greatest common divisor of its coordinate values, i.e., <var>c</var>(i,j)
correspond <code>gcd (i, j)</code>.
</p></dd></dl>

<dl>
<dt><a name="index-gallery-34"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;gearmat&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-35"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;gearmat&quot;, <var>n</var>, <var>i</var>)</em></dt>
<dt><a name="index-gallery-36"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;gearmat&quot;, <var>n</var>, <var>i</var>, <var>j</var>)</em></dt>
<dd><p>Create a Gear matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-37"></a>: <em><var>g</var> =</em> <strong>gallery</strong> <em>(&quot;grcar&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-38"></a>: <em><var>g</var> =</em> <strong>gallery</strong> <em>(&quot;grcar&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Toeplitz matrix with sensitive eigenvalues.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-39"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;hanowa&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-40"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;hanowa&quot;, <var>n</var>, <var>d</var>)</em></dt>
<dd><p>Create a matrix whose eigenvalues lie on a vertical line in the complex
plane.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-41"></a>: <em><var>v</var> =</em> <strong>gallery</strong> <em>(&quot;house&quot;, <var>x</var>)</em></dt>
<dt><a name="index-gallery-42"></a>: <em>[<var>v</var>, <var>beta</var>] =</em> <strong>gallery</strong> <em>(&quot;house&quot;, <var>x</var>)</em></dt>
<dd><p>Create a householder matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-43"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;integerdata&quot;, <var>imax</var>, [<var>M</var> <var>N</var> &hellip;], <var>j</var>)</em></dt>
<dt><a name="index-gallery-44"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;integerdata&quot;, <var>imax</var>, <var>M</var>, <var>N</var>, &hellip;, <var>j</var>)</em></dt>
<dt><a name="index-gallery-45"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;integerdata&quot;, [<var>imin</var>, <var>imax</var>], [<var>M</var> <var>N</var> &hellip;], <var>j</var>)</em></dt>
<dt><a name="index-gallery-46"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;integerdata&quot;, [<var>imin</var>, <var>imax</var>], <var>M</var>, <var>N</var>, &hellip;, <var>j</var>)</em></dt>
<dt><a name="index-gallery-47"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;integerdata&quot;, &hellip;, &quot;<var>class</var>&quot;)</em></dt>
<dd><p>Create a matrix with random integers in the range [1, <var>imax</var>].
If <var>imin</var> is given then the integers are in the range
[<var>imin</var>, <var>imax</var>].
</p>
<p>The second input is a matrix of dimensions describing the size of the
output.  The dimensions can also be input as comma-separated arguments.
</p>
<p>The input <var>j</var> is an integer index in the range [0, 2^32-1].  The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and <var>j</var> index.
</p>
<p>The final optional argument determines the class of the resulting matrix.
Possible values for <var>class</var>: <code>&quot;uint8&quot;</code>, <code>&quot;uint16&quot;</code>,
<code>&quot;uint32&quot;</code>, <code>&quot;int8&quot;</code>, <code>&quot;int16&quot;</code>, int32&quot;, <code>&quot;single&quot;</code>,
<code>&quot;double&quot;</code>.  The default is <code>&quot;double&quot;</code>.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-48"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;invhess&quot;, <var>x</var>)</em></dt>
<dt><a name="index-gallery-49"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;invhess&quot;, <var>x</var>, <var>y</var>)</em></dt>
<dd><p>Create the inverse of an upper Hessenberg matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-50"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;invol&quot;, <var>n</var>)</em></dt>
<dd><p>Create an involutory matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-51"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;ipjfact&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-52"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;ipjfact&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a Hankel matrix with factorial elements.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-53"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;jordbloc&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-54"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;jordbloc&quot;, <var>n</var>, <var>lambda</var>)</em></dt>
<dd><p>Create a Jordan block.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-55"></a>: <em><var>u</var> =</em> <strong>gallery</strong> <em>(&quot;kahan&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-56"></a>: <em><var>u</var> =</em> <strong>gallery</strong> <em>(&quot;kahan&quot;, <var>n</var>, <var>theta</var>)</em></dt>
<dt><a name="index-gallery-57"></a>: <em><var>u</var> =</em> <strong>gallery</strong> <em>(&quot;kahan&quot;, <var>n</var>, <var>theta</var>, <var>pert</var>)</em></dt>
<dd><p>Create a Kahan matrix (upper trapezoidal).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-58"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;kms&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-59"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;kms&quot;, <var>n</var>, <var>rho</var>)</em></dt>
<dd><p>Create a Kac-Murdock-Szego Toeplitz matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-60"></a>: <em><var>b</var> =</em> <strong>gallery</strong> <em>(&quot;krylov&quot;, <var>a</var>)</em></dt>
<dt><a name="index-gallery-61"></a>: <em><var>b</var> =</em> <strong>gallery</strong> <em>(&quot;krylov&quot;, <var>a</var>, <var>x</var>)</em></dt>
<dt><a name="index-gallery-62"></a>: <em><var>b</var> =</em> <strong>gallery</strong> <em>(&quot;krylov&quot;, <var>a</var>, <var>x</var>, <var>j</var>)</em></dt>
<dd><p>Create a Krylov matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-63"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;lauchli&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-64"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;lauchli&quot;, <var>n</var>, <var>mu</var>)</em></dt>
<dd><p>Create a Lauchli matrix (rectangular).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-65"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;lehmer&quot;, <var>n</var>)</em></dt>
<dd><p>Create a Lehmer matrix (symmetric positive definite).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-66"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;lesp&quot;, <var>n</var>)</em></dt>
<dd><p>Create a tridiagonal matrix with real, sensitive eigenvalues.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-67"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;lotkin&quot;, <var>n</var>)</em></dt>
<dd><p>Create a Lotkin matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-68"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;minij&quot;, <var>n</var>)</em></dt>
<dd><p>Create a symmetric positive definite matrix MIN(i,j).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-69"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;moler&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-70"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;moler&quot;, <var>n</var>, <var>alpha</var>)</em></dt>
<dd><p>Create a Moler matrix (symmetric positive definite).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-71"></a>: <em>[<var>a</var>, <var>t</var>] =</em> <strong>gallery</strong> <em>(&quot;neumann&quot;, <var>n</var>)</em></dt>
<dd><p>Create a singular matrix from the discrete Neumann problem (sparse).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-72"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;normaldata&quot;, [<var>M</var> <var>N</var> &hellip;], <var>j</var>)</em></dt>
<dt><a name="index-gallery-73"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;normaldata&quot;, <var>M</var>, <var>N</var>, &hellip;, <var>j</var>)</em></dt>
<dt><a name="index-gallery-74"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;normaldata&quot;, &hellip;, &quot;<var>class</var>&quot;)</em></dt>
<dd><p>Create a matrix with random samples from the standard normal distribution
(mean = 0, std = 1).
</p>
<p>The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.
</p>
<p>The input <var>j</var> is an integer index in the range [0, 2^32-1].  The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and <var>j</var> index.
</p>
<p>The final optional argument determines the class of the resulting matrix.
Possible values for <var>class</var>: <code>&quot;single&quot;</code>, <code>&quot;double&quot;</code>.
The default is <code>&quot;double&quot;</code>.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-75"></a>: <em><var>q</var> =</em> <strong>gallery</strong> <em>(&quot;orthog&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-76"></a>: <em><var>q</var> =</em> <strong>gallery</strong> <em>(&quot;orthog&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create orthogonal and nearly orthogonal matrices.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-77"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;parter&quot;, <var>n</var>)</em></dt>
<dd><p>Create a Parter matrix (a Toeplitz matrix with singular values
near pi).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-78"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;pei&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-79"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;pei&quot;, <var>n</var>, <var>alpha</var>)</em></dt>
<dd><p>Create a Pei matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-80"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;Poisson&quot;, <var>n</var>)</em></dt>
<dd><p>Create a block tridiagonal matrix from Poisson&rsquo;s equation (sparse).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-81"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;prolate&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-82"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;prolate&quot;, <var>n</var>, <var>w</var>)</em></dt>
<dd><p>Create a prolate matrix (symmetric, ill-conditioned Toeplitz matrix).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-83"></a>: <em><var>h</var> =</em> <strong>gallery</strong> <em>(&quot;randhess&quot;, <var>x</var>)</em></dt>
<dd><p>Create a random, orthogonal upper Hessenberg matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-84"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;rando&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-85"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;rando&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a random matrix with elements -1, 0 or 1.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-86"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;randsvd&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-87"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;randsvd&quot;, <var>n</var>, <var>kappa</var>)</em></dt>
<dt><a name="index-gallery-88"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;randsvd&quot;, <var>n</var>, <var>kappa</var>, <var>mode</var>)</em></dt>
<dt><a name="index-gallery-89"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;randsvd&quot;, <var>n</var>, <var>kappa</var>, <var>mode</var>, <var>kl</var>)</em></dt>
<dt><a name="index-gallery-90"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;randsvd&quot;, <var>n</var>, <var>kappa</var>, <var>mode</var>, <var>kl</var>, <var>ku</var>)</em></dt>
<dd><p>Create a random matrix with pre-assigned singular values.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-91"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;redheff&quot;, <var>n</var>)</em></dt>
<dd><p>Create a zero and ones matrix of Redheffer associated with the
Riemann hypothesis.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-92"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;riemann&quot;, <var>n</var>)</em></dt>
<dd><p>Create a matrix associated with the Riemann hypothesis.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-93"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;ris&quot;, <var>n</var>)</em></dt>
<dd><p>Create a symmetric Hankel matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-94"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;smoke&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-95"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;smoke&quot;, <var>n</var>, <var>k</var>)</em></dt>
<dd><p>Create a complex matrix, with a &lsquo;smoke ring&rsquo; pseudospectrum.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-96"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;toeppd&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-97"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;toeppd&quot;, <var>n</var>, <var>m</var>)</em></dt>
<dt><a name="index-gallery-98"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;toeppd&quot;, <var>n</var>, <var>m</var>, <var>w</var>)</em></dt>
<dt><a name="index-gallery-99"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;toeppd&quot;, <var>n</var>, <var>m</var>, <var>w</var>, <var>theta</var>)</em></dt>
<dd><p>Create a symmetric positive definite Toeplitz matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-100"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;toeppen&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-101"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;toeppen&quot;, <var>n</var>, <var>a</var>)</em></dt>
<dt><a name="index-gallery-102"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;toeppen&quot;, <var>n</var>, <var>a</var>, <var>b</var>)</em></dt>
<dt><a name="index-gallery-103"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;toeppen&quot;, <var>n</var>, <var>a</var>, <var>b</var>, <var>c</var>)</em></dt>
<dt><a name="index-gallery-104"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;toeppen&quot;, <var>n</var>, <var>a</var>, <var>b</var>, <var>c</var>, <var>d</var>)</em></dt>
<dt><a name="index-gallery-105"></a>: <em><var>p</var> =</em> <strong>gallery</strong> <em>(&quot;toeppen&quot;, <var>n</var>, <var>a</var>, <var>b</var>, <var>c</var>, <var>d</var>, <var>e</var>)</em></dt>
<dd><p>Create a pentadiagonal Toeplitz matrix (sparse).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-106"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;tridiag&quot;, <var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-gallery-107"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;tridiag&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-108"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;tridiag&quot;, <var>n</var>, <var>c</var>, <var>d</var>, <var>e</var>)</em></dt>
<dd><p>Create a tridiagonal matrix (sparse).
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-109"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;triw&quot;, <var>n</var>)</em></dt>
<dt><a name="index-gallery-110"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;triw&quot;, <var>n</var>, <var>alpha</var>)</em></dt>
<dt><a name="index-gallery-111"></a>: <em><var>t</var> =</em> <strong>gallery</strong> <em>(&quot;triw&quot;, <var>n</var>, <var>alpha</var>, <var>k</var>)</em></dt>
<dd><p>Create an upper triangular matrix discussed by
Kahan, Golub, and Wilkinson.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-112"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;uniformdata&quot;, [<var>M</var> <var>N</var> &hellip;], <var>j</var>)</em></dt>
<dt><a name="index-gallery-113"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;uniformdata&quot;, <var>M</var>, <var>N</var>, &hellip;, <var>j</var>)</em></dt>
<dt><a name="index-gallery-114"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;uniformdata&quot;, &hellip;, &quot;<var>class</var>&quot;)</em></dt>
<dd><p>Create a matrix with random samples from the standard uniform distribution
(range [0,1]).
</p>
<p>The first input is a matrix of dimensions describing the size of the output.
The dimensions can also be input as comma-separated arguments.
</p>
<p>The input <var>j</var> is an integer index in the range [0, 2^32-1].  The values
of the output matrix are always exactly the same (reproducibility) for a
given size input and <var>j</var> index.
</p>
<p>The final optional argument determines the class of the resulting matrix.
Possible values for <var>class</var>: <code>&quot;single&quot;</code>, <code>&quot;double&quot;</code>.
The default is <code>&quot;double&quot;</code>.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-115"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;wathen&quot;, <var>nx</var>, <var>ny</var>)</em></dt>
<dt><a name="index-gallery-116"></a>: <em><var>a</var> =</em> <strong>gallery</strong> <em>(&quot;wathen&quot;, <var>nx</var>, <var>ny</var>, <var>k</var>)</em></dt>
<dd><p>Create the Wathen matrix.
</p>
</dd></dl>

<dl>
<dt><a name="index-gallery-117"></a>: <em>[<var>a</var>, <var>b</var>] =</em> <strong>gallery</strong> <em>(&quot;wilk&quot;, <var>n</var>)</em></dt>
<dd><p>Create various specific matrices devised/discussed by Wilkinson.
</p>
</dd></dl>


<a name="XREFhadamard"></a><dl>
<dt><a name="index-hadamard"></a>: <em></em> <strong>hadamard</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Construct a Hadamard matrix (Hn) of size <var>n</var>-by-<var>n</var>.
</p>
<p>The size <var>n</var> must be of the form <em>2^k * p</em> in which p is one of
1, 12, 20 or 28.  The returned matrix is normalized, meaning
<code>Hn(:,1)&nbsp;==&nbsp;1</code><!-- /@w --> and <code>Hn(1,:)&nbsp;==&nbsp;1</code><!-- /@w -->.
</p>
<p>Some of the properties of Hadamard matrices are:
</p>
<ul>
<li> <code>kron (Hm, Hn)</code> is a Hadamard matrix of size <var>m</var>-by-<var>n</var>.

</li><li> <code>Hn * Hn' = <var>n</var> * eye (<var>n</var>)</code>.

</li><li> The rows of Hn are orthogonal.

</li><li> <code>det (<var>A</var>) &lt;= abs (det (Hn))</code> for all <var>A</var> with
<code>abs&nbsp;(<var>A</var>(i,&nbsp;j))&nbsp;&lt;=&nbsp;1</code><!-- /@w -->.

</li><li> Multiplying any row or column by -1 and the matrix will remain a Hadamard
matrix.
</li></ul>

<p><strong>See also:</strong> <a href="Finding-Roots.html#XREFcompan">compan</a>, <a href="#XREFhankel">hankel</a>, <a href="#XREFtoeplitz">toeplitz</a>.
</p></dd></dl>


<a name="XREFhankel"></a><dl>
<dt><a name="index-hankel"></a>: <em></em> <strong>hankel</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-hankel-1"></a>: <em></em> <strong>hankel</strong> <em>(<var>c</var>, <var>r</var>)</em></dt>
<dd><p>Return the Hankel matrix constructed from the first column <var>c</var>, and
(optionally) the last row <var>r</var>.
</p>
<p>If the last element of <var>c</var> is not the same as the first element of
<var>r</var>, the last element of <var>c</var> is used.  If the second argument is
omitted, it is assumed to be a vector of zeros with the same size as
<var>c</var>.
</p>
<p>A Hankel matrix formed from an m-vector <var>c</var>, and an n-vector <var>r</var>,
has the elements
</p>
<div class="example">
<pre class="example">H(i,j) = c(i+j-1),  i+j-1 &lt;= m;
H(i,j) = r(i+j-m),  otherwise
</pre></div>


<p><strong>See also:</strong> <a href="#XREFhadamard">hadamard</a>, <a href="#XREFtoeplitz">toeplitz</a>.
</p></dd></dl>


<a name="XREFhilb"></a><dl>
<dt><a name="index-hilb"></a>: <em></em> <strong>hilb</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the Hilbert matrix of order <var>n</var>.
</p>
<p>The <em>i,j</em> element of a Hilbert matrix is defined as
</p>
<div class="example">
<pre class="example">H(i, j) = 1 / (i + j - 1)
</pre></div>


<p>Hilbert matrices are close to being singular which make them difficult to
invert with numerical routines.  Comparing the condition number of a random
matrix 5x5 matrix with that of a Hilbert matrix of order 5 reveals just how
difficult the problem is.
</p>
<div class="example">
<pre class="example">cond (rand (5))
   &rArr; 14.392
cond (hilb (5))
   &rArr; 4.7661e+05
</pre></div>


<p><strong>See also:</strong> <a href="#XREFinvhilb">invhilb</a>.
</p></dd></dl>


<a name="XREFinvhilb"></a><dl>
<dt><a name="index-invhilb"></a>: <em></em> <strong>invhilb</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the inverse of the Hilbert matrix of order <var>n</var>.
</p>
<p>This can be computed exactly using
</p>
<div class="example">
<pre class="example">

           (i+j)         /n+i-1\  /n+j-1\   /i+j-2\ 2
A(i,j) = -1      (i+j-1)(       )(       ) (       )
                         \ n-j /  \ n-i /   \ i-2 /

       = p(i) p(j) / (i+j-1)

</pre></div>

<p>where
</p>
<div class="example">
<pre class="example">         k  /k+n-1\   /n\
p(k) = -1  (       ) (   )
            \ k-1 /   \k/
</pre></div>

<p>The validity of this formula can easily be checked by expanding the binomial
coefficients in both formulas as factorials.  It can be derived more
directly via the theory of Cauchy matrices.  See J. W. Demmel,
<cite>Applied Numerical Linear Algebra</cite>, p. 92.
</p>
<p>Compare this with the numerical calculation of <code>inverse (hilb (n))</code>,
which suffers from the ill-conditioning of the Hilbert matrix, and the
finite precision of your computer&rsquo;s floating point arithmetic.
</p>
<p><strong>See also:</strong> <a href="#XREFhilb">hilb</a>.
</p></dd></dl>


<a name="XREFmagic"></a><dl>
<dt><a name="index-magic"></a>: <em></em> <strong>magic</strong> <em>(<var>n</var>)</em></dt>
<dd>
<p>Create an <var>n</var>-by-<var>n</var> magic square.
</p>
<p>A magic square is an arrangement of the integers <code>1:n^2</code> such that the
row sums, column sums, and diagonal sums are all equal to the same value.
</p>
<p>Note: <var>n</var> must be a scalar greater than or equal to 3.  If you supply
<var>n</var> less than 3, magic returns either a nonmagic square, or else the
degenerate magic squares 1 and [].
</p></dd></dl>


<a name="XREFpascal"></a><dl>
<dt><a name="index-pascal"></a>: <em></em> <strong>pascal</strong> <em>(<var>n</var>)</em></dt>
<dt><a name="index-pascal-1"></a>: <em></em> <strong>pascal</strong> <em>(<var>n</var>, <var>t</var>)</em></dt>
<dd><p>Return the Pascal matrix of order <var>n</var> if <code><var>t</var> = 0</code>.
</p>
<p>The default value of <var>t</var> is 0.
</p>
<p>When <code><var>t</var> = 1</code>, return the pseudo-lower triangular
Cholesky&nbsp;factor of the Pascal matrix (The sign of some columns may be
negative).  This matrix is its own inverse, that is
<code>pascal (<var>n</var>, 1) ^ 2 == eye (<var>n</var>)</code>.
</p>
<p>If <code><var>t</var> = -1</code>, return the true Cholesky&nbsp;factor with strictly
positive values on the diagonal.
</p>
<p>If <code><var>t</var> = 2</code>, return a transposed and permuted version of
<code>pascal (<var>n</var>, 1)</code>, which is the cube root of the identity matrix.
That is, <code>pascal (<var>n</var>, 2) ^ 3 == eye (<var>n</var>)</code>.
</p>

<p><strong>See also:</strong> <a href="Matrix-Factorizations.html#XREFchol">chol</a>.
</p></dd></dl>


<a name="XREFrosser"></a><dl>
<dt><a name="index-rosser"></a>: <em></em> <strong>rosser</strong> <em>()</em></dt>
<dd><p>Return the Rosser matrix.
</p>
<p>This is a difficult test case used to evaluate eigenvalue algorithms.
</p>
<p><strong>See also:</strong> <a href="#XREFwilkinson">wilkinson</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>


<a name="XREFtoeplitz"></a><dl>
<dt><a name="index-toeplitz"></a>: <em></em> <strong>toeplitz</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-toeplitz-1"></a>: <em></em> <strong>toeplitz</strong> <em>(<var>c</var>, <var>r</var>)</em></dt>
<dd><p>Return the Toeplitz matrix constructed from the first column <var>c</var>,
and (optionally) the first row <var>r</var>.
</p>
<p>If the first element of <var>r</var> is not the same as the first element of
<var>c</var>, the first element of <var>c</var> is used.  If the second argument is
omitted, the first row is taken to be the same as the first column.
</p>
<p>A square Toeplitz matrix has the form:
</p>
<div class="example">
<pre class="example">c(0)  r(1)   r(2)  &hellip;  r(n)
c(1)  c(0)   r(1)  &hellip; r(n-1)
c(2)  c(1)   c(0)  &hellip; r(n-2)
 .     .      .   .      .
 .     .      .     .    .
 .     .      .       .  .
c(n) c(n-1) c(n-2) &hellip;  c(0)
</pre></div>


<p><strong>See also:</strong> <a href="#XREFhankel">hankel</a>.
</p></dd></dl>


<a name="XREFvander"></a><dl>
<dt><a name="index-vander"></a>: <em></em> <strong>vander</strong> <em>(<var>c</var>)</em></dt>
<dt><a name="index-vander-1"></a>: <em></em> <strong>vander</strong> <em>(<var>c</var>, <var>n</var>)</em></dt>
<dd><p>Return the Vandermonde matrix whose next to last column is <var>c</var>.
</p>
<p>If <var>n</var> is specified, it determines the number of columns; otherwise,
<var>n</var> is taken to be equal to the length of <var>c</var>.
</p>
<p>A Vandermonde matrix has the form:
</p>
<div class="example">
<pre class="example">c(1)^(n-1) &hellip; c(1)^2  c(1)  1
c(2)^(n-1) &hellip; c(2)^2  c(2)  1
    .     .      .      .    .
    .       .    .      .    .
    .         .  .      .    .
c(n)^(n-1) &hellip; c(n)^2  c(n)  1
</pre></div>


<p><strong>See also:</strong> <a href="Polynomial-Interpolation.html#XREFpolyfit">polyfit</a>.
</p></dd></dl>


<a name="XREFwilkinson"></a><dl>
<dt><a name="index-wilkinson"></a>: <em></em> <strong>wilkinson</strong> <em>(<var>n</var>)</em></dt>
<dd><p>Return the Wilkinson matrix of order <var>n</var>.
</p>
<p>Wilkinson matrices are symmetric and tridiagonal with pairs of nearly, but
not exactly, equal eigenvalues.  They are useful in testing the behavior and
performance of eigenvalue solvers.
</p>

<p><strong>See also:</strong> <a href="#XREFrosser">rosser</a>, <a href="Basic-Matrix-Functions.html#XREFeig">eig</a>.
</p></dd></dl>



<hr>
<div class="header">
<p>
Previous: <a href="Special-Utility-Matrices.html#Special-Utility-Matrices" accesskey="p" rel="prev">Special Utility Matrices</a>, Up: <a href="Matrix-Manipulation.html#Matrix-Manipulation" accesskey="u" rel="up">Matrix Manipulation</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>