This file is indexed.

/usr/share/doc/octave/octave.html/Creating-Sparse-Matrices.html is in octave-doc 4.2.2-1ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<!-- Created by GNU Texinfo 6.5, http://www.gnu.org/software/texinfo/ -->
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Creating Sparse Matrices (GNU Octave)</title>

<meta name="description" content="Creating Sparse Matrices (GNU Octave)">
<meta name="keywords" content="Creating Sparse Matrices (GNU Octave)">
<meta name="resource-type" content="document">
<meta name="distribution" content="global">
<meta name="Generator" content="makeinfo">
<link href="index.html#Top" rel="start" title="Top">
<link href="Concept-Index.html#Concept-Index" rel="index" title="Concept Index">
<link href="index.html#SEC_Contents" rel="contents" title="Table of Contents">
<link href="Basics.html#Basics" rel="up" title="Basics">
<link href="Information.html#Information" rel="next" title="Information">
<link href="Storage-of-Sparse-Matrices.html#Storage-of-Sparse-Matrices" rel="prev" title="Storage of Sparse Matrices">
<style type="text/css">
<!--
a.summary-letter {text-decoration: none}
blockquote.indentedblock {margin-right: 0em}
blockquote.smallindentedblock {margin-right: 0em; font-size: smaller}
blockquote.smallquotation {font-size: smaller}
div.display {margin-left: 3.2em}
div.example {margin-left: 3.2em}
div.lisp {margin-left: 3.2em}
div.smalldisplay {margin-left: 3.2em}
div.smallexample {margin-left: 3.2em}
div.smalllisp {margin-left: 3.2em}
kbd {font-style: oblique}
pre.display {font-family: inherit}
pre.format {font-family: inherit}
pre.menu-comment {font-family: serif}
pre.menu-preformatted {font-family: serif}
pre.smalldisplay {font-family: inherit; font-size: smaller}
pre.smallexample {font-size: smaller}
pre.smallformat {font-family: inherit; font-size: smaller}
pre.smalllisp {font-size: smaller}
span.nolinebreak {white-space: nowrap}
span.roman {font-family: initial; font-weight: normal}
span.sansserif {font-family: sans-serif; font-weight: normal}
ul.no-bullet {list-style: none}
-->
</style>
<link rel="stylesheet" type="text/css" href="octave.css">


</head>

<body lang="en">
<a name="Creating-Sparse-Matrices"></a>
<div class="header">
<p>
Next: <a href="Information.html#Information" accesskey="n" rel="next">Information</a>, Previous: <a href="Storage-of-Sparse-Matrices.html#Storage-of-Sparse-Matrices" accesskey="p" rel="prev">Storage of Sparse Matrices</a>, Up: <a href="Basics.html#Basics" accesskey="u" rel="up">Basics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>
<hr>
<a name="Creating-Sparse-Matrices-1"></a>
<h4 class="subsection">22.1.2 Creating Sparse Matrices</h4>

<p>There are several means to create sparse matrix.
</p>
<dl compact="compact">
<dt>Returned from a function</dt>
<dd><p>There are many functions that directly return sparse matrices.  These include
<em>speye</em>, <em>sprand</em>, <em>diag</em>, etc.
</p>
</dd>
<dt>Constructed from matrices or vectors</dt>
<dd><p>The function <em>sparse</em> allows a sparse matrix to be constructed from
three vectors representing the row, column and data.  Alternatively, the
function <em>spconvert</em> uses a three column matrix format to allow easy
importation of data from elsewhere.
</p>
</dd>
<dt>Created and then filled</dt>
<dd><p>The function <em>sparse</em> or <em>spalloc</em> can be used to create an empty
matrix that is then filled by the user
</p>
</dd>
<dt>From a user binary program</dt>
<dd><p>The user can directly create the sparse matrix within an oct-file.
</p></dd>
</dl>

<p>There are several basic functions to return specific sparse
matrices.  For example the sparse identity matrix, is a matrix that is
often needed.  It therefore has its own function to create it as
<code>speye (<var>n</var>)</code> or <code>speye (<var>r</var>, <var>c</var>)</code>, which
creates an <var>n</var>-by-<var>n</var> or <var>r</var>-by-<var>c</var> sparse identity
matrix.
</p>
<p>Another typical sparse matrix that is often needed is a random distribution
of random elements.  The functions <em>sprand</em> and <em>sprandn</em> perform
this for uniform and normal random distributions of elements.  They have
exactly the same calling convention, where <code>sprand (<var>r</var>, <var>c</var>,
<var>d</var>)</code>, creates an <var>r</var>-by-<var>c</var> sparse matrix with a density of
filled elements of <var>d</var>.
</p>
<p>Other functions of interest that directly create sparse matrices, are
<em>diag</em> or its generalization <em>spdiags</em>, that can take the
definition of the diagonals of the matrix and create the sparse matrix
that corresponds to this.  For example,
</p>
<div class="example">
<pre class="example">s = diag (sparse (randn (1,n)), -1);
</pre></div>

<p>creates a sparse (<var>n</var>+1)-by-(<var>n</var>+1) sparse matrix with a single
diagonal defined.
</p>
<a name="XREFspdiags"></a><dl>
<dt><a name="index-spdiags"></a>: <em><var>B</var> =</em> <strong>spdiags</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-spdiags-1"></a>: <em>[<var>B</var>, <var>d</var>] =</em> <strong>spdiags</strong> <em>(<var>A</var>)</em></dt>
<dt><a name="index-spdiags-2"></a>: <em><var>B</var> =</em> <strong>spdiags</strong> <em>(<var>A</var>, <var>d</var>)</em></dt>
<dt><a name="index-spdiags-3"></a>: <em><var>A</var> =</em> <strong>spdiags</strong> <em>(<var>v</var>, <var>d</var>, <var>A</var>)</em></dt>
<dt><a name="index-spdiags-4"></a>: <em><var>A</var> =</em> <strong>spdiags</strong> <em>(<var>v</var>, <var>d</var>, <var>m</var>, <var>n</var>)</em></dt>
<dd><p>A generalization of the function <code>diag</code>.
</p>
<p>Called with a single input argument, the nonzero diagonals <var>d</var> of
<var>A</var> are extracted.
</p>
<p>With two arguments the diagonals to extract are given by the vector <var>d</var>.
</p>
<p>The other two forms of <code>spdiags</code> modify the input matrix by replacing
the diagonals.  They use the columns of <var>v</var> to replace the diagonals
represented by the vector <var>d</var>.  If the sparse matrix <var>A</var> is
defined then the diagonals of this matrix are replaced.  Otherwise a
matrix of <var>m</var> by <var>n</var> is created with the diagonals given by the
columns of <var>v</var>.
</p>
<p>Negative values of <var>d</var> represent diagonals below the main diagonal, and
positive values of <var>d</var> diagonals above the main diagonal.
</p>
<p>For example:
</p>
<div class="example">
<pre class="example">spdiags (reshape (1:12, 4, 3), [-1 0 1], 5, 4)
   &rArr; 5 10  0  0
      1  6 11  0
      0  2  7 12
      0  0  3  8
      0  0  0  4
</pre></div>


<p><strong>See also:</strong> <a href="Rearranging-Matrices.html#XREFdiag">diag</a>.
</p></dd></dl>


<a name="XREFspeye"></a><dl>
<dt><a name="index-speye"></a>: <em><var>s</var> =</em> <strong>speye</strong> <em>(<var>m</var>, <var>n</var>)</em></dt>
<dt><a name="index-speye-1"></a>: <em><var>s</var> =</em> <strong>speye</strong> <em>(<var>m</var>)</em></dt>
<dt><a name="index-speye-2"></a>: <em><var>s</var> =</em> <strong>speye</strong> <em>(<var>sz</var>)</em></dt>
<dd><p>Return a sparse identity matrix of size <var>m</var>x<var>n</var>.
</p>
<p>The implementation is significantly more efficient than
<code>sparse (eye (<var>m</var>))</code> as the full matrix is not constructed.
</p>
<p>Called with a single argument a square matrix of size
<var>m</var>-by-<var>m</var> is created.  If called with a single vector argument
<var>sz</var>, this argument is taken to be the size of the matrix to create.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>, <a href="#XREFspdiags">spdiags</a>, <a href="Special-Utility-Matrices.html#XREFeye">eye</a>.
</p></dd></dl>


<a name="XREFspones"></a><dl>
<dt><a name="index-spones"></a>: <em><var>r</var> =</em> <strong>spones</strong> <em>(<var>S</var>)</em></dt>
<dd><p>Replace the nonzero entries of <var>S</var> with ones.
</p>
<p>This creates a sparse matrix with the same structure as <var>S</var>.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>, <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandn">sprandn</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="Function-Application.html#XREFspfun">spfun</a>, <a href="Information.html#XREFspy">spy</a>.
</p></dd></dl>


<a name="XREFsprand"></a><dl>
<dt><a name="index-sprand"></a>: <em></em> <strong>sprand</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>)</em></dt>
<dt><a name="index-sprand-1"></a>: <em></em> <strong>sprand</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>, <var>rc</var>)</em></dt>
<dt><a name="index-sprand-2"></a>: <em></em> <strong>sprand</strong> <em>(<var>s</var>)</em></dt>
<dd><p>Generate a sparse matrix with uniformly distributed random values.
</p>
<p>The size of the matrix is <var>m</var>x<var>n</var> with a density of values <var>d</var>.
<var>d</var> must be between 0 and 1.  Values will be uniformly distributed on
the interval (0, 1).
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var>s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var>rc</var>, a random sparse matrix
with reciprocal condition number <var>rc</var> is generated.  If <var>rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code>length (<var>rc</var>) &lt;= min (<var>m</var>, <var>n</var>)</code>).
</p>

<p><strong>See also:</strong> <a href="#XREFsprandn">sprandn</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="Special-Utility-Matrices.html#XREFrand">rand</a>.
</p></dd></dl>


<a name="XREFsprandn"></a><dl>
<dt><a name="index-sprandn"></a>: <em></em> <strong>sprandn</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>)</em></dt>
<dt><a name="index-sprandn-1"></a>: <em></em> <strong>sprandn</strong> <em>(<var>m</var>, <var>n</var>, <var>d</var>, <var>rc</var>)</em></dt>
<dt><a name="index-sprandn-2"></a>: <em></em> <strong>sprandn</strong> <em>(<var>s</var>)</em></dt>
<dd><p>Generate a sparse matrix with normally distributed random values.
</p>
<p>The size of the matrix is <var>m</var>x<var>n</var> with a density of values <var>d</var>.
<var>d</var> must be between 0 and 1.  Values will be normally distributed with a
mean of 0 and a variance of 1.
</p>
<p>If called with a single matrix argument, a sparse matrix is generated with
random values wherever the matrix <var>s</var> is nonzero.
</p>
<p>If called with a scalar fourth argument <var>rc</var>, a random sparse matrix
with reciprocal condition number <var>rc</var> is generated.  If <var>rc</var> is
a vector, then it specifies the first singular values of the generated
matrix (<code>length (<var>rc</var>) &lt;= min (<var>m</var>, <var>n</var>)</code>).
</p>

<p><strong>See also:</strong> <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="Special-Utility-Matrices.html#XREFrandn">randn</a>.
</p></dd></dl>


<a name="XREFsprandsym"></a><dl>
<dt><a name="index-sprandsym"></a>: <em></em> <strong>sprandsym</strong> <em>(<var>n</var>, <var>d</var>)</em></dt>
<dt><a name="index-sprandsym-1"></a>: <em></em> <strong>sprandsym</strong> <em>(<var>s</var>)</em></dt>
<dd><p>Generate a symmetric random sparse matrix.
</p>
<p>The size of the matrix will be <var>n</var>x<var>n</var>, with a density of values
given by <var>d</var>.  <var>d</var> must be between 0 and 1 inclusive.  Values will
be normally distributed with a mean of zero and a variance of 1.
</p>
<p>If called with a single matrix argument, a random sparse matrix is generated
wherever the matrix <var>s</var> is nonzero in its lower triangular part.
</p>
<p><strong>See also:</strong> <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandn">sprandn</a>, <a href="#XREFspones">spones</a>, <a href="#XREFsparse">sparse</a>.
</p></dd></dl>


<p>The recommended way for the user to create a sparse matrix, is to create
two vectors containing the row and column index of the data and a third
vector of the same size containing the data to be stored.  For example,
</p>
<div class="example">
<pre class="example">  ri = ci = d = [];
  for j = 1:c
    ri = [ri; randperm(r,n)'];
    ci = [ci; j*ones(n,1)];
    d = [d; rand(n,1)];
  endfor
  s = sparse (ri, ci, d, r, c);
</pre></div>

<p>creates an <var>r</var>-by-<var>c</var> sparse matrix with a random distribution
of <var>n</var> (&lt;<var>r</var>) elements per column.  The elements of the vectors
do not need to be sorted in any particular order as Octave will sort
them prior to storing the data.  However, pre-sorting the data will
make the creation of the sparse matrix faster.
</p>
<p>The function <em>spconvert</em> takes a three or four column real matrix.
The first two columns represent the row and column index respectively and
the third and four columns, the real and imaginary parts of the sparse
matrix.  The matrix can contain zero elements and the elements can be
sorted in any order.  Adding zero elements is a convenient way to define
the size of the sparse matrix.  For example:
</p>
<div class="example">
<pre class="example">s = spconvert ([1 2 3 4; 1 3 4 4; 1 2 3 0]')
&rArr; Compressed Column Sparse (rows=4, cols=4, nnz=3)
      (1 , 1) -&gt; 1
      (2 , 3) -&gt; 2
      (3 , 4) -&gt; 3
</pre></div>

<p>An example of creating and filling a matrix might be
</p>
<div class="example">
<pre class="example">k = 5;
nz = r * k;
s = spalloc (r, c, nz)
for j = 1:c
  idx = randperm (r);
  s (:, j) = [zeros(r - k, 1); ...
        rand(k, 1)] (idx);
endfor
</pre></div>

<p>It should be noted, that due to the way that the Octave
assignment functions are written that the assignment will reallocate
the memory used by the sparse matrix at each iteration of the above loop.
Therefore the <em>spalloc</em> function ignores the <var>nz</var> argument and
does not pre-assign the memory for the matrix.  Therefore, it is vitally
important that code using to above structure should be vectorized
as much as possible to minimize the number of assignments and reduce the
number of memory allocations.
</p>
<a name="XREFfull"></a><dl>
<dt><a name="index-full"></a>: <em><var>FM</var> =</em> <strong>full</strong> <em>(<var>SM</var>)</em></dt>
<dd><p>Return a full storage matrix from a sparse, diagonal, or permutation matrix,
or a range.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>, <a href="Information.html#XREFissparse">issparse</a>.
</p></dd></dl>


<a name="XREFspalloc"></a><dl>
<dt><a name="index-spalloc"></a>: <em><var>s</var> =</em> <strong>spalloc</strong> <em>(<var>m</var>, <var>n</var>, <var>nz</var>)</em></dt>
<dd><p>Create an <var>m</var>-by-<var>n</var> sparse matrix with pre-allocated space for at
most <var>nz</var> nonzero elements.
</p>
<p>This is useful for building a matrix incrementally by a sequence of indexed
assignments.  Subsequent indexed assignments after <code>spalloc</code> will reuse
the pre-allocated memory, provided they are of one of the simple forms
</p>
<ul>
<li> <code><var>s</var>(I:J) = <var>x</var></code>

</li><li> <code><var>s</var>(:,I:J) = <var>x</var></code>

</li><li> <code><var>s</var>(K:L,I:J) = <var>x</var></code>
</li></ul>

<p><b>and</b> that the following conditions are met:
</p>
<ul>
<li> the assignment does not decrease nnz (<var>S</var>).

</li><li> after the assignment, nnz (<var>S</var>) does not exceed <var>nz</var>.

</li><li> no index is out of bounds.
</li></ul>

<p>Partial movement of data may still occur, but in general the assignment will
be more memory and time efficient under these circumstances.  In particular,
it is possible to efficiently build a pre-allocated sparse matrix from a
contiguous block of columns.
</p>
<p>The amount of pre-allocated memory for a given matrix may be queried using
the function <code>nzmax</code>.
</p>
<p><strong>See also:</strong> <a href="Information.html#XREFnzmax">nzmax</a>, <a href="#XREFsparse">sparse</a>.
</p></dd></dl>


<a name="XREFsparse"></a><dl>
<dt><a name="index-sparse"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>a</var>)</em></dt>
<dt><a name="index-sparse-1"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>sv</var>, <var>m</var>, <var>n</var>)</em></dt>
<dt><a name="index-sparse-2"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>sv</var>)</em></dt>
<dt><a name="index-sparse-3"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>m</var>, <var>n</var>)</em></dt>
<dt><a name="index-sparse-4"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>s</var>, <var>m</var>, <var>n</var>, &quot;unique&quot;)</em></dt>
<dt><a name="index-sparse-5"></a>: <em><var>s</var> =</em> <strong>sparse</strong> <em>(<var>i</var>, <var>j</var>, <var>sv</var>, <var>m</var>, <var>n</var>, <var>nzmax</var>)</em></dt>
<dd><p>Create a sparse matrix from a full matrix, or row, column, value triplets.
</p>
<p>If <var>a</var> is a full matrix, convert it to a sparse matrix representation,
removing all zero values in the process.
</p>
<p>Given the integer index vectors <var>i</var> and <var>j</var>, and a 1-by-<code>nnz</code>
vector of real or complex values <var>sv</var>, construct the sparse matrix
<code>S(<var>i</var>(<var>k</var>),<var>j</var>(<var>k</var>)) = <var>sv</var>(<var>k</var>)</code> with overall
dimensions <var>m</var> and <var>n</var>.  If any of <var>sv</var>, <var>i</var> or <var>j</var> are
scalars, they are expanded to have a common size.
</p>
<p>If <var>m</var> or <var>n</var> are not specified their values are derived from the
maximum index in the vectors <var>i</var> and <var>j</var> as given by
<code><var>m</var> = max (<var>i</var>)</code>, <code><var>n</var> = max (<var>j</var>)</code>.
</p>
<p><strong>Note</strong>: if multiple values are specified with the same <var>i</var>,
<var>j</var> indices, the corresponding value in <var>s</var> will be the sum of the
values at the repeated location.  See <code>accumarray</code> for an example of
how to produce different behavior, such as taking the minimum instead.
</p>
<p>If the option <code>&quot;unique&quot;</code> is given, and more than one value is
specified at the same <var>i</var>, <var>j</var> indices, then the last specified
value will be used.
</p>
<p><code>sparse (<var>m</var>, <var>n</var>)</code> will create an empty <var>m</var>x<var>n</var> sparse
matrix and is equivalent to <code>sparse ([], [], [], <var>m</var>, <var>n</var>)</code>
</p>
<p>The argument <code>nzmax</code> is ignored but accepted for compatibility with
<small>MATLAB</small>.
</p>
<p>Example 1 (sum at repeated indices):
</p>
<div class="example">
<pre class="example"><var>i</var> = [1 1 2]; <var>j</var> = [1 1 2]; <var>sv</var> = [3 4 5];
sparse (<var>i</var>, <var>j</var>, <var>sv</var>, 3, 4)
&rArr;
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])

  (1, 1) -&gt;  7
  (2, 2) -&gt;  5
</pre></div>

<p>Example 2 (&quot;unique&quot; option):
</p>
<div class="example">
<pre class="example"><var>i</var> = [1 1 2]; <var>j</var> = [1 1 2]; <var>sv</var> = [3 4 5];
sparse (<var>i</var>, <var>j</var>, <var>sv</var>, 3, 4, &quot;unique&quot;)
&rArr;
Compressed Column Sparse (rows = 3, cols = 4, nnz = 2 [17%])

  (1, 1) -&gt;  4
  (2, 2) -&gt;  5
</pre></div>

<p><strong>See also:</strong> <a href="#XREFfull">full</a>, <a href="Accumulation.html#XREFaccumarray">accumarray</a>, <a href="#XREFspalloc">spalloc</a>, <a href="#XREFspdiags">spdiags</a>, <a href="#XREFspeye">speye</a>, <a href="#XREFspones">spones</a>, <a href="#XREFsprand">sprand</a>, <a href="#XREFsprandn">sprandn</a>, <a href="#XREFsprandsym">sprandsym</a>, <a href="#XREFspconvert">spconvert</a>, <a href="Function-Application.html#XREFspfun">spfun</a>.
</p></dd></dl>


<a name="XREFspconvert"></a><dl>
<dt><a name="index-spconvert"></a>: <em><var>x</var> =</em> <strong>spconvert</strong> <em>(<var>m</var>)</em></dt>
<dd><p>Convert a simple sparse matrix format easily generated by other programs
into Octave&rsquo;s internal sparse format.
</p>
<p>The input <var>m</var> is either a 3 or 4 column real matrix, containing the
row, column, real, and imaginary parts of the elements of the sparse
matrix.  An element with a zero real and imaginary part can be used to
force a particular matrix size.
</p>
<p><strong>See also:</strong> <a href="#XREFsparse">sparse</a>.
</p></dd></dl>


<p>The above problem of memory reallocation can be avoided in
oct-files.  However, the construction of a sparse matrix from an oct-file
is more complex than can be discussed here.  See <a href="External-Code-Interface.html#External-Code-Interface">External Code Interface</a>,
for a full description of the techniques involved.
</p>
<hr>
<div class="header">
<p>
Next: <a href="Information.html#Information" accesskey="n" rel="next">Information</a>, Previous: <a href="Storage-of-Sparse-Matrices.html#Storage-of-Sparse-Matrices" accesskey="p" rel="prev">Storage of Sparse Matrices</a>, Up: <a href="Basics.html#Basics" accesskey="u" rel="up">Basics</a> &nbsp; [<a href="index.html#SEC_Contents" title="Table of contents" rel="contents">Contents</a>][<a href="Concept-Index.html#Concept-Index" title="Index" rel="index">Index</a>]</p>
</div>



</body>
</html>