/usr/share/doc/octave/octave.html/Delaunay-Triangulation.html is in octave-doc 4.2.2-1ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Delaunay Triangulation (GNU Octave)</title>
<meta name="description" content="Delaunay Triangulation (GNU Octave)">
<meta name="keywords" content="Delaunay Triangulation (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Geometry.html#Geometry" rel="up" title="Geometry">
<link href="Plotting-the-Triangulation.html#Plotting-the-Triangulation" rel="next" title="Plotting the Triangulation">
<link href="Geometry.html#Geometry" rel="prev" title="Geometry">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">
</head>
<body lang="en">
<a name="Delaunay-Triangulation"></a>
<div class="header">
<p>
Next: <a href="Voronoi-Diagrams.html#Voronoi-Diagrams" accesskey="n" rel="next">Voronoi Diagrams</a>, Up: <a href="Geometry.html#Geometry" accesskey="u" rel="up">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Delaunay-Triangulation-1"></a>
<h3 class="section">30.1 Delaunay Triangulation</h3>
<p>The Delaunay triangulation is constructed from a set of
circum-circles. These circum-circles are chosen so that there are at
least three of the points in the set to triangulation on the
circumference of the circum-circle. None of the points in the set of
points falls within any of the circum-circles.
</p>
<p>In general there are only three points on the circumference of any
circum-circle. However, in some cases, and in particular for the
case of a regular grid, 4 or more points can be on a single
circum-circle. In this case the Delaunay triangulation is not unique.
</p>
<a name="XREFdelaunay"></a><dl>
<dt><a name="index-delaunay"></a>: <em><var>tri</var> =</em> <strong>delaunay</strong> <em>(<var>x</var>, <var>y</var>)</em></dt>
<dt><a name="index-delaunay-1"></a>: <em><var>tetr</var> =</em> <strong>delaunay</strong> <em>(<var>x</var>, <var>y</var>, <var>z</var>)</em></dt>
<dt><a name="index-delaunay-2"></a>: <em><var>tri</var> =</em> <strong>delaunay</strong> <em>(<var>x</var>)</em></dt>
<dt><a name="index-delaunay-3"></a>: <em><var>tri</var> =</em> <strong>delaunay</strong> <em>(…, <var>options</var>)</em></dt>
<dd><p>Compute the Delaunay triangulation for a 2-D or 3-D set of points.
</p>
<p>For 2-D sets, the return value <var>tri</var> is a set of triangles which
satisfies the Delaunay circum-circle criterion, i.e., no data point from
[<var>x</var>, <var>y</var>] is within the circum-circle of the defining triangle.
The set of triangles <var>tri</var> is a matrix of size [n, 3]. Each row defines
a triangle and the three columns are the three vertices of the triangle.
The value of <code><var>tri</var>(i,j)</code> is an index into <var>x</var> and <var>y</var> for
the location of the j-th vertex of the i-th triangle.
</p>
<p>For 3-D sets, the return value <var>tetr</var> is a set of tetrahedrons which
satisfies the Delaunay circum-circle criterion, i.e., no data point from
[<var>x</var>, <var>y</var>, <var>z</var>] is within the circum-circle of the defining
tetrahedron. The set of tetrahedrons is a matrix of size [n, 4]. Each row
defines a tetrahedron and the four columns are the four vertices of the
tetrahedron. The value of <code><var>tetr</var>(i,j)</code> is an index into <var>x</var>,
<var>y</var>, <var>z</var> for the location of the j-th vertex of the i-th
tetrahedron.
</p>
<p>The input <var>x</var> may also be a matrix with two or three columns where the
first column contains x-data, the second y-data, and the optional third
column contains z-data.
</p>
<p>The optional last argument, which must be a string or cell array of strings,
contains options passed to the underlying qhull command.
See the documentation for the Qhull library for details
<a href="http://www.qhull.org/html/qh-quick.htm#options">http://www.qhull.org/html/qh-quick.htm#options</a>.
The default options are <code>{"Qt", "Qbb", "Qc", "Qz"}</code>.
</p>
<p>If <var>options</var> is not present or <code>[]</code> then the default arguments are
used. Otherwise, <var>options</var> replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in <var>options</var>. Use a null string to pass no arguments.
</p>
<div class="example">
<pre class="example">x = rand (1, 10);
y = rand (1, 10);
tri = delaunay (x, y);
triplot (tri, x, y);
hold on;
plot (x, y, "r*");
axis ([0,1,0,1]);
</pre></div>
<p><strong>See also:</strong> <a href="#XREFdelaunayn">delaunayn</a>, <a href="Convex-Hull.html#XREFconvhull">convhull</a>, <a href="Voronoi-Diagrams.html#XREFvoronoi">voronoi</a>, <a href="Plotting-the-Triangulation.html#XREFtriplot">triplot</a>, <a href="Plotting-the-Triangulation.html#XREFtrimesh">trimesh</a>, <a href="Plotting-the-Triangulation.html#XREFtetramesh">tetramesh</a>, <a href="Plotting-the-Triangulation.html#XREFtrisurf">trisurf</a>.
</p></dd></dl>
<p>For 3-D inputs <code>delaunay</code> returns a set of tetrahedra that satisfy the
Delaunay circum-circle criteria. Similarly, <code>delaunayn</code> returns the
N-dimensional simplex satisfying the Delaunay circum-circle criteria.
The N-dimensional extension of a triangulation is called a tessellation.
</p>
<a name="XREFdelaunayn"></a><dl>
<dt><a name="index-delaunayn"></a>: <em><var>T</var> =</em> <strong>delaunayn</strong> <em>(<var>pts</var>)</em></dt>
<dt><a name="index-delaunayn-1"></a>: <em><var>T</var> =</em> <strong>delaunayn</strong> <em>(<var>pts</var>, <var>options</var>)</em></dt>
<dd><p>Compute the Delaunay triangulation for an N-dimensional set of points.
</p>
<p>The Delaunay triangulation is a tessellation of the convex hull of a set of
points such that no N-sphere defined by the N-triangles contains any other
points from the set.
</p>
<p>The input matrix <var>pts</var> of size [n, dim] contains n points in a space of
dimension dim. The return matrix <var>T</var> has size [m, dim+1]. Each row of
<var>T</var> contains a set of indices back into the original set of points
<var>pts</var> which describes a simplex of dimension dim. For example, a 2-D
simplex is a triangle and 3-D simplex is a tetrahedron.
</p>
<p>An optional second argument, which must be a string or cell array of
strings, contains options passed to the underlying qhull command. See the
documentation for the Qhull library for details
<a href="http://www.qhull.org/html/qh-quick.htm#options">http://www.qhull.org/html/qh-quick.htm#options</a>.
The default options depend on the dimension of the input:
</p>
<ul>
<li> 2-D and 3-D: <var>options</var> = <code>{"Qt", "Qbb", "Qc", "Qz"}</code>
</li><li> 4-D and higher: <var>options</var> = <code>{"Qt", "Qbb", "Qc", "Qx"}</code>
</li></ul>
<p>If <var>options</var> is not present or <code>[]</code> then the default arguments are
used. Otherwise, <var>options</var> replaces the default argument list.
To append user options to the defaults it is necessary to repeat the
default arguments in <var>options</var>. Use a null string to pass no arguments.
</p>
<p><strong>See also:</strong> <a href="#XREFdelaunay">delaunay</a>, <a href="Convex-Hull.html#XREFconvhulln">convhulln</a>, <a href="Voronoi-Diagrams.html#XREFvoronoin">voronoin</a>, <a href="Plotting-the-Triangulation.html#XREFtrimesh">trimesh</a>, <a href="Plotting-the-Triangulation.html#XREFtetramesh">tetramesh</a>.
</p></dd></dl>
<p>An example of a Delaunay triangulation of a set of points is
</p>
<div class="example">
<pre class="example">rand ("state", 2);
x = rand (10, 1);
y = rand (10, 1);
T = delaunay (x, y);
X = [ x(T(:,1)); x(T(:,2)); x(T(:,3)); x(T(:,1)) ];
Y = [ y(T(:,1)); y(T(:,2)); y(T(:,3)); y(T(:,1)) ];
axis ([0, 1, 0, 1]);
plot (X, Y, "b", x, y, "r*");
</pre></div>
<p>The result of which can be seen in <a href="#fig_003adelaunay">Figure 30.1</a>.
</p>
<div class="float"><a name="fig_003adelaunay"></a>
<div align="center"><img src="delaunay.png" alt="delaunay">
</div>
<div class="float-caption"><p><strong>Figure 30.1: </strong>Delaunay triangulation of a random set of points</p></div></div>
<table class="menu" border="0" cellspacing="0">
<tr><td align="left" valign="top">• <a href="Plotting-the-Triangulation.html#Plotting-the-Triangulation" accesskey="1">Plotting the Triangulation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
<tr><td align="left" valign="top">• <a href="Identifying-Points-in-Triangulation.html#Identifying-Points-in-Triangulation" accesskey="2">Identifying Points in Triangulation</a>:</td><td> </td><td align="left" valign="top">
</td></tr>
</table>
<hr>
<div class="header">
<p>
Next: <a href="Voronoi-Diagrams.html#Voronoi-Diagrams" accesskey="n" rel="next">Voronoi Diagrams</a>, Up: <a href="Geometry.html#Geometry" accesskey="u" rel="up">Geometry</a> [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
</body>
</html>
|