This file is indexed.

/usr/share/doc/octave/octave.html/Distributions.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Distributions (GNU Octave)</title>

<meta name="description" content="Distributions (GNU Octave)">
<meta name="keywords" content="Distributions (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Statistics.html#Statistics" rel="up" title="Statistics">
<link href="Tests.html#Tests" rel="next" title="Tests">
<link href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" rel="prev" title="Correlation and Regression Analysis">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Distributions"></a>
<div class="header">
<p>
Next: <a href="Tests.html#Tests" accesskey="n" rel="next">Tests</a>, Previous: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="p" rel="prev">Correlation and Regression Analysis</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Distributions-1"></a>
<h3 class="section">26.5 Distributions</h3>

<p>Octave has functions for computing the Probability Density Function
(PDF), the Cumulative Distribution function (CDF), and the quantile
(the inverse of the CDF) for a large number of distributions.
</p>
<p>The following table summarizes the supported distributions (in
alphabetical order).
</p>
<table>
<thead><tr><th width="31%">Distribution</th><th width="23%">PDF</th><th width="23%">CDF</th><th width="23%">Quantile</th></tr></thead>
<tr><td width="31%">Beta Distribution</td><td width="23%"><code>betapdf</code></td><td width="23%"><code>betacdf</code></td><td width="23%"><code>betainv</code></td></tr>
<tr><td width="31%">Binomial Distribution</td><td width="23%"><code>binopdf</code></td><td width="23%"><code>binocdf</code></td><td width="23%"><code>binoinv</code></td></tr>
<tr><td width="31%">Cauchy Distribution</td><td width="23%"><code>cauchy_pdf</code></td><td width="23%"><code>cauchy_cdf</code></td><td width="23%"><code>cauchy_inv</code></td></tr>
<tr><td width="31%">Chi-Square Distribution</td><td width="23%"><code>chi2pdf</code></td><td width="23%"><code>chi2cdf</code></td><td width="23%"><code>chi2inv</code></td></tr>
<tr><td width="31%">Univariate Discrete Distribution</td><td width="23%"><code>discrete_pdf</code></td><td width="23%"><code>discrete_cdf</code></td><td width="23%"><code>discrete_inv</code></td></tr>
<tr><td width="31%">Empirical Distribution</td><td width="23%"><code>empirical_pdf</code></td><td width="23%"><code>empirical_cdf</code></td><td width="23%"><code>empirical_inv</code></td></tr>
<tr><td width="31%">Exponential Distribution</td><td width="23%"><code>exppdf</code></td><td width="23%"><code>expcdf</code></td><td width="23%"><code>expinv</code></td></tr>
<tr><td width="31%">F Distribution</td><td width="23%"><code>fpdf</code></td><td width="23%"><code>fcdf</code></td><td width="23%"><code>finv</code></td></tr>
<tr><td width="31%">Gamma Distribution</td><td width="23%"><code>gampdf</code></td><td width="23%"><code>gamcdf</code></td><td width="23%"><code>gaminv</code></td></tr>
<tr><td width="31%">Geometric Distribution</td><td width="23%"><code>geopdf</code></td><td width="23%"><code>geocdf</code></td><td width="23%"><code>geoinv</code></td></tr>
<tr><td width="31%">Hypergeometric Distribution</td><td width="23%"><code>hygepdf</code></td><td width="23%"><code>hygecdf</code></td><td width="23%"><code>hygeinv</code></td></tr>
<tr><td width="31%">Kolmogorov Smirnov Distribution</td><td width="23%"><em>Not Available</em></td><td width="23%"><code>kolmogorov_smirnov_cdf</code></td><td width="23%"><em>Not Available</em></td></tr>
<tr><td width="31%">Laplace Distribution</td><td width="23%"><code>laplace_pdf</code></td><td width="23%"><code>laplace_cdf</code></td><td width="23%"><code>laplace_inv</code></td></tr>
<tr><td width="31%">Logistic Distribution</td><td width="23%"><code>logistic_pdf</code></td><td width="23%"><code>logistic_cdf</code></td><td width="23%"><code>logistic_inv</code></td></tr>
<tr><td width="31%">Log-Normal Distribution</td><td width="23%"><code>lognpdf</code></td><td width="23%"><code>logncdf</code></td><td width="23%"><code>logninv</code></td></tr>
<tr><td width="31%">Univariate Normal Distribution</td><td width="23%"><code>normpdf</code></td><td width="23%"><code>normcdf</code></td><td width="23%"><code>norminv</code></td></tr>
<tr><td width="31%">Pascal Distribution</td><td width="23%"><code>nbinpdf</code></td><td width="23%"><code>nbincdf</code></td><td width="23%"><code>nbininv</code></td></tr>
<tr><td width="31%">Poisson Distribution</td><td width="23%"><code>poisspdf</code></td><td width="23%"><code>poisscdf</code></td><td width="23%"><code>poissinv</code></td></tr>
<tr><td width="31%">Standard Normal Distribution</td><td width="23%"><code>stdnormal_pdf</code></td><td width="23%"><code>stdnormal_cdf</code></td><td width="23%"><code>stdnormal_inv</code></td></tr>
<tr><td width="31%">t (Student) Distribution</td><td width="23%"><code>tpdf</code></td><td width="23%"><code>tcdf</code></td><td width="23%"><code>tinv</code></td></tr>
<tr><td width="31%">Univariate Discrete Distribution</td><td width="23%"><code>unidpdf</code></td><td width="23%"><code>unidcdf</code></td><td width="23%"><code>unidinv</code></td></tr>
<tr><td width="31%">Uniform Distribution</td><td width="23%"><code>unifpdf</code></td><td width="23%"><code>unifcdf</code></td><td width="23%"><code>unifinv</code></td></tr>
<tr><td width="31%">Weibull Distribution</td><td width="23%"><code>wblpdf</code></td><td width="23%"><code>wblcdf</code></td><td width="23%"><code>wblinv</code></td></tr>
</table>

<a name="XREFbetapdf"></a><dl>
<dt><a name="index-betapdf"></a>: <em></em> <strong>betapdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the Beta distribution with parameters <var>a</var> and <var>b</var>.
</p></dd></dl>


<a name="XREFbetacdf"></a><dl>
<dt><a name="index-betacdf"></a>: <em></em> <strong>betacdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the Beta distribution with parameters <var>a</var> and
<var>b</var>.
</p></dd></dl>


<a name="XREFbetainv"></a><dl>
<dt><a name="index-betainv"></a>: <em></em> <strong>betainv</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the Beta distribution with parameters <var>a</var> and <var>b</var>.
</p></dd></dl>


<a name="XREFbinopdf"></a><dl>
<dt><a name="index-binopdf"></a>: <em></em> <strong>binopdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the binomial distribution with parameters <var>n</var> and <var>p</var>,
where <var>n</var> is the number of trials and <var>p</var> is the probability of
success.
</p></dd></dl>


<a name="XREFbinocdf"></a><dl>
<dt><a name="index-binocdf"></a>: <em></em> <strong>binocdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the binomial distribution with parameters <var>n</var> and
<var>p</var>, where <var>n</var> is the number of trials and <var>p</var> is the
probability of success.
</p></dd></dl>


<a name="XREFbinoinv"></a><dl>
<dt><a name="index-binoinv"></a>: <em></em> <strong>binoinv</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the binomial distribution with parameters
<var>n</var> and <var>p</var>, where <var>n</var> is the number of trials and
<var>p</var> is the probability of success.
</p></dd></dl>


<a name="XREFcauchy_005fpdf"></a><dl>
<dt><a name="index-cauchy_005fpdf"></a>: <em></em> <strong>cauchy_pdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cauchy_005fpdf-1"></a>: <em></em> <strong>cauchy_pdf</strong> <em>(<var>x</var>, <var>location</var>, <var>scale</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the Cauchy distribution with location parameter
<var>location</var> and scale parameter <var>scale</var> &gt; 0.
</p>
<p>Default values are <var>location</var> = 0, <var>scale</var> = 1.
</p></dd></dl>


<a name="XREFcauchy_005fcdf"></a><dl>
<dt><a name="index-cauchy_005fcdf"></a>: <em></em> <strong>cauchy_cdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cauchy_005fcdf-1"></a>: <em></em> <strong>cauchy_cdf</strong> <em>(<var>x</var>, <var>location</var>, <var>scale</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the Cauchy distribution with location parameter
<var>location</var> and scale parameter <var>scale</var>.
</p>
<p>Default values are <var>location</var> = 0, <var>scale</var> = 1.
</p></dd></dl>


<a name="XREFcauchy_005finv"></a><dl>
<dt><a name="index-cauchy_005finv"></a>: <em></em> <strong>cauchy_inv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-cauchy_005finv-1"></a>: <em></em> <strong>cauchy_inv</strong> <em>(<var>x</var>, <var>location</var>, <var>scale</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the Cauchy distribution with location parameter
<var>location</var> and scale parameter <var>scale</var>.
</p>
<p>Default values are <var>location</var> = 0, <var>scale</var> = 1.
</p></dd></dl>


<a name="XREFchi2pdf"></a><dl>
<dt><a name="index-chi2pdf"></a>: <em></em> <strong>chi2pdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the chi-square distribution with <var>n</var> degrees of freedom.
</p></dd></dl>


<a name="XREFchi2cdf"></a><dl>
<dt><a name="index-chi2cdf"></a>: <em></em> <strong>chi2cdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the chi-square distribution with <var>n</var> degrees of
freedom.
</p></dd></dl>


<a name="XREFchi2inv"></a><dl>
<dt><a name="index-chi2inv"></a>: <em></em> <strong>chi2inv</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the chi-square distribution with <var>n</var> degrees of freedom.
</p></dd></dl>


<a name="XREFdiscrete_005fpdf"></a><dl>
<dt><a name="index-discrete_005fpdf"></a>: <em></em> <strong>discrete_pdf</strong> <em>(<var>x</var>, <var>v</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of a univariate discrete distribution which assumes the values
in <var>v</var> with probabilities <var>p</var>.
</p></dd></dl>


<a name="XREFdiscrete_005fcdf"></a><dl>
<dt><a name="index-discrete_005fcdf"></a>: <em></em> <strong>discrete_cdf</strong> <em>(<var>x</var>, <var>v</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of a univariate discrete distribution which assumes the
values in <var>v</var> with probabilities <var>p</var>.
</p></dd></dl>


<a name="XREFdiscrete_005finv"></a><dl>
<dt><a name="index-discrete_005finv"></a>: <em></em> <strong>discrete_inv</strong> <em>(<var>x</var>, <var>v</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the univariate distribution which assumes the values in
<var>v</var> with probabilities <var>p</var>.
</p></dd></dl>


<a name="XREFempirical_005fpdf"></a><dl>
<dt><a name="index-empirical_005fpdf"></a>: <em></em> <strong>empirical_pdf</strong> <em>(<var>x</var>, <var>data</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the empirical distribution obtained from the
univariate sample <var>data</var>.
</p></dd></dl>


<a name="XREFempirical_005fcdf"></a><dl>
<dt><a name="index-empirical_005fcdf"></a>: <em></em> <strong>empirical_cdf</strong> <em>(<var>x</var>, <var>data</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the empirical distribution obtained from
the univariate sample <var>data</var>.
</p></dd></dl>


<a name="XREFempirical_005finv"></a><dl>
<dt><a name="index-empirical_005finv"></a>: <em></em> <strong>empirical_inv</strong> <em>(<var>x</var>, <var>data</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the empirical distribution obtained from the
univariate sample <var>data</var>.
</p></dd></dl>


<a name="XREFexppdf"></a><dl>
<dt><a name="index-exppdf"></a>: <em></em> <strong>exppdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the exponential distribution with mean <var>lambda</var>.
</p></dd></dl>


<a name="XREFexpcdf"></a><dl>
<dt><a name="index-expcdf"></a>: <em></em> <strong>expcdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the exponential distribution with mean <var>lambda</var>.
</p>
<p>The arguments can be of common size or scalars.
</p></dd></dl>


<a name="XREFexpinv"></a><dl>
<dt><a name="index-expinv"></a>: <em></em> <strong>expinv</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the exponential distribution with mean <var>lambda</var>.
</p></dd></dl>


<a name="XREFfpdf"></a><dl>
<dt><a name="index-fpdf"></a>: <em></em> <strong>fpdf</strong> <em>(<var>x</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the F distribution with <var>m</var> and <var>n</var> degrees of
freedom.
</p></dd></dl>


<a name="XREFfcdf"></a><dl>
<dt><a name="index-fcdf"></a>: <em></em> <strong>fcdf</strong> <em>(<var>x</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the F distribution with <var>m</var> and <var>n</var> degrees of
freedom.
</p></dd></dl>


<a name="XREFfinv"></a><dl>
<dt><a name="index-finv"></a>: <em></em> <strong>finv</strong> <em>(<var>x</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the F distribution with <var>m</var> and <var>n</var> degrees of
freedom.
</p></dd></dl>


<a name="XREFgampdf"></a><dl>
<dt><a name="index-gampdf"></a>: <em></em> <strong>gampdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, return the probability density function
(PDF) at <var>x</var> of the Gamma distribution with shape parameter <var>a</var> and
scale <var>b</var>.
</p></dd></dl>


<a name="XREFgamcdf"></a><dl>
<dt><a name="index-gamcdf"></a>: <em></em> <strong>gamcdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the Gamma distribution with shape parameter <var>a</var> and
scale <var>b</var>.
</p></dd></dl>


<a name="XREFgaminv"></a><dl>
<dt><a name="index-gaminv"></a>: <em></em> <strong>gaminv</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the Gamma distribution with shape parameter <var>a</var> and
scale <var>b</var>.
</p></dd></dl>


<a name="XREFgeopdf"></a><dl>
<dt><a name="index-geopdf"></a>: <em></em> <strong>geopdf</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the geometric distribution with parameter <var>p</var>.
</p>
<p>The geometric distribution models the number of failures (<var>x</var>-1) of a
Bernoulli trial with probability <var>p</var> before the first success (<var>x</var>).
</p></dd></dl>


<a name="XREFgeocdf"></a><dl>
<dt><a name="index-geocdf"></a>: <em></em> <strong>geocdf</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the geometric distribution with parameter <var>p</var>.
</p>
<p>The geometric distribution models the number of failures (<var>x</var>-1) of a
Bernoulli trial with probability <var>p</var> before the first success (<var>x</var>).
</p></dd></dl>


<a name="XREFgeoinv"></a><dl>
<dt><a name="index-geoinv"></a>: <em></em> <strong>geoinv</strong> <em>(<var>x</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the geometric distribution with parameter <var>p</var>.
</p>
<p>The geometric distribution models the number of failures (<var>x</var>-1) of a
Bernoulli trial with probability <var>p</var> before the first success (<var>x</var>).
</p></dd></dl>


<a name="XREFhygepdf"></a><dl>
<dt><a name="index-hygepdf"></a>: <em></em> <strong>hygepdf</strong> <em>(<var>x</var>, <var>t</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>Compute the probability density function (PDF) at <var>x</var> of the
hypergeometric distribution with parameters <var>t</var>, <var>m</var>, and <var>n</var>.
</p>
<p>This is the probability of obtaining <var>x</var> marked items when randomly
drawing a sample of size <var>n</var> without replacement from a population of
total size <var>t</var> containing <var>m</var> marked items.
</p>
<p>The parameters <var>t</var>, <var>m</var>, and <var>n</var> must be positive integers
with <var>m</var> and <var>n</var> not greater than <var>t</var>.
</p></dd></dl>


<a name="XREFhygecdf"></a><dl>
<dt><a name="index-hygecdf"></a>: <em></em> <strong>hygecdf</strong> <em>(<var>x</var>, <var>t</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>Compute the cumulative distribution function (CDF) at <var>x</var> of the
hypergeometric distribution with parameters <var>t</var>, <var>m</var>, and <var>n</var>.
</p>
<p>This is the probability of obtaining not more than <var>x</var> marked items
when randomly drawing a sample of size <var>n</var> without replacement from a
population of total size <var>t</var> containing <var>m</var> marked items.
</p>
<p>The parameters <var>t</var>, <var>m</var>, and <var>n</var> must be positive integers
with <var>m</var> and <var>n</var> not greater than <var>t</var>.
</p></dd></dl>


<a name="XREFhygeinv"></a><dl>
<dt><a name="index-hygeinv"></a>: <em></em> <strong>hygeinv</strong> <em>(<var>x</var>, <var>t</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the hypergeometric distribution with parameters
<var>t</var>, <var>m</var>, and <var>n</var>.
</p>
<p>This is the probability of obtaining <var>x</var> marked items when randomly
drawing a sample of size <var>n</var> without replacement from a population of
total size <var>t</var> containing <var>m</var> marked items.
</p>
<p>The parameters <var>t</var>, <var>m</var>, and <var>n</var> must be positive integers
with <var>m</var> and <var>n</var> not greater than <var>t</var>.
</p></dd></dl>


<a name="XREFkolmogorov_005fsmirnov_005fcdf"></a><dl>
<dt><a name="index-kolmogorov_005fsmirnov_005fcdf"></a>: <em></em> <strong>kolmogorov_smirnov_cdf</strong> <em>(<var>x</var>, <var>tol</var>)</em></dt>
<dd><p>Return the cumulative distribution function (CDF) at <var>x</var> of the
Kolmogorov-Smirnov distribution.
</p>
<p>This is defined as
</p>
<div class="example">
<pre class="example">         Inf
Q(x) =   SUM    (-1)^k exp (-2 k^2 x^2)
       k = -Inf
</pre></div>

<p>for <var>x</var> &gt; 0.
</p>
<p>The optional parameter <var>tol</var> specifies the precision up to which
the series should be evaluated; the default is <var>tol</var> = <code>eps</code>.
</p></dd></dl>


<a name="XREFlaplace_005fpdf"></a><dl>
<dt><a name="index-laplace_005fpdf"></a>: <em></em> <strong>laplace_pdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the Laplace distribution.
</p></dd></dl>


<a name="XREFlaplace_005fcdf"></a><dl>
<dt><a name="index-laplace_005fcdf"></a>: <em></em> <strong>laplace_cdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the Laplace distribution.
</p></dd></dl>


<a name="XREFlaplace_005finv"></a><dl>
<dt><a name="index-laplace_005finv"></a>: <em></em> <strong>laplace_inv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the Laplace distribution.
</p></dd></dl>


<a name="XREFlogistic_005fpdf"></a><dl>
<dt><a name="index-logistic_005fpdf"></a>: <em></em> <strong>logistic_pdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the PDF at <var>x</var> of the
logistic distribution.
</p></dd></dl>


<a name="XREFlogistic_005fcdf"></a><dl>
<dt><a name="index-logistic_005fcdf"></a>: <em></em> <strong>logistic_cdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the logistic distribution.
</p></dd></dl>


<a name="XREFlogistic_005finv"></a><dl>
<dt><a name="index-logistic_005finv"></a>: <em></em> <strong>logistic_inv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the logistic distribution.
</p></dd></dl>


<a name="XREFlognpdf"></a><dl>
<dt><a name="index-lognpdf"></a>: <em></em> <strong>lognpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-lognpdf-1"></a>: <em></em> <strong>lognpdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the lognormal distribution with parameters
<var>mu</var> and <var>sigma</var>.
</p>
<p>If a random variable follows this distribution, its logarithm is normally
distributed with mean <var>mu</var> and standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>


<a name="XREFlogncdf"></a><dl>
<dt><a name="index-logncdf"></a>: <em></em> <strong>logncdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-logncdf-1"></a>: <em></em> <strong>logncdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the lognormal distribution with parameters
<var>mu</var> and <var>sigma</var>.
</p>
<p>If a random variable follows this distribution, its logarithm is normally
distributed with mean <var>mu</var> and standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>


<a name="XREFlogninv"></a><dl>
<dt><a name="index-logninv"></a>: <em></em> <strong>logninv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-logninv-1"></a>: <em></em> <strong>logninv</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the lognormal distribution with parameters
<var>mu</var> and <var>sigma</var>.
</p>
<p>If a random variable follows this distribution, its logarithm is normally
distributed with mean <var>mu</var> and standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>


<a name="XREFnbinpdf"></a><dl>
<dt><a name="index-nbinpdf"></a>: <em></em> <strong>nbinpdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the negative binomial distribution with parameters
<var>n</var> and <var>p</var>.
</p>
<p>When <var>n</var> is integer this is the Pascal distribution.
When <var>n</var> is extended to real numbers this is the Polya distribution.
</p>
<p>The number of failures in a Bernoulli experiment with success probability
<var>p</var> before the <var>n</var>-th success follows this distribution.
</p></dd></dl>


<a name="XREFnbincdf"></a><dl>
<dt><a name="index-nbincdf"></a>: <em></em> <strong>nbincdf</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the negative binomial distribution with parameters
<var>n</var> and <var>p</var>.
</p>
<p>When <var>n</var> is integer this is the Pascal distribution.
When <var>n</var> is extended to real numbers this is the Polya distribution.
</p>
<p>The number of failures in a Bernoulli experiment with success probability
<var>p</var> before the <var>n</var>-th success follows this distribution.
</p></dd></dl>


<a name="XREFnbininv"></a><dl>
<dt><a name="index-nbininv"></a>: <em></em> <strong>nbininv</strong> <em>(<var>x</var>, <var>n</var>, <var>p</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the negative binomial distribution with parameters
<var>n</var> and <var>p</var>.
</p>
<p>When <var>n</var> is integer this is the Pascal distribution.
When <var>n</var> is extended to real numbers this is the Polya distribution.
</p>
<p>The number of failures in a Bernoulli experiment with success probability
<var>p</var> before the <var>n</var>-th success follows this distribution.
</p></dd></dl>


<a name="XREFnormpdf"></a><dl>
<dt><a name="index-normpdf"></a>: <em></em> <strong>normpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-normpdf-1"></a>: <em></em> <strong>normpdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the normal distribution with mean <var>mu</var> and
standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>


<a name="XREFnormcdf"></a><dl>
<dt><a name="index-normcdf"></a>: <em></em> <strong>normcdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-normcdf-1"></a>: <em></em> <strong>normcdf</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the normal distribution with mean <var>mu</var> and
standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>


<a name="XREFnorminv"></a><dl>
<dt><a name="index-norminv"></a>: <em></em> <strong>norminv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-norminv-1"></a>: <em></em> <strong>norminv</strong> <em>(<var>x</var>, <var>mu</var>, <var>sigma</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the normal distribution with mean <var>mu</var> and
standard deviation <var>sigma</var>.
</p>
<p>Default values are <var>mu</var> = 0, <var>sigma</var> = 1.
</p></dd></dl>


<a name="XREFpoisspdf"></a><dl>
<dt><a name="index-poisspdf"></a>: <em></em> <strong>poisspdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the Poisson distribution with parameter <var>lambda</var>.
</p></dd></dl>


<a name="XREFpoisscdf"></a><dl>
<dt><a name="index-poisscdf"></a>: <em></em> <strong>poisscdf</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the Poisson distribution with parameter <var>lambda</var>.
</p></dd></dl>


<a name="XREFpoissinv"></a><dl>
<dt><a name="index-poissinv"></a>: <em></em> <strong>poissinv</strong> <em>(<var>x</var>, <var>lambda</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the Poisson distribution with parameter <var>lambda</var>.
</p></dd></dl>


<a name="XREFstdnormal_005fpdf"></a><dl>
<dt><a name="index-stdnormal_005fpdf"></a>: <em></em> <strong>stdnormal_pdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the standard normal distribution
(mean = 0, standard deviation = 1).
</p></dd></dl>


<a name="XREFstdnormal_005fcdf"></a><dl>
<dt><a name="index-stdnormal_005fcdf"></a>: <em></em> <strong>stdnormal_cdf</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the standard normal distribution
(mean = 0, standard deviation = 1).
</p></dd></dl>


<a name="XREFstdnormal_005finv"></a><dl>
<dt><a name="index-stdnormal_005finv"></a>: <em></em> <strong>stdnormal_inv</strong> <em>(<var>x</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the
inverse of the CDF) at <var>x</var> of the standard normal distribution
(mean = 0, standard deviation = 1).
</p></dd></dl>


<a name="XREFtpdf"></a><dl>
<dt><a name="index-tpdf"></a>: <em></em> <strong>tpdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the <var>t</var> (Student) distribution with
<var>n</var> degrees of freedom.
</p></dd></dl>


<a name="XREFtcdf"></a><dl>
<dt><a name="index-tcdf"></a>: <em></em> <strong>tcdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the t (Student) distribution with
<var>n</var> degrees of freedom.
</p></dd></dl>


<a name="XREFtinv"></a><dl>
<dt><a name="index-tinv"></a>: <em></em> <strong>tinv</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the t (Student) distribution with <var>n</var>
degrees of freedom.
</p>
<p>This function is analogous to looking in a table for the t-value of a
single-tailed distribution.
</p></dd></dl>


<a name="XREFunidpdf"></a><dl>
<dt><a name="index-unidpdf"></a>: <em></em> <strong>unidpdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of a discrete uniform distribution which assumes
the integer values 1&ndash;<var>n</var> with equal probability.
</p>
<p>Warning: The underlying implementation uses the double class and will only
be accurate for <var>n</var> &lt; <code>flintmax</code> (<em>2^{53}</em><!-- /@w --> on
IEEE 754 compatible systems).
</p></dd></dl>


<a name="XREFunidcdf"></a><dl>
<dt><a name="index-unidcdf"></a>: <em></em> <strong>unidcdf</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of a discrete uniform distribution which assumes
the integer values 1&ndash;<var>n</var> with equal probability.
</p></dd></dl>


<a name="XREFunidinv"></a><dl>
<dt><a name="index-unidinv"></a>: <em></em> <strong>unidinv</strong> <em>(<var>x</var>, <var>n</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the discrete uniform distribution which assumes
the integer values 1&ndash;<var>n</var> with equal probability.
</p></dd></dl>


<a name="XREFunifpdf"></a><dl>
<dt><a name="index-unifpdf"></a>: <em></em> <strong>unifpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-unifpdf-1"></a>: <em></em> <strong>unifpdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the probability density function (PDF)
at <var>x</var> of the uniform distribution on the interval [<var>a</var>, <var>b</var>].
</p>
<p>Default values are <var>a</var> = 0, <var>b</var> = 1.
</p></dd></dl>


<a name="XREFunifcdf"></a><dl>
<dt><a name="index-unifcdf"></a>: <em></em> <strong>unifcdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-unifcdf-1"></a>: <em></em> <strong>unifcdf</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the cumulative distribution function
(CDF) at <var>x</var> of the uniform distribution on the interval
[<var>a</var>, <var>b</var>].
</p>
<p>Default values are <var>a</var> = 0, <var>b</var> = 1.
</p></dd></dl>


<a name="XREFunifinv"></a><dl>
<dt><a name="index-unifinv"></a>: <em></em> <strong>unifinv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-unifinv-1"></a>: <em></em> <strong>unifinv</strong> <em>(<var>x</var>, <var>a</var>, <var>b</var>)</em></dt>
<dd><p>For each element of <var>x</var>, compute the quantile (the inverse of the CDF)
at <var>x</var> of the uniform distribution on the interval [<var>a</var>, <var>b</var>].
</p>
<p>Default values are <var>a</var> = 0, <var>b</var> = 1.
</p></dd></dl>


<a name="XREFwblpdf"></a><dl>
<dt><a name="index-wblpdf"></a>: <em></em> <strong>wblpdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-wblpdf-1"></a>: <em></em> <strong>wblpdf</strong> <em>(<var>x</var>, <var>scale</var>)</em></dt>
<dt><a name="index-wblpdf-2"></a>: <em></em> <strong>wblpdf</strong> <em>(<var>x</var>, <var>scale</var>, <var>shape</var>)</em></dt>
<dd><p>Compute the probability density function (PDF) at <var>x</var> of the
Weibull distribution with scale parameter <var>scale</var> and
shape parameter <var>shape</var>.
</p>
<p>This is given by
</p>
<div class="example">
<pre class="example">shape * scale^(-shape) * x^(shape-1) * exp (-(x/scale)^shape)
</pre></div>

<p>for <var>x</var> &ge; 0.
</p>
<p>Default values are <var>scale</var> = 1, <var>shape</var> = 1.
</p></dd></dl>


<a name="XREFwblcdf"></a><dl>
<dt><a name="index-wblcdf"></a>: <em></em> <strong>wblcdf</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-wblcdf-1"></a>: <em></em> <strong>wblcdf</strong> <em>(<var>x</var>, <var>scale</var>)</em></dt>
<dt><a name="index-wblcdf-2"></a>: <em></em> <strong>wblcdf</strong> <em>(<var>x</var>, <var>scale</var>, <var>shape</var>)</em></dt>
<dd><p>Compute the cumulative distribution function (CDF) at <var>x</var> of the
Weibull distribution with scale parameter <var>scale</var> and shape
parameter <var>shape</var>.
</p>
<p>This is defined as
</p>
<div class="example">
<pre class="example">1 - exp (-(x/scale)^shape)
</pre></div>

<p>for <var>x</var> &ge; 0.
</p>
<p>Default values are <var>scale</var> = 1, <var>shape</var> = 1.
</p></dd></dl>


<a name="XREFwblinv"></a><dl>
<dt><a name="index-wblinv"></a>: <em></em> <strong>wblinv</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-wblinv-1"></a>: <em></em> <strong>wblinv</strong> <em>(<var>x</var>, <var>scale</var>)</em></dt>
<dt><a name="index-wblinv-2"></a>: <em></em> <strong>wblinv</strong> <em>(<var>x</var>, <var>scale</var>, <var>shape</var>)</em></dt>
<dd><p>Compute the quantile (the inverse of the CDF) at <var>x</var> of the
Weibull distribution with scale parameter <var>scale</var> and
shape parameter <var>shape</var>.
</p>
<p>Default values are <var>scale</var> = 1, <var>shape</var> = 1.
</p></dd></dl>


<hr>
<div class="header">
<p>
Next: <a href="Tests.html#Tests" accesskey="n" rel="next">Tests</a>, Previous: <a href="Correlation-and-Regression-Analysis.html#Correlation-and-Regression-Analysis" accesskey="p" rel="prev">Correlation and Regression Analysis</a>, Up: <a href="Statistics.html#Statistics" accesskey="u" rel="up">Statistics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>